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Abstract

Shifts in Southern Ocean (SO, $40 - 85ˆ{o}S$) shortwave cloud feedback ($SW {FB}$) toward more positive values are the

dominant contributor to higher effective climate sensitivity (ECS) in Coupled Model Intercomparison Project phase 6 (CMIP6)

models. To provide an observational constraint on the SO $SW {FB}$, we use a simplified physical model to connect SO

$SW {FB}$ with the response of column-integrated liquid water mass (LWP) to warming and the susceptibility of albedo to

LWP in 50 CMIP5 and CMIP6 GCMs. In turn, we predict the responses of SO LWP using a cloud-controlling factor (CCF)

model. The combination of the CCF model and radiative susceptibility explains about $50$\% of the variance in the GCM-

simulated $SW {FB}$ in the SO. Observations of SW radiation fluxes, LWP, and CCFs from reanalysis are used to constrain

the SO $SW {FB}$. The response of SO LWP to warming is constrained to $2.76\ -\ 4.19$ $g\ mˆ{-2}\ Kˆ{-1}$, relative to

a GCM prior of $0.64\ -\ 9.33$ $g\ mˆ{-2}\ Kˆ{-1}$. The susceptibility of albedo to LWP is constrained to be $0.43\ -\ 0.90$
$ (kg\ mˆ{-2})ˆ{-1}$, relative to $0.30\ -\ 3.91$ $(kg\ mˆ{-2})ˆ{-1}$. The overall constraint on the contribution of SO to

global mean $SW {FB}$ is $-0.168\ -\ 0.051$ $W\ mˆ{-2}\ Kˆ{-1}$, relative to $-0.277\ -\ 0.270$ $ W mˆ{-2} Kˆ{-1}$. In

summary, observations suggest SO $SW {FB}$ is less likely to be as extremely positive as predicted by some CMIP6 GCMs,

but more likely to range from moderate negative to weakly positive.
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(a)

(b)

Relationships between SW , LWP Response 

( ), and Climate Sensitivity
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Prediction of Observed LWP

Constraints on GCM LWP Response (∆𝐋𝐖𝐏
∆𝐆𝐌𝐓

)

40 – 85o S 40 – 50o S 50 – 85o S

CCF (Warm)
 CCF (Both)

CCF (Both)
 GCM (Both)
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. Decomposition on LWP Response ( )

Observation

CESM2

Other 
GCMs

Constraint on Radiative Susceptibility ( 𝛛 𝛂
𝛛𝐋𝐖𝐏

)

GCM  𝝏𝑳𝑾𝑷
𝝏𝑷ି𝑬

GCM  𝝏 𝜶
𝝏𝑳𝑾𝑷

OBS 𝝏𝑳𝑾𝑷
𝝏𝑷ି𝑬

OBS 𝝏 𝜶
𝝏𝑳𝑾𝑷
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GCM  𝝏𝑳𝑾𝑷
𝝏𝑷ି𝑬

GCM  𝝏 𝜶
𝝏𝑳𝑾𝑷

(a) (b)
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Prediction of Observed LWP
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(a) (b)

Contributions of LWP & IWP to Albedo (𝜶) Changes in the SO
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Changes in LWP/IWP with GMT & Radiative Sensitivities to LWP/IWP
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Changes in LWP/IWP with GMT & Radiative Sensitivities to LWP/IWP
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Changes in LWP/IWP with GMT & Radiative Sensitivities to LWP/IWP
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Changes in LWP/IWP with GMT & Radiative Sensitivities to LWP/IWP
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Key Points:8

• Southern Ocean liquid water path increased over the past two decades due to en-9

hanced moisture convergence.10

• Enhanced moisture convergence contributes to a negative cloud feedback in the11

Southern Ocean.12

• Across global climate models, the sensitivity of upwelling shortwave to cloud op-13

poses the sensitivity of cloud to moisture convergence.14
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Abstract15

Shifts in Southern Ocean (SO, 40 − 85oS) shortwave cloud feedback (SWFB) toward16

more positive values are the dominant contributor to higher effective climate sensitiv-17

ity (ECS) in Coupled Model Intercomparison Project phase 6 (CMIP6) models. To pro-18

vide an observational constraint on the SO SWFB , we use a simplified physical model19

to connect SO SWFB with the response of column-integrated liquid water mass (LWP)20

to warming and the susceptibility of albedo to LWP in 50 CMIP5 and CMIP6 GCMs.21

In turn, we predict the responses of SO LWP using a cloud-controlling factor (CCF) model.22

The combination of the CCF model and radiative susceptibility explains about 50% of23

the variance in the GCM-simulated SWFB in the SO. Observations of SW radiation fluxes,24

LWP, and CCFs from reanalysis are used to constrain the SO SWFB . The response of25

SO LWP to warming is constrained to 2.76 − 4.19 g m−2 K−1, relative to a GCM prior26

of 0.64 − 9.33 g m−2 K−1. The susceptibility of albedo to LWP is constrained to be27

0.43 − 0.90 (kg m−2)−1, relative to 0.30 − 3.91 (kg m−2)−1. The overall constraint28

on the contribution of SO to global mean SWFB is −0.168 − 0.051 W m−2 K−1, rel-29

ative to −0.277 − 0.270 Wm−2K−1. In summary, observations suggest SO SWFB is30

less likely to be as extremely positive as predicted by some CMIP6 GCMs, but more likely31

to range from moderate negative to weakly positive.32

Plain Language Summary33

Previous studies suggest that SO clouds reflect more sunlight in response to global34

warming and more strongly cool the planet - a negative shortwave cloud feedback (SWFB).35

The SO SWFB in the latest generation of global climate models (GCMs) participating36

in the Coupled Model Intercomparison Project phase 6 (CMIP6) has shifted toward more37

positive values, leading to the larger predicted temperature responses to greenhouse gas38

increases in these GCMs. In this study, we examine if this more positive SWFB is con-39

sistent with observations. We connect the effect of SO clouds on reflected sunlight with40

the predicted response of cloud liquid content to global warming. The linkage between41

cloud liquid water content and large-scale meteorology is applied to predict this cloud42

liquid response. Satellite observations of reflected sunlight, cloud liquid, and observa-43

tions of large-scale meteorology are applied to constrain the SO SWFB for 50 CMIP544

and CMIP6 GCMs. The results suggest that SO cloud liquid will increase with warm-45

ing around the average of predictions of 50 GCMs. Satellite records suggest that the sen-46

sitivity of reflected sunlight to cloud liquid is weak compared to GCMs. In combination,47

our results suggest SO clouds most likely reflect more sunlight back to space and fur-48

ther cool our planet.49

1 Introduction50

Quantifying the surface temperature response to a doubling in atmospheric CO251

concentration, commonly referred to as climate sensitivity, is a fundamental goal of cli-52

mate science (Houghton & el., 2001; Boucher & el., 2014; Forster & el., 2023). Climate53

feedback processes such as changes in lapse rate, water vapor, and cloud may dampen54

or amplify the temperature response to greenhouse gas increase and are critical for es-55

timating climate sensitivity (Bony et al., 2006). Global climate models (GCMs) provide56

the most direct way to estimate climate sensitivity since they attempt to simulate all rel-57

evant processes, including climate feedback (Andrews et al., 2012; Zelinka, Myers, Mc-58

Coy, Po-Chedley, et al., 2020). Shortwave cloud feedback (SWFB), the shortwave (SW)59

radiative impact of cloud responses to a surface temperature perturbation, is the largest60

uncertainty in GCMs’ estimate of net climate feedback and by extension, climate sen-61

sitivity (Zelinka, Myers, McCoy, Po-Chedley, et al., 2020; Sherwood et al., 2020). The62

uncertainty in estimating SWFB is strongly driven by difficulties in representing subgrid-63

–2–



manuscript submitted to JGR: Atmospheres

scale cloud processes in GCMs (Storelvmo et al., 2015; Webb et al., 2015; Sherwood et64

al., 2014; Zhao, 2014).65

Despite the large intermodel spread in global-mean SWFB , robust regional features66

have emerged from previous generations of GCMs. For example, positive SWFB in the67

subtropics has emerged, likely due to decreased cloud coverage with negative SWFB in68

the middle-to-high latitudes likely attributed to increased cloud optical depth (Zelinka69

et al., 2012; Ceppi, McCoy, & Hartmann, 2016). Considerable progress has been made70

on narrowing the possible ranges of tropical and subtropical SWFB using observational71

constraints (Myers et al., 2021; G. V. Cesana & Del Genio, 2021; G. Cesana et al., 2019;72

Scott et al., 2020; Klein et al., 2017).73

Recent GCMs have suggested a weaker negative Southern Ocean (SO, 40−85oS)74

SWFB . The ensemble mean SO SWFB of GCMs participating in the sixth phase of the75

Coupled Model Intercomparison Project (CMIP6) has shifted toward a more positive value76

relative to CMIP5, leading to the emergence of several GCMs with high effective climate77

sensitivity (ECS) (ECS ≥ 4.5K) (Zelinka, Myers, McCoy, Po-Chedley, et al., 2020; Bodas-78

Salcedo et al., 2019). Much effort has been made to understand this change within the79

context of GCM cloud physics (Bjordal et al., 2020; Bodas-Salcedo et al., 2019; Gettel-80

man et al., 2019; Zhang et al., 2019). The uncertainty in ECS owing to SO SWFB is still81

largely unconstrained by observations (Sherwood et al., 2020), with only a few studies82

explicitly focusing on evaluating SO SWFB using the observational records of clouds,83

radiation, and meteorology (Terai et al., 2019, 2016; Ceppi, McCoy, & Hartmann, 2016;84

