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Abstract

Estimating the unresolved geophysical processes from resolved geophysical fluid dynamics is the key for improving numerical

weather-climate predictions. While data-driven parameterization for unresolved geophysical processes shows potential, most

practices fail to capture the diversity of unresolved geophysical processes that agree with resolved geophysical fluid state. This

pitfall undermines the likelihood or severity of simulated weather extremes, and erodes the fidelity of climate projections. We

propose the criteria of READS (Realism, Efficiency, Adaptability, Diversity, Sharpness) for generative models to yield rea-

sonable stochastic parameterization. We introduce probabilistic diffusion model, a non-equilibrium thermodynamics inspired

deep generative modeling approach, to better meet these criteria. Using a case example of numerical precipitation estimation,

we demonstrate the advantage of the proposed methodology in quickly delivering diverse and faithful estimates for the target

unresolved process, as compared to other popular data-driven deterministic and stochastic methods (UNet, variational autoen-

coder, generative adversarial net), as well as dynamical downscaling method (WRF). We conclude that generative models, in

particular, probabilistic diffusion model, can significantly enhance the representation of unresolved geophysical processes in

numerical weather-climate predictions.
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Abstract22

Estimating the unresolved geophysical processes from resolved geophysical fluid dynam-23

ics is the key for improving numerical weather-climate predictions. While data-driven24

parameterization for unresolved geophysical processes shows potential, most practices25

fail to capture the diversity of unresolved geophysical processes that agree with resolved26

geophysical fluid state. This pitfall undermines the likelihood or severity of simulated27

weather extremes, and erodes the fidelity of climate projections. We propose the crite-28

ria of READS (Realism, Efficiency, Adaptability, Diversity, Sharpness) for generative mod-29

els to yield reasonable stochastic parameterization. We introduce probabilistic diffusion30

model, a non-equilibrium thermodynamics inspired deep generative modeling approach,31

to better meet these criteria. Using a case example of numerical precipitation estima-32

tion, we demonstrate the advantage of the proposed methodology in quickly delivering33

diverse and faithful estimates for the target unresolved process, as compared to other34

popular data-driven deterministic and stochastic methods (UNet, variational autoencoder,35

generative adversarial net), as well as dynamical downscaling method (WRF). We con-36

clude that generative models, in particular, probabilistic diffusion model, can significantly37

enhance the representation of unresolved geophysical processes in numerical weather-climate38

predictions.39

Plain Language Summary40

“Life is a gorgeous robe, crawling with lice”, so said Eileen Chang, a Chinese writer41

who enjoyed depicting the awkward discrepancies between ideal and reality. Same metaphor42

applies to climate models, rooted in physical principles of fluid dynamics and thermo-43

dynamics, rife with empirics making up the missing components. We use generative AI44

to make up the missing components in climate models, achieving realistic and informa-45

tive simulations of unresolved climate processes, i.e., precipitation.46

1 Introduction47

Geophysical fluid dynamics operates across a continuous spectrum of spatiotem-48

poral scales, ranging from micro-scale turbulences to synoptic-scale planetary waves. Their49

numerical solvers, coming with finite resolution, set a distinction between resolved dy-50

namics and unresolved physical processes, with the latter being approximated as empir-51

ical functions of the former. This approximation, known as parameterization, is the source52

of error in numerical weather and climate predictions (Stensrud, 2009).53

Typically, parameterization schemes are deterministic functions, providing a unique54

tendency accounting for the grid-scale impact of subgrid physical processes in numer-55

ical modeling of geophysical fluid dynamics. However, as we do not explicitly resolve the56

subgrid physical processes, a probabilistic formulation is advocated (Berner et al., 2017;57

T. Palmer, 2019): the impact of subgrid physical processes should be described by a prob-58

ability distribution function conditioning on the resolved geophysical fluid dynamics. This59

probabilistic formulation enables a rigorous and consistent characterization of unresolved60

physical processes across model resolutions (Sakradzija et al., 2016). Also, it allows subgrid-61

scale noise to trigger crucial circulation regime transitions, supporting reliable proba-62

bilistic forecasts (T. N. Palmer et al., 2009).63

To make accurate probabilistic representation of unresolved physical processes in64

numerical weather-climate models, existing efforts proceed along the following three lines.65

The first, which is straightforward yet lacks theoretical warrant, is to pre-define a per-66

turbation to the parameters, functions, or outputs of deterministic parameterization schemes67

(Dorrestijn et al., 2013). The second, which is solid yet costly and restricted in scope,68

is to compute statistics of the equilibrium states of the considered process, via statisti-69

cal mechanics analysis (Plant & Craig, 2008). The third, which promises remarkable ac-70
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curacy, efficiency, and flexibility, is to approximate the probability distribution of unre-71

solved physical processes by learning from high fidelity data, such as high-resolution sim-72

ulations or observations (Gagne et al., 2020; Ravuri et al., 2021; Harris et al., 2022).73

We proceed along the third line as motivated by the recent breakthrough of prob-74

abilistic machine learning, in particular, probabilistic diffusion models (Sohl-Dickstein75

et al., 2015; Ho et al., 2020; Song et al., 2020). Probabilistic diffusion models learn to76

approximate probability distributions in an iterative manner, achieving unprecedented77

fitting capacity and controlling flexibility in generative modeling tasks. Using a case ex-78

ample of numerical precipitation estimation, we specify five requirements for develop-79

ing data-driven stochastic parameterization schemes. We develop Diffusion based Pre-80

cipitation estimator, dubbed DiP, and demonstrate its unique advantages in meeting these81

requirements, as compared to existing data-driven deterministic and stochastic param-82

eterization schemes, as well as high resolution dynamical simulation method.83

2 Problem setup and model requirements84

We consider a case example of numerical precipitation estimation: given geophys-85

ical fluid dynamics resolved to a finite spatiotemporal resolution, the goal is to estimate86

the accompanying precipitation process. The challenge lies in that, precipitation results87

from a complicated chain of processes that are mostly unresolved in numerical models88

(Tapiador et al., 2019). Any error along this simulation chain may distort the location,89

timing, or quantity of the precipitation estimate, rendering the estimate useless, even mis-90

leading (Pan, Hsu, AghaKouchak, & Sorooshian, 2019; Pan, Hsu, AghaKouchak, Sorooshian,91

& Higgins, 2019; Chen & Wang, 2022).92

Here we consider the region of East and Southeast Asia (0◦−40◦N, 100◦E−140◦E),93

where precipitation is driven by diverse circulation regimes. We use the following resolv-94

able dynamical variables to infer precipitation: key primitive variables (meridional and95

zonal wind velocity, temperature, specific humidity, and geopotential height) at 3 pres-96

sure levels (1000/850/500 hPa), and crucial surface level variables (sea level pressure,97

surface pressure, surface temperature, and total column precipitable water). These data98

are obtained by blending observations with short-range weather forecasts to faithfully99

represent historical circulation states. The data are from the Climate Forecast System100

Reanalysis project (Saha et al., 2006), coming at spatiotemporal resolution of 0.5◦/1 hour101

for Year 1979-2022. Besides these dynamical variables, we also consider 0.1◦ elevation102

data as extra, static predictor. These dynamical and static predictor variables are to-103

gether denoted as x. Precipitation, as our predictand variable, is denoted by y. The data104

are from the Multi-Source Weighted-Ensemble Precipitation product (Beck et al., 2019),105

which merges gauge, satellite, and reanalysis precipitation records to achieve optimal qual-106

ity. The data come at a 0.1◦/3-hourly resolution for same period.107

Our objective is to approximate the conditional distribution of p(y|x), based on108

favorably large amount of {x,y} paired data samples. This problem setup differs from109

a deterministic regression problem setup, which has been widely adopted for learning pa-110

rameterization schemes (Yu et al., 2023; Wang & Tan, 2023). Specifically, in both de-111

terministic and probabilistic formulations, we design a learning machine Θ, for which the112

optimal parameter θ∗ is obtained by maximizing the overall likelihood of the reference113

data:114

θ∗ = argmax
θ

∑
i

log pθ(yi|xi) (1)

In a deterministic regression problem setup, given any x, the learning machine yields115

the most plausible y: ŷ = argmax
y

log pθ∗(y|x). This is often achieved by pre-assuming116
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the distributional form of pθ. For instance, assuming pθ(y|x) := N
(
µθ(x), σ

2
θ(x)

)
, we117

have ŷ = µθ∗(x), where θ∗ = argmin
θ

∑
i

[(
µθ(xi)−yi

)2

σ2
θ(xi)

+ log σ2
θ(xi)

]
. Such an assump-118

tion offers huge computation convenience, yet, it comes with two deficits. First, a pre-119

defined distributional form often poorly fits a richly structured target physical process.120

Second, a deterministic formulation precludes interaction between subgrid noise and re-121

solved dynamics, resulting in biased weather-climate predictions (Hardiman et al., 2022).122

In a probabilistic modeling setup, given any x, the learning machine outputs plau-123

sible y samples: ŷ ∼ pθ∗(y|x), where pθ∗ is a learned distribution subject to no pre-124

defined probability distribution form. This probabilistic formulation allows us to bypass125

the two deficits of a deterministic formulation, yet, it comes with its own challenges and126

requirements. To realize the potential, one must steer the learning machine toward ver-127

ifiable goals of stochastic parameterization, which are quantified in ensemble forecast prac-128

tices. We hence suggest the following five criteria for pθ∗ based on the requirements of129

ensemble forecast:130

• Realism: samples from the estimated conditional probability distribution should131

be indistinguishable from observational samples, regarding either their structure132

or functionality. This requirement ensures that an accurate probability value can133

be assigned to the realized observations, either for training or evaluation purposes.134

Also, the generated samples can fit into the geophysical modeling pipeline, and135

be as useful as observations for a wide range of subsequent tasks.136

• Efficiency: a solid approach for developing parameterization schemes is to con-137

sider each of the possible ways that the subgrid scale process evolve under the grid-138

scale constraint, to compute the probability of each such “configuration” in the139

equilibrium ensemble, and generate samples accordingly. This requires excessive140

human effort and computational resources. Here, we expect a well-trained pθ∗ to141

efficiently generate multiple samples of plausible subgrid physical processes, at least142

several orders faster than directly resolving the subgrid scale process.143

• Adaptability: the interaction of subgrid scale physics and large scale dynamics144

often results in organized weather schemes across scales, ranging from local con-145

vection to weather fronts. Correspondingly, the model is preferred to automati-146

cally identify and apply to these organized weather schemes, rather than work-147

ing at individual computing grids or fixed computing time steps.148

• Diversity: the estimated conditional probability distribution should cover all plau-149

sible outcomes, rather than a limited subset of modes. This ensures that all ob-150

served states are within the cone of model simulations, particularly for extremes.151

• Sharpness: the estimated conditional probability distribution should generate152

samples that are faithful to the conditioning information, maximizing the sharp-153

ness of the simulated distribution. Note that this requirement naturally confronts154

the diversity requirement: an overly constrained probability estimate may fail to155

encapsulate observations, which is unreliable; an overly dispersed probability es-156

timate may lack clear distinction from climatology, which is uninformative. We157

must carefully balance sharpness and diversity, so that the probability estimate158

faithfully reflects the intrinsic stochasticity of the considered process.159

We coin the term READS by concatenating the initial letters of the five criteria160

above. Below we introduce DiP, Diffusion based Precipitation estimator, and demonstrate161

its unique advantage in meeting the READS requirements, as compared to existing de-162

terministic/probabilistic data-driven approaches, as well as high-resolution dynamical163

simulation approach.164
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3 Diffusion based Precipitation estimator (DiP)165

3.1 A primer on probabilistic machine learning166

The method we develop here falls into the scope of probabilistic machine learning,167

which applies probability theory to design learning machines that make predictions as168

probability distributions. Since the target distribution we try to approximate adheres169

to no pre-defined closed form, a common strategy is to learn a mapping between the tar-170

get distribution and a tractable latent distribution, i.e., standard Gaussian. After learn-171

ing the mapping from optimally large amount of data, we can pass samples from the la-172

tent distribution through the trained model to obtain target distribution samples, hence173

inferring this target distribution. The key challenge is that, we lack point-to-point cor-174

respondences between samples from the target distribution and the latent distribution,175

hence lacking straightforward supervision signals to enable learning (Ruthotto & Haber,176

