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Abstract

River bifurcations are prevalent features in both gravel-bed and sand-bed fluvial systems, including braiding networks, anabranches

and deltas. Therefore, gaining insight into their morphological evolution is important to understand the impact they have on the

adjoining environment. While previous investigations have primarily focused on the influence on bifurcation morphodynamics

by upstream channels, recent research has highlighted the importance of downstream controls, like branches length or tidal

forcing. In particular, in the case of rivers, current linear stability analyses for a simple bifurcation are unable to capture the

stabilizing effect of branches length unless a confluence is added downstream.

In this work, we introduce a novel theoretical model that effectively accounts for the effects of downstream branch length in

a single bifurcation. To substantiate our findings, a series of fully 2D numerical simulations are carried out to test different

branches lengths and other potential sources of asymmetries at the node, such as different widths of the downstream channels.

Results from linear stability analysis show that bifurcation stability increases as the branches length decreases. These results are

confirmed by the numerical simulations, which also show that, as the branch length tends to vanish, bifurcations are invariably

stable. Finally, our results interestingly show that, while in general, when a source of asymmetry is present at the node, the

hydraulically favoured branch dominates, there are scenarios in which the less-favoured side becomes dominant.
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Abstract13

River bifurcations are prevalent features in both gravel-bed and sand-bed fluvial systems,14

including braiding networks, anabranches and deltas. Therefore, gaining insight into their15

morphological evolution is important to understand the impact they have on the adjoin-16

ing environment. While previous investigations have primarily focused on the influence17

on bifurcation morphodynamics by upstream channels, recent research has highlighted18

the importance of downstream controls, like branches length or tidal forcing. In partic-19

ular, in the case of rivers, current linear stability analyses for a simple bifurcation are20

unable to capture the stabilizing effect of branches length unless a confluence is added21

downstream. In this work, we introduce a novel theoretical model that effectively accounts22

for the effects of downstream branch length in a single bifurcation. To substantiate our23

findings, a series of fully 2D numerical simulations are carried out to test different branches24

lengths and other potential sources of asymmetries at the node, such as different widths25

of the downstream channels. Results from linear stability analysis show that bifurcation26

stability increases as the branches length decreases. These results are confirmed by the27

numerical simulations, which also show that, as the branch length tends to vanish, bi-28

furcations are invariably stable. Finally, our results interestingly show that, while in gen-29

eral, when a source of asymmetry is present at the node, the hydraulically favoured branch30

dominates, there are scenarios in which the less-favoured side becomes dominant.31

Plain Language Summary32

This research looks at how rivers divide into multiple branches and how this pro-33

cess shapes the surrounding environment. While past studies mostly focused on factors34

upstream influencing these splits, recent research emphasizes the importance of down-35

stream factors, such as branch length and tidal forces. The study introduces a new the-36

oretical model to better understand how downstream branch length affects a single river37

split. We used computer simulations with different branch lengths and channel widths38

to test the model, discovering that shorter branch lengths result in more stable river splits.39

The theoretical model is also adapted to account for different shapes commonly found40

in nature, revealing results that are not always straightforward.41

1 Introduction42

Rivers have always covered a fundamental role in the evolution of humankind. Due43

to the high economic interest and risk associated to these areas, humans have always tried44

to control and modify these environments to sustain their activities. Noteworthy, this45

feature has become even more evident in the last decades due to an increase both of the46

intensity of the natural forcings (due to climate change, extreme events are becoming47

more frequent) and of the anthropogenic actions (e.g., the building of dams and other48

flow control structures in the upstream part of rivers).49

However, even if extreme events require detailed analyses, the morphodynamic de-50

velopment of rivers, estuaries and deltas is commonly studied referring to the concept51

of a formative or effective forcing which represents the most frequent condition that these52

systems experience over time [Wolman & Miller , 1960; Williams, 1978]. This allows to53

estimate the long term river equilibrium configuration and predict if some perturbation54

of this state can permanently modify it, leading to erosional or depositional processes55

and to variations of the planar configuration [Bolla Pittaluga et al., 2014; Wilkerson &56

Parker , 2011].57

One crucial control unit in the evolution of rivers and deltas is the bifurcation, which62

governs both flow and sediment partitioning in downstream branches, thus, affecting down-63

stream erosion or deposition [Jerolmack , 2009; Tejedor et al., 2017; Nienhuis et al., 2020].64

A typical case where one bifurcate closes completely is the avulsions of meandering rivers65
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with chute cut-offs: the branch with the highest carrying capacity becomes the main chan-66

nel, while the other, known as oxbow lake, remains isolated [Seminara, 2006; Viero et al.,67

2018]. These phenomena have historically led to approach the problem of the stability

Figure 1. Example of natural bifurcations. a) Fast migrating meandering river in the

Republic of Khakassia, Russia. (Photo by Denis Ovsyannikov: https://www.pexels.com/@denis-

ovsyannikov-1411283/). b) River bifurcates debouching into a lake in Altura, US. (Photo by Tom

Fisk: https://www.pexels.com/@tomfisk/).

58

59

60

61

68

of the bifurcations in terms of their upstream forcings in both gravel-bed and sand-bed69

fluvial systems. Early analytical works were proposed by Wang et al. [1995], who per-70

formed a 1D analysis, including an empirical nodal point condition at the bifurcation node71

to evaluate the partitioning in the branches. This condition turns out to depend on a72

parameter that is not related to the physics of the system but governs its evolution in73

time. Thus, Bolla Pittaluga et al. [2003] overcame this limit by introducing a two-cell74

model which accounts for the localized 2-D effects upstream of the bifurcation node in75

terms of sediment and flow division. Applying it to both gravel-bed and sand-bed rivers,76

Bolla Pittaluga et al. [2015] found that the stability is mainly dependent on the Shields77

parameter ϑ and on the aspect ratio (β = W
2D ) of the upstream channel. However, also78

in this model, some empirical parameters need to be specified. Indeed, the critical value79

of the aspect ratio above which a bifurcation becomes unstable, is found to be linearly80

dependent on the length of the two upstream cells α and on the ’Talmon’ parameter r81

accounting for the contribution of the transversal bed slope on the sediment transport82

[Talmon et al., 1995]. Common values of the parameter r range between 0.3 and 1 [Ikeda83

et al., 1981], while the experimental calibration of the parameter α provides values from84

1 to 6 [Bolla Pittaluga et al., 2003; Bertoldi and Tubino, 2007].85

This notwithstanding, the simple two-cell model has proven to be able to adequately86

reproduce the main mechanism governing the morphodynamic evolution of a river bi-87

furcation. Consequently, efforts have been made to extend this model to account for some88

additional effects that were neglected in the original formulation. Miori et al. [2006] in-89

cluded channel width variations according to hydraulic geometry rules. Bertoldi et al.90

[2009] studied the effect of incoming migrating bars by integrating the bifurcation model91

with the model of Colombini et al. [1987], which provides the spatial structure and the92

temporal development of finite amplitude bars. Kleinhans et al. [2008] analysed the ef-93

fect of the secondary flow due to an upstream meander bend on the bifurcation stabil-94

ity. Later Redolfi et al. [2019] studied the combined effect of upstream radius of curva-95

ture and slope advantage in the two branches. Recently, Ragno et al. [2023] managed96

to examine the effect of sediment sorting on the unbalanced bifurcations.97
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However, these studies predominantly focused on the upstream forcings, without98

accounting for the potential feedback mechanisms arising from the downstream ones. Salter99

et al. [2018], for instance, investigated the consequences of prograding branches finding100

an oscillating behaviour attributed to the restorative feedback arising from the gentler101

slope in the longer branch. The length of the branches thus emerges as a determining102

factor for bifurcation stability. Recently, Ragno et al. [2021] applied the two-cell model103

to a bifurcation-confluence loop by introducing a momentum balance model for the down-104

stream junction. This revealed the system being more stable as the confluence influence105

increases (i.e. decreasing the branch lengths). Furthermore, the distance of the bifur-106

cation node from the downstream boundary has once again proven to be crucial when107

incorporating the two-cell model with downstream effects, such as the tidal forcings [Ragno108

et al., 2020; Iwantoro et al., 2020]. This set its basis on the observations that, even in109

micro-tidal environments, tides exert a profound influence on distributary hydrodynam-110

ics throughout both high and low fluvial discharge regimes [Leonardi et al., 2015].111

The considerations outlined above lead us to question whether the original two-cell112

model of Bolla Pittaluga et al. [2003] can be reliably applied in scenarios where down-113

stream effects are not negligible. It is important to note that the model operates under114

the assumption that the free surface elevations remain constant at the bifurcation node115

regardless of flow conditions. However, this condition may no longer hold when the down-116

stream conditions influence the bifurcation, as is the case with short branch lengths. Since117

any disturbance of the flow could potentially trigger a destabilization of the system, we118

relax the constraint of constant water elevations at the node, incorporating an energy119

balance condition between the upstream and the downstream branches. This approach120

allows for flow asymmetries to directly impact the morphological equilibrium of river bi-121

furcations. The system of equations arising from the new formulation is tackled with lin-122

ear stability analysis, allowing us to account for the length of the branches on the sta-123

bility and equilibrium configurations of the river network. To validate the theoretical find-124

ings, numerical simulations are conducted, yielding results consistent with our analyt-125

ical framework. In the current study, we formulate the model in its most comprehensive126

form accounting also for other possible sources of asymmetries at the node. Given that127

natural river bifurcations typically exhibit limited symmetry, we analyse the effect of var-128

ious asymmetries individually to gain insights into their impact on equilibrium config-129

urations.130

The subsequent Section will provide a detailed explanation of the analytical pro-131

cedure employed in this study. Section 3 will be dedicated to presenting and discussing132

the theoretical and numerical findings obtained for symmetric scenarios. In section 4,133

the asymmetries in the system are analyzed independently to discern their respective im-134

pacts on the equilibrium configuration of bifurcations. Finally, in Section 5, we will sum-135

marize our key observations and insights.136

2 Formulation of the analytical model137

As previously discussed, the equilibrium of bifurcations is predominantly influenced141

by the flow and sediment division at the node. Given the complexity of factors govern-142

ing the system’s evolution, it is necessary to simplify the problem for analytical handling.143

The bifurcation is then idealized as an upstream rectangular channel a, which bifurcates144

into two branches, channels b and c (as depicted in Figure 2), respectively. No param-145

eter variability is included along any channel, thus, they all have constant widths (W ∗
a ,146

W ∗
b , W

∗
c ), even though the two downstream branches could have different lengths (l∗b ,147

l∗c ). Furthermore, it is assumed that the system evolves primarily due to formative forc-148

ing, therefore, steady uniform flow is established in the channels through a constant dis-149

charge upstream Q∗
a and a fixed water level elevation at the two downstream ends (h∗L

b ,150

h∗L
c ). For every channel (i = a, b, c) the steady and uniform flow is described by the151
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Figure 2. Representative sketch of theoretical river bifurcations. Sketch of the two-

cell model of Bolla Pittaluga et al. [2003] extended to account for uneven branch widths and

lengths.

138

139

140

Chezy relation:152

Q∗
i = W ∗

i D
∗
iCi

√
gsiD∗

i (1)153

where D∗
i is the uniform flow depth in the channel i, g is the gravitational acceleration,154

Ci is the Chezy coefficient and si is the longitudinal bed slope.155

Constant sediment discharge is provided in equilibrium with the flow conditions156

upstream. It is computed in general terms by the following relation:157

ϕ =
q∗is√

ρs−ρ
ρ gd∗3s

= n(D∗
i )(ϑi − ϑcr)

m. (2)158

where q∗is is the dimensional volumetric sediment flux per unit width of the i channel,159

d∗s is the mean diameter, ρ and ρs are the density of water and sediment respectively,160

ϑcr is the threshold value for sediment mobilization and the coefficients n and m depend161

on the sediment transport closure relation. Finally, ϑi is the value of the Shields param-162

eter associated with the uniform flow in the ith channel:163

ϑi =
q∗2i

ρs−ρ
ρ gd∗sC

2
i D

∗2
i

. (3)164

being q∗2i the flow discharge per unit width.165

The model accounts for the two-dimensional effects at the node considering a trans-166

verse exchange of flow and sediment between the two upstream cells through the follow-167

ing nodal point condition:168

q∗Ts = q∗as

[
Q∗

TD
∗
a

Q∗
aαD

∗
abc

− r√
ϑa

∂η∗

∂y∗

]
. (4)169

where q∗Ts is the dimensional transverse solid discharge per unit width and Q∗
T is the to-170

tal transverse flow discharge, ∂η∗/∂y∗ is the transverse bed slope calculated as incremen-171

tal ratio between the difference in bed elevations of the inlet of channels b and c and the172

semi-width of the upstream channel, and D∗
abc is the average water depth at the node.173

The latter can be safely assumed equal to D∗
a, such that D∗

a/D
∗
abc ≃ 1. The parame-174

ter α is the length of the two cells scaled with the upstream channel width W ∗
a ; from ex-175

perimental observations, it attains values between 1 and 3. The constant r in equation176

(4) has been experimentally determined and it ranges between 0.3 and 1 [Ikeda et al.,177