Gordon & Klein, 2014; Tan et al., 2019; Norris et al., 2016).85

Many mechanisms have been proposed to explain the origins of negative SO SWFB86

(Terai et al., 2019; Sherwood et al., 2020). One potential explanation is increasing liq-87

uid water content (LWC) from the warmer moist adiabat (Betts & Harshvardhan, 1987;88

Terai et al., 2019; Frazer & Ming, 2022). Shifts in the moist adiabat as the atmosphere89

warms will increase cloud LWC if the geometric height of clouds is preserved. As cloud90

temperature increases, the change in LWC per degree of warming decreases rapidly, so91

this mechanism is only salient in the high latitudes (Terai et al., 2019). Another poten-92

tial mechanism is the increase in cloud LWC driven by shifts in the cloud phase (Senior93

& Mitchell, 1993; Tan et al., 2019, 2016; McCoy et al., 2014). As the atmospheric tem-94

perature rises, cloud condensates shifts from ice to liquid in the mixed-phased cloud re-95

gions. The total water content may also increase because liquid precipitates less efficiently96

than ice (Ceppi, Hartmann, & Webb, 2016; Frazer & Ming, 2022). In recent literature,97

a mechanism based on the connection between hydrological response and cloudiness change98

has been proposed to explain the increased LWC in extratropics (McCoy et al., 2022;99

McCoy, Field, Bodas-Salcedo, et al., 2020; McCoy et al., 2019). All aforementioned mech-100

anisms may contribute to an increase in in-cloud LWC, which results in a negative cloud101

optical depth feedback (Stephens, 1978). Other mechanisms may contribute to changes102

in cloud coverage in the SO. These processes are restricted to boundary layer (BL) clouds.103

When the capping inversion at the top of BL increases with warming, the cloud top en-104

trainment will be suppressed and lead to an increase in BL cloudiness (Bretherton et al.,105

2013; Myers & Norris, 2013; Qu et al., 2015). However, the cloud top entrainment may106

also increase with warming because of the increased vertical humidity gradient between107

BL and free troposphere (Bretherton et al., 2013; Frey & Kay, 2018; Rieck et al., 2012).108

This will reduce the BL cloudiness. The decoupling in the BL may increase with warm-109

ing, preventing moisture transports from the surface into the cloud layer and also de-110

creasing the low-cloud amount (Bretherton & Wyant, 1997; Bretherton et al., 2013; Zheng111

et al., 2020). All these hypothesized mechanisms may contribute to SO SWFB and are112

entangled with each other, making process-level constraint of the SO SWFB difficult (Terai113

et al., 2019; Frazer & Ming, 2022).114

Here, we seek to provide a constraint on the GCM ensemble SO SWFB using ob-115

served cloud properties and their covariability with meteorological state. The existing116
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research has examined various cloud properties such as shortwave cloud radiative effect117

(SWCRE), albedo, cloud optical depth, and cloud fraction to provide observational con-118

straints on the extratropical SWFB (Gordon & Klein, 2014; Qu et al., 2015; Ceppi, Mc-119

Coy, & Hartmann, 2016; Norris et al., 2016; Terai et al., 2016; Myers et al., 2021; Mc-120

Coy et al., 2022). They generally support a positive SWFB related to BL clouds and a121

negative SWFB related to upper level clouds, and an overall negative extratropical SWFB .122

Many of these studies have had to contend with the availability of GCM data and the123

challenges in characterizing SO clouds using visible radiation. GCM cloud fraction and124

cloud optical depth have to be processed with satellite simulators to enable direct com-125

parison between model output and satellite retrievals (Bodas-Salcedo et al., 2011). The126

number of models that provide these outputs is very restricted, which limits evaluation127

of the shift in SO SWFB spanning a large number of GCMs across CMIP5 and CMIP6128

(Gordon & Klein, 2014; Ceppi, McCoy, & Hartmann, 2016). The SO also presents an129

observational challenge. Satellite retrievals of low-topped cloud properties like low-cloud130

fraction are difficult because of the multilayered structure of SO clouds (Qu et al., 2015;131

Haynes et al., 2011; Marchand et al., 2009; Sourdeval et al., 2016). Top-of-atmosphere132

(TOA) radiative flux derived quantities like SWCRE and albedo are more directly com-133

parable to GCM output(Loeb et al., 2020), but they combine the effects of radiative pro-134

cesses as well as the response of clouds to meteorology. This makes it difficult to unpick135

how variations in TOA radiation are related to large-scale meteorology (Myers et al., 2021).136

Area-mean column-integrated liquid water mass (LWP) is an advantageous cloud137

property for constraining SO cloud variability because the comparison between CMIP138

GCM output and low-frequency microwave radiometers is relatively straightforward. The139

LWP reported by GCMs and microwave observations is averaged over cloudy and cloud-140

free scenes and variability in LWP combines variability in cloud coverage and in-cloud141

LWC. LWP is a standard model output for all CMIP5/6 GCMs and can be directly com-142

pared to microwave observations without a satellite simulator as long as attention is paid143

to separating precipitating and non-precipitating liquid. Microwave LWP retrieval is not144

sensitive to multi-layered clouds, making it optimal for constraining SO cloud variabil-145

ity without partitioning by cloud top pressure regimes and accounting for overlap (McCoy146

et al., 2014). The response of area-mean LWP to warming is anti-correlated with SWFB147

in the SO (Stephens, 1978; McCoy et al., 2022). For the above reasons, we choose to con-148

strain the SO SWFB across CMIP5 and CMIP6 models by constraining the response of149

LWP to warming.150

We predict SO LWP response by the linkage between clouds and large-scale me-151

teorology (so-called cloud-controlling factor (CCF) analysis, Stevens and Brenguier (2009)).152

Observations of clouds and their environment can be used to infer the response of clouds153

to long-term warming by assuming the relationships between clouds and large-scale me-154

teorology are invariant from shorter observed periods (days - years) to climate change155

time-scale (years - century) (Klein et al., 2017). Surface temperature, stability, and large-156

scale subsidence have been widely used as environmental factors to predict cloud responses157

(Grise & Medeiros, 2016; Frey & Kay, 2018; McCoy, Field, Gordon, et al., 2020; McCoy,158

Field, Bodas-Salcedo, et al., 2020; Myers et al., 2021). In addition to these quantities,159

our CCF analysis considers large-scale moisture convergence. As shown in Held and So-160

den (2006), column-integrated water vapor increases with warming following Clausius-161

Clapeyron (C-C) scaling. Two direct consequences of increased humidity are increased162

horizontal transport of water vapor and enhanced existing patterns of moisture conver-163

gence and divergence. The latter change also satisfies the C-C scaling, albeit with spa-164

tial adjustments such as poleward expansion of the drying region (Siler et al., 2018; Bo-165

nan et al., 2023). Local precipitation and evaporation in the extratropics increase with166

warming but at a slower rate than C-C scaling owing to the energetic constraints (Allen167

& Ingram, 2002; Lorenz & DeWeaver, 2007; Stephens & Ellis, 2008; Trenberth, 2011; Yet-168

tella & Kay, 2017). The effects of a strengthening hydrological cycle in response to warm-169

ing is consistent with how SO LWP responds to warming (McCoy et al., 2019). Because170
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the conversion of water vapor to precipitation happens in clouds, increases in both the171

source and sink of clouds should guarantee an increase in cloudiness. In this work, we172

evaluate the linkage between the hydrological cycle and SO SWFB by using moisture con-173

vergence as one of the large-scale meteorology factors to predict the SO LWP response174

(McCoy, Field, Bodas-Salcedo, et al., 2020; McCoy et al., 2022).175

In addition to constraining the cloud response to meteorology, it is necessary to con-176

strain the interactions between clouds and the radiation to constrain SWFB . Previous177

work has shown that GCMs differ substantially in their simulation of how increasing cloudi-178

ness affects TOA upwelling SW flux (Bender et al., 2017). The intermodel differences179

in the radiative susceptibility of TOA SW flux to LWP contribute strongly to the inter-180

model difference in the SO SWFB (McCoy et al., 2022). Model biases in simulating cloudi-181

ness changes in a perturbed climate are likely being compensated by the biases in the182

optical properties of simulated clouds. The so-called ’Too few, Too bright’ bias has been183

diagnosed in previous generations of GCMs in the tropics (Nam et al., 2012; Konsta et184

al., 2022).185

The goal of this paper it to use observations to constrain the SO SWFB across 50186

CMIP5 and CMIP6 GCMs (Table S1). A simplified physical model is developed to pre-187

dict GCM SWFB calculated from radiative kernels (Zelinka, Myers, McCoy, Po-Chedley,188

et al., 2020) by using the responses of LWP to warming combined with the susceptibil-189

ity of radiation to liquid. Then, we constrain the LWP response to warming of GCMs190

by the observed covariability between LWP and large-scale meteorology, focusing on the191

role of hydrological response on SO SWFB . Following this, we use satellite observations192

to calculate the susceptibility of radiation to liquid. Combining the constraints on LWP193

response and radiative susceptibility, we produce a constraint on the SO SWFB . The194

paper is organized as follows. Section 2 describes the GCMs and observations, the sim-195

plified physical model, and how observations are used to constrain GCM SWFB . In sec-196

tion 3, we conduct step-by-step constraints on the LWP response, radiative susceptibil-197

ity, and the SO SWFB of GCMs. Section 4 presents conclusions of this study and sug-198

gestions for future work on constraining extratropical SWFB .199

2 Data and Methodology200

2.1 Data201

We use 50 GCMs participating in CMIP5 (20) and CMIP6 (30) to provide the prior202

distribution of SO SWFB . GCMs and their SO (40−85oS) SWFB are listed in Table203

S1. The SWFB for all GCMs are provided by Zelinka, Myers, McCoy, Po-Chedley, et al.204