2021). A popular solution is to build bijective mapping between the target distribution177

and the latent distribution, therefore establishing correspondences. Probabilistic diffu-178

sion models excel in this task by establishing the bijection in an iterative manner. Be-179

low we outline how this is achieved. Mathematical and implementation details are given180

in Supporting Information S1.181

3.2 Basics182

Diffusion model approximates a target distribution p(y) by reversing a Gaussian183

process (Fig. 1): the forward Gaussian process turns p(y) into standard Gaussian N (0, I)184

(Fig. 1a, Eq. 2); we learn to iteratively reverse this Gaussian process, mapping N (0, I)185

to p(y) (Fig. 1b-d), hence achieving generative modeling. Following D. Kingma et al. (2021),186

the forward Gaussian process is pre-defined as:187

p(zt|y) := N (αty, σ
2
t I) (2)

Here zt is latent variable indexed by t ∈ [0, 1], αt/σt is monotonically decreasing/increasing188

function of t, strictly bounded by [0, 1]. Eq. 2 therefore bridges p(y) = p(z0|y) and N (0, I) =189

p(z1|y) (Fig. 1a). We reverse Eq. 2 to turn N (0, I) into p(y), using a chain of variational190

distributions (Fig. 1b):191

pθ(zti−1
|zti) = N

(
µθ(zti),Σθ(zti)

)
, i ∈ [1, T ] (3)

Here 0 = t0 < t1 < t2 < ... < tT = 1 is arbitrary discretization of time; {µθ,Σθ} are192

learnable mean vector and covariance matrix, trained by maximizing the overall data like-193

lihood (Supporting Information S1.1):194

log pθ(y) = Ep(z0|y) log p(y|z0)−DKL

(
p(z1|y)||p(z1)

)
−

T∑
i=1

Ep(zti
|y)DKL

(
p(zti−1

|zti ,y)||pθ(zti−1
|zti)

)
(4)

Given Eq. 2, to maximize Eq. 4 is approximately equivalent to minimizing the Fisher di-
vergence between the data and model distributions (Supporting Information S1.2):

θ∗ = argmax
θ

log pθ(y) ≈ argmin
θ

T∑
i=1

Ep(zti
|y)

∥∥∇ log p(zti |y)− ϵNNθ
(zti)

∥∥
2

(5)

Here ϵNNθ
is a neural network parameterization of ∇ log p(zti |y), known as the score func-195

tion. Based on the learned score estimates, we can derive pθ(zti−1 |zti) = N
(
µθ(zti),Σθ(zti)

)
196

(Supporting Information S1.2) and sample it, starting with p(z1) = N (0, I), ending with197

p(z0) ≈ p(y).198
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Figure 1. Overview of diffusion model. We map target distribution (synoptic-scale precip-

itation field, a left) to a same dimensional standard Gaussian distribution (a right) through a

pre-defined Gaussian process (a bottom, Eq. 2). Color denotes probability distribution function

value for an individual precipitation field pixel (here we select the center pixel) through diffusion

time t = [0, 1], lines show the diffusion trajectories of individual pixels for randomly selected sam-

ples, matrix plots show the noisified precipitation field (sample of Typhoon Lekima, 0000 UTC

09 August 2019, centered at 26.5◦N, 114.4◦E) across diffusion time (a top). We approximate the

target distribution by reversing the Gaussian process, using a series of variational distributions

(b, Eq. 3), which are trained by maximizing the data likelihood (Eq. 4-5). We include condition-

ing information to approximate conditional distribution of a same Typhoon event (c). We apply

classifier-free guidance to control the impact of the conditioning information versus the latent

variable in explaining the variability of the target variable for the same event (d, Eq. 6). By en-

hancing the guidance strength ω, we suppress the variance of the resulting conditional probability

distribution (c/d right). The plots are supported by logarithm transformed precipitation observa-

tional data for Year 2019, and the trained diffusion models.
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3.3 Conditioning199

To generate y samples that are faithful to the conditioning information x, we need200

to approximate the conditional distribution p(y|x). To achieve this, we include x dur-201

ing training and sampling (Fig. 1c-d). A direct inclusion of x does not specify the im-202

pact of x versus zt in explaining the variability of y (Fig. 1c, Holmes & Walker 2017).203

To tackle the potential misspecification, and having x effectively control the learned dis-204

tribution, we resort to classifier-free guidance (Ho & Salimans, 2022, Fig. 1d): we learn205

two sets of neural networks: ϵNN(zti) /ϵ
c
NN(zti ,x), so to approximate the unconditional/conditional206

scores: ∇ log p(zti |y) /∇ log p(zti |y,x). Based upon these two sets of score estimates,207

we compose score estimators for synthetic distributions pω(zti |x,y) ∝ p(x|y, zti)ωp(zti |y):208

∇ log pω(zti |y,x) = ∇ log p(zti |y) + ω∇ log p(x|y, zti)
= ∇ log p(zti |y) + ω

(
∇ log p(zti |x,y)−∇ log p(zti |y)

)
≈ ϵNN(zti) + ω

(
ϵcNN(zti ,x)− ϵNN(zti)

) (6)

Here ω is guidance scale coefficient, balancing the diversity and sharpness of the learned209

conditional distribution:210

ω = 1: assuming impact of x has been perfectly accounted by ϵcNN(zti ,x) (Fig. 1c).211

ω < 1: suppressing impact of x, pervading the distribution toward climatology.212

ω > 1: raising impact of x, sharpening the distribution toward more likely values (Fig. 1d).213

We now apply score estimates of pω(zti |x,y) to sample p(y|x), following a same214

strategy described in Sec. 3.2. The value of ω is empirically determined based on the prob-215

abilistic forecasting skill of its resulting model.216

3.4 Baselines and implementation details217

We compare the DiP methodology with popular deterministic and stochastic data-218

driven methods and moderate/high resolution dynamical simulation method, including:219

• UNet: a de-facto choice for image-to-image regression tasks, using neural network220

consisting symmetric convolution and deconvolution blocks (Ronneberger et al.,221

2015).222

• Conditional variational autoencoder (CVAE): a probabilistic deep learn-223

ing method that maximizes a lower bound of data likelihood to learn latent vari-224

able model for a target conditional distribution (D. P. Kingma & Welling, 2013;225

Pan et al., 2022).226

• Conditional generative adversarial net (CGAN): a probabilistic deep learn-227

ing method in which a generative network learns to approximate a target condi-228

tional distribution, under the guidance of a discriminative network that distinguishes229

generated samples and true samples (Goodfellow et al., 2014; Pan et al., 2021; Ravuri230

et al., 2021).231

• CFS reanalysis precipitation product (CFSR): an optimized combination232

of CMAP (CPC Merged Analysis of Precipitation), daily gauge observations, and233

CFS background 6-hourly precipitation analysis (Saha et al., 2006).234

• Dynamical downscaling using WRF: refining coarsely resolved climate pro-235

cesses via high resolution numerical geophysical fluid dynamics solver and accom-236

panying parameterization schemes, using Advanced Research Version 4.2 of Weather237

Research and Forecasting (WRF-ARW V4.2, Skamarock et al. 2019).238

For all the data-driven models, including DiP, we use data from 1979-2016/2017-239

2018/2019-2022 for training/validation/test. Considering the computation cost and the240

–7–



manuscript submitted to AGU Advances

characteristic scale of atmospheric dynamics, all the data-driven models operate at a syn-241

optic scale (8◦×8◦): we randomly crop paired predictor and predictand field data within242

the study region for model training. The model structures, hyper-parameter setups, and243

training details are given in Supporting Information S2.244

3.5 Evaluation245

We verify models’ performances using a suite of skill metrics corresponding to the246

READS criteria. We apply Human eYe Perceptual Evaluation (HYPE, Zhou et al. 2019)247

and power spectrum analysis to determine models’ sample fidelity. We use Pearson cor-248

relation coefficient (r) and Root Mean Squared Error (RMSE) between observations and249

models’ ensemble mean estimations to quantify models’ deterministic prediction skills.250

We apply Continuous Ranked Probabilistic Skill (CRPS) to measure the accuracy of the251

predicted probabilities and the sharpness of the forecast distribution. We compute model’s252

skill spread correlation (SSC) to quantify the reliability of a model’s uncertainty esti-253

mates. We compute the ratio that observations falls into model’s ensemble intervals (CR).254

We record the computing time of the considered models. All the skill metrics are com-255

puted across spatial scales from 0.1◦ to 2◦ by aggregating neighbourhood grids. For de-256

tails, see Supporting Information S3.257

4 Results258

4.1 Case study259

We start with a case example to compare models’ performances. We consider the260

storm process associated with Typhoon Lekima, which ranks as the third costliest ty-261

phoon in Chinese history. We show 8◦× 8◦ observed and simulated precipitation rate262

maps along the typhoon trajectory (Fig. 2). Here, observations (Fig. 2a) present a clear263

ring structure of intense precipitation surrounding the typhoon eye before landing (0000264

UTC 04 August 2019 - 0000 UTC 08 August 2019), with maximum precipitation rate265

reaching 100 mm/h. The eyewall structure gradually dissipates through two landings (1800266

UTC 09 August and 1200 UTC 11 August), leaving a tightly curved rainband wrapping267

into a relatively well-defined centre.268

The large-scale patterns of precipitation estimates from the data-driven models (Fig. 2b-269

e) and CFS reanalysis (Fig. 2f) roughly agree with observations (Fig. 2a), due to a shared270

circulation constraint from CFS reanalysis. For WRF dynamical downscaling (Fig. 2g),271

despite careful spectral nudging, the results do not strictly follow the observed typhoon272

trajectory, particularly after landing (1800 UTC 09 August). This is due to the chaotic273

nature of geophysical fluid dynamics. The fine-scale structure differs significantly among274

models: DiP (Fig. 2b) produces the most realistic small-scale details, creating a clear eye-275

wall structure and associated spiral rainband, with intense precipitation matching ob-276

servations at relatively correct locations. CGAN (Fig. 2c) can generate intense precip-277

itations surrounding the typhoon eye. Yet, the estimates come with poor spatial struc-278

ture, with neighboring grids loosely correlated, and the rainband barely depictable. CVAE279

(Fig. 2d) and UNet (Fig. 2e) offer similar, blurry estimates, failing to distinct charac-280

teristic typhoon eyewall and rainband structures. Besides, both models miss precipita-281

tion extremes, with maximum precipitation estimates below 30 mm/h. CFS reanalysis282

(Fig. 2f) shares similar drawbacks as CVAE and UNet, largely due to biases from the283

assimilated data sources and errors from precipitation related model parameterization284

schemes. WRF simulation (Fig. 2g) makes overly confined, extremely intense (approx-285

imately 150 mm/h) precipitation estimates, following the finely resolved, yet potentially286

misaligned circulation state estimates.287

We further inspect the probabilistic models (DiP, CGAN, and CVAE) through the288

lens of the READS requirements (Sec. 2). For an individual snapshot of precipitation289
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0000 UTC 04 Aug 2019

16.3ºN 130.8ºE
0000 UTC 05 Aug 2019

17.9ºN 130.1ºE
0000 UTC 06 Aug 2019

18.8ºN 129.2ºE
0000 UTC 07 Aug 2019

20.4ºN 128.1ºE
0000 UTC 08 Aug 2019

22.7ºN 125.9ºE
0000 UTC 09 Aug 2019

26.5ºN 123.4ºE
0000 UTC 10 Aug 2019

28.9ºN 120.8ºE
0000 UTC 11 Aug 2019

33.6ºN 120.2ºE
0000 UTC 12 Aug 2019

37.3ºN 119.1ºE

a
obser

b
DiP
(ours)

c
CGAN

d
CVAE

e
UNet

f
CFSR

g
WRF

precipitation rate (mm/h)

>50454035302520151050

Figure 2. Observed and simulated 8◦ × 8◦ precipitation rate maps along the trajectory of