1981; Talmon et al., 1995].178

To solve the problem, other five relations are required. Noteworthy, here we replace179

the conditions for water level constancy of Bolla Pittaluga et al. [2003] with an energy180

head E∗ (i.e., the total energy per unit weight of flowing liquid above an horizontal da-181

tum) balance at the node:182
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1. Flow discharge balance:183

q∗aW
∗
a = q∗bW

∗
b + q∗cW

∗
c (5)184

2. Solid discharge balance:185

q∗asW
∗
a = q∗bsW

∗
b + q∗csW

∗
c (6)186

3. Flow discharge balance applied to cell b:187

q∗aW
∗
a

W ∗
b

W ∗
b +W ∗

c

+ q∗TαW
∗
a = q∗bW

∗
b (7)188

4. Solid discharge balance applied to cell b:189

q∗asW
∗
a

W ∗
b

W ∗
b +W ∗

c

+ q∗TsαW
∗
a = q∗bsW

∗
b (8)190

5. Energy head balance applied to cell b:191

h∗N
a +

q∗2a
2gD∗2

a

− αW ∗
a sa = h∗N

b + (1 + ξ)
q∗2b

2gD∗2
b

(9)192

6. Energy head balance applied to cell c:193

h∗N
a +

q∗2a
2gD∗2

a

− αW ∗
a sa = h∗N

c + (1 + ξ)
q∗2c

2gD∗2
c

(10)194

where ξ is a energy loss coefficient which has been introduced to account for possible lo-195

calised fluid’s energy dissipation at the node, in analogy with what it is commonly as-196

sumed in the case of pipe flows. Finally h∗N
i indicates the free surface elevation of the197

ith channel at the node. Recalling the assumption of uniform flow in the branches, it is198

possible to rewrite h∗N
i as a function of the imposed level at the downstream end: h∗N

i =199

h∗L
i + sil

∗
i .200

The aforementioned equations can be made dimensionless, scaling the variables with201

the typical physical characteristics of the channel a as follows:202

(Di, h
N
i , hL

i ) =
(D∗

i , h
∗N
i , h∗L

i )

D∗
a

. (11)203

204

(qis, qTs) =
(q∗is, q

∗
Ts)

q∗as
, (qi, qT ) =

(q∗i , q
∗
T )

q∗a
. (12)205

206

Li =
l∗i sa
D∗

a

. (13)207

Note that, the branches’ lengths are scaled with the backwater length (D∗
a/sa).208

After some manipulations, the governing equations (5)-(10) and the nodal point209

condition (4) can thus be rewritten in a dimensionless form as:210

1. Flow discharge balance:211

qbrb + qc(ra − rb) = 1 (14)212

2. Solid discharge balance:213

qbsrb + qcs(ra − rb) = 1 (15)214

3. Energy balance:215

∆hL + Lb

[
q2bC

2
a

D3
bC

2
b

− q2cC
2
a

D3
cC

2
c

γL

]
+

Fr2

2
(1 + ξ)

[
q2b
D2

b

− q2c
D2

c

]
= 0 (16)216
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4. Nodal condition:217

qbs = qb −
αr

β
√
θa

1

rarb

[
(hN

b − hN
c )− (Db −Dc)

]
. (17)218

Note that the above equations include the dependence on classical parameters of219

bifurcation theory as proposed by Bolla Pittaluga et al. [2003]. These parameters are the220

aspect ratio, β, defined as221

β =
W ∗

a

2D∗
a

, (18)222

and the Shields parameter of the upstream channel θa. Additionally, the Froude Num-223

ber of the upstream channel, Fr = q∗a/
√

gD∗3
a , and the following dimensionless param-224

eters, accounting for possible asymmetries in the system, appear:225

(a) Branch width ratios: rb =
W∗

b

W∗
a
, rc =

W∗
c

W∗
a

226

(b) Downstream enlargement: ra =
W∗

b +W∗
c

W∗
a

= rb + rc227

(c) Length ratio: γL = Lc

Lb
228

(d) Downstream level asymmetry: ∆hL = hL
b − hL

c .229

Finally, it is noteworthy that, the specific load balance equation (16) derives from230

equating the second members of equations (9) and (10), and that, in the nodal point con-231

dition (17), the transverse sediment and flow discharges have been derived from the pre-232

vious (7) and (8) conditions.233

2.1 Linear Stability Analysis234

Through a linearization procedure, it is possible to solve numerically the system235

of equations (14)-(17), in terms of the four unknowns [qb, qc, Db, Dc] (or [sb, sc, Db, Dc]),236

finding the threshold conditions for the appearance of multiple equilibrium configura-237

tions. A perturbative approach is, thus, employed whereby every unknown f ([qb, qc, Db,238

Dc]) is expanded in terms of a small parameter δ as follows:239

f = f0 + δf1 +O(δ2) , (19)240

where f0 represents the basic state, namely, the uniform flow conditions. Similar expan-241

sions to (19) hold for any other variable g depending on the unknowns of the problem,242

where g1 derives from a Taylor expansion around the basic state, in the form g1 = dg
dδ

∣∣∣
δ=0

.243

Substituting the expansions in the equations (14)-(17), it is possible to solve the
system at each order of approximation. At the leading order, a set of non-linear alge-
braic equations in terms of the basic state variable arises, that can be solved with a cen-
tral finite-difference solver. Differently from the classical case of equal length and width
of the branches b and c, in the general case of different geometrical characteristics of the
two downstream branches, at the leading order, O(δ0), we do not find a symmetrical wa-
ter and sediment discharge distribution between them, but rather we find multiple equi-
librium configurations. The order O(δ) problem, consists of an homogeneous linear sys-
tem of equations that has the form:

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



qb1
qc1
Db1

Dc1

 =


0
0
0
0

 (20)

with the Aij coefficients reported in Appendix A: . The sign of the eigenvalues associ-244

ated with the matrix of the coefficient of the above linear system of algebraic equations245

allows to determine if the multiple equilibrium configurations found at the leading or-246

der are stable or not.247
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3 The case of Symmetrical Bifurcations248

Figure 3. Representative sketches of theoretical and numerical river bifurcations.

a) Sketch of the symmetrical two-cell model of Bolla Pittaluga et al. [2003]. b) Synthetic sketch

of the numerical grid of a symmetrical river bifurcation.

249

250

251

3.1 Linear Stability Analysis252

To understand the basic mechanisms underlying bifurcation stability, let us first253

consider the case of a completely symmetrical bifurcation (as depicted in Figure 3a) (i.e.254

ra=1, rb=0.5, γL=1, ∆hL=0 and ξ=0). In this case the solution at the leading order of255

the perturbation approach (Section 2.1) is the trivial solution, where the flow is equally256

partitioned in the downstream branches and there is no transversal exchange between257

the cells. At the first-order approximation, the flows and depths are anti-symmetric be-258

tween b and c, therefore, the system (20) reduces to two equations, with unknowns as-259

sociated to just one of the two downstream branches (e.g, Db and qb). Nontrivial solu-260

tions are found setting the determinant of the matrix of the coefficients equal to 0. The261

procedure allows for an algebraic relation for the critical aspect ratio βcr, reading:262

βcr =
4αr√
ϑa

[
2Lb + Fr2 + LbFr2(2cD + 1)

]
(Lbγ1 + Fr2γ2)

, (21)263

with:264

γ1 = 2 (ϕϑ + ϕn + cD)− 3, γ2 = −2ϕϑcD + ϕn − 1

2
. (22)265

and the coefficients cD, ϕϑ and ϕn defined as:266

cD =
1

C0

∂Cb

∂Db

∣∣∣∣
D0

, ϕϑ =
mϑa

ϑa − ϑcr
, ϕn =

1

n

∂n

∂Db

∣∣∣∣
D0

. (23)267

They represent the sensitivity of the Chezy coefficient and of the dimensionless sediment268

transport rate to variations of water depth and Shields stress as similarly defined by Redolfi269

et al. [2019].270

The aspect ratio βcr represents the critical conditions for the stability of the sym-271

metrical bifurcations: those with β < βcr (i.e., narrower upstream channels) are deemed272

stable, while, when β > βcr the symmetrical solution becomes unstable, leading to the273

dominance of one of the two branches.274
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For a clearer representation, let’s consider the case where the roughness is defined275

with the Strickler relationship in an infinitely wide channel:276

Ci =
k∗sD

∗1/6
i√
g

, (24)277

where k∗s is the Gauckler-Strickler coefficient.278

As far as the closure relationship for sediment transport is concerned, in the case279

of gravel-bed rivers, a relation of the type of Meyer-Peter and Müller [1948] might be280

used:281

ϕMPM = 8(ϑa − ϑcr)
1.5, (25)282

leading to the following algebraic relation for βcr:283

βcr =
4

3

αr√
ϑa

(6Lb + 3Fr2 + 4LbFr2)[
ϑa

ϑa−ϑcr
(3Lb − 1

2Fr2)− 10
3 Lb − Fr2

] . (26)284

On the contrary, in the case of sand-bed rivers, as a fist approximation, the Engelund285

and Hansen [1967] relationship for the total sediment transport can be used:286

ϕEH = 0.05C2
i ϑ

2.5
i . (27)287

The corresponding relation for the critical aspect ratio βcr takes the form:288

βcr =
4

3

αr√
ϑa

(6Lb + 3Fr2 + 4LbFr2)

(7/3Lb − 3/2Fr2)
. (28)289

Noteworthy, setting Fr = 0 in (28) (i.e., not considering the kinetic head at the node),290

the solution coincides with that found by Bolla Pittaluga et al. [2015]:291

βcr =
24

7

αr√
ϑa

. (29)292

Moreover, the two solutions reach almost the same values when the branches’ lengths293

tend to infinity, meaning that the downstream conditions are not felt at the bifurcation294

node:295

Lb → ∞ : βcr =
24

7

αr√
ϑa

(1 + 2/3Fr2). (30)296

3.2 Numerical Tests297

The case of symmetrical bifurcations (i.e., where the branches have equal length298

and width) has also been tested with a systematic set of depth-averaged numerical sim-299

ulations performed with the software suite Delft3D. The package Delft3D-FLOW solves300

the three-dimensional shallow water equations for incompressible fluid with a finite-difference301

scheme. It comprehends the exchange of sediment with the bed and, also, includes a mor-302

phological acceleration factor (MorFac) to speed up long-term morphological evolution303

Lesser et al. [2004].304

The symmetrical bifurcation is represented as a fixed-bank, free-slip, rectangular305

channel a split by a thin dam into two branches b and c with equal length (l∗b = l∗c )306

and equal width (W ∗
b = W ∗

c = W ∗
a /2), as sketched in Figure 3b. The overall length307

of the domain, L∗
tot, is a multiple of the backwater length L∗

back to avoid interferences308

at the inflow. The computational grid comprises 10 cells in the transversal direction, main-309

taining an aspect ratio equal to 1 (i.e., ∆x = ∆y) so that 5 transversal cells are em-310

ployed in each downstream branch. With this design, the overall width remains constant311

throughout the domain without any loss of computational grid cells. A careful reader312

might notice that in this way the number of cells in the longitudinal direction depends313

not only on L∗
tot, but also on the width W ∗

a , making the overall number of computational314
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Table 1. Summary of symmetrical numerical simulations.317

ID β L ID β L

run01 5 0.5 run14 16 1.5
run02 10 1 run15 20 0.1
run03 10 1.5 run16 20 0.2
run04 12 0.1 run17 20 0.3
run05 12 0.5 run18 25 0.1
run06 12 1.5 run19 25 0.2
run07 16 0.05 run20 33 0.05
run08 16 0.1 run21 33 0.1
run09 16 0.2 run22 33 0.2
run10 16 0.3 run23 41 0.05
run11 16 0.4 run24 41 0.1
run12 16 0.5 run25 41 0.5
run13 16 1

cells case-dependent. Following the same reasoning, the computational time step was changed315

depending on the grid size always obeying to the Courant–Frederichs–Levy criterion.316

The investigation carried out in this study involves a systematic set of simulations,318

wherein the channel width is varied to explore the impact of the main channel aspect319

ratio βa on the bifurcation stability, as summarized in Table 1. The stability of each con-320

figuration is assessed by perturbing the bed profile of one branch with a cosine-shaped321

deposit of amplitude 0.1D∗
a. This perturbation ensures that the water depth at the bi-322

furcation node and downstream boundary remains consistent with the previous equilib-323

rium. As the simulation progresses, a step is observed in the perturbed branch at the324

bifurcation node, while the other branch shows signs of incipient erosion. To track the325

temporal evolution of the system, the discharge asymmetry ∆Q between the branches326

is computed:327

∆Q =
Q∗

b −Q∗
c

Q∗
a

. (31)328

In those cases when ∆Q approaches values close to 0, the bifurcation is stable, indicat-341

ing equal partitioning of the flow. Conversely, when it reaches ±1 one of the two branches342

carries all the flow coming from the upstream channel a.343

To maintain consistency with theoretical considerations and ease comparison be-344

tween the different results, the slope sa and the discharge per unit width qa are kept con-345

stant in every configuration, equal to 2×10−4 and 0.44 m2/s respectively. This approach346

ensures the establishment of a uniform flow depth D∗
a in equilibrium with the prescribed347

inflow discharge, while maintaining a constant Shields number (ϑa = 0.15) and a dimen-348

sionless grains size (ds = d∗s/D
∗
a) equal to 8.2 × 10−4 throughout all simulations. To349

accomplish this, a constant water discharge and a constant sediment flux, in equilibrium350

with the flow field, are defined at the upstream boundary, while a fixed water level is pro-351

vided downstream. Flow and sediments are allowed to freely leave the system from the352

downstream boundaries, thus, letting the bed to change in accordance with the hydro-353

dynamics. The sediment transport is evaluated with the total-load closure of Engelund354

and Hansen [1967], and sediment are assumed uniform with a diameter d∗s = 0.5 mm.355

The transverse bed slope effects are accounted for in Delft3D by adopting the approach356

of Ikeda et al. [1981]. Here the related parameter αbn is set equal to 5, that corresponds357

to a value of the Talmon et al. [1995] coefficient r equal to 0.88, well within the range358

of the values suggested by Bolla Pittaluga et al. [2003]. The value emplyed represents359

a good compromise between the value commonly used in the analytical analysis and the360
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Figure 4. Bed profile evolution in numerical simulations. The figure illustrates the

temporal evolution of the width-averaged bed profiles for two distinct branches, as derived from

simulations. The branch experiencing the bed perturbation is visually represented in orange,

while the other branch is delineated in green. The initial conditions for each channel are denoted

by dashed lines. The blue line corresponds to the free-surface elevation. The black vertical line

signifies the coordinate of the bifurcation node. The two panels depict the evolution of the same

channel for β = 16, differing only in the length of the branches. Panel a) presents findings for

the scenario with Lb = 0.1, wherein the perturbation traverses beyond the domain, leading to

the system returning to its initial bed equilibrium. In contrast, panel b) showcases results for

Lb = 0.5, demonstrating that the perturbed branch undergoes gradual deposition until reaching

closure. Simultaneously, the alternate branch erodes over time to accommodate the heightened

flow.