(2020). For each GCM, Zelinka, Myers, McCoy, Po-Chedley, et al. (2020) calculate the205

response of SWCRE (clear-sky minus all-sky upwelling SW flux at TOA) to warming in206

the fully coupled 150-year CO2 quadrupling (abrupt4xCO2) simulation. SWFB is ob-207

tained by adjusting the SWCRE response for non-cloud influences. This was completed208

by employing all- and clear-sky radiative kernels to discern the change in SWCRE due209

to clouds from other perturbations (e.g., water vapor, surface albedo, and external forc-210

ing) (Huang et al., 2017; Soden et al., 2008; Shell et al., 2008). The SWFB output is spatially-211

resolved (1o gridded) the region 90oS - 90oN .212

We use monthly-mean LWP, global-mean near-surface temperature (GMT), large-213

scale meteorology, and TOA SW flux from fully-coupled preindustrial control (piControl)214

and abrupt4xCO2 GCM simulations to construct a simplified physical model linking vari-215

abilty in LWP to SWFB . Using monthly-mean output instead of higher temporal res-216

olution output allowed us to survey nearly all CMIP5 and CMIP6 GCMs. LWP is the217

column-integrated liquid water mass averaged over cloudy and cloud-free portions of the218

model gridbox, which can be related to in-cloud LWP and cloud fraction since LWP ≈219

cloud fraction × in-cloud LWP. LWP is computed as the difference between CMIP vari-220
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ables clwvi (total condensed water path) and clivi (ice water path, IWP). We calculate221

the change in GMT (tas) in each GCM to normalize the change in LWP for consistency222

with the calculation of SWFB (Zelinka, Myers, McCoy, Po-Chedley, et al., 2020). Four223

descriptors of large-scale meteorology are used to predict the SO LWP: surface skin tem-224

perature (Ts; labeled ts in CMIP output); precipitation minus evaporation (P−E; pr225

and hfls), a proxy for moisture convergence ; lower-tropospheric stability (LTS; calcu-226

lated from ta at 700 mb, ps, and ts) (Klein & Hartmann, 1993), and subsidence at 500227

mb (ω500; wap). Note that Ts refers to the skin temperature of Earth’s surface, which228

differs from the near-surface air temperature used to calculate GMT (output from CMIP229

as tas). For the open ocean, Ts is the sea surface temperature. GCM radiative suscep-230

tibility is calculated from the TOA albedo (α calculated from the CMIP outputs rsut/rsdt),231

LWP, and clear-sky albedo (αcs = rsutcs/rsdt) (section 2.2.4). Anomalies (between232

abrupt CO2 quadrupling and pre-industrial control) are computed as the difference be-233

tween the mean of years 121-140 of abrupt4xCO2 and the average of piControl simu-234

lations following Bjordal et al. (2020); Myers et al. (2021).235

Satellite observations and reanalysis are used to constrain the LWP covariance with236

meteorology and the radiative covariance with LWP. Monthly-mean LWP is provided237

by the Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP) (Elsaesser238

et al., 2017b). MAC synthesizes passive microwave observations of cloud LWP from mul-239

tiple satellites. It provides 1o gridded total LWP output averaged over cloudy and cloud-240

free scenes, which makes it directly comparable to GCM LWP. However, microwave re-241

trievals are only available over open water, which limits our ability to constrain the LWP242

response over sea ice.243

Monthly-mean GMT and large-scale meteorology are described by Modern-Era Ret-244

rospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis (Gelaro,245

McCarty, Suárez, et al., 2017). LWP, GMT, and large-scale meteorology observations246

from 1992 to 2016 are used to test whether the chosen large-scale meteorology can pre-247

dict observed LWP (section 3.1.1). The observed covariance between LWP and mete-248

orology is used to constrain the GCM LWP response (section 3.1.2). Monthly-mean TOA249

SW fluxes are provided by the Clouds and the Earth’s Radiant Energy System (CERES)250

Energy Balanced and Filled (EBAF) Edition 4.1 product (Loeb et al., 2018b). The ob-251

served clear-sky flux in Edition 4.1 is adjusted to be consistent with the definition of GCM252

clear-sky flux (Loeb et al., 2020). The TOA SW fluxes and LWP from 2003 to 2016 are253

used to constrain the GCM radiative susceptibility (section 3.2) based on the availabil-254

ity of CERES and MAC-LWP data.255

2.2 Methods256

2.2.1 Simplified Physical Model for Predicting SW Cloud Feedback257

In this work we seek to understand drivers of SWFB . To this end, we develop a258

simplified physical model to predict the SO SWFB . To give context to and motivate this259

analysis we provide a brief survey of the cloud and radiation response to warming in CMIP5260

and CMIP6 GCMs. Figure 1a shows the SWFB and LWP responses to increases in GMT261

for the GCMs surveyed in this study (written as ∆LWP/∆GMT ). Across GCMs, the262

LWP response is anti-correlated with model SWFB and reproduces the dipole pattern263

of feedback in the SO (Figure 1b). GCMs with a larger increase in LWP in response to264

rising GMT tend to have more strongly negative SWFB . While LWP generally increases265

with GMT, there are a few GCMs reporting decreasing LWP after the first few degrees266

of warming (Figure 1b). One goal of this study is to understand why these models be-267

have differently from the majority of GCMs where LWP increases in step with GMT (sec-268

tion 3.1.3). This correspondence between LWP response to warming and SWFB in the269

SO suggests that LWP can be used to describe how cloud macrophysical state drives cloud270

feedback in this region, consistent with previous studies (McCoy et al., 2022).271
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A simplified, but physical, model can be built to predict SWFB based on the link-272

age between the change in liquid cloudiness and its effect on TOA radiative flux. SWFB273

is the change in upwelling SW flux at TOA (∆SW↑) due to the adjustment of cloud prop-274

erties, normalized by the change in GMT (∆SW↑C/∆GMT ) (Zelinka, Myers, McCoy,275

Po-Chedley, et al., 2020). Because the downwelling SW flux at TOA (SW↓) is only a func-276

tion of months and latitudes, local SWFB at a given month is proportional to the cloud-277

induced change in TOA albedo (α = SW↑/SW↓) and normalized by GMT (∆αC/∆GMT ).278

In turn, the response of α to warming can be approximated as the product of the sus-279

ceptibility of α to liquid (∂α/∂LWP ) and the response of cloud liquid to warming (∆LWP/∆GMT ),280

as follows281

SWFB = −∆SW↑C

∆GMT
∝ − ∆αC

∆GMT
∼ − ∂α

∂LWP
· ∆LWP

∆GMT
(1)282

This model derives from previous work (McCoy et al., 2022). Equation 1 is used283

to predict GCM SWFB calculated from radiative kernels (Zelinka, Myers, McCoy, Po-284

Chedley, et al., 2020). Equation 1 makes several simplifications based on the limitations285

of GCMs and observational data. Two simplifications central to the formulation of equa-286

tion 1 are detailed below.287

First, SWFB is proportional to ∆αC/∆GMT for a given latitude and time. As men-288

tioned in section 2.1, LWP observations are only available over open water, so we can289

not provide apples-to-apples observational constraints on the ∆LWP/∆GMT and ∂α/∂LWP290

for high latitudes. We average ∆LWP/∆GMT and ∂α/∂LWP to allow regional con-291

straints.292

Second, we neglect changes in albedo (∆αC) driven by changes in ice cloud in re-293

sponse to warming. We make this approximation for two reasons. First, there is no equiv-294

alent observational data set to MAC-LWP for IWP, making it difficult to offer an effec-295

tive observational constraint on the response of IWP to global warming. Second, IWP296

response (∆IWP ) to warming contributes minimally to a GCM SWFB in this region297

(McCoy et al., 2022). This is due to a combination of the smaller magnitude of ∆IWP/∆GMT298

compared to ∆LWP/∆GMT in the SO (McCoy et al., 2016) and the weaker scatter-299

ing of SW radiation per unit mass of ice compared to liquid due to the smaller size of300

typical liquid droplets relative to ice crystals (Liou, 2002; McCoy et al., 2014). Section301

3.3 evaluates the effect of neglecting ice on the results of this study.302

As with any approximate model, the predictive ability of our model is degraded303

by the simplifications. The model in Equation 1 is balance between simplicity and ac-304

curacy. Uncertainty introduced by the simplifications will be reflected in the statistical305

uncertainty in the equation 1 prediction of GCM-derived SWFB . This is similar to other306

studies seeking to develop a simplified, but interpretable, model that can explain vari-307

ability in the Earth system (Held & Soden, 2006; Qu et al., 2015). We constrain the SO308

SWFB by providing constraints on the GCM LWP response (∆LWP/∆GMT ) and the309

radiative susceptibility (∂α/∂LWP ) separately. Constraint methods are discussed in the310

following sections.311

2.2.2 Prediction of LWP using Cloud-Controlling Factor Analysis312

In this section we examine the linkage between LWP and large-scale meteorology.313

The large-scale environmental factors affecting local cloud properties are referred to as314

cloud-controlling factors (Stevens & Brenguier, 2009). CCF analysis is based on the idea315

that the response of cloud properties to global warming can be expressed by a first-order316

Taylor expansion in CCFs (Klein et al., 2017). One application of this framework in the317

literature is to use observations to constrain LWP response to GCM-predicted changes318
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in CCFs (Qu et al., 2015; Klein et al., 2017). Following Qu et al. (2015), we predict the319

response of LWP to GMT as320

∆LWP

∆GMT
=

∑
i

∂LWP

∂Xi

∆Xi

∆GMT
+Res (2)321

where Xi are CCFs. Equation 2 decomposes LWP response to GMT into the LWP re-322

sponses to CCFs and a residual term. LWP response to GMT induced by each CCF is323

a product of the sensitivity of LWP to each CCF (∂LWP/∂Xi) and the response of that324