Typhoon Lekima, from 0000 UTC 04 August 2019 to 0000 UTC 12 August 2019. a: precipitation

observations from MSWEP. b-d: randomly selected samples of ensemble precipitation estimates

using DiP/CGAN/CVAE. e: deterministic precipitation estimates using UNet. f: CFS reanalysis

precipitation with resolution of 0.2◦. g: precipitation estimates using WRF dynamical simulation,

with resolution of ∼ 3 km. The typhoon trajectory from WRF simulation considerably diverges

from observations after the first landing (1800 UTC 09 August). For after landing results, we

show precipitation rate maps surrounding WRF simulated typhoon center.
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estimate centering around 22.7◦N, 125.9◦E at 0000 UTC 06 August 2019, we show mod-290

els’ ensemble members, ensemble mean and standard deviation, ensemble mean abso-291

lute error, as well as radial/orientation averaged power spectrum (Fig. 3). We compute292

a suite of skill metrics corresponding to the READS requirements.293

• Realism: we measure human climate experts’ error rate in detecting observation294

from model estimates: for DiP/CGAN/CVAE, 3/1/0 out of 5 climate scientist eval-295

uators fail to detect the observation from 15 randomly generated model estimates,296

suggesting the optimal spatial coherency of DiP estimates. Additionally, we in-297

spect the spatial structure of precipitation estimates by computing their average298

spectrum power as function of spatial frequency and orientation: DiP and CGAN299

well reproduce the spatial variability across spatial scales and orientations. Mean-300

while, WRF significantly overestimates spatial variability; CVAE, UNet and CFSR301

significantly underestimate spatial variability for high spatial frequency and all302

orientations.303

• Efficiency: all the probabilistic models demonstrate advantageous efficiency com-304

pared to high-resolution numerical simulation: DiP/CGAN/CVAE generate 100-305

member ensemble estimates of 0.1◦ precipitation field within approximately 100/2/2306

seconds on a NVIDIA GeForce RTX 4090 GPU. Here, DiP is two-orders slower307

than CGAN and CVAE due to its iterative generation nature. As a comparison,308

a deterministic WRF simulation takes around 5 hours in a 32-core CPU machine.309

• Adaptability: data-driven models are often reported to struggle with extremes,310

due to unreasonable learning objective setups, as well as approximation, optimiza-311

tion, and statistical errors. While the typhoon case we consider here is featured312

by extreme precipitation, DiP successfully reproduces the maximum precipitation313

rate and characteristic typhoon rainfall structures, suggesting its adaptability for314

extreme cases. We further report models’ performances for various weather schemes315

in Sec. 4.2.316

• Diversity-Sharpness tradeoff : we measure the diversity of models’ ensemble317

estimates by computing the percentage that a grid point observation falls into model’s318

ensemble interval. Here, 80.5%/53.6%/29.7% grid point observations are within319

the 16-member ensemble interval from DiP/CGAN/CVAE. Grid points where ob-320

servations fall above/below the ensemble interval are stippled with red/black. These321

results suggest the peculiar advantage of DiP in delivering broad range of plau-322

sible outcomes. We further investigate model’s sharpness subject to a “proper”323

level of diversity. By “proper”, we mean that the probability estimate accurately324

reflects the intrinsic stochasticity of the considered process, which is not directly325

measurable and requires statistical inference. A good indicator is how model’s en-326

semble spread aligns with model’s skill. DiP achieves the highest spread-skill cor-327

relation, assigning high/low forecast uncertainty estimates to predictions with high/low328

errors. We further consider the spatial correlation between the ensemble mean es-329

timate and observation, as well as the mean absolute error between each ensem-330

ble member and observation. The high skill values of DiP suggest that its ensem-331

ble dispersion centers around observation, requiring no ensemble pruning. Finally,332

we report models’ continuous ranked probability scores, which considers both pre-333

diction diversity and sharpness. DiP achieves the optimal performance under this334

proper scoring rule (Gneiting & Raftery, 2007).335

4.2 Skill evaluation336

We evaluated models’ overall performances using test set data from 2019 to 2022.337

We report a suite of deterministic and probabilistic skill metrics for the considered mod-338

els in Fig. 4.339
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ensemble members μ σ mean absolute error unencapsulated grids radial averaged power orientation averaged power

a

DiP ours)

HYPE 3/5

r 0.571

RMSE 4.96

CRPS 2.45

SSC 0.73

CR 80.5% �
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Figure 3. Precipitation estimates centering around 22.7◦N, 125.9◦E at 0000 UTC 06 August

2019, using DiP (a), CGAN (b), and CVAE (c). The columns show models’ ensemble members,

ensemble mean, ensemble standard deviation, ensemble mean absolute error, grid points where

observation is not encapsulated by ensemble spread (red/black stipple for under/over estimation,

background colored based on observation), and radial/orientation averaged power spectrum for

observation and all the considered models, including DiP, CGAN, CVAE, UNet, CFS reanalysis,

and WRF. The following skill metrics are computed. HYPE: human climate experts’ error rate in

detecting observation from model estimates; r: spatial correlation between model ensemble mean

estimate and observation; RMSE: root mean squared error of model ensemble mean estimate;

CRPS: continuous ranked probabilistic score of model ensembles; SSC: spread-skill correlation,

where spread is represented using ensemble standard deviation, and skill is represented using

model ensemble mean absolute error; CR: coverage ratio, which represent the percentage that

grid observation falls into the coverage of ensemble spread.
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For deterministic evaluation, we compute the correlation coefficient (r, Fig. 4a) and340

the root mean squared error (RMSE, Fig. 4b) between observations and models’ ensem-341

ble mean estimates. We consider spatial scales from 0.1◦ to 2◦, and ensemble size from342

8 to 128. For all the considered spatial scales, the data-driven models offer precipitation343

estimates that are significantly more accurate than the CFS reanalysis precipitation prod-344

uct (dashed lines). This highlights the necessity of learning from high-fidelity data (i.e.,345

observations or high-resolution simulations) to represent unresolved processes in climate346

modeling. Specific to the data-driven models, DiP and CGAN demonstrates similar r347

and RMSE skill, matching or slightly falling behind UNet (solid lines). Meanwhile, CVAE348

offers optimal r and RMSE skill for spatial scales beyond grid-resolution level (0.1◦). In349

principle, a supervised learning approach, i.e., UNet, should provide the optimal deter-350

ministic skill. Yet, our results highlight that, for spatial scales that models are not di-351

rectly trained on, a probabilistic model that better exploit the spatial coherency can out-352

perform a supervised learning model. While CVAE has demonstrated this potential, there353

is room of progress for DiP and CGAN to further improve their deterministic skills.354

For probabilistic evaluation, we compute the continuous ranked probabilistic skill355

(CRPS, Fig. 4c), the skill-spread correlation (SSC, Fig. 4d), and the coverage ratio (CR,356

Fig. 4e) of models’ ensemble estimates. For CRPS, the CRPS of a deterministic model,357

i.e., UNet and CFS reanalysis, is equivalent to the model’s mean absolute error. Here,358

DiP, CGAN, and VAE significantly outperforms UNet and CFS reanalysis. At grid-resolution359

level, for ensemble size of 8, DiP and CGAN perform similarly, both outperforming CVAE360

by a large margin. As we gradually double the ensemble size, DiP demonstrates slight361

advantage over CGAN. This advantage becomes more obvious at larger spatial scales.362

This result suggests that, compared to CGAN, DiP offers more spatially-coherent prob-363

abilistic estimates. SSC quantifies the reliability of a model’s uncertainty estimates: a364

higher SSC suggests that the model assigns higher/lower forecast uncertainty estimates365

to forecasts that turn out to have higher/lower biases, which is crucial for decision mak-366

ings. DiP achieves the highest SSC for all spatial scales, followed by CGAN. An increase367

of ensemble size reduces the statistical error of model’s uncertainty estimates, hence in-368

creases model’s SSC. This effect is mostly evident for DiP. CR quantifies the ratio that369

an observation falls into model’s ensemble interval, quantifying how well a probabilis-370

tic model is calibrated. Again, DiP achieves the highest CR among the considered mod-371

els, providing a comprehensive range of plausible outcomes.372

To sum up, DiP verifies competitively compared to alternative data-driven deter-373

ministic/probabilistic approaches, as well as reanalysis precipitation products: for spa-374

tial scales from 0.1◦ to 2◦, DiP matches supervised learning approach in delivering de-375

terministic precipitation estimates (on r and RMSE), and offers optimal probabilistic376

estimation skills (on CRPS, SSC, and CR). This methodology better meets the READS377

requirements: it allows us to efficiently generate realistic samples that are faithful to a378

broad range of resolved circulation schemes, and are diverse to cover most plausible out-379

comes.380

5 Conclusions381

Numerical weather-climate models resolve geophysical fluid dynamics to a finite382

resolution, necessitating probabilistic inference for unresolved processes. For example,383

what is the probability that, at millimeter scale, various hydrometeors interact, collide,384

coalesce to yield precipitation, given circulation status resolved to kilometer scale? If we385

could accurately and efficiently answer these questions, we could not only better under-386

stand, but also better predict the climate.387

We follow the data-driven ideology to learn representations of unresolved climate388

processes from high fidelity data, such as high-resolution simulations and observations.389
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Figure 4. Performance evaluation using data from 2019 to 2022. The following skill metrics

are considered. r: average correlation coefficient between model ensemble mean estimates and

observations; RMSE: root mean squared error of model ensemble mean estimate; CRPS: contin-

uous ranked probabilistic score of model ensembles; SSC: spread-skill correlation, where spread

is represented using ensemble standard deviation, and skill is represented using model ensemble

mean absolute error; CR: coverage ratio, which represents the percentage that grid observation

falls into the coverage of ensemble spread. For the probabilistic models, we consider ensemble

size from 8 to 128 to compute the skill metrics. All the skill metrics are computed across spatial

scales from 0.1◦ to 2◦ by spatial pooling.
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We point out the limitations of supervised learning approaches in such tasks, and ad-390

vocate the potential advantages of generative modeling approaches.391

To realize these potential advantages, we should steer the learning machine toward392

verifiable goals of stochastic parameterization, which are quantified in ensemble forecast393

practices. Hence, based on the requirements of ensemble forecast, we propose the READS394

(Realism, Efficiency, Adaptability, Diversity, and Sharpness) criteria for probabilistic rep-395

resentation of unresolved climate processes.396

To solidify these arguments and provide practical solutions, we consider the prob-397

lem of numerical precipitation estimation. We develop DiP, a probabilistic diffusion model398

based methodology to learn stochastic parameterization of precipitation. Compared to399

existing generative models, DiP approximates a target distribution in a principled, it-400

erative manner, which offers it tremendous fitting capability and controlling flexibility.401

Using a Typhoon storm case and four-year evaluation, we demonstrate the advan-402

tage of DiP in meeting the READS requirements, as compared to existing data-driven403

supervised deep learning method (UNet), data-driven probabilistic deep learning method404

(CVAE and CGAN), as well we moderate/high resolution numerical method (CFS and405

WRF).406

There remain several challenges for our approach to stochastic parameterization.407

Till now, our model does not provide feedback to the resolved dynamics. It remains to408

be examined if the learned subgrid-scale noise can trigger circulation regime transitions,409

and support reliable probabilistic forecast. Also, the ensemble mean estimate from DiP410

fails to match the performance of CVAE, suggesting room for progress. Finally, to gen-411

erate large ensemble estimates using DiP takes hundreds runs of the deep nets, which412

brings considerable computation burden in long term simulations. Future works may ex-413

plore diffusion model distillation techniques to accelerate the generation process (Sal-414

imans & Ho, 2022; Song et al., 2023).415
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Abstract22