329

330

331

332

333

334

335

336

337

338

339

340

value often used in numerical simulations (αbn = 10) to avoid unrealistic channel inci-361

sion (Baar et al. [2019]; Iwantoro et al. [2020]; Van der Wegen and Roelvink [2012]). Re-362

garding the streamwise bed slope effects, the Bagnold [1966] approach is used with the363

default value of αbs =1. As a design choice, the morphological acceleration factor Mor-364

Fac is not utilized at the initial stages of the simulation to prevent inducing numerical365

artefacts at the bifurcation node where non-linearities may be present. However, once366

the system approaches the new equilibrium state, the morphological factor is set to val-367

ues ranging from 10 to 100 to enhance the possible modest morphological variations in368

the system.369
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3.3 Results and Discussions370

The linear stability analysis conducted for the symmetrical bifurcation of sand-bed371

rivers yields the algebraic relation (28) for the critical aspect ratio. In simple terms, βcr372

serves as the demarcation point distinguishing configurations where the symmetrical so-373

lution remains stable (for β values less than βcr) from configurations in which one of the374

two branches gains dominance (for β values greater than βcr). Differently from the so-375

lution (29) of Bolla Pittaluga et al. [2015] hereafter referred to as BCK, the current the-376

oretical framework establishes a direct correlation with the flow conditions at the node377

and the lengths of the branches Lb.378

Our numerical simulations consistently reveal a small water level asymmetry be-379

tween the two branches at the bifurcation node, in line with the findings of Edmonds and380

Slingerland [2008]. Consequently, it enforces the necessity of a more sophisticated nodal381

condition rather than relying on the assumption of constant water level as originally pro-382

posed by Bolla Pittaluga et al. [2003]. It is worth noting that the significance of this phe-383

nomenon diminishes as the branch lengthens, particularly for values surpassing the back-384

water length. Therefore, the solution proposed by Bolla Pittaluga et al. [2003] can be385

regarded as an asymptotic condition that the system would approach when the bifur-386

cation is far enough from the downstream boundaries.387

Consistently with the findings of Bolla Pittaluga et al. [2015], it has been observed388

that sand-bed and gravel-bed rivers exhibit contrasting behaviours as Shields values in-389

crease, as depicted in Figure 5. This disparity is attributed to the degree of non-linearity390

inherent in each sediment transport closure for varying Shields values. Additionally, the391

transverse sediment discharge plays a crucial role, with a more pronounced effect in rivers392

characterized by coarser grain sizes and, consequently, lower Shields values.393

However, the present theory offers a novel insight, demonstrating that the reduc-401

tion in the length of the branches exerts a stabilizing influence on the bifurcation evo-402

lution, resulting in more stable symmetrical configurations. Figure 5 visually illustrates403

the asymptotic behaviour of the original BCK model, wherein the neutral stability curve404

diverges for lower values of Lb. However, it is important to underline that the solution405

is still linearly dependent on the two parameters α and r introduced by Bolla Pittaluga406

et al. [2003]. The first is defined experimentally, but it still needs a careful determina-407

tion for various configurations since it is a measure of the 2-D effects due to the bifur-408

cation node. A first progress in this direction has been made by Redolfi et al. [2016], who409

linked the value of α with the wavelength of the steady damped alternate bars arising410

due to the instability mechanism originally found by Zolezzi & Seminara [2001]. Basi-411

cally, the presence of the bifurcation exerts an upstream influence if the aspect ratio of412

the upstream channel is higher than the resonant value found by Blondeaux & Seminara413

[1985]. Recently, Redolfi [2023] further provided a physically-based estimation of the cell414

length assuming that the critical aspect ratio, for which the symmetric solution becomes415

unstable, should be equal to the resonant value as formulated by Camporeale et al. [2007].416

As for the parameter r, it is expected to have an effect only on the bedload transport417

direction. Consequently, while employing a total load formulation akin to Engelund and418

Hansen [1967], it is important to recognize that the stabilizing effect of the transverse419

slope may be subject to some overestimation.420

The numerical simulations confirm the increased stability observed in configura-421

tions featuring shorter branch lengths, as illustrated in Figure 6. In the numerical con-422

test, we classify as stable (indicated by red dots) the cases where the initial perturba-423

tion leaves the domain without influencing the flow partitioning at the node. Conversely,424

instances where the perturbation increases in time, resulting in the dominance of one of425

the bifurcating branches, are labeled as unstable (marked by blue dots). Notably, there426

were only a few simulations where the final equilibrium of the system displayed a resid-427

ual but steady discharge asymmetry (of the order of 2% in magnitude). These simula-428
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Figure 5. Opposite behaviour of gravel and sand bed rivers. Neutral stability curve

of the symmetrical solution in the (β, ϑa) parameter space for different values of the dimension-

less length Lb. Panel a) is representative of sand-bed rivers, where the Engelund and Hansen

[1967] relation has been used. Panel b) shows the results using Meyer-Peter and Müller [1948]

for gravel-bed rivers. In each section, the continuous lines show the present solution, while the

staggered lines represent the BCK solution for the same set of parameters. Each line splits the

graph into stable and unstable areas. (Parameters: αr = 1, Fr = 0.3.)

394

395

396

397

398

399

400

tions, represented by green dots in Figure 6, are denoted as critical conditions due to their429

proximity to the critical value established by the theoretical framework. Furthermore,430

it is noteworthy how, in most instances, the configurations require longer times to reach431

the final equilibrium the closer the system is to the critical conditions.432

The underlying mechanism entails that a small perturbation of the flow depth in433

the branch, could in turn affect the sediment transport capacity. When the carrying ca-434

pacity of a branch exceeds the supply of sediments from upstream, that particular branch435

experiences overall erosion. Conversely, the other bifurcate undergoes a reduction of its436

ability to transport sediments downstream, consequently leading to sediment deposition.437

Over time, the gradual increase of the deposition may lead to the complete closure of438

the branch. Simultaneously, the remaining branch continues to erode until the riverbed439

establishes a renewed equilibrium in alignment with the altered flow discharge conditions.440

The closer is the system to the critical conditions, the smaller are the differences in car-441

rying capacity, thus, requiring longer times to achieve an equilibrium.442

–13–



Confidential manuscript submitted to JGR-Earth Surface

Figure 6 clearly shows how the variation of the branches length alone is able to de-453

fine stable/unstable configurations. For instance, fixing the aspect ratio β to 16 (i.e. keep-454

ing the upstream channel width equal), it is evident that merely extending the length455

of the branches L is sufficient to destabilize the system.

Figure 6. Stability of symmetrical river bifurcations. Neutral stability diagram of

bifurcations with symmetrical downstream branches. The solid black line, denoting βcr in the

present study, highlights an area of heightened stability for diminishing dimensionless branch

lengths, in comparison to the earlier work by BCK (depicted by the dashed line). The diagram is

dichotomized by the βcr line into regions of stable configurations (indicated by the red shading)

and unstable configurations (indicated by the blue shading). The stable and unstable states, as

determined through numerical simulations, are marked by coloured dots corresponding to the

respective shading. Notably, the critical instances, signifying equilibrium with marginal stability

accompanied by slight asymmetry, are represented by the green dots. (Parameters: α = 1.3,

r = 0.88, ϑ = 0.15, Fr = 0.31.)

443

444

445

446

447

448

449

450

451

452

456

The equilibrium solutions resulting from the aforementioned concepts are deter-457

mined by solving the non-linear system of equations derived from the nodal point con-458

ditions. For each aspect ratio of the main channel, denoted as β, we endeavor to iden-459

tify multiple solutions within the system. These solutions encompass both the scenario460

of an equal partitioning of the flow and instances where one of the two branches carries461

a greater fraction of the flow.462

The equilibrium solutions once again conform to the conventional pattern of a pitch-463

fork bifurcation commonly observed in such configurations. In cases where β is low, the464

solitary solution corresponds to the equal partitioning of the flow between the branches.465

However, with an increase in β beyond the critical value βcr, the symmetrical solution466

loses stability, resulting in a diversion of more flow toward one of the branches.467

Figure 7 illustrates the equilibrium diagram for various values of the branch length,476

denoted as Lb. The solutions are depicted using the discharge asymmetry between the477

branches, as described in equation (31). The diagram clearly highlights the heightened478

stability of configurations for the smallest branch length. In contrast, an increase in Lb479
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brings the equilibrium diagram closer to the one obtained through the solution by BCK.480

Nonetheless, a slight disparity between the two solutions persists, which is attributed to481

the variations in flow conditions elucidated in equation (30). Once again, numerical sim-

Figure 7. Equilibrium configurations of symmetrical river bifurcations. In this plot,

each continuous line of a specific colour corresponds to a pitchfork bifurcation delineating the

equilibrium diagram associated with a particular dimensionless length of the branches, denoted as

Lb. The solutions are expressed in terms of discharge asymmetry between the branches ∆Q. The

black dashed line is indicative of the BCK solution, in which the branch length is not accounted

for. The dots presented on the graph signify the final equilibrium obtained from numerical sim-

ulations, aligned with the corresponding colour scheme of the lines. (Parameters: α = 1.3,

r = 0.88, ϑ = 0.15, Fr = 0.31.)
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ulations effectively discriminate between symmetrical configurations that exhibit stabil-483

ity and those that manifest instability accordingly to the present theory. However, in cases484

of unstable configurations, the final equilibrium assumes the form of the closure of the485

perturbed branch, leading to the complete diversion of flow toward the other branch (i.e.,486

∆Q = ±1). This discrepancy with the analytical model can be attributed to its assump-487

tion of uniform flow within the branches. This assumption may be no longer valid when488

the perturbed branch undergoes sediment deposition, reaching a point at which it can489

no longer adapt its bed to accommodate the incoming sediments due to the reduced trans-490

port capacity. Notably, a recent study by Barile et al. [2023] extended the two-cell model491

to encompass partially avulsing bifurcations. Their findings once again highlight that492

as the downstream branches lengthen, the degree of asymmetry increases, potentially cul-493

minating in the complete avulsion of the system.494
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4 Asymmetrical Case495

4.1 Results and Discussions496

Encountering symmetrical bifurcations within a natural riverine setting proves to497

be a rarity, primarily due to the continuous evolutionary dynamics that typically drive498

these features towards pronounced asymmetry. Such conditions are commonly observed499

in both mountainous gravel-bed rivers and in low-lying sand-bed rivers reaching their500

downstream end in deltas. During field observations in mountainous braided networks,501

Zolezzi et al. [2006] reported that gravel-bed rivers tend to display highly unbalanced502

bifurcations, wherein the most carrying branch is generally wider and deeper. The ef-503

fect of different branch widths is incorporated for in our analytical framework through504

the parameter denoted as rb. Another prevalent occurrence is observed in meandering505

rivers, where the presence of cut-off channels gives rise to branches marked by signifi-506

cant disparities in both length and width (Slingerland and Smith [1998]). In the present507

investigation, these effects are accounted for through the parameters γL and rb, contribut-508

ing to a comprehensive understanding of the phenomenon. Furthermore, the aggregate509

width of downstream branches is frequently greater than that of the upstream channel,510

a characteristic represented here by the parameter ra. Edmonds and Slingerland [2007]511

have measured, in several bifurcations within river-dominated deltas, an average down-512

stream enlargement of the order of 1.7. Consequently, it becomes reasonable to postu-513

late the presence of energy losses at the bifurcation node (through the coefficient ξ), aris-514

ing from localized width variations or instances where the angle between the streamlines515

and the branches’ thalweg deviates. Pertinently, a recent study related to confluences516

[Ragno et al., 2021] has revealed the significant impact of downstream water level asym-517

metries on the stability of bifurcation confluence loops. Hence, our analysis incorporates518

this effect through the parameter ∆hL.519

In this section, we investigate the influence of each one of the asymmetry param-526

eters introduced above singularly. The objective of this analysis is to discern and iso-527

late their respective impacts on the equilibrium configuration of bifurcations. Notewor-528

thy, the following considerations are posed selecting a given value of the branches length.529

However, the previous results concerning the enhanced stability for shorter branch lengths530

still hold. Therefore, the following considerations will work to any value of Lb and the531

related βcr. Within river bifurcations characterized by distinct branch lengths, the equal532

partitioning of the flow is rarely encountered. As the length ratio γL is augmented, it533

becomes evident that the shorter branch consistently accommodates a greater propor-534

tion of the flow. This is attributable to the advantageous influence of the free-surface slope535

that the shorter branch experiences relative to its longer counterpart, as depicted in Fig-536

ure 8. Curiously, noteworthy arrangements arise in scenarios featuring elevated aspect537

ratios β, wherein the preeminence in conveying flow can shift to the longest branch. In538

such cases, any perturbation in the shorter branch affecting the carrying capacity might539

lead to an incipient flow diversion into the longest branch. Given the large upstream chan-540

nel width, the stabilizing effect of the transverse slope is not able to counteract this ten-541

dency, thus, leading to the complete dominance of the longest branch.542

A slope advantage has also been analyzed by Redolfi et al. [2019], who studied the543

combined effect of the slope advantage with the coexistence of upstream channel cur-544

vature. They found that the slope advantage can compensate for the effect of channel545

curvature under sub-resonant conditions. However, the length of the branches itself was546

not accounted for in their formulation, thus, possibly leading to less asymmetrical par-547

titioning even for higher β.548

Salter et al. [2018] investigated the effect of prograding branches finding an oscil-549

lating behaviour due to the restoring feedback of the milder slope in the longer branch.550

They also showed that shorter branches respond quicker to variation of sediment sup-551

ply, thus, showing lower asymmetric partitioning.552
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Figure 8. Equilibrium configurations of bifurcations with different branch lengths.