CCF to GMT (∆Xi/∆GMT ). The CCF model shown in equation 2 is trained on piControl325

simulations of each GCM to calculate ∂LWP/∂Xi. The ∆Xi/∆GMT term is given by326

the differences between piControl and abrupt4xCO2 simulations of each GCM. Com-327

pared to clouds, CCFs suffer from less parametric uncertainty in GCMs because they328

are aspects of the resolved large-scale processes (Qu et al., 2015; Klein et al., 2017). Us-329

ing equation 2, we can provide a constraint on the LWP response to GMT by replacing330

the ∂LWP/∂X derived from piControl simulations of GCMs with the values derived331

from observations and using GCM estimates of ∆Xi/∆GMT . As discussed in the in-332

troduction, an important assumption underlying CCF analysis is that the relationships333

between clouds and CCFs are time-scale invariant (Qu et al., 2015; Klein et al., 2017).334

We test this assumption in section 3.1.335

The CCFs (Xi) considered in this study are surface skin temperature (Ts), precip-336

itation minus evaporation (P−E), lower tropospheric stability (LTS) (Klein & Hart-337

mann, 1993; Slingo, 1980), and 500 mb subsidence (ω500). These CCFs are consistent338

with previous studies of covariance between extratropical clouds and meteorology (McCoy,339

Field, Bodas-Salcedo, et al., 2020; McCoy et al., 2022; Zelinka, Myers, McCoy, Po-Chedley,340

et al., 2020; Zelinka et al., 2018).341

We use P−E as a proxy for moisture convergence because moisture convergence342

is not output from GCMs participating in CMIP5 and CMIP6. These two terms differ343

by the change in moisture storage over time (Seager & Henderson, 2013). To demonstrate344

that these quantities are nearly identical for our study, we examine the fifth generation345

European Centre for Medium-Range Weather Forecasts (ECMWF; ERA5) for both vari-346

ables, P − E is a close approximation of moisture convergence in 40 − 85oS when we347

averaged them in 5o x 5o gridbox of monthly output (Figure S1 in the supplementary348

information). The discrepancy between these two variables in GCMs should be smaller349

than in reanalysis because of the absence of an analysis increment in GCMs (Seager &350

Henderson, 2013). For these reasons, we will average GCM LWPs and CCFs as well as351

observations over 5o x 5o gridboxes within 40−85oS to conduct the CCF analysis. The352

LWP response is predicted by the CCF model (Equation 2) in each 5o x 5o gridbox in353

the SO.354

P−E is consistently positive in 40−85oS across all GCMs in the mean state cli-355

mate (piControl simulation) (gray lines in Figure S2). In abrupt4xCO2 simulations, P−356

E reduces in the 40 − 50oS region and enhances across the 50 − 85oS region (colored357

lines in Figure S2). This is consistent with a poleward expansion of subtropical drying358

region under global warming (Siler et al., 2018; Bonan et al., 2023) and a robust moist-359

ening of latitudes poleward of 50oS (Held & Soden, 2006). Comparing moisture conver-360

gence response to warming and SWFB suggests that 50oS may act as a demarcation be-361

tween positive SWFB (negative ∆LWP/∆GMT ) and negative SWFB (positive ∆LWP/∆GMT )362

estimated from abrupt4xCO2 simulations of CMIP5 and CMIP6 GCMs (Figure 1a) due363

to changes in moisture convergence regime. This is consistent with the notion that the364

hydrological response to warming (Held & Soden, 2006) sets some of the pattern of SW365

cloud feedback in the SO (McCoy et al., 2022). To characterize this feature, we present366

our analysis separately for the 40−50oS and 50−85oS regions (sections 3.1.2 and 3.3).367
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We use monthly-mean data to examine the covariance between LWP and P − E.368

This enables averaging across the synoptic systems that drive extratropical moisture con-369

vergence (Field & Wood, 2007). This approach is not particularly new and many pre-370

vious studies have leveraged monthly mean CCFs to predict extratropical cloudiness (Zelinka,371

Myers, McCoy, Po-Chedley, et al., 2020; Zelinka et al., 2018; Ceppi, McCoy, & Hartmann,372

2016). We believe this averaging doesn’t substantially degrade our results based on pre-373

vious studies relating LWP in extratropical cyclones to moisture convergence (McCoy374

et al., 2019; McCoy, Field, Bodas-Salcedo, et al., 2020). We don’t expect that monthly375

averages will strongly degrade the predictive capacity of our CCF model since previous376

studies examining daily means suggest fairly linear dependence of LWP on CCFs (McCoy377

et al., 2018; McCoy, Field, Bodas-Salcedo, et al., 2020). We test whether performing our378

analysis on monthly means degrades the predictive ability of our model using two out-379

of-sample tests.380

2.2.3 Cloud Regime Temperature-dependence381

CCF analysis has been used in numerous studies to predict the response of clouds382

to warming in the tropics and subtropics (Qu et al., 2015; Zhai et al., 2015; Myers & Nor-383

ris, 2016; Brient & Schneider, 2016; McCoy et al., 2017; Myers et al., 2021; Wall et al.,384

2022) as well as the extratropics (Ceppi, McCoy, & Hartmann, 2016; Zelinka, Myers, Mc-385

Coy, Po-Chedley, et al., 2020; Zelinka et al., 2018). The SO region present a challenge386

to a CCF model that lumps together all clouds into a single set of sensitivities between387

clouds and CCFs (i.e, equation 2). From 40− 85oS, Ts varies from 210 K in the aus-388

tral winter over the Antarctic continent to around 290 K in the summer subtropics. The389

temperature of the atmosphere and clouds varies along with Ts. The wide range of cloud390

temperatures results in a combination of mixed-phase clouds and liquid-only clouds in391

the SO (Tan et al., 2016).392

The formation and removal processes governing liquid and mixed-phase clouds are393

very different (Morrison et al., 2012). Precipitation efficiency is higher in mixed-phase394

clouds than in liquid-only clouds due to the rapid growth of ice crystals at the expense395

of liquid drops (Storelvmo & Tan, 2015). The higher precipitation efficiency of mixed-396

phase clouds results in the majority of mid-latitude precipitation events originating as397

snow (Field & Heymsfield, 2015). Previous studies suggest that mixed-phase and liquid-398

only clouds will respond differently to global warming (Tan et al., 2016). GCM low cloud399

optical depth increases with warming for cold clouds and decreases with warming for warm400

clouds (Gordon & Klein, 2014; Terai et al., 2016). This behavior is also found in in-situ401

observations (Terai et al., 2019).402

Because of the differing cloud physics and potential cloud feedback processes aris-403

ing due to cold (mixed-phase) and warm (liquid-only) clouds, we split our CCF model404

over temperature. The intent of splitting our CCF model over temperature is to sepa-405

rate the SO into regions that are only mixed-phase and only liquid-only clouds, which406

is not really possible in the context of climate model output at monthly resolution, but407

to separate the SO into regimes that are dominated by different processes and therefore408

LWP covaries with CCFs differently. We count a 5o x 5o gridbox in 40−85oS as a cold409

(warm) regime gridbox if the mean Ts of gridbox is lower than (larger or equal to) a thresh-410

old Ts (TRTs
). This results in a CCF model split over TRTs

:411
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∆LWP

∆GMT
|Cold =

∑
i

(
∂LWP

∂Xi
|Cold ·

∆Xi

∆GMT
|Cold) +Res1

Ts < TRTs

∆LWP

∆GMT
|Warm =

∑
i

(
∂LWP

∂Xi
|Warm · ∆Xi

∆GMT
|Warm) +Res2

Ts ≥ TRTs

(3)412

We have two goals in our methodology for determining TRTs for each GCM. First,413

we want to make the determination of TRTs
objective for each GCM. Second, we want414

to make the determination of TRTs
in a way that allows an analogous calculation for ob-415

servations. For each GCM, TRTs
is defined as the threshold Ts that maximizes the ex-416

plained variance in mean-state (piControl) LWP by the CCF model in equation 3. For417

each GCM we iterate through possible TRTs values within the entire range of Ts within418

the SO latitudes and calculate the coefficient of determination (R2) of equation 3 when419

predicting piControl LWP (Figure S3 in the supplementary information). Equation 3420

explains more than 70 % of the variance of piControl LWP across GCMs. One question421

is whether TRTs
is time scale invariant. In Figure S4 of the supplementary information,422

we calculate TRTs
using abrupt4xCO2 data instead of piControl . The TRTs

trained423

using abrupt4xCO2 simulations correlates with TRTs trained from piControl simulations,424

supporting that TRTs is time-scale invariant. We use the TRTs trained on piControl sim-425

ulations to predict the LWP response to warming in abrupt4xCO2 simulations (section426

3.1.2). The TRTs
for most GCMs is around 270 K (Figure S3), which generally sepa-427

rates the clouds over cold ice or land surfaces from the open ocean. Komurcu et al. (2014)428

shows that the supercooled liquid fraction in GCMs dramatically drops when cloud tem-429

perature is lower than 255 K. Assuming a typical extratropical environment with cloud430

base height of 2−3 km and lapse rate of 6.5 K/km, its Ts would be close to 270 K. This431

is consistent with the idea that mixed-phased and liquid-only clouds have different cloud432

physics and response behaviors to their environments.433

Because microwave radiometers do not retrieve LWP over ice (Elsaesser et al., 2017b),434

we need to consider sampling differences between GCMs and observations when provid-435

ing observational constraints. The region for which valid data is available from MAC is436

very similar to GCM warm regimes (Figure S5). In the remainder of this study obser-437

vational constraint is only available for the warm regime of equation 3 and all the cold438

regime observations are treated missing due to lack of observations.439

2.2.4 Radiative Susceptibility440

In equation 1, the response of LWP to GMT is connected to its SW radiative ef-441

fect through a radiative susceptibility term (∂α/∂LWP ). This term describes how a change442

in LWP affects α while keeping other factors fixed. Following McCoy et al. (2022), the443

radiative susceptibility is estimated by training the multi-linear regression model444