Estimating the unresolved geophysical processes from resolved geophysical fluid dynam-23

ics is the key for improving numerical weather-climate predictions. While data-driven24

parameterization for unresolved geophysical processes shows potential, most practices25

fail to capture the diversity of unresolved geophysical processes that agree with resolved26

geophysical fluid state. This pitfall undermines the likelihood or severity of simulated27

weather extremes, and erodes the fidelity of climate projections. We propose the crite-28

ria of READS (Realism, Efficiency, Adaptability, Diversity, Sharpness) for generative mod-29

els to yield reasonable stochastic parameterization. We introduce probabilistic diffusion30

model, a non-equilibrium thermodynamics inspired deep generative modeling approach,31

to better meet these criteria. Using a case example of numerical precipitation estima-32

tion, we demonstrate the advantage of the proposed methodology in quickly delivering33

diverse and faithful estimates for the target unresolved process, as compared to other34

popular data-driven deterministic and stochastic methods (UNet, variational autoencoder,35

generative adversarial net), as well as dynamical downscaling method (WRF). We con-36

clude that generative models, in particular, probabilistic diffusion model, can significantly37

enhance the representation of unresolved geophysical processes in numerical weather-climate38

predictions.39

Plain Language Summary40

“Life is a gorgeous robe, crawling with lice”, so said Eileen Chang, a Chinese writer41

who enjoyed depicting the awkward discrepancies between ideal and reality. Same metaphor42

applies to climate models, rooted in physical principles of fluid dynamics and thermo-43

dynamics, rife with empirics making up the missing components. We use generative AI44

to make up the missing components in climate models, achieving realistic and informa-45

tive simulations of unresolved climate processes, i.e., precipitation.46

1 Introduction47

Geophysical fluid dynamics operates across a continuous spectrum of spatiotem-48

poral scales, ranging from micro-scale turbulences to synoptic-scale planetary waves. Their49

numerical solvers, coming with finite resolution, set a distinction between resolved dy-50

namics and unresolved physical processes, with the latter being approximated as empir-51

ical functions of the former. This approximation, known as parameterization, is the source52

of error in numerical weather and climate predictions (Stensrud, 2009).53

Typically, parameterization schemes are deterministic functions, providing a unique54

tendency accounting for the grid-scale impact of subgrid physical processes in numer-55

ical modeling of geophysical fluid dynamics. However, as we do not explicitly resolve the56

subgrid physical processes, a probabilistic formulation is advocated (Berner et al., 2017;57

T. Palmer, 2019): the impact of subgrid physical processes should be described by a prob-58

ability distribution function conditioning on the resolved geophysical fluid dynamics. This59

probabilistic formulation enables a rigorous and consistent characterization of unresolved60

physical processes across model resolutions (Sakradzija et al., 2016). Also, it allows subgrid-61

scale noise to trigger crucial circulation regime transitions, supporting reliable proba-62

bilistic forecasts (T. N. Palmer et al., 2009).63

To make accurate probabilistic representation of unresolved physical processes in64

numerical weather-climate models, existing efforts proceed along the following three lines.65

The first, which is straightforward yet lacks theoretical warrant, is to pre-define a per-66

turbation to the parameters, functions, or outputs of deterministic parameterization schemes67

(Dorrestijn et al., 2013). The second, which is solid yet costly and restricted in scope,68

is to compute statistics of the equilibrium states of the considered process, via statisti-69

cal mechanics analysis (Plant & Craig, 2008). The third, which promises remarkable ac-70

–2–



manuscript submitted to AGU Advances

curacy, efficiency, and flexibility, is to approximate the probability distribution of unre-71

solved physical processes by learning from high fidelity data, such as high-resolution sim-72

ulations or observations (Gagne et al., 2020; Ravuri et al., 2021; Harris et al., 2022).73

We proceed along the third line as motivated by the recent breakthrough of prob-74

abilistic machine learning, in particular, probabilistic diffusion models (Sohl-Dickstein75

et al., 2015; Ho et al., 2020; Song et al., 2020). Probabilistic diffusion models learn to76

approximate probability distributions in an iterative manner, achieving unprecedented77

fitting capacity and controlling flexibility in generative modeling tasks. Using a case ex-78

ample of numerical precipitation estimation, we specify five requirements for develop-79

ing data-driven stochastic parameterization schemes. We develop Diffusion based Pre-80

cipitation estimator, dubbed DiP, and demonstrate its unique advantages in meeting these81

requirements, as compared to existing data-driven deterministic and stochastic param-82

eterization schemes, as well as high resolution dynamical simulation method.83

2 Problem setup and model requirements84

We consider a case example of numerical precipitation estimation: given geophys-85

ical fluid dynamics resolved to a finite spatiotemporal resolution, the goal is to estimate86

the accompanying precipitation process. The challenge lies in that, precipitation results87

from a complicated chain of processes that are mostly unresolved in numerical models88

(Tapiador et al., 2019). Any error along this simulation chain may distort the location,89

timing, or quantity of the precipitation estimate, rendering the estimate useless, even mis-90

leading (Pan, Hsu, AghaKouchak, & Sorooshian, 2019; Pan, Hsu, AghaKouchak, Sorooshian,91

& Higgins, 2019; Chen & Wang, 2022).92

Here we consider the region of East and Southeast Asia (0◦−40◦N, 100◦E−140◦E),93

where precipitation is driven by diverse circulation regimes. We use the following resolv-94

able dynamical variables to infer precipitation: key primitive variables (meridional and95

zonal wind velocity, temperature, specific humidity, and geopotential height) at 3 pres-96

sure levels (1000/850/500 hPa), and crucial surface level variables (sea level pressure,97

surface pressure, surface temperature, and total column precipitable water). These data98

are obtained by blending observations with short-range weather forecasts to faithfully99

represent historical circulation states. The data are from the Climate Forecast System100

Reanalysis project (Saha et al., 2006), coming at spatiotemporal resolution of 0.5◦/1 hour101

for Year 1979-2022. Besides these dynamical variables, we also consider 0.1◦ elevation102

data as extra, static predictor. These dynamical and static predictor variables are to-103

gether denoted as x. Precipitation, as our predictand variable, is denoted by y. The data104

are from the Multi-Source Weighted-Ensemble Precipitation product (Beck et al., 2019),105

which merges gauge, satellite, and reanalysis precipitation records to achieve optimal qual-106

ity. The data come at a 0.1◦/3-hourly resolution for same period.107

Our objective is to approximate the conditional distribution of p(y|x), based on108

favorably large amount of {x,y} paired data samples. This problem setup differs from109

a deterministic regression problem setup, which has been widely adopted for learning pa-110

rameterization schemes (Yu et al., 2023; Wang & Tan, 2023). Specifically, in both de-111

terministic and probabilistic formulations, we design a learning machine Θ, for which the112

optimal parameter θ∗ is obtained by maximizing the overall likelihood of the reference113

data:114

θ∗ = argmax
θ

∑
i

log pθ(yi|xi) (1)

In a deterministic regression problem setup, given any x, the learning machine yields115

the most plausible y: ŷ = argmax
y

log pθ∗(y|x). This is often achieved by pre-assuming116
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the distributional form of pθ. For instance, assuming pθ(y|x) := N
(
µθ(x), σ

2
θ(x)

)
, we117

have ŷ = µθ∗(x), where θ∗ = argmin
θ

∑
i

[(
µθ(xi)−yi

)2

σ2
θ(xi)

+ log σ2
θ(xi)

]
. Such an assump-118

tion offers huge computation convenience, yet, it comes with two deficits. First, a pre-119

defined distributional form often poorly fits a richly structured target physical process.120

Second, a deterministic formulation precludes interaction between subgrid noise and re-121

solved dynamics, resulting in biased weather-climate predictions (Hardiman et al., 2022).122

In a probabilistic modeling setup, given any x, the learning machine outputs plau-123

sible y samples: ŷ ∼ pθ∗(y|x), where pθ∗ is a learned distribution subject to no pre-124

defined probability distribution form. This probabilistic formulation allows us to bypass125

the two deficits of a deterministic formulation, yet, it comes with its own challenges and126

requirements. To realize the potential, one must steer the learning machine toward ver-127

ifiable goals of stochastic parameterization, which are quantified in ensemble forecast prac-128

tices. We hence suggest the following five criteria for pθ∗ based on the requirements of129

ensemble forecast:130

• Realism: samples from the estimated conditional probability distribution should131

be indistinguishable from observational samples, regarding either their structure132

or functionality. This requirement ensures that an accurate probability value can133

be assigned to the realized observations, either for training or evaluation purposes.134

Also, the generated samples can fit into the geophysical modeling pipeline, and135

be as useful as observations for a wide range of subsequent tasks.136

• Efficiency: a solid approach for developing parameterization schemes is to con-137

sider each of the possible ways that the subgrid scale process evolve under the grid-138

scale constraint, to compute the probability of each such “configuration” in the139

equilibrium ensemble, and generate samples accordingly. This requires excessive140

human effort and computational resources. Here, we expect a well-trained pθ∗ to141

efficiently generate multiple samples of plausible subgrid physical processes, at least142

several orders faster than directly resolving the subgrid scale process.143

• Adaptability: the interaction of subgrid scale physics and large scale dynamics144

often results in organized weather schemes across scales, ranging from local con-145

vection to weather fronts. Correspondingly, the model is preferred to automati-146

cally identify and apply to these organized weather schemes, rather than work-147

ing at individual computing grids or fixed computing time steps.148

• Diversity: the estimated conditional probability distribution should cover all plau-149

sible outcomes, rather than a limited subset of modes. This ensures that all ob-150

served states are within the cone of model simulations, particularly for extremes.151

• Sharpness: the estimated conditional probability distribution should generate152

samples that are faithful to the conditioning information, maximizing the sharp-153

ness of the simulated distribution. Note that this requirement naturally confronts154

the diversity requirement: an overly constrained probability estimate may fail to155

encapsulate observations, which is unreliable; an overly dispersed probability es-156

timate may lack clear distinction from climatology, which is uninformative. We157

must carefully balance sharpness and diversity, so that the probability estimate158

faithfully reflects the intrinsic stochasticity of the considered process.159

We coin the term READS by concatenating the initial letters of the five criteria160

above. Below we introduce DiP, Diffusion based Precipitation estimator, and demonstrate161

its unique advantage in meeting the READS requirements, as compared to existing de-162

terministic/probabilistic data-driven approaches, as well as high-resolution dynamical163

simulation approach.164
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3 Diffusion based Precipitation estimator (DiP)165

3.1 A primer on probabilistic machine learning166

The method we develop here falls into the scope of probabilistic machine learning,167

which applies probability theory to design learning machines that make predictions as168

probability distributions. Since the target distribution we try to approximate adheres169

to no pre-defined closed form, a common strategy is to learn a mapping between the tar-170

get distribution and a tractable latent distribution, i.e., standard Gaussian. After learn-171

ing the mapping from optimally large amount of data, we can pass samples from the la-172

tent distribution through the trained model to obtain target distribution samples, hence173

inferring this target distribution. The key challenge is that, we lack point-to-point cor-174

respondences between samples from the target distribution and the latent distribution,175

hence lacking straightforward supervision signals to enable learning (Ruthotto & Haber,176

2021). A popular solution is to build bijective mapping between the target distribution177

and the latent distribution, therefore establishing correspondences. Probabilistic diffu-178

sion models excel in this task by establishing the bijection in an iterative manner. Be-179

low we outline how this is achieved. Mathematical and implementation details are given180

in Supporting Information S1.181

3.2 Basics182

Diffusion model approximates a target distribution p(y) by reversing a Gaussian183

process (Fig. 1): the forward Gaussian process turns p(y) into standard Gaussian N (0, I)184

(Fig. 1a, Eq. 2); we learn to iteratively reverse this Gaussian process, mapping N (0, I)185

to p(y) (Fig. 1b-d), hence achieving generative modeling. Following D. Kingma et al. (2021),186

the forward Gaussian process is pre-defined as:187

p(zt|y) := N (αty, σ
2
t I) (2)

Here zt is latent variable indexed by t ∈ [0, 1], αt/σt is monotonically decreasing/increasing188

function of t, strictly bounded by [0, 1]. Eq. 2 therefore bridges p(y) = p(z0|y) and N (0, I) =189

p(z1|y) (Fig. 1a). We reverse Eq. 2 to turn N (0, I) into p(y), using a chain of variational190

distributions (Fig. 1b):191

pθ(zti−1
|zti) = N

(
µθ(zti),Σθ(zti)