The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates the modu-

lation of flow distribution concerning alterations in the length ratio, denoted as γL. Each con-

tinuous line, distinguished by a specific hue, represents stable solutions, while the dashed curve

denotes instances where the symmetrical solution becomes unstable. (Parameters: α = 1.3,

r = 0.88, ϑ = 0.15, Fr = 0.31.)
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Figure 9 illustrates the influence of varying branch widths on the flow distribution572

within bifurcations. The blue line in the graph corresponds to the case in which branch573

widths are equal (i.e., rb = 0.5), resulting in an even partition of the flow for configu-574

rations below βcr. Notably, increasing the branch width ratio, the flow distribution varies575

accordingly diverting a larger proportion of the flow towards the wider branch. In those576

configurations, the largest branch is inevitably dominant and would easily move toward577

the closure of the narrow branch for high aspect ratios. However, it is essential to rec-578

ognize that in our computation, the branches can solely adjust their bed levels, with their579

widths considered as fixed parameters. In contrast, field observations indicate that such580

asymmetrical distribution often arises from adaptations in channel width in response to581

incoming flow conditions. To account for this effect, we can refer to the local approach582

by Miori et al. [2006] where they relaxed the assumption of fixed-banks, but assuming583

that downstream effects do not influence the bifurcation. Figure 10 describes the effect584

of varying the aggregated widths within the branches in relation to the upstream chan-585

nel width. Evidently, an elevation in the ratio ra, signifying an enlargement downstream,586

results in a decreased number of configurations where the symmetric solution is stable.587

On the other hand, narrower branches correspondingly lead to an augmentation of the588

critical aspect ratio βcr. In those configurations, the flow is expected to increase its ve-589

locity entering the branches, thereby enhancing their conveyance capacity. As a conse-590

quence, any perturbation in the system can be flushed away preserving the unobstructed591

flow in both branches. Conversely, when a localized widening occurs at the bifurcation592

node, the flow decelerates, creating favourable conditions for sediment deposition within593
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Figure 9. Equilibrium configurations of bifurcations with different branch widths.

The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates the modu-

lation of flow distribution concerning alterations in the branch width ratio, denoted as rb. Each

continuous line, distinguished by a specific hue, represents stable solutions, while the dashed

curve denotes instances where the symmetrical solution becomes unstable. (Parameters: α = 1.3,

r = 0.88, ϑ = 0.15, Fr = 0.31.)
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the branches. In accordance with the rationale underlying pressurized flows, it is rea-594

sonable to attribute localized head losses to local width variations or bifurcation angles595

between the branches. The extent of this influence on the critical aspect ratio βcr is con-596

tingent upon the value of ξ, which is an order-one parameter. Figure 11 provides a vi-597

sual representation of how alterations in ξ can impact the equilibrium configurations.598

The findings indicate that enhancing dissipations leads to a more stabilized system due599

to the consequent increase in water level disparities at the bifurcation, thereby ampli-600

fying the differences in free-surface slopes between branches. This impact is discernible601

in equation (16), where ∆hL = 0 and γL = 1: an increase in ξ accentuates the im-602

portance of kinetic head differences, thereby increasing the slope variations for branches603

of equal length Lb.604

In Figure 12, an examination of distinct downstream water levels is compared with611

the symmetric case (∆hL = 0) depicted in blue. Notably, variations in the downstream612

water level introduce a free surface slope advantage within one branch, consequently in-613

ducing an acceleration in flow velocity. This increase in flow speed, in turn, amplifies the614

branch’s capacity for carrying flow. Consequently, under circumstances marked by el-615

evated aspect ratios, the branch can attain dominance. However, it is worth mention-616

ing that instances might arise wherein perturbations affecting the favoured channel could617

still destabilize the system, causing a redirection of flow toward the opposite branch.618

Nevertheless, the parameter ∆hL is formulated without accounting for the adjust-619

ment of the downstream free surface based on flow conditions. In the realm of natural620
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Figure 10. Equilibrium configurations of bifurcations with downstream enlarge-

ment. The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates the

modulation of flow distribution concerning alterations in the ratio between the aggregate of the

branch widths and the upstream channel width, denoted as ra. Each continuous line, distin-

guished by a specific hue, represents stable solutions, while the dashed curve denotes instances

where the symmetrical solution becomes unstable. (Parameters: α = 1.3, r = 0.88, ϑ = 0.15,

Fr = 0.31.)
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environments over extended temporal scales, such fixed definitions of water levels are scarcely621

encountered. More commonly, the configurations of interest, particularly those with shorter622

branch lengths, manifest in bifurcation-confluence loops. In the context of confluences,623

a direct correlation between water level asymmetry and the square of the Froude num-624

ber has been established, underscoring the inevitability of water level adaptations in re-625

sponse to flow conditions. In this regard, Ragno et al. [2021] succeeded in coupling a con-626

fluence model with the work of Bolla Pittaluga et al. [2003], thereby accommodating down-627

stream flow fluctuations. Their findings indicate that confluences tend to elevate the wa-628

ter level within the branch responsible for carrying the greater flow rate. This dynamic629

prompts a reduction in the slope of the dominant branch, creating a negative feedback630

mechanism that strives to restore equilibrium in the distribution of water and sediment631

fluxes.632

5 Conclusions633

The current study has introduced a revision of the well-established two-cell model634

originally proposed by Bolla Pittaluga et al. [2003] for the purpose of predicting the sta-635

bility of river bifurcations. The model is based on the foundational assumption of main-636

taining constant water levels between the branches at the bifurcation node. However,637

it is evident that this assumption no longer holds true in scenarios where downstream638

conditions significantly impact the distribution of flow at the bifurcation node. Through639
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Figure 11. Equilibrium configurations of bifurcations with localized kinetic head

losses. The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates the

modulation of flow distribution concerning alterations in the differences between kinetic losses of

the branches, denoted with the parameter ∆ξ. Each continuous line, distinguished by a specific

hue, represents stable solutions, while the dashed curve denotes instances where the symmetrical

solution becomes unstable. (Parameters: α = 1.3, r = 0.88, ϑ = 0.15, Fr = 0.31.)
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numerical simulations, it has been observed that any alteration to the bed of the branch-640

ing channels leads to corresponding adjustments in the uniform flow depth profile. These641

adjustments, driven by downstream boundary conditions, consequently result in discernible642

changes to the water surface elevation at the bifurcation node. Especially noteworthy643

is the effect of branch length on this phenomenon. In cases where the branching chan-644

nels are of limited length, the aforementioned alterations in flow division become non-645

trivial, causing an asymmetry that contributes to the stabilization of the bifurcation sys-646

tem. Conversely, when the branching channels exhibit substantial length, the impact of647

these alterations diminishes, allowing the original model to remain a reliable predictor.648

Thus, to accommodate these intricate effects within analytical models, a formulation akin649

to an energy balance at the bifurcation node has been seamlessly integrated into the model650

of Bolla Pittaluga et al. [2003].651

The newly introduced theory clearly demonstrates that symmetrical bifurcations652

attain enhanced stability as the length of the branches decreases, as substantiated by653

numerical simulations. Nonetheless, truly symmetrical systems are a rarity in natural654

settings, prompting the inclusion of various asymmetry-inducing elements in the theory.655

Intriguingly, when considering branches of differing lengths, the shorter branch emerges656

as the preferred path for flow distribution. Nevertheless, scenarios may arise, particu-657

larly in the context of large rivers characterized by substantial aspect ratios, where the658

longer branch may dominate by capturing the majority of the upstream flow.659
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Figure 12. Equilibrium configurations of bifurcations with downstream water level

asymmetry. The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates

the modulation of flow distribution concerning alterations in the water level asymmetry down-

stream, denoted with the parameter ∆hL. Each continuous line, distinguished by a specific hue,

represents stable solutions, while the dashed curve denotes instances where the symmetrical solu-

tion becomes unstable. (Parameters: α = 1.3, r = 0.88, ϑ = 0.15, Fr = 0.31.)

605

606

607

608

609

610

However, some limitations within the framework presented herein need to be ac-660

knowledged, although they might be of straightforward incorporation. Factors such as661

channel curvature and its influence on sediment partitioning between branches, widen-662

ing of the channels, and the presence of free/forced bars or prograding delta branches663

have not been included within the current model.664

In light of these considerations, it is plausible to anticipate that the novel model665

presented in this study will facilitate an enhanced understanding of bifurcation evolu-666

tion in estuarine environments subject to tidal fluctuations.667
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A: Coefficients of the asymmetrical linear system792

The system of equations (14)-(17) is solved through a linearization procedure, in793

terms of the four unknowns [qb, qc, Db, Dc]. With a perturbative approach, every vari-794

ables and unknowns are expanded in terms of a small parameter δ as follows:795

f = f0 + δf1 +O(δ2) . (A.1)796

where f0 represents the basic state and f1 derives from a Taylor expansion around the797

basic state.798

Substituting the expansions in the equations, it is possible to solve the system at799

each order of approximation. At the leading order, a set of non-linear algebraic equa-800

tions in terms of the basic state variable arise, that can be solved with a central finite-801

difference solver.802

The order δ problem consists of the homogeneous linear system of equations 20.803

The coefficients Aij are defined as follows:804

A11 = rb, (A.2)805

A12 = rc, (A.3)806

A13 = 0, (A.4)807

A14 = 0, (A.5)808

A21 =
2rbϕb0Φϑb

ϕaqb0
, (A.6)809

A22 =
2rcϕc0Φϑc

ϕaqc0
, (A.7)810

A23 =
rbϕb0

ϕa

(
−2ΦϑbCDb −

2Φϑb

Db0
+ ϕnb

)
, (A.8)811

A24 =
rcϕc0

ϕa

(
−2ΦϑcCDc −

2Φϑc

Dc0
+ ϕnc

)
, (A.9)812

A31 =
2RLbC

2
aqb0

rarbD3
b0C

2
b0

− 1 +
2ϕb0Φϑb

ϕaqb0
, (A.10)813

A32 =
2RLbγLC

2
aqc0

rarbD3
c0C

2
c0

, (A.11)814

A33 =− R

rarb

[
1 +

C2
aq

2
b0Lb

D3
b0C

2
b0

(
2CDb +

3

Db0

)]
+

− ϕb0

ϕa

(
2ΦϑbCDb + 2

Φϑb

Db0
− ϕnb

)
,

(A.12)815
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A34 =
R

rarb

[
1 +

C2
aq

2
c0LbγL

D3
c0C

2
c0

(
2CDc +

3

Dc0

)]
, (A.13)816

A41 =
2LbC

2
aqb0

D3
b0C

2
b0

+ (1 + ξ)
Fr2qb0
D2

b0

, (A.14)817

A42 = −2LbγLC
2
aqc0

D3
c0C

2
c0

− (1 + ξ)
Fr2qc0
D2

c0

, (A.15)818

A43 = −C2
aLbq

2
b0

D3
b0C

2
b0

(
2CDb +

3

Db0

)
− (1 + ξ)

Fr2q2b0
D3

b0

, (A.16)819

A44 =
C2

aLbγLq
2
c0

D3
c0C

2
c0

(
2CDc +

3

Dc0

)
+ (1 + ξ)

Fr2q2c0
D3

c0

, (A.17)820

where:821

Φϑb =
mϑb0

ϑb0 − ϑcr
, (A.18)822

Φϑc =
mϑc0

ϑc0 − ϑcr
, (A.19)823

CDb =
1

Cb0

∂Cb

∂Db

∣∣∣∣
Db0

, (A.20)824

CDc =
1

Cc0

∂Cc

∂Dc

∣∣∣∣
Dc0

, (A.21)825

ϕnb =
1

n(Db0)