α = c1 ∗ LWP + c2 ∗ αclear−sky + c3 (4)445

where c1 is ∂α/∂LWP . The regression model is trained on piControl GCM simulations446

and observations to obtain radiative susceptibilities for GCMs and observations. Train-447

ing is performed at the native spatial resolution of the data. TOA albedo α is a func-448

tion of clear-sky albedo (αcs) and LWP, while LWP is in turn affected by cloud areal ex-449

tent (Bender et al., 2017) and cloud optical depth (Gordon & Klein, 2014). By includ-450

ing αcs as a predictor we seek to separate the change in α contributed by changes in clouds451

from non-cloud perturbations (e.g., surface conditions). This is consistent with calcu-452

lating SWFB by adjusting the SWCRE response for non-cloud influences using radia-453

tive kernels (Zelinka, Myers, McCoy, Po-Chedley, et al., 2020; Soden et al., 2008).454
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One way to think of equation 4 is a very simple radiative kernel. To enable the use455

of equation 4 we subset our training data to remove cases where surface albedo or near456

surface sun angle strongly affect TOA albedo. The sensitivity of TOA upwelling SW flux457

to changes in cloudiness over a bright surface is low because of the high surface albedo.458

Consequently SWFB is nearly zero over surface ice (i.e. the Antarctic continent) (Shell459

et al., 2008). We train equation 4 over open water to minimize the effect of extremely460

bright surfaces on the calculation of ∂α/∂LWP . We subset training data using a clear-461

sky albedo threshold (TRαcs). We evaluate the sensitivity of ∂α/∂LWP to the value of462

TRαcs in section 3.2. Increasing solar zenith angle increases albedo (McCoy et al., 2018).463

Compounding this effect, LWP decreases in winter while solar zenith angle increases. Data464

from a single month is used to calculate the radiative susceptibility ∂α/∂LWP to reduce465

the effects of spurious covariation between solar zenith angle and LWP. We choose Jan-466

uary because austral summer is the time that the change in LWP contributes the most467

to SWFB when insolation is strong.468

3 Results469

3.1 Predicting LWP470

The first step to providing an observational constraint on SWFB using equation471

1 is to constrain the response of SO LWP to warming using observed covariability be-472

tween CCFs and LWP. To understand the uncertainty in our CCF-based constraint of473

LWP response we need to evaluate whether the relationships between LWP and CCFs474

are invariant across time scales (Klein et al., 2017). Two out-of-sample tests are performed475

to test time scale invariance, and more broadly, to test the predictive skill of the CCF476

model. First, we train a CCF model (equation 2) on monthly-mean observations for a477

short period and use it to predict the interannual variability of LWP back to 1992. This478

is shown in section 3.1.1. Second, we train the regression model in equation 3 on monthly-479

mean piControl simulations and use it to predict the GCM-simulated response of LWP480

to CO2 quadrupling. This is discussed in section 3.1.2. Following these tests, we use the481

LWP-CCF relationships obtained from observations to constrain the LWP responses in482

GCMs in section 3.1.2. In section 3.1.3, we discuss GCM LWP responses by apportion-483

ing ∆LWP/∆GMT among the CCFs.484

3.1.1 Predicting Historical Trends in LWP485

Observations of LWP are available from 1992-2016. We this period into a train-486

ing period (2012-2016) and a validation period (1992-2011). Equation 2 is trained on 2012-487

2016 to calculate ∂LWP/∂Xi. Equation 2 is used to predict the interannual variation488

of LWP 1992-2011. MAC-LWP observes an increase in SO LWP over the past two decades,489

consistent with Manaster et al. (2017) and Norris et al. (2016) (Figure 2a). The predicted490

LWP from equation 2 broadly reproduces the positive trend of LWP during the period491

from 1996 onward (Figure 2a). Before 1996, the LWP trend predicted by the CCF model492

is negative. This may be because the CCFs predicted by MERRA-2 are reliant on the493

observations being ingested into the reanalysis. Many fewer observations of precipita-494

tion are available before the mid-1990s (Gelaro, McCarty, Suárez, et al., 2017). The lack495

of observational input to reanalysis may lead to the disagreement between the LWP pre-496

dicted by the CCF model and LWP observations in the early 1990s. During the period497

where numerous observations were available to the MERRA-2 reanalysis, the ability of498

CCF model in equation 2 to reproduce the decadal-scale trend and interannual variabil-499

ity of LWP in an out-of-sample test supports the time-scale invariance of ∂LWP/∂Xi.500

The ability of the CCF model to reproduce the observed trend in LWP is not sensitive501

to the choice of training and validation periods (Figure S6).502

Equation 2 can be used to decompose the predicted trend into contributions from503

individual CCFs. The positive decadal trend in SO LWP can be largely explained by the504
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increase in P−E (Figure 2b). Increases in Ts explain only a small fraction of the LWP505

trend. Stability and large-scale subsidence have negligible effects on the SO LWP on a506

decadal scale. Increased P −E is related to the increased moisture content in the ex-507

tratropical atmosphere (Held & Soden, 2006). This result suggests that the hydrolog-508

ical cycle has played an important role in the response of SO LWP to increased GMT509

over the past two decades (Norris et al., 2016; Manaster et al., 2017).510

3.1.2 Predicting LWP response to CO2 Quadrupling511

Following our evaluation of time-scale invariance of ∂LWP/∂Xi in observations,512

we evaluate whether the ∂LWP/∂Xi trained using piControl GCM data can be used513

to predict the LWP response in abrupt4xCO2 simulations. Figure 3 shows the changes514

in LWP in response to warming (∆LWP/∆GMT ) between the average of piControl and515

the mean of years 121-140 of abrupt4xCO2 simulations (Myers et al., 2021; Bjordal et516

al., 2020). Predicted LWP responses are shown in three latitude bands: 40−85oS (Fig-517

ure 3 left); 40−50oS (Figure 3 middle); and 50−85oS (Figure 3 right). The CCF model518

(equation 3) predicts 70% of GCM variance in ∆LWP/∆GMT in the latitude band en-519

compassing the SO (Figure 3b). This supports the time-scale invariance of ∂LWP/∂Xi.520

The explained variance in the 40−50oS latitude band is 60% (Figure 3d). This decrease521

in explained variance relative to the entire SO may be related to the hydrological response522

in this region. While moisture is converged into 40− 50oS in the mean-state climate,523

the convergence pattern becomes less robust at the end of abrupt4xCO2 simulations. Some524

GCMs display drying and some display moistening in 40−50oS (Figure S2). In the lat-525

itude band where warming simulations consistently predict moistening (50−85oS), the526

explained variance in ∆LWP/∆GMT is 86% (Figure 3f).527

Because observational constraint from MAC-LWP is only available in the warm regime,528

we separate the predictions of CCF model into warm and cold regimes for each latitude529

band. The LWP response to GMT in the warm regime predicts the majority of total LWP530

response across latitude bands (Figure 3ace). Only the warm regime exists in the 40−531

50oS region, so r2 = 1 (Figure 3c). The explained variance in ∆LWP/∆GMT by warm532

regime is still high in the 50− 85oS region (r2 = 0.64, Figure 3e).533

We calculate how observations in the warm regime in each latitude band constrain534

overall ∆LWP/∆GMT . The ∂LWP/∂Xi for each GCM in the warm regime is replaced535

with the ∂LWP/∂Xi computed from observations yielding a constraint on ∆LWP/∆GMT536

in the warm regime. This constraint is propagated from the warm regime to the aggre-537

gate of both regimes. Uncertainty in the best fit line fit relating the CCF prediction of538

the warm regime to the CCF prediction of both regimes is estimated by Jackknife re-539

sampling (Tukey, 1958). We intersect the shaded regions on the x-axis in Figure 3ace540

with the best-fit lines and their uncertainties to propagate the warm regime constraint541

to both regimes for each latitude band. The observational constraint on ∆LWP/∆GMT542

for each latitude band is then propagated through the uncertainty from the CCF model.543

In Figure 3bdf, the constrained ranges from the y-axis of Figure 3ace are denoted via544

intersection of the brown shading with the x-axis. The best fit lines and uncertainty in545

Figure 3bdf are used to propagate the constraints on the CCF model predictions to the546

GCM simulated LWP response. These constraints are used in section 3.3 to constrain547

SWFB . Once propagated, observational constraints on the warm regime point towards548

a moderate ∆LWP/∆GMT across the SO.549

Potential systematic biases in the passive microwave observations of LWP can be550

propagated to uncertainty in our constraint on ∆LWP/∆GMT . Observational biases551

in LWP impact constraints on ∆LWP/∆GMT by affecting the observed sensitivities552

of LWP to CCFs (∂LWP/∂X). Potential systematic biases in microwave LWP obser-553

vations are estimated following Greenwald et al. (2018). The net bias of LWP in the SO554

(poleward to 40oS) should be smaller than +10 g/m2 and is relatively spatially uniform555
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(Figure 17(f) and Figure 19(a) in Greenwald et al. (2018)). The LWP percentage bias556

is ± 10.8%, calculated by dividing ±10 g/m2 by the averaged LWP during the obser-557

vational training period. We then recalculate ∂LWP/∂Xi by perturbing the observa-558

tional values of LWP by ±10.8%. Considering potential observational LWP bias slightly559

loosens the constraint of 40−85oS ∆LWP/∆GMT from [2.76, 4.19] g m2 K−1 to [2.60,560