)
, i ∈ [1, T ] (3)

Here 0 = t0 < t1 < t2 < ... < tT = 1 is arbitrary discretization of time; {µθ,Σθ} are192

learnable mean vector and covariance matrix, trained by maximizing the overall data like-193

lihood (Supporting Information S1.1):194

log pθ(y) = Ep(z0|y) log p(y|z0)−DKL

(
p(z1|y)||p(z1)

)
−

T∑
i=1

Ep(zti
|y)DKL

(
p(zti−1

|zti ,y)||pθ(zti−1
|zti)

)
(4)

Given Eq. 2, to maximize Eq. 4 is approximately equivalent to minimizing the Fisher di-
vergence between the data and model distributions (Supporting Information S1.2):

θ∗ = argmax
θ

log pθ(y) ≈ argmin
θ

T∑
i=1

Ep(zti
|y)

∥∥∇ log p(zti |y)− ϵNNθ
(zti)

∥∥
2

(5)

Here ϵNNθ
is a neural network parameterization of ∇ log p(zti |y), known as the score func-195

tion. Based on the learned score estimates, we can derive pθ(zti−1 |zti) = N
(
µθ(zti),Σθ(zti)

)
196

(Supporting Information S1.2) and sample it, starting with p(z1) = N (0, I), ending with197

p(z0) ≈ p(y).198
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Figure 1. Overview of diffusion model. We map target distribution (synoptic-scale precip-

itation field, a left) to a same dimensional standard Gaussian distribution (a right) through a

pre-defined Gaussian process (a bottom, Eq. 2). Color denotes probability distribution function

value for an individual precipitation field pixel (here we select the center pixel) through diffusion

time t = [0, 1], lines show the diffusion trajectories of individual pixels for randomly selected sam-

ples, matrix plots show the noisified precipitation field (sample of Typhoon Lekima, 0000 UTC

09 August 2019, centered at 26.5◦N, 114.4◦E) across diffusion time (a top). We approximate the

target distribution by reversing the Gaussian process, using a series of variational distributions

(b, Eq. 3), which are trained by maximizing the data likelihood (Eq. 4-5). We include condition-

ing information to approximate conditional distribution of a same Typhoon event (c). We apply

classifier-free guidance to control the impact of the conditioning information versus the latent

variable in explaining the variability of the target variable for the same event (d, Eq. 6). By en-

hancing the guidance strength ω, we suppress the variance of the resulting conditional probability

distribution (c/d right). The plots are supported by logarithm transformed precipitation observa-

tional data for Year 2019, and the trained diffusion models.
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3.3 Conditioning199

To generate y samples that are faithful to the conditioning information x, we need200

to approximate the conditional distribution p(y|x). To achieve this, we include x dur-201

ing training and sampling (Fig. 1c-d). A direct inclusion of x does not specify the im-202

pact of x versus zt in explaining the variability of y (Fig. 1c, Holmes & Walker 2017).203

To tackle the potential misspecification, and having x effectively control the learned dis-204

tribution, we resort to classifier-free guidance (Ho & Salimans, 2022, Fig. 1d): we learn205

two sets of neural networks: ϵNN(zti) /ϵ
c
NN(zti ,x), so to approximate the unconditional/conditional206

scores: ∇ log p(zti |y) /∇ log p(zti |y,x). Based upon these two sets of score estimates,207

we compose score estimators for synthetic distributions pω(zti |x,y) ∝ p(x|y, zti)ωp(zti |y):208

∇ log pω(zti |y,x) = ∇ log p(zti |y) + ω∇ log p(x|y, zti)
= ∇ log p(zti |y) + ω

(
∇ log p(zti |x,y)−∇ log p(zti |y)

)
≈ ϵNN(zti) + ω

(
ϵcNN(zti ,x)− ϵNN(zti)

) (6)

Here ω is guidance scale coefficient, balancing the diversity and sharpness of the learned209

conditional distribution:210

ω = 1: assuming impact of x has been perfectly accounted by ϵcNN(zti ,x) (Fig. 1c).211

ω < 1: suppressing impact of x, pervading the distribution toward climatology.212

ω > 1: raising impact of x, sharpening the distribution toward more likely values (Fig. 1d).213

We now apply score estimates of pω(zti |x,y) to sample p(y|x), following a same214

strategy described in Sec. 3.2. The value of ω is empirically determined based on the prob-215

abilistic forecasting skill of its resulting model.216

3.4 Baselines and implementation details217

We compare the DiP methodology with popular deterministic and stochastic data-218

driven methods and moderate/high resolution dynamical simulation method, including:219

• UNet: a de-facto choice for image-to-image regression tasks, using neural network220

consisting symmetric convolution and deconvolution blocks (Ronneberger et al.,221

2015).222

• Conditional variational autoencoder (CVAE): a probabilistic deep learn-223

ing method that maximizes a lower bound of data likelihood to learn latent vari-224

able model for a target conditional distribution (D. P. Kingma & Welling, 2013;225

Pan et al., 2022).226

• Conditional generative adversarial net (CGAN): a probabilistic deep learn-227

ing method in which a generative network learns to approximate a target condi-228

tional distribution, under the guidance of a discriminative network that distinguishes229

generated samples and true samples (Goodfellow et al., 2014; Pan et al., 2021; Ravuri230

et al., 2021).231

• CFS reanalysis precipitation product (CFSR): an optimized combination232

of CMAP (CPC Merged Analysis of Precipitation), daily gauge observations, and233

CFS background 6-hourly precipitation analysis (Saha et al., 2006).234

• Dynamical downscaling using WRF: refining coarsely resolved climate pro-235

cesses via high resolution numerical geophysical fluid dynamics solver and accom-236

panying parameterization schemes, using Advanced Research Version 4.2 of Weather237

Research and Forecasting (WRF-ARW V4.2, Skamarock et al. 2019).238

For all the data-driven models, including DiP, we use data from 1979-2016/2017-239

2018/2019-2022 for training/validation/test. Considering the computation cost and the240
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characteristic scale of atmospheric dynamics, all the data-driven models operate at a syn-241

optic scale (8◦×8◦): we randomly crop paired predictor and predictand field data within242

the study region for model training. The model structures, hyper-parameter setups, and243

training details are given in Supporting Information S2.244

3.5 Evaluation245

We verify models’ performances using a suite of skill metrics corresponding to the246

READS criteria. We apply Human eYe Perceptual Evaluation (HYPE, Zhou et al. 2019)247

and power spectrum analysis to determine models’ sample fidelity. We use Pearson cor-248

relation coefficient (r) and Root Mean Squared Error (RMSE) between observations and249

models’ ensemble mean estimations to quantify models’ deterministic prediction skills.250

We apply Continuous Ranked Probabilistic Skill (CRPS) to measure the accuracy of the251

predicted probabilities and the sharpness of the forecast distribution. We compute model’s252

skill spread correlation (SSC) to quantify the reliability of a model’s uncertainty esti-253

mates. We compute the ratio that observations falls into model’s ensemble intervals (CR).254

We record the computing time of the considered models. All the skill metrics are com-255

puted across spatial scales from 0.1◦ to 2◦ by aggregating neighbourhood grids. For de-256

tails, see Supporting Information S3.257

4 Results258

4.1 Case study259

We start with a case example to compare models’ performances. We consider the260

storm process associated with Typhoon Lekima, which ranks as the third costliest ty-261

phoon in Chinese history. We show 8◦× 8◦ observed and simulated precipitation rate262

maps along the typhoon trajectory (Fig. 2). Here, observations (Fig. 2a) present a clear263

ring structure of intense precipitation surrounding the typhoon eye before landing (0000264

UTC 04 August 2019 - 0000 UTC 08 August 2019), with maximum precipitation rate265

reaching 100 mm/h. The eyewall structure gradually dissipates through two landings (1800266

UTC 09 August and 1200 UTC 11 August), leaving a tightly curved rainband wrapping267

into a relatively well-defined centre.268

The large-scale patterns of precipitation estimates from the data-driven models (Fig. 2b-269

e) and CFS reanalysis (Fig. 2f) roughly agree with observations (Fig. 2a), due to a shared270

circulation constraint from CFS reanalysis. For WRF dynamical downscaling (Fig. 2g),271

despite careful spectral nudging, the results do not strictly follow the observed typhoon272

trajectory, particularly after landing (1800 UTC 09 August). This is due to the chaotic273

nature of geophysical fluid dynamics. The fine-scale structure differs significantly among274

models: DiP (Fig. 2b) produces the most realistic small-scale details, creating a clear eye-275

wall structure and associated spiral rainband, with intense precipitation matching ob-276

servations at relatively correct locations. CGAN (Fig. 2c) can generate intense precip-277

itations surrounding the typhoon eye. Yet, the estimates come with poor spatial struc-278

ture, with neighboring grids loosely correlated, and the rainband barely depictable. CVAE279

(Fig. 2d) and UNet (Fig. 2e) offer similar, blurry estimates, failing to distinct charac-280

teristic typhoon eyewall and rainband structures. Besides, both models miss precipita-281

tion extremes, with maximum precipitation estimates below 30 mm/h. CFS reanalysis282

(Fig. 2f) shares similar drawbacks as CVAE and UNet, largely due to biases from the283

assimilated data sources and errors from precipitation related model parameterization284

schemes. WRF simulation (Fig. 2g) makes overly confined, extremely intense (approx-285

imately 150 mm/h) precipitation estimates, following the finely resolved, yet potentially286

misaligned circulation state estimates.287

We further inspect the probabilistic models (DiP, CGAN, and CVAE) through the288

lens of the READS requirements (Sec. 2). For an individual snapshot of precipitation289
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0000 UTC 04 Aug 2019

16.3ºN 130.8ºE
0000 UTC 05 Aug 2019

17.9ºN 130.1ºE
0000 UTC 06 Aug 2019

18.8ºN 129.2ºE
0000 UTC 07 Aug 2019

20.4ºN 128.1ºE
0000 UTC 08 Aug 2019

22.7ºN 125.9ºE
0000 UTC 09 Aug 2019

26.5ºN 123.4ºE
0000 UTC 10 Aug 2019

28.9ºN 120.8ºE
0000 UTC 11 Aug 2019

33.6ºN 120.2ºE
0000 UTC 12 Aug 2019

37.3ºN 119.1ºE

a
obser

b
DiP
(ours)

c
CGAN

d
CVAE

e
UNet

f
CFSR

g
WRF

precipitation rate (mm/h)

>50454035302520151050

Figure 2. Observed and simulated 8◦ × 8◦ precipitation rate maps along the trajectory of