∂n

∂Db

∣∣∣∣
Db0

, (A.22)826

ϕnc =
1

n(Dc0)

∂n

∂Dc

∣∣∣∣
Dc0

, (A.23)827

R =
αr

βa

√
ϑa

. (A.24)828

Noteworthy, for the case of symmetrical bifurcations, the coefficients (A.18)-(A.23)829

are equal between b and c. Therefore, they can be summed up as in (23).830
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Abstract13

River bifurcations are prevalent features in both gravel-bed and sand-bed fluvial systems,14

including braiding networks, anabranches and deltas. Therefore, gaining insight into their15

morphological evolution is important to understand the impact they have on the adjoin-16

ing environment. While previous investigations have primarily focused on the influence17

on bifurcation morphodynamics by upstream channels, recent research has highlighted18

the importance of downstream controls, like branches length or tidal forcing. In partic-19

ular, in the case of rivers, current linear stability analyses for a simple bifurcation are20

unable to capture the stabilizing effect of branches length unless a confluence is added21

downstream. In this work, we introduce a novel theoretical model that effectively accounts22

for the effects of downstream branch length in a single bifurcation. To substantiate our23

findings, a series of fully 2D numerical simulations are carried out to test different branches24

lengths and other potential sources of asymmetries at the node, such as different widths25

of the downstream channels. Results from linear stability analysis show that bifurcation26

stability increases as the branches length decreases. These results are confirmed by the27

numerical simulations, which also show that, as the branch length tends to vanish, bi-28

furcations are invariably stable. Finally, our results interestingly show that, while in gen-29

eral, when a source of asymmetry is present at the node, the hydraulically favoured branch30

dominates, there are scenarios in which the less-favoured side becomes dominant.31

Plain Language Summary32

This research looks at how rivers divide into multiple branches and how this pro-33

cess shapes the surrounding environment. While past studies mostly focused on factors34

upstream influencing these splits, recent research emphasizes the importance of down-35

stream factors, such as branch length and tidal forces. The study introduces a new the-36

oretical model to better understand how downstream branch length affects a single river37

split. We used computer simulations with different branch lengths and channel widths38

to test the model, discovering that shorter branch lengths result in more stable river splits.39

The theoretical model is also adapted to account for different shapes commonly found40

in nature, revealing results that are not always straightforward.41

1 Introduction42

Rivers have always covered a fundamental role in the evolution of humankind. Due43

to the high economic interest and risk associated to these areas, humans have always tried44

to control and modify these environments to sustain their activities. Noteworthy, this45

feature has become even more evident in the last decades due to an increase both of the46

intensity of the natural forcings (due to climate change, extreme events are becoming47

more frequent) and of the anthropogenic actions (e.g., the building of dams and other48

flow control structures in the upstream part of rivers).49

However, even if extreme events require detailed analyses, the morphodynamic de-50

velopment of rivers, estuaries and deltas is commonly studied referring to the concept51

of a formative or effective forcing which represents the most frequent condition that these52

systems experience over time [Wolman & Miller , 1960; Williams, 1978]. This allows to53

estimate the long term river equilibrium configuration and predict if some perturbation54

of this state can permanently modify it, leading to erosional or depositional processes55

and to variations of the planar configuration [Bolla Pittaluga et al., 2014; Wilkerson &56

Parker , 2011].57

One crucial control unit in the evolution of rivers and deltas is the bifurcation, which62

governs both flow and sediment partitioning in downstream branches, thus, affecting down-63

stream erosion or deposition [Jerolmack , 2009; Tejedor et al., 2017; Nienhuis et al., 2020].64

A typical case where one bifurcate closes completely is the avulsions of meandering rivers65
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with chute cut-offs: the branch with the highest carrying capacity becomes the main chan-66

nel, while the other, known as oxbow lake, remains isolated [Seminara, 2006; Viero et al.,67

2018]. These phenomena have historically led to approach the problem of the stability

Figure 1. Example of natural bifurcations. a) Fast migrating meandering river in the

Republic of Khakassia, Russia. (Photo by Denis Ovsyannikov: https://www.pexels.com/@denis-

ovsyannikov-1411283/). b) River bifurcates debouching into a lake in Altura, US. (Photo by Tom

Fisk: https://www.pexels.com/@tomfisk/).

58

59

60

61

68

of the bifurcations in terms of their upstream forcings in both gravel-bed and sand-bed69

fluvial systems. Early analytical works were proposed by Wang et al. [1995], who per-70

formed a 1D analysis, including an empirical nodal point condition at the bifurcation node71

to evaluate the partitioning in the branches. This condition turns out to depend on a72

parameter that is not related to the physics of the system but governs its evolution in73

time. Thus, Bolla Pittaluga et al. [2003] overcame this limit by introducing a two-cell74

model which accounts for the localized 2-D effects upstream of the bifurcation node in75

terms of sediment and flow division. Applying it to both gravel-bed and sand-bed rivers,76

Bolla Pittaluga et al. [2015] found that the stability is mainly dependent on the Shields77

parameter ϑ and on the aspect ratio (β = W
2D ) of the upstream channel. However, also78

in this model, some empirical parameters need to be specified. Indeed, the critical value79

of the aspect ratio above which a bifurcation becomes unstable, is found to be linearly80

dependent on the length of the two upstream cells α and on the ’Talmon’ parameter r81

accounting for the contribution of the transversal bed slope on the sediment transport82

[Talmon et al., 1995]. Common values of the parameter r range between 0.3 and 1 [Ikeda83

et al., 1981], while the experimental calibration of the parameter α provides values from84

1 to 6 [Bolla Pittaluga et al., 2003; Bertoldi and Tubino, 2007].85

This notwithstanding, the simple two-cell model has proven to be able to adequately86

reproduce the main mechanism governing the morphodynamic evolution of a river bi-87

furcation. Consequently, efforts have been made to extend this model to account for some88

additional effects that were neglected in the original formulation. Miori et al. [2006] in-89

cluded channel width variations according to hydraulic geometry rules. Bertoldi et al.90

[2009] studied the effect of incoming migrating bars by integrating the bifurcation model91

with the model of Colombini et al. [1987], which provides the spatial structure and the92

temporal development of finite amplitude bars. Kleinhans et al. [2008] analysed the ef-93

fect of the secondary flow due to an upstream meander bend on the bifurcation stabil-94

ity. Later Redolfi et al. [2019] studied the combined effect of upstream radius of curva-95

ture and slope advantage in the two branches. Recently, Ragno et al. [2023] managed96

to examine the effect of sediment sorting on the unbalanced bifurcations.97
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However, these studies predominantly focused on the upstream forcings, without98

accounting for the potential feedback mechanisms arising from the downstream ones. Salter99

et al. [2018], for instance, investigated the consequences of prograding branches finding100

an oscillating behaviour attributed to the restorative feedback arising from the gentler101

slope in the longer branch. The length of the branches thus emerges as a determining102

factor for bifurcation stability. Recently, Ragno et al. [2021] applied the two-cell model103

to a bifurcation-confluence loop by introducing a momentum balance model for the down-104

stream junction. This revealed the system being more stable as the confluence influence105

increases (i.e. decreasing the branch lengths). Furthermore, the distance of the bifur-106

cation node from the downstream boundary has once again proven to be crucial when107

incorporating the two-cell model with downstream effects, such as the tidal forcings [Ragno108

et al., 2020; Iwantoro et al., 2020]. This set its basis on the observations that, even in109

micro-tidal environments, tides exert a profound influence on distributary hydrodynam-110

ics throughout both high and low fluvial discharge regimes [Leonardi et al., 2015].111

The considerations outlined above lead us to question whether the original two-cell112

model of Bolla Pittaluga et al. [2003] can be reliably applied in scenarios where down-113

stream effects are not negligible. It is important to note that the model operates under114

the assumption that the free surface elevations remain constant at the bifurcation node115

regardless of flow conditions. However, this condition may no longer hold when the down-116

stream conditions influence the bifurcation, as is the case with short branch lengths. Since117

any disturbance of the flow could potentially trigger a destabilization of the system, we118

relax the constraint of constant water elevations at the node, incorporating an energy119

balance condition between the upstream and the downstream branches. This approach120

allows for flow asymmetries to directly impact the morphological equilibrium of river bi-121

furcations. The system of equations arising from the new formulation is tackled with lin-122

ear stability analysis, allowing us to account for the length of the branches on the sta-123

bility and equilibrium configurations of the river network. To validate the theoretical find-124

ings, numerical simulations are conducted, yielding results consistent with our analyt-125

ical framework. In the current study, we formulate the model in its most comprehensive126

form accounting also for other possible sources of asymmetries at the node. Given that127

natural river bifurcations typically exhibit limited symmetry, we analyse the effect of var-128

ious asymmetries individually to gain insights into their impact on equilibrium config-129

urations.130

The subsequent Section will provide a detailed explanation of the analytical pro-131

cedure employed in this study. Section 3 will be dedicated to presenting and discussing132

the theoretical and numerical findings obtained for symmetric scenarios. In section 4,133

the asymmetries in the system are analyzed independently to discern their respective im-134

pacts on the equilibrium configuration of bifurcations. Finally, in Section 5, we will sum-135

marize our key observations and insights.136

2 Formulation of the analytical model137

As previously discussed, the equilibrium of bifurcations is predominantly influenced141

by the flow and sediment division at the node. Given the complexity of factors govern-142

ing the system’s evolution, it is necessary to simplify the problem for analytical handling.143

The bifurcation is then idealized as an upstream rectangular channel a, which bifurcates144

into two branches, channels b and c (as depicted in Figure 2), respectively. No param-145

eter variability is included along any channel, thus, they all have constant widths (W ∗
a ,146

W ∗
b , W

∗
c ), even though the two downstream branches could have different lengths (l∗b ,147

l∗c ). Furthermore, it is assumed that the system evolves primarily due to formative forc-148

ing, therefore, steady uniform flow is established in the channels through a constant dis-149

charge upstream Q∗
a and a fixed water level elevation at the two downstream ends (h∗L

b ,150

h∗L
c ). For every channel (i = a, b, c) the steady and uniform flow is described by the151
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Figure 2. Representative sketch of theoretical river bifurcations. Sketch of the two-

cell model of Bolla Pittaluga et al. [2003] extended to account for uneven branch widths and

lengths.

138

139

140

Chezy relation:152

Q∗
i = W ∗

i D
∗
iCi

√
gsiD∗

i (1)153

where D∗
i is the uniform flow depth in the channel i, g is the gravitational acceleration,154

Ci is the Chezy coefficient and si is the longitudinal bed slope.155

Constant sediment discharge is provided in equilibrium with the flow conditions156

upstream. It is computed in general terms by the following relation:157

ϕ =
q∗is√

ρs−ρ
ρ gd∗3s

= n(D∗
i )(ϑi − ϑcr)

m. (2)158

where q∗is is the dimensional volumetric sediment flux per unit width of the i channel,159

d∗s is the mean diameter, ρ and ρs are the density of water and sediment respectively,160

ϑcr is the threshold value for sediment mobilization and the coefficients n and m depend161

on the sediment transport closure relation. Finally, ϑi is the value of the Shields param-162

eter associated with the uniform flow in the ith channel:163

ϑi =
q∗2i

ρs−ρ
ρ gd∗sC

2
i D

∗2
i

. (3)164

being q∗2i the flow discharge per unit width.165

The model accounts for the two-dimensional effects at the node considering a trans-166

verse exchange of flow and sediment between the two upstream cells through the follow-167

ing nodal point condition:168

q∗Ts = q∗as

[
Q∗

TD
∗
a

Q∗
aαD

∗
abc

− r√
ϑa

∂η∗

∂y∗

]
. (4)169

where q∗Ts is the dimensional transverse solid discharge per unit width and Q∗
T is the to-170

tal transverse flow discharge, ∂η∗/∂y∗ is the transverse bed slope calculated as incremen-171

tal ratio between the difference in bed elevations of the inlet of channels b and c and the172

semi-width of the upstream channel, and D∗
abc is the average water depth at the node.173

The latter can be safely assumed equal to D∗
a, such that D∗

a/D
∗
abc ≃ 1. The parame-174

ter α is the length of the two cells scaled with the upstream channel width W ∗
a ; from ex-175

perimental observations, it attains values between 1 and 3. The constant r in equation176

(4) has been experimentally determined and it ranges between 0.3 and 1 [Ikeda et al.,177