4.47] g m2 K−1. The effect of observational bias is propagated through to the constraint561

on the SO SWFB in section 3.3.562

3.1.3 CCF Contributions to LWP Response to CO2 Quadrupling563

In this section we show the sensitivities of LWP to CCFs (∂LWP/∂Xi) as well as564

each CCF’s contribution to the LWP response to warming following similar analysis in565

previous studies (Zelinka, Myers, McCoy, Po-Chedley, et al., 2020). ∂LWP/∂Xi for each566

GCM (Figure 4a) can be scaled by the change in each CCF between piControl and the567

end of abrupt4xCO2 simulation (∆Xi/∆GMT ; Figure 4b) to yield the contribution of568

each CCF to ∆LWP/∆GMT (Figure 4c; equation 3). Cold and warm regime predic-569

tions are shown separately. Observed ∂LWP/∂X are only available for the warm regime570

(Figure 4a).571

The dependence of LWP on CCFs across GCMs and observations (Figure 4a) is572

broadly consistent with previous studies. The coefficient relating LWP and Ts (∂LWP/∂Ts)is573

positive across all GCMs for the cold regime. Agreement between GCMs on the sign of574

∂LWP/∂Ts decreases for the warm regime. This is consistent with previous studies sug-575

gesting that cold cloud optical depth increases in response to warming (Gordon & Klein,576

2014; Terai et al., 2019), mostly due to the increased cloud water content (Betts & Harsh-577

vardhan, 1987). Terai et al. (2019) suggests that the cloud optical depth for warm clouds578

may decrease or stay constant with increasing temperature owing to the reduced cloud579

adiabaticity. The coefficient relating LWP to P − E (∂LWP/∂P − E) is positive for warm580

and cold regimes, which is consistent with previous literature (McCoy et al., 2019; Mc-581

Coy, Field, Bodas-Salcedo, et al., 2020). The coefficient relating LWP and LTS (∂LWP/∂LTS)582

is mostly positive in the warm regime of GCMs, while the coefficient relating LWP to583

ω500 (∂LWP/∂ω500) is small. This is consistent with previous work on boundary layer584

cloudiness (Zelinka et al., 2018; Myers & Norris, 2015, 2013). Observed ∂LWP/∂Ts and585

∂LWP/∂P − E are positive and much larger than ∂LWP/∂LTS and ∂LWP/∂ω500.586

Both Ts and P − E increase with warming in warm and cold regimes (Figure 4b).587

LTS increases with warming in the warm regime but decreases in the cold regime. This588

pattern may be related to the poleward shift of the Hadley cell (stabilizing the warm regime589

lower troposphere) and the poleward shift of the Southern Hemisphere storm track (desta-590

bilizing the cold regime lower troposphere) simulated by GCMs (Barnes & Polvani, 2013;591

Bender et al., 2012). The variation in large-scale subsidence is relatively small compared592

to other CCFs.593

Combining ∂LWP/∂Xi and the response of CCF to warming (∆Xi/∆GMT ) al-594

lows us to apportion ∆LWP/∆GMT among CCFs. In the warm regime, GCMs have595

roughly equivalent contributions due to Ts, P−E, and LTS. In the cold regime, P−596

E and Ts changes contribute the most (Figure 4c).597

Among the GCMs surveyed here (Table S1), the second Community Earth System598

Model (CESM2), its variants (CESM2-WACCM, CESM2-FV2, CESM2-WACCM-FV2),599

and E3SM-1-0 predict a decrease in LWP after the first few degrees of warming in abrupt4xCO2600

simulations (Figure 1b), which is consistent with previous studies (Bjordal et al., 2020).601

These models share a similar atmosphere component (Danabasoglu et al., 2020; Golaz602

et al., 2019; Rasch et al., 2019). Focusing on CESM2 in Figure 4, characterizes how de-603

creases in LWP as GMT increases relate to CCFs. The prediction of CESM2’s LWP re-604

sponse to warming by equation 3 trained on piControl is less skillful than the predic-605

tion for other GCMs (Figure S7), but it is improved relative to previous CCF-based pre-606
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dictions (McCoy et al., 2022). While work is required to more accurately predict the CESM2607

LWP response using a CCF model, the decreased LWP in the warm regime is captured608

by equation 3 (Figure 4c and Figure S7). Decomposing the prediction from equation 3609

suggests that the LTS-induced increase in CESM2 LWP in the warm regime is offset by610

decreases related to Ts. CESM2 displays the lowest warm regime ∂LWP/∂P − E and611

the P−E contribution to LWP response is small (Figure 4ac). Relative to observations612

CESM2 overestimates ∂LWP/∂LTS and underestimates ∂LWP/∂P − E in the warm613

regime. Warm regime ∂LWP/∂Ts is negative in CESM2, but is positive in observations614

(Figure 4a). Warm regime Ts, P −E, and LTS increase in response to GMT (Figure615

4b) and the net effect is a negative trend in LWP beyond the first degree of warming with616

an the overall near-zero response of LWP to warming.617

As mentioned in the introduction, the phase shift in mixed-phased clouds is one618

of the potential mechanisms that may contribute to the increase in SO LWP that in turn619

drives a negative SWFB (Tan et al., 2016). Bjordal et al. (2020) attribute the high cli-620

mate sensitivity of CESM2 to its large mean-state supercooled liquid fraction (i.e., small621

ice fraction) in the SO because its low-level clouds are easily shifted to being liquid-dominated622

and the contribution of the negative cloud phase feedback reduces as GMT increases.623

We examine this idea in the context of our analysis framework by examining the state624

dependence of ∂LWP/∂Ts. In the context of our CCF model, ∂LWP/∂Ts may indicate625

the contribution to LWP change by shifts between ice and liquid. As with any other cor-626

relative analysis caution should be used in interpreting this metric since it may also re-627

lated to other processes such as shifts in the moist adiabat.628

Following Bjordal et al. (2020), we calculate ∂LWP/∂Ts in 15-year chunks dur-629

ing the 150 years of abrupt4xCO2 simulations to contrast how this sensitivity evolves630

with warming across GCMs (Text S1). We find that CESM2 is an outlier among the GCMs631

surveyed here in regards to how ∂LWP/∂Ts changes with time (Figure S8 in the sup-632

plementary information). ∂LWP/∂Ts shifts toward more negative values as warming633

continues. This behavior is not displayed in other GCMs. This is consistent with the anal-634

ysis of CESM2 in Bjordal et al. (2020). For GCMs like CESM2 that have large super-635

cooled liquid fractions, as the climate warms the ice available for transition to liquid is636

decreased and the phase shift-related changes in LWP are reduced. This may explain the637

non-monotonic response of LWP to warming that is displayed in CESM2.638

3.2 Radiative Susceptibility639

Following equation 1, we argue that SWFB can be approximated as proportional640

to the product of change in LWP and the sensitivity of albedo to LWP. Across GCMs,641

∂α/∂LWP vary by nearly a factor of seven. One emergent behavior in GCMs is an in-642

verse relationship between ∂α/∂LWP and mean-state LWP. This is consistent with pre-643

vious studies (McCoy et al., 2022). TOA albedo and cloud fraction (areal coverage of644

clouds) are approximately linearly related until the scene becomes overcast (Bender et645

al., 2017). The effect of in-cloud LWP on albedo saturates at high in-cloud LWP (Lacis646

& Hansen, 1974). The SO mean-state LWP is a function of cloud fraction and in-cloud647

LWP. A GCM that simulates high mean-state LWP has fewer clear-sky pixels that can648

be filled and is closer to radiative saturation. As LWP increases with warming, additional649

liquid affects α less efficiently by only increasing the in-cloud liquid rather than increas-650

ing cloud coverage.651

Radiative susceptibility calculated from CERES and MAC-LWP observations is652

low relative to GCMs (Figure 5). This result suggests that the too-bright and too-homogeneous653

bias of tropical clouds in CMIP6 GCMs (Konsta et al., 2022) may also exist in the sim-654

ulation of extratropical clouds. One potential uncertainty in estimating ∂α/∂LWP is655

the clear-sky albedo threshold (TRαcs) applied before training the regression model in656

equation 4. We include this uncertainty in the SWFB constraint by calculating ∂α/∂LWP657

–14–



manuscript submitted to JGR: Atmospheres

varying TRαcs
from 0.11 to 0.30 (0.105 is lowest clear-sky albedo for some GCMs). This658

uncertainty range is compounded by potential systematic uncertainty in observed LWP659

as discussed above. When both sources of uncertainty are included, the range of observed660

susceptibility widens from [0.43, 0.90] (kg m−2)−1 to [0.39, 1.01] (kg m−2)−1.661

One intriguing feature of GCMs is that GCMs where SO LWP is more sensitive662

to the hydrological cycle (large ∂LWP/∂P − E) tend to have a weaker radiative response663

(small ∂α/∂LWP ). This results in a buffering between macrophysical cloud response664

to GMT and radiative response to GMT. We examine how radiative and macrophysi-665

cal factors are linked through mean-state LWP. ∂LWP/∂P − E positively correlates with666

mean-state LWP in both cold and warm regimes (Figure 5). This relationship can be667

explained in the context of sources and sinks of cloud liquid content (McCoy, Field, Bodas-668

Salcedo, et al., 2020; McCoy et al., 2022). Source and sink rates of clouds can be writ-669

ten as670

Ksource = esource · rwater vapor

Ksink = esink · rLWP

(5)671

with rates being the product of bulk efficiency coefficients for sources (esource) and sinks672

(esink) and their respective reservoir terms. The reservoir that liquid draws from is wa-673

ter vapor (rwater vapor) while the sink reservoir (precipitation) is cloud liquid (rLWP ).674