Typhoon Lekima, from 0000 UTC 04 August 2019 to 0000 UTC 12 August 2019. a: precipitation

observations from MSWEP. b-d: randomly selected samples of ensemble precipitation estimates

using DiP/CGAN/CVAE. e: deterministic precipitation estimates using UNet. f: CFS reanalysis

precipitation with resolution of 0.2◦. g: precipitation estimates using WRF dynamical simulation,

with resolution of ∼ 3 km. The typhoon trajectory from WRF simulation considerably diverges

from observations after the first landing (1800 UTC 09 August). For after landing results, we

show precipitation rate maps surrounding WRF simulated typhoon center.
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estimate centering around 22.7◦N, 125.9◦E at 0000 UTC 06 August 2019, we show mod-290

els’ ensemble members, ensemble mean and standard deviation, ensemble mean abso-291

lute error, as well as radial/orientation averaged power spectrum (Fig. 3). We compute292

a suite of skill metrics corresponding to the READS requirements.293

• Realism: we measure human climate experts’ error rate in detecting observation294

from model estimates: for DiP/CGAN/CVAE, 3/1/0 out of 5 climate scientist eval-295

uators fail to detect the observation from 15 randomly generated model estimates,296

suggesting the optimal spatial coherency of DiP estimates. Additionally, we in-297

spect the spatial structure of precipitation estimates by computing their average298

spectrum power as function of spatial frequency and orientation: DiP and CGAN299

well reproduce the spatial variability across spatial scales and orientations. Mean-300

while, WRF significantly overestimates spatial variability; CVAE, UNet and CFSR301

significantly underestimate spatial variability for high spatial frequency and all302

orientations.303

• Efficiency: all the probabilistic models demonstrate advantageous efficiency com-304

pared to high-resolution numerical simulation: DiP/CGAN/CVAE generate 100-305

member ensemble estimates of 0.1◦ precipitation field within approximately 100/2/2306

seconds on a NVIDIA GeForce RTX 4090 GPU. Here, DiP is two-orders slower307

than CGAN and CVAE due to its iterative generation nature. As a comparison,308

a deterministic WRF simulation takes around 5 hours in a 32-core CPU machine.309

• Adaptability: data-driven models are often reported to struggle with extremes,310

due to unreasonable learning objective setups, as well as approximation, optimiza-311

tion, and statistical errors. While the typhoon case we consider here is featured312

by extreme precipitation, DiP successfully reproduces the maximum precipitation313

rate and characteristic typhoon rainfall structures, suggesting its adaptability for314

extreme cases. We further report models’ performances for various weather schemes315

in Sec. 4.2.316

• Diversity-Sharpness tradeoff : we measure the diversity of models’ ensemble317

estimates by computing the percentage that a grid point observation falls into model’s318

ensemble interval. Here, 80.5%/53.6%/29.7% grid point observations are within319

the 16-member ensemble interval from DiP/CGAN/CVAE. Grid points where ob-320

servations fall above/below the ensemble interval are stippled with red/black. These321

results suggest the peculiar advantage of DiP in delivering broad range of plau-322

sible outcomes. We further investigate model’s sharpness subject to a “proper”323

level of diversity. By “proper”, we mean that the probability estimate accurately324

reflects the intrinsic stochasticity of the considered process, which is not directly325

measurable and requires statistical inference. A good indicator is how model’s en-326

semble spread aligns with model’s skill. DiP achieves the highest spread-skill cor-327

relation, assigning high/low forecast uncertainty estimates to predictions with high/low328

errors. We further consider the spatial correlation between the ensemble mean es-329

timate and observation, as well as the mean absolute error between each ensem-330

ble member and observation. The high skill values of DiP suggest that its ensem-331

ble dispersion centers around observation, requiring no ensemble pruning. Finally,332

we report models’ continuous ranked probability scores, which considers both pre-333

diction diversity and sharpness. DiP achieves the optimal performance under this334

proper scoring rule (Gneiting & Raftery, 2007).335

4.2 Skill evaluation336

We evaluated models’ overall performances using test set data from 2019 to 2022.337

We report a suite of deterministic and probabilistic skill metrics for the considered mod-338

els in Fig. 4.339
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ensemble members μ σ mean absolute error unencapsulated grids radial averaged power orientation averaged power

a

DiP ours)

HYPE 3/5

r 0.571

RMSE 4.96

CRPS 2.45

SSC 0.73

CR 80.5% �
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Figure 3. Precipitation estimates centering around 22.7◦N, 125.9◦E at 0000 UTC 06 August

2019, using DiP (a), CGAN (b), and CVAE (c). The columns show models’ ensemble members,

ensemble mean, ensemble standard deviation, ensemble mean absolute error, grid points where

observation is not encapsulated by ensemble spread (red/black stipple for under/over estimation,

background colored based on observation), and radial/orientation averaged power spectrum for

observation and all the considered models, including DiP, CGAN, CVAE, UNet, CFS reanalysis,

and WRF. The following skill metrics are computed. HYPE: human climate experts’ error rate in

detecting observation from model estimates; r: spatial correlation between model ensemble mean

estimate and observation; RMSE: root mean squared error of model ensemble mean estimate;

CRPS: continuous ranked probabilistic score of model ensembles; SSC: spread-skill correlation,

where spread is represented using ensemble standard deviation, and skill is represented using

model ensemble mean absolute error; CR: coverage ratio, which represent the percentage that

grid observation falls into the coverage of ensemble spread.
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For deterministic evaluation, we compute the correlation coefficient (r, Fig. 4a) and340

the root mean squared error (RMSE, Fig. 4b) between observations and models’ ensem-341

ble mean estimates. We consider spatial scales from 0.1◦ to 2◦, and ensemble size from342

8 to 128. For all the considered spatial scales, the data-driven models offer precipitation343

estimates that are significantly more accurate than the CFS reanalysis precipitation prod-344

uct (dashed lines). This highlights the necessity of learning from high-fidelity data (i.e.,345

observations or high-resolution simulations) to represent unresolved processes in climate346

modeling. Specific to the data-driven models, DiP and CGAN demonstrates similar r347

and RMSE skill, matching or slightly falling behind UNet (solid lines). Meanwhile, CVAE348

offers optimal r and RMSE skill for spatial scales beyond grid-resolution level (0.1◦). In349

principle, a supervised learning approach, i.e., UNet, should provide the optimal deter-350

ministic skill. Yet, our results highlight that, for spatial scales that models are not di-351

rectly trained on, a probabilistic model that better exploit the spatial coherency can out-352

perform a supervised learning model. While CVAE has demonstrated this potential, there353

is room of progress for DiP and CGAN to further improve their deterministic skills.354

For probabilistic evaluation, we compute the continuous ranked probabilistic skill355

(CRPS, Fig. 4c), the skill-spread correlation (SSC, Fig. 4d), and the coverage ratio (CR,356

Fig. 4e) of models’ ensemble estimates. For CRPS, the CRPS of a deterministic model,357

i.e., UNet and CFS reanalysis, is equivalent to the model’s mean absolute error. Here,358

DiP, CGAN, and VAE significantly outperforms UNet and CFS reanalysis. At grid-resolution359

level, for ensemble size of 8, DiP and CGAN perform similarly, both outperforming CVAE360

by a large margin. As we gradually double the ensemble size, DiP demonstrates slight361

advantage over CGAN. This advantage becomes more obvious at larger spatial scales.362

This result suggests that, compared to CGAN, DiP offers more spatially-coherent prob-363

abilistic estimates. SSC quantifies the reliability of a model’s uncertainty estimates: a364

higher SSC suggests that the model assigns higher/lower forecast uncertainty estimates365

to forecasts that turn out to have higher/lower biases, which is crucial for decision mak-366

ings. DiP achieves the highest SSC for all spatial scales, followed by CGAN. An increase367

of ensemble size reduces the statistical error of model’s uncertainty estimates, hence in-368

creases model’s SSC. This effect is mostly evident for DiP. CR quantifies the ratio that369

an observation falls into model’s ensemble interval, quantifying how well a probabilis-370

tic model is calibrated. Again, DiP achieves the highest CR among the considered mod-371

els, providing a comprehensive range of plausible outcomes.372

To sum up, DiP verifies competitively compared to alternative data-driven deter-373

ministic/probabilistic approaches, as well as reanalysis precipitation products: for spa-374

tial scales from 0.1◦ to 2◦, DiP matches supervised learning approach in delivering de-375

terministic precipitation estimates (on r and RMSE), and offers optimal probabilistic376

estimation skills (on CRPS, SSC, and CR). This methodology better meets the READS377

requirements: it allows us to efficiently generate realistic samples that are faithful to a378

broad range of resolved circulation schemes, and are diverse to cover most plausible out-379

comes.380

5 Conclusions381

Numerical weather-climate models resolve geophysical fluid dynamics to a finite382

resolution, necessitating probabilistic inference for unresolved processes. For example,383

what is the probability that, at millimeter scale, various hydrometeors interact, collide,384

coalesce to yield precipitation, given circulation status resolved to kilometer scale? If we385

could accurately and efficiently answer these questions, we could not only better under-386

stand, but also better predict the climate.387

We follow the data-driven ideology to learn representations of unresolved climate388

processes from high fidelity data, such as high-resolution simulations and observations.389
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Figure 4. Performance evaluation using data from 2019 to 2022. The following skill metrics

are considered. r: average correlation coefficient between model ensemble mean estimates and

observations; RMSE: root mean squared error of model ensemble mean estimate; CRPS: contin-

uous ranked probabilistic score of model ensembles; SSC: spread-skill correlation, where spread

is represented using ensemble standard deviation, and skill is represented using model ensemble

mean absolute error; CR: coverage ratio, which represents the percentage that grid observation

falls into the coverage of ensemble spread. For the probabilistic models, we consider ensemble

size from 8 to 128 to compute the skill metrics. All the skill metrics are computed across spatial

scales from 0.1◦ to 2◦ by spatial pooling.
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We point out the limitations of supervised learning approaches in such tasks, and ad-390

vocate the potential advantages of generative modeling approaches.391

To realize these potential advantages, we should steer the learning machine toward392

verifiable goals of stochastic parameterization, which are quantified in ensemble forecast393

practices. Hence, based on the requirements of ensemble forecast, we propose the READS394

(Realism, Efficiency, Adaptability, Diversity, and Sharpness) criteria for probabilistic rep-395

resentation of unresolved climate processes.396

To solidify these arguments and provide practical solutions, we consider the prob-397

lem of numerical precipitation estimation. We develop DiP, a probabilistic diffusion model398

based methodology to learn stochastic parameterization of precipitation. Compared to399

existing generative models, DiP approximates a target distribution in a principled, it-400

erative manner, which offers it tremendous fitting capability and controlling flexibility.401

Using a Typhoon storm case and four-year evaluation, we demonstrate the advan-402

tage of DiP in meeting the READS requirements, as compared to existing data-driven403

supervised deep learning method (UNet), data-driven probabilistic deep learning method404

(CVAE and CGAN), as well we moderate/high resolution numerical method (CFS and405

WRF).406

There remain several challenges for our approach to stochastic parameterization.407

Till now, our model does not provide feedback to the resolved dynamics. It remains to408

be examined if the learned subgrid-scale noise can trigger circulation regime transitions,409

and support reliable probabilistic forecast. Also, the ensemble mean estimate from DiP410

fails to match the performance of CVAE, suggesting room for progress. Finally, to gen-411

erate large ensemble estimates using DiP takes hundreds runs of the deep nets, which412

brings considerable computation burden in long term simulations. Future works may ex-413

plore diffusion model distillation techniques to accelerate the generation process (Sal-414

imans & Ho, 2022; Song et al., 2023).415
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S1. Details of probabilistic diffusion model

The theory and practice of probabilistic diffusion models can be math-heavy and convo-

luted. We provide mathematical and implementation details of the deployed probabilistic

diffusion model. For a friendly tutorial, see Luo (2022). For more information and useful

learning materials, see Sohl-Dickstein et al. (2015), Ho et al. (2020), Kingma et al. (2021),

and Song et al. (2020).

S1.1 Decomposition of log p(y) using latent z0:1

Diffusion model is an explicit likelihood based generative model. Its learning objec-

tive function is a factorization of data likelihood defined over latent variables z0:1 =

{zt0=0, zt1 , zt2 , ..., ztT=1}. This factorization stands at the core of variational view of dif-

fusion models. A step-by-step derivation is given below.

First, for a pre-defined p(z0:1|y), we have:

log p(y) = Ep(z0:1|y)

[
log p(y)

]
= Ep(z0:1|y)

[
log

p(z0:1,y)

p(z0:1|y)

]
(1)

Given p(zt|y) := N (αty, σ
2
t I), 0 = t0 < t1 < t2 < ... < tT = 1, we have:

p(z0:1,y) = p(y|z0:1)p(zt0|zt1:tT )p(zt1|zt2:tT )...p(ztT−1
|ztT )p(ztT )

= p(y|zt0)p(zt0 |zt1)p(zt1|zt2)...p(ztT−1
|ztT )p(ztT )

= p(y|zt0)p(ztT )
T∏
i=1

p(zti−1
|zti)

(2)

and
p(z0:1|y) = p(zt0|y)p(zt1|zt0 ,y)p(zt2 |zt0:t1 ,y)...p(ztT |zt0:tT−1

,y)

= p(zt0|y)p(zt1|zt0)p(zt2|zt1)...p(ztT |ztT−1
)

= p(zt0|y)
T∏
i=1

p(zti |zti−1
)

(3)

Plug Eq. 2 and Eq. 3 into Eq. 1, we have:
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log p(y) =Ep(z0:1|y)

[
log

p(z0:1,y)

p(z0:1|y)

]
=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
∏T

i=1 p(zti−1
|zti)

p(zt0|y)
∏T

i=1 p(zti |zti−1
)

]
=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti |zti−1

)

] (4)

While Eq. 4 can be decomposed into differentiable terms, it involves estimating expecta-

tion over two random variables: {zti−1
, zti}, which may have high variance (Luo, 2022).