1981; Talmon et al., 1995].178

To solve the problem, other five relations are required. Noteworthy, here we replace179

the conditions for water level constancy of Bolla Pittaluga et al. [2003] with an energy180

head E∗ (i.e., the total energy per unit weight of flowing liquid above an horizontal da-181

tum) balance at the node:182
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1. Flow discharge balance:183

q∗aW
∗
a = q∗bW

∗
b + q∗cW

∗
c (5)184

2. Solid discharge balance:185

q∗asW
∗
a = q∗bsW

∗
b + q∗csW

∗
c (6)186

3. Flow discharge balance applied to cell b:187

q∗aW
∗
a

W ∗
b

W ∗
b +W ∗

c

+ q∗TαW
∗
a = q∗bW

∗
b (7)188

4. Solid discharge balance applied to cell b:189

q∗asW
∗
a

W ∗
b

W ∗
b +W ∗

c

+ q∗TsαW
∗
a = q∗bsW

∗
b (8)190

5. Energy head balance applied to cell b:191

h∗N
a +

q∗2a
2gD∗2

a

− αW ∗
a sa = h∗N

b + (1 + ξ)
q∗2b

2gD∗2
b

(9)192

6. Energy head balance applied to cell c:193

h∗N
a +

q∗2a
2gD∗2

a

− αW ∗
a sa = h∗N

c + (1 + ξ)
q∗2c

2gD∗2
c

(10)194

where ξ is a energy loss coefficient which has been introduced to account for possible lo-195

calised fluid’s energy dissipation at the node, in analogy with what it is commonly as-196

sumed in the case of pipe flows. Finally h∗N
i indicates the free surface elevation of the197

ith channel at the node. Recalling the assumption of uniform flow in the branches, it is198

possible to rewrite h∗N
i as a function of the imposed level at the downstream end: h∗N

i =199

h∗L
i + sil

∗
i .200

The aforementioned equations can be made dimensionless, scaling the variables with201

the typical physical characteristics of the channel a as follows:202

(Di, h
N
i , hL

i ) =
(D∗

i , h
∗N
i , h∗L

i )

D∗
a

. (11)203

204

(qis, qTs) =
(q∗is, q

∗
Ts)

q∗as
, (qi, qT ) =

(q∗i , q
∗
T )

q∗a
. (12)205

206

Li =
l∗i sa
D∗

a

. (13)207

Note that, the branches’ lengths are scaled with the backwater length (D∗
a/sa).208

After some manipulations, the governing equations (5)-(10) and the nodal point209

condition (4) can thus be rewritten in a dimensionless form as:210

1. Flow discharge balance:211

qbrb + qc(ra − rb) = 1 (14)212

2. Solid discharge balance:213

qbsrb + qcs(ra − rb) = 1 (15)214

3. Energy balance:215

∆hL + Lb

[
q2bC

2
a

D3
bC

2
b

− q2cC
2
a

D3
cC

2
c

γL

]
+

Fr2

2
(1 + ξ)

[
q2b
D2

b

− q2c
D2

c

]
= 0 (16)216
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4. Nodal condition:217

qbs = qb −
αr

β
√
θa

1

rarb

[
(hN

b − hN
c )− (Db −Dc)

]
. (17)218

Note that the above equations include the dependence on classical parameters of219

bifurcation theory as proposed by Bolla Pittaluga et al. [2003]. These parameters are the220

aspect ratio, β, defined as221

β =
W ∗

a

2D∗
a

, (18)222

and the Shields parameter of the upstream channel θa. Additionally, the Froude Num-223

ber of the upstream channel, Fr = q∗a/
√

gD∗3
a , and the following dimensionless param-224

eters, accounting for possible asymmetries in the system, appear:225

(a) Branch width ratios: rb =
W∗

b

W∗
a
, rc =

W∗
c

W∗
a

226

(b) Downstream enlargement: ra =
W∗

b +W∗
c

W∗
a

= rb + rc227

(c) Length ratio: γL = Lc

Lb
228

(d) Downstream level asymmetry: ∆hL = hL
b − hL

c .229

Finally, it is noteworthy that, the specific load balance equation (16) derives from230

equating the second members of equations (9) and (10), and that, in the nodal point con-231

dition (17), the transverse sediment and flow discharges have been derived from the pre-232

vious (7) and (8) conditions.233

2.1 Linear Stability Analysis234

Through a linearization procedure, it is possible to solve numerically the system235

of equations (14)-(17), in terms of the four unknowns [qb, qc, Db, Dc] (or [sb, sc, Db, Dc]),236

finding the threshold conditions for the appearance of multiple equilibrium configura-237

tions. A perturbative approach is, thus, employed whereby every unknown f ([qb, qc, Db,238

Dc]) is expanded in terms of a small parameter δ as follows:239

f = f0 + δf1 +O(δ2) , (19)240

where f0 represents the basic state, namely, the uniform flow conditions. Similar expan-241

sions to (19) hold for any other variable g depending on the unknowns of the problem,242

where g1 derives from a Taylor expansion around the basic state, in the form g1 = dg
dδ

∣∣∣
δ=0

.243

Substituting the expansions in the equations (14)-(17), it is possible to solve the
system at each order of approximation. At the leading order, a set of non-linear alge-
braic equations in terms of the basic state variable arises, that can be solved with a cen-
tral finite-difference solver. Differently from the classical case of equal length and width
of the branches b and c, in the general case of different geometrical characteristics of the
two downstream branches, at the leading order, O(δ0), we do not find a symmetrical wa-
ter and sediment discharge distribution between them, but rather we find multiple equi-
librium configurations. The order O(δ) problem, consists of an homogeneous linear sys-
tem of equations that has the form:

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44



qb1
qc1
Db1

Dc1

 =


0
0
0
0

 (20)

with the Aij coefficients reported in Appendix A: . The sign of the eigenvalues associ-244

ated with the matrix of the coefficient of the above linear system of algebraic equations245

allows to determine if the multiple equilibrium configurations found at the leading or-246

der are stable or not.247
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3 The case of Symmetrical Bifurcations248

Figure 3. Representative sketches of theoretical and numerical river bifurcations.

a) Sketch of the symmetrical two-cell model of Bolla Pittaluga et al. [2003]. b) Synthetic sketch

of the numerical grid of a symmetrical river bifurcation.

249

250

251

3.1 Linear Stability Analysis252

To understand the basic mechanisms underlying bifurcation stability, let us first253

consider the case of a completely symmetrical bifurcation (as depicted in Figure 3a) (i.e.254

ra=1, rb=0.5, γL=1, ∆hL=0 and ξ=0). In this case the solution at the leading order of255

the perturbation approach (Section 2.1) is the trivial solution, where the flow is equally256

partitioned in the downstream branches and there is no transversal exchange between257

the cells. At the first-order approximation, the flows and depths are anti-symmetric be-258

tween b and c, therefore, the system (20) reduces to two equations, with unknowns as-259

sociated to just one of the two downstream branches (e.g, Db and qb). Nontrivial solu-260

tions are found setting the determinant of the matrix of the coefficients equal to 0. The261

procedure allows for an algebraic relation for the critical aspect ratio βcr, reading:262

βcr =
4αr√
ϑa

[
2Lb + Fr2 + LbFr2(2cD + 1)

]
(Lbγ1 + Fr2γ2)

, (21)263

with:264

γ1 = 2 (ϕϑ + ϕn + cD)− 3, γ2 = −2ϕϑcD + ϕn − 1

2
. (22)265

and the coefficients cD, ϕϑ and ϕn defined as:266

cD =
1

C0

∂Cb

∂Db

∣∣∣∣
D0

, ϕϑ =
mϑa

ϑa − ϑcr
, ϕn =

1

n

∂n

∂Db

∣∣∣∣
D0

. (23)267

They represent the sensitivity of the Chezy coefficient and of the dimensionless sediment268

transport rate to variations of water depth and Shields stress as similarly defined by Redolfi269

et al. [2019].270

The aspect ratio βcr represents the critical conditions for the stability of the sym-271

metrical bifurcations: those with β < βcr (i.e., narrower upstream channels) are deemed272

stable, while, when β > βcr the symmetrical solution becomes unstable, leading to the273

dominance of one of the two branches.274
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For a clearer representation, let’s consider the case where the roughness is defined275

with the Strickler relationship in an infinitely wide channel:276

Ci =
k∗sD

∗1/6
i√
g

, (24)277

where k∗s is the Gauckler-Strickler coefficient.278

As far as the closure relationship for sediment transport is concerned, in the case279

of gravel-bed rivers, a relation of the type of Meyer-Peter and Müller [1948] might be280

used:281

ϕMPM = 8(ϑa − ϑcr)
1.5, (25)282

leading to the following algebraic relation for βcr:283

βcr =
4

3

αr√
ϑa

(6Lb + 3Fr2 + 4LbFr2)[
ϑa

ϑa−ϑcr
(3Lb − 1

2Fr2)− 10
3 Lb − Fr2

] . (26)284

On the contrary, in the case of sand-bed rivers, as a fist approximation, the Engelund285

and Hansen [1967] relationship for the total sediment transport can be used:286

ϕEH = 0.05C2
i ϑ

2.5
i . (27)287

The corresponding relation for the critical aspect ratio βcr takes the form:288

βcr =
4

3

αr√
ϑa

(6Lb + 3Fr2 + 4LbFr2)

(7/3Lb − 3/2Fr2)
. (28)289

Noteworthy, setting Fr = 0 in (28) (i.e., not considering the kinetic head at the node),290

the solution coincides with that found by Bolla Pittaluga et al. [2015]:291

βcr =
24

7

αr√
ϑa

. (29)292

Moreover, the two solutions reach almost the same values when the branches’ lengths293

tend to infinity, meaning that the downstream conditions are not felt at the bifurcation294

node:295

Lb → ∞ : βcr =
24

7

αr√
ϑa

(1 + 2/3Fr2). (30)296

3.2 Numerical Tests297

The case of symmetrical bifurcations (i.e., where the branches have equal length298

and width) has also been tested with a systematic set of depth-averaged numerical sim-299

ulations performed with the software suite Delft3D. The package Delft3D-FLOW solves300

the three-dimensional shallow water equations for incompressible fluid with a finite-difference301

scheme. It comprehends the exchange of sediment with the bed and, also, includes a mor-302

phological acceleration factor (MorFac) to speed up long-term morphological evolution303

Lesser et al. [2004].304

The symmetrical bifurcation is represented as a fixed-bank, free-slip, rectangular305

channel a split by a thin dam into two branches b and c with equal length (l∗b = l∗c )306

and equal width (W ∗
b = W ∗

c = W ∗
a /2), as sketched in Figure 3b. The overall length307

of the domain, L∗
tot, is a multiple of the backwater length L∗

back to avoid interferences308

at the inflow. The computational grid comprises 10 cells in the transversal direction, main-309

taining an aspect ratio equal to 1 (i.e., ∆x = ∆y) so that 5 transversal cells are em-310

ployed in each downstream branch. With this design, the overall width remains constant311

throughout the domain without any loss of computational grid cells. A careful reader312

might notice that in this way the number of cells in the longitudinal direction depends313

not only on L∗
tot, but also on the width W ∗

a , making the overall number of computational314
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Table 1. Summary of symmetrical numerical simulations.317

ID β L ID β L

run01 5 0.5 run14 16 1.5
run02 10 1 run15 20 0.1
run03 10 1.5 run16 20 0.2
run04 12 0.1 run17 20 0.3
run05 12 0.5 run18 25 0.1
run06 12 1.5 run19 25 0.2
run07 16 0.05 run20 33 0.05
run08 16 0.1 run21 33 0.1
run09 16 0.2 run22 33 0.2
run10 16 0.3 run23 41 0.05
run11 16 0.4 run24 41 0.1
run12 16 0.5 run25 41 0.5
run13 16 1

cells case-dependent. Following the same reasoning, the computational time step was changed315

depending on the grid size always obeying to the Courant–Frederichs–Levy criterion.316

The investigation carried out in this study involves a systematic set of simulations,318

wherein the channel width is varied to explore the impact of the main channel aspect319

ratio βa on the bifurcation stability, as summarized in Table 1. The stability of each con-320

figuration is assessed by perturbing the bed profile of one branch with a cosine-shaped321

deposit of amplitude 0.1D∗
a. This perturbation ensures that the water depth at the bi-322

furcation node and downstream boundary remains consistent with the previous equilib-323

rium. As the simulation progresses, a step is observed in the perturbed branch at the324

bifurcation node, while the other branch shows signs of incipient erosion. To track the325

temporal evolution of the system, the discharge asymmetry ∆Q between the branches326

is computed:327

∆Q =
Q∗

b −Q∗
c

Q∗
a

. (31)328

In those cases when ∆Q approaches values close to 0, the bifurcation is stable, indicat-341

ing equal partitioning of the flow. Conversely, when it reaches ±1 one of the two branches342

carries all the flow coming from the upstream channel a.343

To maintain consistency with theoretical considerations and ease comparison be-344

tween the different results, the slope sa and the discharge per unit width qa are kept con-345

stant in every configuration, equal to 2×10−4 and 0.44 m2/s respectively. This approach346

ensures the establishment of a uniform flow depth D∗
a in equilibrium with the prescribed347

inflow discharge, while maintaining a constant Shields number (ϑa = 0.15) and a dimen-348

sionless grains size (ds = d∗s/D
∗
a) equal to 8.2 × 10−4 throughout all simulations. To349

accomplish this, a constant water discharge and a constant sediment flux, in equilibrium350

with the flow field, are defined at the upstream boundary, while a fixed water level is pro-351

vided downstream. Flow and sediments are allowed to freely leave the system from the352

downstream boundaries, thus, letting the bed to change in accordance with the hydro-353

dynamics. The sediment transport is evaluated with the total-load closure of Engelund354

and Hansen [1967], and sediment are assumed uniform with a diameter d∗s = 0.5 mm.355

The transverse bed slope effects are accounted for in Delft3D by adopting the approach356

of Ikeda et al. [1981]. Here the related parameter αbn is set equal to 5, that corresponds357

to a value of the Talmon et al. [1995] coefficient r equal to 0.88, well within the range358

of the values suggested by Bolla Pittaluga et al. [2003]. The value emplyed represents359

a good compromise between the value commonly used in the analytical analysis and the360
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Figure 4. Bed profile evolution in numerical simulations. The figure illustrates the

temporal evolution of the width-averaged bed profiles for two distinct branches, as derived from

simulations. The branch experiencing the bed perturbation is visually represented in orange,

while the other branch is delineated in green. The initial conditions for each channel are denoted

by dashed lines. The blue line corresponds to the free-surface elevation. The black vertical line

signifies the coordinate of the bifurcation node. The two panels depict the evolution of the same

channel for β = 16, differing only in the length of the branches. Panel a) presents findings for

the scenario with Lb = 0.1, wherein the perturbation traverses beyond the domain, leading to

the system returning to its initial bed equilibrium. In contrast, panel b) showcases results for

Lb = 0.5, demonstrating that the perturbed branch undergoes gradual deposition until reaching

closure. Simultaneously, the alternate branch erodes over time to accommodate the heightened

flow.