In the mean-state climate, sources and sinks are balanced (Ksource = Ksink) and675

esource
esink

=
rLWP

rwater vapor
. (6)676

Following this conceptual model, mean-state LWP is proportional to the relative strength677

of source and sink efficiencies (i.e., esource/esink). If we assume the same water vapor678

(rwater vapor) in the mean-state climates of GCMs, the diversity in model mean-state LWP679

can be traced back to the subgrid-scale parameterization of cloud source and sink pro-680

cesses. Similarity in water vapor climatologies is an assumption, since free-running mod-681

els without a fixed SST will yield slightly different mean-state water vapor paths (Jiang682

et al., 2012). In this conceptual model ∂LWP/∂P − E trained using the GCM mean-683

state climate may act as a proxy for the relative strength of source to sink efficiencies684

(esource/esink ∝ ∂LWP/∂P − E).685

The steady-state framework outlined here provides insight into why the slope of686

∂LWP/∂P − E for the cold regime is larger than the slope for the warm regime (Fig-687

ure 5). In this framework, differences in slope could arise due to a stronger source effi-688

ciency for cold regime clouds due to the larger moist adiabat (Betts & Harshvardhan,689

1987), even though the sink efficiency for cold regime clouds may be larger as well (Field690

& Heymsfield, 2015)691

How does the steady-state framework outlined above inform us of the diversity in692

the GCM LWP responses to warming? The moisture content (rwater vapor) in the ex-693

tratropics increases with GMT. If we assume the relative strength of source-to-sink ef-694

ficiency (esource/esink) is fixed under climate change, a model with larger mean-state sen-695

sitivity of LWP to P − E would simulate a larger increase in LWP. This is consistent696

with GCM behavior and warm regime ∂LWP/∂P − E and ∆LWP/∆GMT covary across697

GCMs (Figure S9 in the supplementary information) with a correlation of r = 0.78.698

3.3 Constraints on Southern Ocean SW Cloud Feedback699

In the proceeding sections we examine the response of SO LWP to GMT predicted700

by CCFs and the response of α to LWP. Combining these terms in equation 1 we eval-701

uate whether our simplified model of SWFB has skill in predicting GCM SWFB . In Fig-702

ure 6, we use the ∆LWP/∆GMT and ∂α/∂LWP calculated from GCMs to predict their703

SWFB calculated using radiative kernels as presented in Zelinka, Myers, McCoy, Po-Chedley,704
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et al. (2020). The ability of the simple model in equation 1 to reproduce SWFB is eval-705

uated in the 40− 50oS and 50− 85oS latitude bands (Figure 6). Equation 1 explains706

54 % of the variance in GCM SWFB averaged over 40−50oS and and 40 % averaged707

over 50− 85oS.708

Based on the observational constraints on ∆LWP/∆GMT (Figure 3) and the ob-709

servational estimate of ∂α/∂LWP (Figure 5), we provide observational constraints on710

SWFB . Observational constraints on the right-hand side of equation 1 predict the con-711

tributions of 40 − 50oS and 50 − 85oS regions’ clouds to global mean cloud feedback712

to be 0.00−0.06 W m−2 K−1 and −0.15−0.01 W m−2 K−1. These ranges are calcu-713

lated by taking the shaded y-ranges in Figure 6 and scaling them by the ratio of the area714

in the latitude band to global surface area. The constraint on 50−85oS SWFB is con-715

sistent with the constraint −0.10−0.0 W m−2 K−1 calculated by McCoy et al. (2022).716

The uncertainties in 40−50oS and 50−85oS SWFB constraints are calculated by com-717

bining uncertainties in ∆LWP/∆GMT constraints and the uncertainty in the estimate718

of ∂α/∂LWP . Uncertainties in the constraints on ∆LWP/∆GMT are due to the in-719

termodel spread in ∆X/∆GMT and the uncertainties propagated from the warm regime720

to latitude bands including both cold and warm regimes (section 3.1.2). The uncertainty721

in ∂α/∂LWP is given by varying the clear-sky albedo threshold (section 3.2). The con-722

straint on 40−50oS SWFB is tighter than for 50−85oS because an observational con-723

straint on ∆LWP/∆GMT is only available in the warm regime, and the 40−50oS re-724

gion is entirely within the warm regime.725

To evaluate the extent to which neglecting ice water path (IWP) changes impact726

our prediction of GCM SWFB , we examined the relative contributions of LWP and IWP727

changes to SWFB in GCMs. We first calculate the changes in IWP with GMT (∆IWP/∆GMT )728

between the mean of years 121-140 of abrupt4xCO2 and the average of piControl sim-729

ulations for all GCMs in this study following the same procedure used in the calculation730

of ∆LWP/∆GMT . The median ∆LWP/∆GMT in 40−85oS is around 10 times larger731

than ∆IWP/∆GMT across GCMs (Figure S10a). To compare the sensitivity of albedo732

to LWP (∂α/∂LWP ) with IWP (∂α/∂IWP ), we first partition the TOA albedo (α) into733

50 LWP/IWP bins. Then we follow the method for calculating radiative susceptibility734

(section 2.2.4) to compute the sensitivities of albedo to liquid versus ice by keeping the735

other variable fixed (Text S2). The product of ∂α/∂LWP (∂α/∂IWP ) and ∆LWP/∆GMT736

(∆IWP/∆GMT ) is a measure of the contribution of LWP (IWP) changes to the response737

of α to per degree warming (∆α/∆GMT ), which is proportional to their contributions738

to SWFB (equation 1). Among the GCMs surveyed here, the median contribution to an739

α response from changes in LWP is inferred to be a factor of 14 larger than that aris-740

ing from changes in IWP (Figure S10b). This result is consistent with the approxima-741

tion in equation 1 that the SO SWFB is dominated by LWP changes and the ability of742

equation 1 to predict the full radiative kernel calculation of SWFB .743

We combine our constraints on SWFB for 40− 50oS and 50− 85oS to compute744

the constraint on 40−85oS SWFB . We take the sum of the area-weighted latitudinal745

constraints in 40−50oS and 50−85oS and propagate their standard errors to estimate746

40−85oS SWFB . The contribution of the SO clouds to the global mean SWFB is con-747

strained to −0.168 − 0.051 W m−2 K−1 with a 95% confidence interval (Figure 7).748

Considering potential systematic error in observations of LWP shifts the constraint on749

40−85oS SWFB to −0.192 − 0.047 W m−2 K−1. The constrained range of SO SWFB750

is a bit wider than the range reported by McCoy et al. (2022), but we have added a new751

constraint from the 40−50oS latitude band and have taken into account the uncertainty752

in radiative susceptibility arising from different αcs thresholds and potential systematic753

uncertainties in observed LWP. Our constraint suggests that 40 − 85oS SWFB is less754

likely to be extremely negative or positive, as simulated by some CMIP6 GCMs. The755

most likely range of the SO SWFB is from moderately negative to weakly positive.756
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4 Conclusions757

In this work we built a CCF regression model to predict the response of the SO (40−758

85oS) LWP to global warming. The CCFs considered in the regression model were sur-759

face skin temperature, precipitation minus evaporation (approximately the moisture con-760

vergence), lower-tropospheric stability, and 500 mb subsidence. Warm and cold clouds761

are regulated by very different microphysical processes and have different responses to762

warming. To allow our CCF regression model to adapt to this, we partitioned the SO763

into cold and warm regimes. This new method increases the robustness of the CCF model764

prediction compared to previous work (McCoy et al., 2022). We used two out-of-sample765

tests to evaluate the predictive ability of our CCF regression model: the ability of our766

CCF model trained on observations to replicate the observed decadal trend in SO LWP767

(section 3.1.1; Figure 2) and the ability of our CCF model trained on the mean-state out-768

put of GCMs to predict their response to CO2 quadrupling (section 3.1.2; Figure 3). Us-769

ing the CCF regression model trained on observations combined with the GCM simu-770

lated changes in CCFs in response to CO2 quadrupling, we were able to provide an ob-771

servational constraint on the change in LWP in response to GMT (∆LWP/∆GMT ) of772

2.76 − 4.19 gm−2K−1 (Figure 3b).773

Ultimately, the quantity we care about in relation to Earth’s radiation budget is774

not cloudiness, but radiative flux. We define a radiative susceptibility to liquid cloud (∂α/∂LWP )775

that we can use to scale the LWP changes in response to warming. We compute ∂α/∂LWP776

from satellite observations and GCM output. The observational constraint suggests that777

most of the GCMs overestimate ∂α/∂LWP (Figure 5), which is consistent with recent778

studies of tropical clouds (Konsta et al., 2022). Satellite observations estimate ∂α/∂LWP779

to be 0.43 − 0.90 (kg m−2)−1.780

GCMs with higher mean-state LWP tend to have lower ∂α/∂LWP (Figure 5)- re-781

sulting in compensation between macrophysical changes in cloud and radiative impact.782

This feature can be connected to the sensitivity of LWP to moisture convergence (∂LWP/∂P − E).783

GCMs with higher ∂LWP/∂P − E simulate higher mean-state LWP. These GCMs tend784

to predict a larger LWP response (∆LWP/∆GMT ) but have a lower ∂α/∂LWP due785

to radiative saturation.786

Approximating SO SWFB as the product of ∂α/∂LWP and ∆LWP/∆GMT pre-787

dicts roughly 50% of the variance in SO SWFB across 50 CMIP5 and CMIP6 GCMs (Ta-788

ble S1) calculated from radiative kernels (Zelinka, Myers, McCoy, Po-Chedley, et al., 2020)789