To achieve a robust estimate, we re-write p(zti |zti−1
) as:

p(zti |zti−1
) = p(zti |zti−1

,y) =
p(zti−1

|zti ,y)p(zti |y)
p(zti−1

|y)
(5)

Plug Eq. 5 into Eq. 4, we have:

log p(y) =Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti |zti−1

)

]
=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti−1 |zti ,y)p(zti |y)

p(zti−1 |y)

]

=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti−1

|zti ,y)
+

T∑
i=1

log
p(zti−1

|y)
p(zti |y)

]
=Ep(z0:1|y)

[
log

p(y|zt0)p(ztT )
p(zt0|y)

+
T∑
i=1

log
p(zti−1

|zti)
p(zti−1

|zti ,y)
+ log

p(zt0|y)
p(ztT |y)

]
=Ep(z0:1|y)

[
log p(y|zt0) +

T∑
i=1

log
p(zti−1

|zti)
p(zti−1

|zti ,y)
+ log

p(ztT )

p(ztT |y)

]
=Ep(zt0 |y) log p(y|zt0) + Ep(zT |y) log

p(ztT )

p(ztT |y)
+

T∑
i=1

Ep(zi|y) log
p(zti−1

|zti)
p(zti−1

|zti ,y)

=Ep(zt0 |y) log p(y|zt0) + Ep(zT |y) log
p(ztT )

p(ztT |y)
+

T∑
i=1

Ep(zi|y) log
p(zti−1

|zti)
p(zti−1

|zti ,y)

=Ep(zt0 |y) log p(y|zt0)−DKL

(
p(ztT |y)||p(ztT )

)
−

T∑
i=1

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti)

)
=Ep(z0|y) log p(y|z0)−DKL

(
p(z1|y)||p(z1)

)
−

T∑
i=1

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti)

)

(6)

We now take a close examination of the three terms on the right side of Eq. 6:

• Ep(z0|y) log p(y|z0):] given that α0 := 1, σ0 := 0, we have p(z0|y) =

{
δ, z0 = y

0, else
, and

p(y|z0) =

{
δ, y = z0
0, else

, δ is Dirac function. Thus, we have Ep(z0|y) log p(y|z0) = 0.
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• DKL

(
p(z1|y)||p(z1)

)
: given that α1 := 0, σ1 := 1, we have p(z1|y) ∼ N (0, I), which

is agnostic of y, this leads to p(z1) ∼ N (0, I), therefore, DKL

(
p(z1|y)||p(z1)

)
= 0.

•
T∑
i=1

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti): for any i, we can derive an analytical Gaus-

sian form of p(zti−1
|zti ,y) (see below). For fine enough discretization of time, p(zti−1

|zti) is

also Gaussian, which is represented as a variational distribution parameterized by neural

networks. Thus, we obtain an analytical form of DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti), suitable

for stochastic gradient optimization.

Given the analysis above, to maximize log p(y) is approximately equivalent to minimiz-

ing the following time averaging Kullback–Leibler divergence term:

log p(y) ≈ −
T∑
i=1

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti)

)
(7)

Below we derive analytical form of p(zti−1
|zti ,y) and relate it with score estimate of

p(zti |y), which enables robust optimization and high-quality generative modeling.

S1.2 Analytical/parameterized form of p(zti−1
|zti, y)/p(zti|zti−1

)

To derive the analytical form of p(zti−1
|zti ,y), we have:

p(zti−1
|zti ,y) =p(zti |zti−1

,y)
p(zti−1

|y)
p(zti |y)

= p(zti |zti−1
)
p(zti−1

|y)
p(zti |y)

∝ exp
(
− 1

2

((zti − αti

αti−1
zti−1

)2

σ2
ti −

α2
ti

α2
ti−1

σ2
ti−1

+
(zti−1

− αti−1
y)2

σ2
ti−1

− (zti − αtiy)
2

σ2
ti

))

=exp
(
− 1

2

( 1

σ2
ti−1

(1−
α2
ti
σ2
ti−1

α2
ti−1

σ2
ti

)
z2ti−1

− 2(

αti

αti−1
zti

σ2
ti −

α2
ti

α2
ti−1

σ2
ti−1

+
αti−1

y

σ2
ti−1

)zti−1
+ C(zti ,y)

))
(8)

Hence p(zti−1
|zti ,y) = N (µ̃ti , Σ̃ti), where:

µ̃ti =
αti−1

αti
zti −

αti−1

αti
(σ2

ti
−

α2
ti

α2
ti−1

σ2
ti−1

)
zti − αtiy

σ2
ti

=
αti−1

αti
zti +

αti−1

αti
(σ2

ti
−

α2
ti

α2
ti−1

σ2
ti−1

)∇ log p(zti |y)
(9)

and

Σ̃ti = σ2
ti−1

(1−
σ2
ti−1

σ2
ti

α2
ti

α2
ti−1

)I (10)
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Given fine enough discretization of time, p(zti−1
|zti) is also Gaussian, i.e. p(zti−1

|zti) =

N (µti ,Σti). We parameterize µti in accordance with the analytical form of µ̃ti :

µti =
αti−1

αti
zti +

αti−1

αti
(σ2

ti
−

α2
ti

α2
ti−1

σ2
ti−1

)ϵNN(zti) (11)

where ϵNN(zti) is neural network parameterization of ∇ log p(zti |y). Following Ho & Sali-

mans (2022), we consider the following simplied representation of Σti :

Σti =
σ
2vti
ti

σ
2vti
ti−1

Σ̃ti (12)

where vti := 0.5 for all time steps.

Given the analytical/parameterized form of p(zti−1
|zti ,y)/p(zti |zti−1

), we have:

ϵ∗NN(zti) = argmax
ϵNN(zti )

log p(y)

≈ argmin
ϵNN(zti )

Ep(zti |y)DKL

(
p(zti−1

|zti ,y)||p(zti−1
|zti)

)
= argmin

ϵNN(zti )

Ep(zti |y)
[
(µ̃ti − µti)

TΣ−1
ti
(µ̃ti − µti)

]
= argmin

ϵNN(zti )

Ep(zti |y)
[
Σ̃ti

σ
2(1−vti )
ti

σ
2(1−vti )
ti−1

∥∥∇ log p(zti |y)− ϵNN(zti)
∥∥
2

]
≈ argmin

ϵNN(zti )

Ep(zti |y)
∥∥∇ log p(zti |y)− ϵNN(zti)

∥∥
2

(13)

We apply standard stochastic gradient descent to obtain ϵ∗NN(zti). Thereafter, we can

approximate {µti ,Σti} using Eq. 11 and 12. Based on pθ(zti−1
|zti), we carry out iterative

ancestral sampling: note that p(z1) = N (0, I) given the forward Gaussian Process setup.

Therefore, starting from standard Gaussian samples, we iteratively generate samples of

ztT−1
, ztT−2

, ..., zt0 , using the learned distributions of p(zti−1
|zti), i = T, T−1, ..., 1. Finally,

p(y|z0) =

{
δ, y = z0
0, else

.

S1.3 {αt, σt}: noise schedule

In diffusion model, we define a Gaussian process to map target distribution to a standard

Gaussian. {αt, σt} specifies the noise schedule, quantifying how fast the target distribu-

tion is diminished through the diffusion process. A better noise schedule allows efficient
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optimization and improved model likelihood, which may be achieved via optimization

(Kingma et al., 2021). Here, for simplicity, we adopt a pre-defined noise schedule, follow-

ing Ho & Salimans (2022) and Nichol & Dhariwal (2021). Specifically, we parameterize

{αt, σt} as a function of λt:

α2
t = 1− σ2

t =
1

1 + e−λt
(14)

where:

λt = −2 log tan(at+ b) (15)

Here b = arctan(e−
λmax

2 ), a = arctan(e−
λmin

2 ) − b, t is uniformly sampled from [0, 1].

{λmin = −20, λmax = 20} are hyper-parameters. This noise schedule represents a hyper-

bolic secant distribution modified to be supported on a bounded interval (Ho & Salimans,

2022).

S1.4 Encoding of diffusion time step

Diffusion model is an iterative generative model, involving a hierarchy of neural net-

work models ϵNN(zt) to approximate score functions ∇ log p(zt|y) at multiple noise levels.

While this hierarchy of neural network models can be learned separately, in practice, we

often adopt a time-dependent neural network, using an vector embedding of t to account

for the impact of learning objective difference for different noise levels. Following Song

et al. (2020), we incorporate the time information via Gaussian random features, i.e.:

embedding(t) = [sin(2πωt); cos(2πωt)], where ω ∼ N (0, sI), s = 1 is a pre-defined scaling

parameter.

S1.5 Model architecture and training details

The neural networks we apply for unconditional/conditional score estimates are time-

dependent UNets with structures illustrated in Fig. S1 and Fig. S2. For now we do not

include attention mechanism for computation efficiency. Both models take into input of

noisified precipitation field and nosification scale, and outputs the score estimate. We
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embed the time information, and stack the time embedding as extra channel to all UNet

blocks. Each contract block consists of a long chain of {C3×3 +N+ReLU}3, and a short

chain of {C1×1}1, concatenated as a residual block, Cn×n is convolution layer with kernel

receptive field of size n×n, N is group normalization, ReLU is rectified linear unit function.

Each expand block consists of a long chain of {R2+C3×3+N+ReLU}3, and a short chain of

{R2,C1×1}1, concatenating as a residual block, Rn resize the data by n times using linear

interpolation. We start with channel size of 128, and double/shrink the channel size by 2

along each contract/expand block. For the conditional score estimating neural network,

we includes the conditioning information. This conditioning information is deterministic

precipitation estimation, offered by a separate UNnet that takes into input of dynamical

field information. In this sense, the conditional score estimating neural network tries to

recover and add details of the precipitation information discarded by the deterministic

precipitation estimator.

We use data from 1979-2016/2017-2018/2019-2022 for training/validation/test. We

keep same data splitting strategy for all data-driven models considered in this study. To

train the unconditional model, we randomly crop precipitation field data of size 80 × 80

(8◦ × 8◦), add random scale noise to the data, and use the unconditional diffusion model

to estimate the score. We use ADAM optimizer and an initial learning rate of 10−3. We

halve the learning rate if validation loss is not decreasing for 10 epochs. To train the

conditional model, we include conditioning information from a UNet based deterministic

precipitation estimate, the rest settings are same as the unconditional case.
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S2. Baseline models

S2.1 UNet

We consider UNet as 1) a deterministic baseline and 2) the conditioning information

extractor for all the generative models. UNet a unique convolutional neural network ar-

chitecture suited for image-relevant tasks. Here, the model takes into input of resolved

dynamical field information and static elevation information, and outputs a determinis-

tic precipitation field estimate. The dynamical field information is provided by a 9-hour

(including 3 previous/current/future hours), 8◦ × 8◦ circulation field data, with 19 chan-

nels representing 19 dynamical variables, including key primitive variables (meridional and

zonal wind velocity, temperature, specific humidity, and geopotential height) at 3 pressure

levels (1000/850/500 hPa), and crucial surface level variables (sea level pressure, surface

pressure, surface temperature, and total column precipitable water). This dynamical field

information is first pre-processed through 3D convolution blocks, and concatenated with

preprocessed elevation information, before feeding into a 2D UNet. The UNet applies

a convolution based contracting path to capture precipitation relevant dynamical field

information, and a symmetric transposed convolution based expanding path to gradually

refine precipitation field estimates. Skip connections between symmetrical convolution

and transposed convolution blocks are applied to force deeper neural network layers to

learn meaningful representations that are not well captured by shallower layers. The

learning objective is to minimize the squared error between estimated and observed pre-

cipitation. Underlying this objective function is the assumption that p(y|x) is Gaussian,

with identical error covariance for any x and any grid point. See Fig. S3 for UNet model

architecture.