329

330

331

332

333

334

335

336

337

338

339

340

value often used in numerical simulations (αbn = 10) to avoid unrealistic channel inci-361

sion (Baar et al. [2019]; Iwantoro et al. [2020]; Van der Wegen and Roelvink [2012]). Re-362

garding the streamwise bed slope effects, the Bagnold [1966] approach is used with the363

default value of αbs =1. As a design choice, the morphological acceleration factor Mor-364

Fac is not utilized at the initial stages of the simulation to prevent inducing numerical365

artefacts at the bifurcation node where non-linearities may be present. However, once366

the system approaches the new equilibrium state, the morphological factor is set to val-367

ues ranging from 10 to 100 to enhance the possible modest morphological variations in368

the system.369
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3.3 Results and Discussions370

The linear stability analysis conducted for the symmetrical bifurcation of sand-bed371

rivers yields the algebraic relation (28) for the critical aspect ratio. In simple terms, βcr372

serves as the demarcation point distinguishing configurations where the symmetrical so-373

lution remains stable (for β values less than βcr) from configurations in which one of the374

two branches gains dominance (for β values greater than βcr). Differently from the so-375

lution (29) of Bolla Pittaluga et al. [2015] hereafter referred to as BCK, the current the-376

oretical framework establishes a direct correlation with the flow conditions at the node377

and the lengths of the branches Lb.378

Our numerical simulations consistently reveal a small water level asymmetry be-379

tween the two branches at the bifurcation node, in line with the findings of Edmonds and380

Slingerland [2008]. Consequently, it enforces the necessity of a more sophisticated nodal381

condition rather than relying on the assumption of constant water level as originally pro-382

posed by Bolla Pittaluga et al. [2003]. It is worth noting that the significance of this phe-383

nomenon diminishes as the branch lengthens, particularly for values surpassing the back-384

water length. Therefore, the solution proposed by Bolla Pittaluga et al. [2003] can be385

regarded as an asymptotic condition that the system would approach when the bifur-386

cation is far enough from the downstream boundaries.387

Consistently with the findings of Bolla Pittaluga et al. [2015], it has been observed388

that sand-bed and gravel-bed rivers exhibit contrasting behaviours as Shields values in-389

crease, as depicted in Figure 5. This disparity is attributed to the degree of non-linearity390

inherent in each sediment transport closure for varying Shields values. Additionally, the391

transverse sediment discharge plays a crucial role, with a more pronounced effect in rivers392

characterized by coarser grain sizes and, consequently, lower Shields values.393

However, the present theory offers a novel insight, demonstrating that the reduc-401

tion in the length of the branches exerts a stabilizing influence on the bifurcation evo-402

lution, resulting in more stable symmetrical configurations. Figure 5 visually illustrates403

the asymptotic behaviour of the original BCK model, wherein the neutral stability curve404

diverges for lower values of Lb. However, it is important to underline that the solution405

is still linearly dependent on the two parameters α and r introduced by Bolla Pittaluga406

et al. [2003]. The first is defined experimentally, but it still needs a careful determina-407

tion for various configurations since it is a measure of the 2-D effects due to the bifur-408

cation node. A first progress in this direction has been made by Redolfi et al. [2016], who409

linked the value of α with the wavelength of the steady damped alternate bars arising410

due to the instability mechanism originally found by Zolezzi & Seminara [2001]. Basi-411

cally, the presence of the bifurcation exerts an upstream influence if the aspect ratio of412

the upstream channel is higher than the resonant value found by Blondeaux & Seminara413

[1985]. Recently, Redolfi [2023] further provided a physically-based estimation of the cell414

length assuming that the critical aspect ratio, for which the symmetric solution becomes415

unstable, should be equal to the resonant value as formulated by Camporeale et al. [2007].416

As for the parameter r, it is expected to have an effect only on the bedload transport417

direction. Consequently, while employing a total load formulation akin to Engelund and418

Hansen [1967], it is important to recognize that the stabilizing effect of the transverse419

slope may be subject to some overestimation.420

The numerical simulations confirm the increased stability observed in configura-421

tions featuring shorter branch lengths, as illustrated in Figure 6. In the numerical con-422

test, we classify as stable (indicated by red dots) the cases where the initial perturba-423

tion leaves the domain without influencing the flow partitioning at the node. Conversely,424

instances where the perturbation increases in time, resulting in the dominance of one of425

the bifurcating branches, are labeled as unstable (marked by blue dots). Notably, there426

were only a few simulations where the final equilibrium of the system displayed a resid-427

ual but steady discharge asymmetry (of the order of 2% in magnitude). These simula-428
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Figure 5. Opposite behaviour of gravel and sand bed rivers. Neutral stability curve

of the symmetrical solution in the (β, ϑa) parameter space for different values of the dimension-

less length Lb. Panel a) is representative of sand-bed rivers, where the Engelund and Hansen

[1967] relation has been used. Panel b) shows the results using Meyer-Peter and Müller [1948]

for gravel-bed rivers. In each section, the continuous lines show the present solution, while the

staggered lines represent the BCK solution for the same set of parameters. Each line splits the

graph into stable and unstable areas. (Parameters: αr = 1, Fr = 0.3.)

394

395

396

397

398

399

400

tions, represented by green dots in Figure 6, are denoted as critical conditions due to their429

proximity to the critical value established by the theoretical framework. Furthermore,430

it is noteworthy how, in most instances, the configurations require longer times to reach431

the final equilibrium the closer the system is to the critical conditions.432

The underlying mechanism entails that a small perturbation of the flow depth in433

the branch, could in turn affect the sediment transport capacity. When the carrying ca-434

pacity of a branch exceeds the supply of sediments from upstream, that particular branch435

experiences overall erosion. Conversely, the other bifurcate undergoes a reduction of its436

ability to transport sediments downstream, consequently leading to sediment deposition.437

Over time, the gradual increase of the deposition may lead to the complete closure of438

the branch. Simultaneously, the remaining branch continues to erode until the riverbed439

establishes a renewed equilibrium in alignment with the altered flow discharge conditions.440

The closer is the system to the critical conditions, the smaller are the differences in car-441

rying capacity, thus, requiring longer times to achieve an equilibrium.442
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Figure 6 clearly shows how the variation of the branches length alone is able to de-453

fine stable/unstable configurations. For instance, fixing the aspect ratio β to 16 (i.e. keep-454

ing the upstream channel width equal), it is evident that merely extending the length455

of the branches L is sufficient to destabilize the system.

Figure 6. Stability of symmetrical river bifurcations. Neutral stability diagram of

bifurcations with symmetrical downstream branches. The solid black line, denoting βcr in the

present study, highlights an area of heightened stability for diminishing dimensionless branch

lengths, in comparison to the earlier work by BCK (depicted by the dashed line). The diagram is

dichotomized by the βcr line into regions of stable configurations (indicated by the red shading)

and unstable configurations (indicated by the blue shading). The stable and unstable states, as

determined through numerical simulations, are marked by coloured dots corresponding to the

respective shading. Notably, the critical instances, signifying equilibrium with marginal stability

accompanied by slight asymmetry, are represented by the green dots. (Parameters: α = 1.3,

r = 0.88, ϑ = 0.15, Fr = 0.31.)
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447

448

449

450
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452

456

The equilibrium solutions resulting from the aforementioned concepts are deter-457

mined by solving the non-linear system of equations derived from the nodal point con-458

ditions. For each aspect ratio of the main channel, denoted as β, we endeavor to iden-459

tify multiple solutions within the system. These solutions encompass both the scenario460

of an equal partitioning of the flow and instances where one of the two branches carries461

a greater fraction of the flow.462

The equilibrium solutions once again conform to the conventional pattern of a pitch-463

fork bifurcation commonly observed in such configurations. In cases where β is low, the464

solitary solution corresponds to the equal partitioning of the flow between the branches.465

However, with an increase in β beyond the critical value βcr, the symmetrical solution466

loses stability, resulting in a diversion of more flow toward one of the branches.467

Figure 7 illustrates the equilibrium diagram for various values of the branch length,476

denoted as Lb. The solutions are depicted using the discharge asymmetry between the477

branches, as described in equation (31). The diagram clearly highlights the heightened478

stability of configurations for the smallest branch length. In contrast, an increase in Lb479
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brings the equilibrium diagram closer to the one obtained through the solution by BCK.480

Nonetheless, a slight disparity between the two solutions persists, which is attributed to481

the variations in flow conditions elucidated in equation (30). Once again, numerical sim-

Figure 7. Equilibrium configurations of symmetrical river bifurcations. In this plot,

each continuous line of a specific colour corresponds to a pitchfork bifurcation delineating the

equilibrium diagram associated with a particular dimensionless length of the branches, denoted as

Lb. The solutions are expressed in terms of discharge asymmetry between the branches ∆Q. The

black dashed line is indicative of the BCK solution, in which the branch length is not accounted

for. The dots presented on the graph signify the final equilibrium obtained from numerical sim-

ulations, aligned with the corresponding colour scheme of the lines. (Parameters: α = 1.3,

r = 0.88, ϑ = 0.15, Fr = 0.31.)
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473
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482

ulations effectively discriminate between symmetrical configurations that exhibit stabil-483

ity and those that manifest instability accordingly to the present theory. However, in cases484

of unstable configurations, the final equilibrium assumes the form of the closure of the485

perturbed branch, leading to the complete diversion of flow toward the other branch (i.e.,486

∆Q = ±1). This discrepancy with the analytical model can be attributed to its assump-487

tion of uniform flow within the branches. This assumption may be no longer valid when488

the perturbed branch undergoes sediment deposition, reaching a point at which it can489

no longer adapt its bed to accommodate the incoming sediments due to the reduced trans-490

port capacity. Notably, a recent study by Barile et al. [2023] extended the two-cell model491

to encompass partially avulsing bifurcations. Their findings once again highlight that492

as the downstream branches lengthen, the degree of asymmetry increases, potentially cul-493

minating in the complete avulsion of the system.494
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4 Asymmetrical Case495

4.1 Results and Discussions496

Encountering symmetrical bifurcations within a natural riverine setting proves to497

be a rarity, primarily due to the continuous evolutionary dynamics that typically drive498

these features towards pronounced asymmetry. Such conditions are commonly observed499

in both mountainous gravel-bed rivers and in low-lying sand-bed rivers reaching their500

downstream end in deltas. During field observations in mountainous braided networks,501

Zolezzi et al. [2006] reported that gravel-bed rivers tend to display highly unbalanced502

bifurcations, wherein the most carrying branch is generally wider and deeper. The ef-503

fect of different branch widths is incorporated for in our analytical framework through504

the parameter denoted as rb. Another prevalent occurrence is observed in meandering505

rivers, where the presence of cut-off channels gives rise to branches marked by signifi-506

cant disparities in both length and width (Slingerland and Smith [1998]). In the present507

investigation, these effects are accounted for through the parameters γL and rb, contribut-508

ing to a comprehensive understanding of the phenomenon. Furthermore, the aggregate509

width of downstream branches is frequently greater than that of the upstream channel,510

a characteristic represented here by the parameter ra. Edmonds and Slingerland [2007]511

have measured, in several bifurcations within river-dominated deltas, an average down-512

stream enlargement of the order of 1.7. Consequently, it becomes reasonable to postu-513

late the presence of energy losses at the bifurcation node (through the coefficient ξ), aris-514

ing from localized width variations or instances where the angle between the streamlines515

and the branches’ thalweg deviates. Pertinently, a recent study related to confluences516

[Ragno et al., 2021] has revealed the significant impact of downstream water level asym-517

metries on the stability of bifurcation confluence loops. Hence, our analysis incorporates518

this effect through the parameter ∆hL.519

In this section, we investigate the influence of each one of the asymmetry param-526

eters introduced above singularly. The objective of this analysis is to discern and iso-527

late their respective impacts on the equilibrium configuration of bifurcations. Notewor-528

thy, the following considerations are posed selecting a given value of the branches length.529

However, the previous results concerning the enhanced stability for shorter branch lengths530

still hold. Therefore, the following considerations will work to any value of Lb and the531

related βcr. Within river bifurcations characterized by distinct branch lengths, the equal532

partitioning of the flow is rarely encountered. As the length ratio γL is augmented, it533

becomes evident that the shorter branch consistently accommodates a greater propor-534

tion of the flow. This is attributable to the advantageous influence of the free-surface slope535

that the shorter branch experiences relative to its longer counterpart, as depicted in Fig-536

ure 8. Curiously, noteworthy arrangements arise in scenarios featuring elevated aspect537

ratios β, wherein the preeminence in conveying flow can shift to the longest branch. In538

such cases, any perturbation in the shorter branch affecting the carrying capacity might539

lead to an incipient flow diversion into the longest branch. Given the large upstream chan-540

nel width, the stabilizing effect of the transverse slope is not able to counteract this ten-541

dency, thus, leading to the complete dominance of the longest branch.542

A slope advantage has also been analyzed by Redolfi et al. [2019], who studied the543

combined effect of the slope advantage with the coexistence of upstream channel cur-544

vature. They found that the slope advantage can compensate for the effect of channel545

curvature under sub-resonant conditions. However, the length of the branches itself was546

not accounted for in their formulation, thus, possibly leading to less asymmetrical par-547

titioning even for higher β.548

Salter et al. [2018] investigated the effect of prograding branches finding an oscil-549

lating behaviour due to the restoring feedback of the milder slope in the longer branch.550

They also showed that shorter branches respond quicker to variation of sediment sup-551

ply, thus, showing lower asymmetric partitioning.552
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Figure 8. Equilibrium configurations of bifurcations with different branch lengths.