(Figure 6). Observational constraints on ∆LWP/∆GMT and ∂α/∂LWP produce a con-790

strained range on SO SWFB of −0.168 to 0.051 Wm−2K−1 (95% confidence interval)791

(Figure 7), which suggests a moderate negative to weakly positive SO SWFB . This is792

consistent with previous work (McCoy et al., 2022), but expands the constraint region793

to the entire SO as opposed to just constraining the region where GCMs consistently moisten794

and more fully accounts for observational uncertainty.795

Our analysis suggests some directions of future studies seeking to constrain extra-796

tropical SWFB :797

1. Our analysis identified increased moisture convergence into the SO as a key driver798

of increased LWP. This mechanism ultimately links the global circulation and hy-799

drological cycle to the extratropical SWFB . To better understand this linkage, it800

would be useful to understand how Hadley cell expansion and transient eddies (i.e.801

atmospheric rivers) contribute to long-term variability of the SO moisture bud-802

get.803

2. Due to the lack of microwave observations of LWP over ice, we cannot provide an804

observationally-constrained CCF model for the cold regime. In this study, the GCM805

relationship between the warm regime LWP response and the response averaged806

over the latitude band including both cold and warm regimes provides an estimate807
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including uncertainty related to the cold regime. Ground-based LWP observations808

in high latitude SO, such as those taken during the Atmospheric Radiation Mea-809

surement (ARM) West Antarctic Radiation Experiment (AWARE, Lubin et al.810

(2020)), may be able to provide an observational constraint on the cold regime LWP811

response.812

3. We found that ∂α/∂LWP varied dramatically across GCMs and strongly mod-813

ulated the effect of changes in LWP on radiation. We also found that observations814

suggested that GCMs tended to have a ∂α/∂LWP that was too large. One pos-815

sibility is that this is due to clouds that are too uniform and radiatively efficient816

(Konsta et al., 2022; Nam et al., 2012). Determining the origin of this behavior817

might be helpful in identifying a potential source of GCM bias in SWFB .818

5 Open Research819

GCM outputs used in this study are available from Earth System Grid Federation820

(ESGF) esgf-node.llnl.gov (Cinquini et al., 2014)[Data]. The code for calculating the full821

shortwave cloud feedback data from GCM output is documented and published in (Zelinka,822

Myers, McCoy, Po-Chedley, et al., 2020) [Software] and at github.com/mzelinka. MAC-823

LWP and MERRA-2 reanalysis data are available from the Goddard Earth Sciences Data824

and Information Services Center at disc.gsfc.nasa.gov (Elsaesser et al., 2017a; Gelaro,825

McCarty, Suárez, et al., 2017) [Data]. CERES EBAF Edition 4.1 data is available from826

ceres.larc.nasa.gov (Loeb et al., 2018a) [Data].827
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(a)

(b)

Relationships between SW , LWP Response 

( ), and Climate Sensitivity

Figure 1. (a) Extratropical SW cloud feedback (SWFB) (top) and the response of liquid wa-

ter path (LWP) to global-mean temperature (GMT) (∆LWP/∆GMT ) in the GCMs in Table S1.

Anomalies in LWP and GMT are calculated as the differences between the mean of piControl

and year 121 - 140’s mean of abrupt4xCO2 simulations. Thick black lines are the multi-model

mean and the shaded regions correspond to the 25th-75th percentiles of quantities. (b) Annual-

mean anomalies in Southern Ocean (40 − 85oS) averaged LWP versus GMT relative to piControl

average for the first 150 years of abrupt4xCO2 simulations. Lines show the second-order poly-

nomial fit of the annual-mean LWP responses to GMT for each GCM. Lines for each GCM in

(a) and (b) are colored by model effective climate sensitivity (ECS) and the 40 − 85o averaged

SWFB , respectively. SW cloud feedback and effective climate sensitivity (ECS) data are from

Zelinka, Myers, McCoy, Po-Chedley, et al. (2020).
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Prediction of Observed LWP

Figure 2. (a) Observed annual-mean Southern Ocean averaged LWP from MAC-LWP (green)

and LWP predicted by the CCF model (Equation 2; blue) from 1992 to 2016. The CCF model

is trained on monthly-mean data from 2012 to 2016 (right side of the dashed line) and is used

to predict the annual-mean LWP back to 1992. (b) The decomposition of annual-mean LWP

anomalies into individual CCF contributions by equation 2.
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Constraints on GCM LWP Response (∆𝐋𝐖𝐏
∆𝐆𝐌𝐓

)

40 – 85o S 40 – 50o S 50 – 85o S

CCF (Warm)
 CCF (Both)

CCF (Both)
 GCM (Both)

Figure 3. Predictions of the GCM-simulated LWP response to CO2 quadrupling

(∆LWP/∆GMT ) by Equation 3. ∆LWP/∆GMT is shown averaged over (a,b) 40− 85oS,

(c,d) 40− 50oS, and (e,f): 50− 85oS. (a,c,e) Latitude-averaged ∆LWP/∆GMT predicted by

equation 3 in warm and cold regimes versus only in the warm regime. (b,d,f) Latitude-averaged

∆LWP/∆GMT simulated by GCMs versus ∆LWP/∆GMT predicted by equation 3 in both

regimes. 1-1 lines are shown using dashed gray lines and best-fit lines are shown as solid red

and brown lines with their uncertainties estimated by Jackknife resampling. Observational

constraints (red shading) are shown in (a,c,e). This constraint is propagated from the warm

regime ∆LWP/∆GMT to the ∆LWP/∆GMT in both regimes by taking the intersection be-

tween the red shading and the best-fit line with its uncertainty (red dashed lines). Constraints

on ∆LWP/∆GMT in both regimes are then shown in (b,d,f) using brown shading. The con-

strained ranges are combined with the uncertainty in the CCF model prediction by using the

best-fit line between GCM and CCF model predictions to yield an observational constraint on

GCM-simulated ∆LWP/∆GMT (brown dashed lines). Explained variance (r2) is shown in each

subplot. GCMs are denoted with the number listed in Table S1.
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Decomposition on LWP Response ( )

Observation

CESM2

Other 
GCMs

Figure 4. Decomposition of ∆LWP/∆GMT predicted by Equation 3: (a) Sensitivities of

LWP each CCF; (b) standardized change in each CCF per degree warming; (c) LWP changes due

to each CCF (the product of (a) with (b)), their sum (sky blue box), and the GCM-simulated

LWP response (gray box). Cold and Warm regime values are shown separately. The variance (r2)

of GCM-simulated ∆LWP/∆GMT explained by the CCF model predictions in each regime is

shown in subplot (c). Changes in CCFs are normalized by their spatio-temporal standard devi-

ations of each regime in the mean-state climate. We single out one GCM, CESM2, by denoting

its values as orange diamonds. All other GCMs are denoted as light blue dots. Observational

sensitivities are denoted as red triangles in the warm regime.
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Constraint on Radiative Susceptibility ( 𝛛 𝛂
𝛛𝐋𝐖𝐏

)

GCM  𝝏𝑳𝑾𝑷
𝝏𝑷ି𝑬

GCM  𝝏 𝜶
𝝏𝑳𝑾𝑷

OBS 𝝏𝑳𝑾𝑷
𝝏𝑷ି𝑬

OBS 𝝏 𝜶
𝝏𝑳𝑾𝑷

Figure 5. The radiative susceptibility (∂α/∂LWP , left axis) and the sensitivity of LWP to

moisture convergence (∂LWP/∂P − E, right axis) in the warm (pink) and cold (blue) regimes as

a function of regime mean-state (piControl) LWP. Observed ∂LWP/∂P − E and ∂α/∂LWP are

shown by the pink and green triangles (observational ∂LWP/∂P − E is comparable to the warm

regime values of GCMs for reason discussed in sections 2.1 and 2.2.3). The linear fit between

∂LWP/∂P − E and piControl LWP in each regime and the power law fit between ∂α/∂LWP

and piControl LWP are shown. Uncertainty in ∂α/∂LWP from varying the maximum clear-sky

albedo TRαcs from 0.11 to 0.30 is shown as an uncertainty range.
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Constraint on Shortwave Cloud Feedback (SWFB)

GCM  𝝏𝑳𝑾𝑷
𝝏𝑷ି𝑬

GCM  𝝏 𝜶
𝝏𝑳𝑾𝑷

Figure 6. The SW cloud feedback of GCMs listed in Table S1 from Zelinka, Myers, McCoy,

Po-Chedley, et al. (2020) for 40 − 50oS (red) and 50 − 85oS (blue) latitude bands versus predic-

tions from the simplified physical model developed in this study (Equation 1). The observational

constraints on 40 − 50oS and 50 − 85oS the constrained ranges on the y-axis of Figure 3 (d)

and (f). The observational constraint on radiative susceptibilities (∂α/∂LWP ) is the error range

of the green triangle in Figure 5. The combination of these two constraints yields constraints

on 40 − 50oS and 50 − 85oS SWFB , shown as shaded regions along the x-axis. Constrained

40 − 50oS and 50 − 85oS SWFB are the extents of y-coordinate of models within the shaded

regions. The linear fit between model SWFB and predictions from equation 1 are shown with

their 95% confidence interval.
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Figure 7. The contribution of Southern Ocean (40 − 85oS) SWFB to the global mean cloud

feedback. The prior distribution of SWFB for GCMs listed in Table S1 is shown as the blue

histograms and black kernel density estimate. The dashed black line denotes the multimodel

mean of SWFB for 50 GCMs. Red shading shows the 95% confidence interval of the Southern

Ocean (40 − 85oS) averaged SWFB by combining the constrained 40 − 50oS and 50 − 85oS av-

eraged SWFB shown in Figure 6. Observational constraint suggests a moderate negative to weak

positive Southern Ocean SWFB .
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