S2.2 Conditional variational autoencoder (CVAE)
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Conditional variational autoencoder (CVAE) is deep neural network powered probabilis-

tic graphical model. To learn a non-linear latent variable model for the target conditional

distribution p(y|x), CVAE constructs a bijective mapping between p(y|x) and a tractable

latent distribution p(z|x), using an encoder-decoder neural network architecture. The

encoder qϕ approximates p(z|x,y) as a variational Gaussian distribution; the decoder pψ

approximates p(y|x, z) using the conditioning information x and the learned latent vec-

tor z. To approximate the target conditional distribution, {qϕ, pψ} are jointly trained to

maximize the following evidence lower bound (ELBO) of the data log likelihood:

ELBO = Ez∼qϕ log pψ − βDKL

(
qϕ∥p(z|x)

)
(16)

Here p(z|x) is assumed to be standard Gaussian; β is a parameter balancing sample diver-

sity and sample accordance to the conditioning information, similar to the functionality

of ω in diffusion model. To train CVAE, we run mini-batches of {x,y} samples through

{qϕ, pψ}, and update their parameters to maximize the ELBO, using stochastic gradient

ascent. To generate novel samples of p(y|x), we draw z samples from p(z|x) and pass

them together with x through the optimal p∗ψ. See Fig. S4 for model architecture details.

S2.3 Conditional generative adversarial net (CGAN)

Conditional generative adversarial net (CGAN) approximates a target conditional dis-

tribution p(y|x) by setting up a “game” between two neural networks. The generator

network G takes into input of the conditioning information x and random noise z to

create samples that are intended to come from the target distribution; the discriminator

network D is a binary classifier, optimized to differentiate between generated samples and

true samples:

LD = Ey

(
D(y)

)
− Ez

(
D
(
G(x, z)

))
(17)
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The generator network is optimized to 1) fool the discriminator network, and 2) draw the

mean of generated samples close to ground truth observations ():

LG = Ez

(
D
(
G(x, z)

))
− λE{y,z}||G(x, z)− y||2 (18)

Here λ is a parameter that balances sample diversity and sample accordance to the con-

ditioning information, similar to the functionality of ω/β in diffusion/CVAE model. To

train CGAN, we run mini-batches of {x,y, z} samples through {G,D}, and apply stochas-

tic gradient ascent to maximize LD and LG. We keep the optimal G∗ if it offers best skill

performance (measured by continuous ranked probabilistic skill score, as it is a proper

scoring rule, see below) for the validation set. To generate novel samples of p(y|x), we

draw z samples from random noise and pass them together with x through the optimal

G∗. See Fig. S5 for model architecture details.

S2.4 Dynamical downscaling using WRF

We include comparison to a dynamical simulation approach for numerical precipitation

estimation. Here the Advanced Research Version 4.2 of Weather Research and Forecast-

ing (WRF-ARW V4.2, Skamarock et al. 2019) is deployed for simulation of a Typhoon

precipitation case (Typhoon Lekima, 0000 UTC 04 August 2019 -0000 UTC 12 August

2019). WRF-ARW refines the coarsely resolved climate processes at regional scale, using

high-resolution numerical geophysical fluid dynamics solver and a suite of accompanying

parameterization schemes. We apply Global Forecast System reanalysis data to provide

the initial and boundary condition for the considered precipitation cases. We apply spec-

tral nudging of wind for the outer domain to ensure consistency between the simulated

large-scale circulations and the analysis fields. The simulated domains are delineated in

Fig. S6. The selected parameterization schemes as listed in Tab. S1.

November 23, 2023, 5:12am



: X - 11

S3. Evaluation metrics

S3.1 Human eYe Perceptual Evaluation (HYPE)

We apply a simplified Human eYe Perceptual Evaluation (HYPE) to assess the sample

quality of models’ precipitation estimates, relying on human climate scientists’ and climate

model end-users’ perceptions. We measure human climate experts’ error rate in detecting

observations that are randomly mixed with model generated samples. We report the test

takers’ accuracy rate in five tests.

S3.2 Power spectral analysis

We inspect the spatial structure of precipitation estimates by computing their average

spectrum power as function of spatial frequencies and orientations. The computation

steps are as follows:

Step 1: Transform the precipitation field data to frequency domain, using Fast Fourier

Transform.

Step 2: Compute the power spectrum by taking the squared magnitude of the Fourier

Transform coefficients.

Next, for radial averaged power spectrum analysis:

Step 1: Define a set of concentric circles centered at the origin of the frequency domain,

along each radial line, calculate the average power by averaging the power spectrum values

corresponding to the points intersected by the line.

Step 2: Plot the average power values against the corresponding radial frequency.

For orientation averaged power spectrum analysis:

Step 1: Define a set of concentric circles centered at the origin of the frequency domain,

along each orientation angle, calculate the average power by averaging the power spectrum

values corresponding to the points through this orientation angle.

Step 2: Plot the average power values against the corresponding orientation angle.
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S3.3 Spread-Skill Correlation (SSC)

The spatial correlation coefficient between the standard deviation of model’s ensemble,

and the mean absolute error of model’s ensemble mean:

SSC =

∑n
i=1(σi − σ̄)(ϵi − ϵ̄)√∑n

i=1(σi − σ̄)2 ·
∑n

i=1(ϵi − ϵ̄)2
(19)

where σi is the standard deviation of model’s ensemble at grid i:

σi =

√√√√ 1

J − 1

J∑
j=1

(ŷji − ¯̂yi)2 (20)

ϵi is the mean absolute error of model’s ensemble mean at grid i:

σi = |¯̂yi − yi| (21)

J is ensemble size; ŷji is the jth ensemble estimate at grid i; ¯̂yi is ensemble mean estimate;

yi is observation.

S3.4 Coverage Ratio (CR)

The percentage that grid observation falls into the coverage of ensemble spread.

S3.5 Pearson correlation coefficient (r)

The Pearson correlation coefficient (r) between ensemble mean prediction ŷ and obser-

vation y is calculated as follows:

r =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2 ·
∑n

i=1(yi − ȳ)2
(22)

S3.6 Root mean squared error (RMSE)

The root mean square error (RMSE) between ensemble mean prediction ŷ and obser-

vation y is calculated as follows:

RMSE =

√∑n
i=1(yi − ŷi)2

n
(23)

S3.7 Continuous ranked probabilistic score (CRPS)
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The continuous ranked probability score (CRPS) is defined as:

CRPS(F, x) =

∫ ∞

−∞
[F (ŷ)− I(ŷ ≥ y)]2 dy (24)

where F (ŷ) is the cumulative distribution function (CDF) of the predictive distribution,

y is the observed value, and I(·) is the indicator function.

References

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances

in neural information processing systems , 33 , 6840–6851.

Ho, J., & Salimans, T. (2022). Classifier-free diffusion guidance. arXiv preprint

arXiv:2207.12598 .

Kingma, D., Salimans, T., Poole, B., & Ho, J. (2021). Variational diffusion models.

Advances in neural information processing systems , 34 , 21696–21707.

Luo, C. (2022). Understanding diffusion models: A unified perspective. arXiv preprint

arXiv:2208.11970 .

Nichol, A. Q., & Dhariwal, P. (2021). Improved denoising diffusion probabilistic models.

In International conference on machine learning (pp. 8162–8171).

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., . . . others

(2019). A description of the advanced research wrf version 4. NCAR tech. note ncar/tn-

556+ str , 145 .

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep un-

supervised learning using nonequilibrium thermodynamics. In International conference

on machine learning (pp. 2256–2265).

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B.

(2020). Score-based generative modeling through stochastic differential equations. arXiv

preprint arXiv:2011.13456 .

November 23, 2023, 5:12am



X - 14 :

NoiseP
preprocess

λ
λProcess

contract_1

thread_F_1

expand_1

contract_2

thread_F_2

expand_2

contract_3

thread_F_3

expand_3

contract_4

thread_F_4
expand_4

thread_B_0

thread_B_1

thread_B_2

thread_B_3

postproce..
Output

thread_F_0

thread_B_4ubase

λ_B_0

λ_B_1

λ_B_2

λ_B_3

λ_B_4

λ_F_0

λ_F_1

λ_F_2

λ_F_3

λ_F_4

1× 80× 80

256

128
×
40
×
40

128× 80× 80

256
×
20
×
20

256× 40× 40

512
×
10
×
10

512× 20× 20

1024
×
5
×
5

1024× 10× 10

128× 80× 80

128× 40× 40

256× 20× 20

512× 10× 10

1× 80× 80

128× 80× 80

128
×
80
×
80

128× 80× 80

12
8×
40

× 4
0

256
× 20

× 20

512×
10× 1

0

1024× 5
× 5

128× 80× 80

128× 40× 40

256× 20× 20

512× 10× 10

1024× 5× 5 1024× 5× 5

128× 80× 80

128× 40× 40

256× 20× 20

512× 10× 10

1024× 5× 5

128× 80× 80

128× 40× 40

256× 20× 20

512× 10× 10

1024× 5× 5

7
6
8

7
6
8

7
6
8

768

768

7
6
8

7
6
8

7
6
8

7
6
8

768

+

+

+

+

+

+

+

+

+

+

Figure S1. Model architecture of the unconditional score estimating neural network.

We embed the time information, and stack the time embedding as extra channel to all

UNet blocks. Each contract block consists of a long chain of {C3×3 + N + ReLU}3, and

a short chain of {C1×1}1, concatenated as a residual block. Cn×n is convolution layer,

with kernel receptive field of size n × n, N is group normalization. Each expand block

consists of a long chain of {R2 + C3×3 + N + ReLU}3, and a short chain of {R2,C1×1}1,

concatenating as a residual block, Rn resize the data by n times using linear interpolation.

We start with channel size of 128, and double/shrink the channel size by 2 along each

contract/expand block.
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Figure S2. Model architecture of the conditional score estimating neural network,

similar to the unconditional score estimating neural network, but includes the conditioning

information from a UNet precipitation estimation using dynamical field as input.
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Figure S3. UNet architecture. The model takes into input of resolved dynamical field

information and static elevation information, and outputs a deterministic precipitation

field estimate. The dynamical field information is provided by a 9-hour (including 3 pre-

vious/current/future hours), 8◦ × 8◦ circulation field data, with 19 channels representing

19 dynamical variables. This dynamical field information is first pre-processed through 3D

convolution blocks (bottom), and concatenated with preprocessed elevation information,

before feeding into a 2D UNet. The UNet applies a convolution based contracting path to

capture precipitation relevant dynamical field information, and a symmetric transposed

convolution based expanding path to gradually refine precipitation field estimates. Skip

connections between symmetrical convolution and transposed convolution blocks are ap-

plied to force deeper neural network layers to learn meaningful representations that are

not well captured by shallower layers.
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Figure S4. CVAE architecture. The encoder approximates p(z|x,y) as a variational

Gaussian distribution; the decoder approximates p(y|x, z) using the conditioning infor-

mation x and the learned latent vector z. The dimension of z is 32.
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Figure S5. CGAN architecture. We replicate the generator network G for 10 times,

each receiving a different z and a same conditioning information x to create an ensemble

member. The generator network G is trained to fool the discriminator network D, while

drawing the ensemble mean close to the realized observation. The discriminator network

D is a binary classifier, optimized to differentiate between generated samples and true

samples.

Physical process Option

Cloud microphysics Lin (Purdue)

Cumulus Zhang and McFarlane

Radiation Rapid Radiative Transfer Model

Boundary layer Yonsei University (YSU) PBL scheme

Surface Noah Land Surface Mode

Table S1. Physics options for WRF simulation.
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Typhoon Lekima

0000 UTC 04 Aug 2019-0000 UTC 12 Aug 2019

>35302520151050

maximum precipitation rate (mm/3h)

Figure S6. WRF nested Domains (27km/9km/3km) for Typhoon Lekima simulation,

from 0000 UTC 04 August 2019 to 0000 UTC 12 August 2019. Color denotes maximum

precipitation rate (mm/3h) through the simulation period.
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