The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates the modu-

lation of flow distribution concerning alterations in the length ratio, denoted as γL. Each con-

tinuous line, distinguished by a specific hue, represents stable solutions, while the dashed curve

denotes instances where the symmetrical solution becomes unstable. (Parameters: α = 1.3,

r = 0.88, ϑ = 0.15, Fr = 0.31.)
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524

525

Figure 9 illustrates the influence of varying branch widths on the flow distribution572

within bifurcations. The blue line in the graph corresponds to the case in which branch573

widths are equal (i.e., rb = 0.5), resulting in an even partition of the flow for configu-574

rations below βcr. Notably, increasing the branch width ratio, the flow distribution varies575

accordingly diverting a larger proportion of the flow towards the wider branch. In those576

configurations, the largest branch is inevitably dominant and would easily move toward577

the closure of the narrow branch for high aspect ratios. However, it is essential to rec-578

ognize that in our computation, the branches can solely adjust their bed levels, with their579

widths considered as fixed parameters. In contrast, field observations indicate that such580

asymmetrical distribution often arises from adaptations in channel width in response to581

incoming flow conditions. To account for this effect, we can refer to the local approach582

by Miori et al. [2006] where they relaxed the assumption of fixed-banks, but assuming583

that downstream effects do not influence the bifurcation. Figure 10 describes the effect584

of varying the aggregated widths within the branches in relation to the upstream chan-585

nel width. Evidently, an elevation in the ratio ra, signifying an enlargement downstream,586

results in a decreased number of configurations where the symmetric solution is stable.587

On the other hand, narrower branches correspondingly lead to an augmentation of the588

critical aspect ratio βcr. In those configurations, the flow is expected to increase its ve-589

locity entering the branches, thereby enhancing their conveyance capacity. As a conse-590

quence, any perturbation in the system can be flushed away preserving the unobstructed591

flow in both branches. Conversely, when a localized widening occurs at the bifurcation592

node, the flow decelerates, creating favourable conditions for sediment deposition within593
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Figure 9. Equilibrium configurations of bifurcations with different branch widths.

The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates the modu-

lation of flow distribution concerning alterations in the branch width ratio, denoted as rb. Each

continuous line, distinguished by a specific hue, represents stable solutions, while the dashed

curve denotes instances where the symmetrical solution becomes unstable. (Parameters: α = 1.3,

r = 0.88, ϑ = 0.15, Fr = 0.31.)
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554

555

556

557

558

the branches. In accordance with the rationale underlying pressurized flows, it is rea-594

sonable to attribute localized head losses to local width variations or bifurcation angles595

between the branches. The extent of this influence on the critical aspect ratio βcr is con-596

tingent upon the value of ξ, which is an order-one parameter. Figure 11 provides a vi-597

sual representation of how alterations in ξ can impact the equilibrium configurations.598

The findings indicate that enhancing dissipations leads to a more stabilized system due599

to the consequent increase in water level disparities at the bifurcation, thereby ampli-600

fying the differences in free-surface slopes between branches. This impact is discernible601

in equation (16), where ∆hL = 0 and γL = 1: an increase in ξ accentuates the im-602

portance of kinetic head differences, thereby increasing the slope variations for branches603

of equal length Lb.604

In Figure 12, an examination of distinct downstream water levels is compared with611

the symmetric case (∆hL = 0) depicted in blue. Notably, variations in the downstream612

water level introduce a free surface slope advantage within one branch, consequently in-613

ducing an acceleration in flow velocity. This increase in flow speed, in turn, amplifies the614

branch’s capacity for carrying flow. Consequently, under circumstances marked by el-615

evated aspect ratios, the branch can attain dominance. However, it is worth mention-616

ing that instances might arise wherein perturbations affecting the favoured channel could617

still destabilize the system, causing a redirection of flow toward the opposite branch.618

Nevertheless, the parameter ∆hL is formulated without accounting for the adjust-619

ment of the downstream free surface based on flow conditions. In the realm of natural620
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Figure 10. Equilibrium configurations of bifurcations with downstream enlarge-

ment. The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates the

modulation of flow distribution concerning alterations in the ratio between the aggregate of the

branch widths and the upstream channel width, denoted as ra. Each continuous line, distin-

guished by a specific hue, represents stable solutions, while the dashed curve denotes instances

where the symmetrical solution becomes unstable. (Parameters: α = 1.3, r = 0.88, ϑ = 0.15,

Fr = 0.31.)
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560
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562

563

564

565

environments over extended temporal scales, such fixed definitions of water levels are scarcely621

encountered. More commonly, the configurations of interest, particularly those with shorter622

branch lengths, manifest in bifurcation-confluence loops. In the context of confluences,623

a direct correlation between water level asymmetry and the square of the Froude num-624

ber has been established, underscoring the inevitability of water level adaptations in re-625

sponse to flow conditions. In this regard, Ragno et al. [2021] succeeded in coupling a con-626

fluence model with the work of Bolla Pittaluga et al. [2003], thereby accommodating down-627

stream flow fluctuations. Their findings indicate that confluences tend to elevate the wa-628

ter level within the branch responsible for carrying the greater flow rate. This dynamic629

prompts a reduction in the slope of the dominant branch, creating a negative feedback630

mechanism that strives to restore equilibrium in the distribution of water and sediment631

fluxes.632

5 Conclusions633

The current study has introduced a revision of the well-established two-cell model634

originally proposed by Bolla Pittaluga et al. [2003] for the purpose of predicting the sta-635

bility of river bifurcations. The model is based on the foundational assumption of main-636

taining constant water levels between the branches at the bifurcation node. However,637

it is evident that this assumption no longer holds true in scenarios where downstream638

conditions significantly impact the distribution of flow at the bifurcation node. Through639
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Figure 11. Equilibrium configurations of bifurcations with localized kinetic head

losses. The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates the

modulation of flow distribution concerning alterations in the differences between kinetic losses of

the branches, denoted with the parameter ∆ξ. Each continuous line, distinguished by a specific

hue, represents stable solutions, while the dashed curve denotes instances where the symmetrical

solution becomes unstable. (Parameters: α = 1.3, r = 0.88, ϑ = 0.15, Fr = 0.31.)
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570
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numerical simulations, it has been observed that any alteration to the bed of the branch-640

ing channels leads to corresponding adjustments in the uniform flow depth profile. These641

adjustments, driven by downstream boundary conditions, consequently result in discernible642

changes to the water surface elevation at the bifurcation node. Especially noteworthy643

is the effect of branch length on this phenomenon. In cases where the branching chan-644

nels are of limited length, the aforementioned alterations in flow division become non-645

trivial, causing an asymmetry that contributes to the stabilization of the bifurcation sys-646

tem. Conversely, when the branching channels exhibit substantial length, the impact of647

these alterations diminishes, allowing the original model to remain a reliable predictor.648

Thus, to accommodate these intricate effects within analytical models, a formulation akin649

to an energy balance at the bifurcation node has been seamlessly integrated into the model650

of Bolla Pittaluga et al. [2003].651

The newly introduced theory clearly demonstrates that symmetrical bifurcations652

attain enhanced stability as the length of the branches decreases, as substantiated by653

numerical simulations. Nonetheless, truly symmetrical systems are a rarity in natural654

settings, prompting the inclusion of various asymmetry-inducing elements in the theory.655

Intriguingly, when considering branches of differing lengths, the shorter branch emerges656

as the preferred path for flow distribution. Nevertheless, scenarios may arise, particu-657

larly in the context of large rivers characterized by substantial aspect ratios, where the658

longer branch may dominate by capturing the majority of the upstream flow.659
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Figure 12. Equilibrium configurations of bifurcations with downstream water level

asymmetry. The equilibrium diagram, delineated in relation to discharge asymmetry, illustrates

the modulation of flow distribution concerning alterations in the water level asymmetry down-

stream, denoted with the parameter ∆hL. Each continuous line, distinguished by a specific hue,

represents stable solutions, while the dashed curve denotes instances where the symmetrical solu-

tion becomes unstable. (Parameters: α = 1.3, r = 0.88, ϑ = 0.15, Fr = 0.31.)

605

606

607

608

609

610

However, some limitations within the framework presented herein need to be ac-660

knowledged, although they might be of straightforward incorporation. Factors such as661

channel curvature and its influence on sediment partitioning between branches, widen-662

ing of the channels, and the presence of free/forced bars or prograding delta branches663

have not been included within the current model.664

In light of these considerations, it is plausible to anticipate that the novel model665

presented in this study will facilitate an enhanced understanding of bifurcation evolu-666

tion in estuarine environments subject to tidal fluctuations.667
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A: Coefficients of the asymmetrical linear system792

The system of equations (14)-(17) is solved through a linearization procedure, in793

terms of the four unknowns [qb, qc, Db, Dc]. With a perturbative approach, every vari-794

ables and unknowns are expanded in terms of a small parameter δ as follows:795

f = f0 + δf1 +O(δ2) . (A.1)796

where f0 represents the basic state and f1 derives from a Taylor expansion around the797

basic state.798

Substituting the expansions in the equations, it is possible to solve the system at799

each order of approximation. At the leading order, a set of non-linear algebraic equa-800

tions in terms of the basic state variable arise, that can be solved with a central finite-801

difference solver.802

The order δ problem consists of the homogeneous linear system of equations 20.803

The coefficients Aij are defined as follows:804

A11 = rb, (A.2)805

A12 = rc, (A.3)806

A13 = 0, (A.4)807

A14 = 0, (A.5)808

A21 =
2rbϕb0Φϑb

ϕaqb0
, (A.6)809

A22 =
2rcϕc0Φϑc

ϕaqc0
, (A.7)810

A23 =
rbϕb0

ϕa

(
−2ΦϑbCDb −

2Φϑb

Db0
+ ϕnb

)
, (A.8)811

A24 =
rcϕc0

ϕa

(
−2ΦϑcCDc −

2Φϑc

Dc0
+ ϕnc

)
, (A.9)812

A31 =
2RLbC

2
aqb0

rarbD3
b0C

2
b0

− 1 +
2ϕb0Φϑb

ϕaqb0
, (A.10)813

A32 =
2RLbγLC

2
aqc0

rarbD3
c0C

2
c0

, (A.11)814

A33 =− R

rarb

[
1 +

C2
aq

2
b0Lb

D3
b0C

2
b0

(
2CDb +

3

Db0

)]
+

− ϕb0

ϕa

(
2ΦϑbCDb + 2

Φϑb

Db0
− ϕnb

)
,

(A.12)815
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A34 =
R

rarb

[
1 +

C2
aq

2
c0LbγL

D3
c0C

2
c0

(
2CDc +

3

Dc0

)]
, (A.13)816

A41 =
2LbC

2
aqb0

D3
b0C

2
b0

+ (1 + ξ)
Fr2qb0
D2

b0

, (A.14)817

A42 = −2LbγLC
2
aqc0

D3
c0C

2
c0

− (1 + ξ)
Fr2qc0
D2

c0

, (A.15)818

A43 = −C2
aLbq

2
b0

D3
b0C

2
b0

(
2CDb +

3

Db0

)
− (1 + ξ)

Fr2q2b0
D3

b0

, (A.16)819

A44 =
C2

aLbγLq
2
c0

D3
c0C

2
c0

(
2CDc +

3

Dc0

)
+ (1 + ξ)

Fr2q2c0
D3

c0

, (A.17)820

where:821

Φϑb =
mϑb0

ϑb0 − ϑcr
, (A.18)822

Φϑc =
mϑc0

ϑc0 − ϑcr
, (A.19)823

CDb =
1

Cb0

∂Cb

∂Db

∣∣∣∣
Db0

, (A.20)824

CDc =
1

Cc0

∂Cc

∂Dc

∣∣∣∣
Dc0

, (A.21)825

ϕnb =
1

n(Db0)

∂n

∂Db

∣∣∣∣
Db0

, (A.22)826

ϕnc =
1

n(Dc0)

∂n

∂Dc

∣∣∣∣
Dc0

, (A.23)827

R =
αr

βa

√
ϑa

. (A.24)828

Noteworthy, for the case of symmetrical bifurcations, the coefficients (A.18)-(A.23)829

are equal between b and c. Therefore, they can be summed up as in (23).830
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