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Abstract 27 

Geomagnetically induced currents (GICs) are low-frequency quasi direct currents caused by 28 

the complex interplay between Earth geomagnetic field and continuous high speed solar wind 29 

stream (HSS). The result of this interaction poses significant threats to the operations of 30 

technological infrastructures such as power grids. The integrity of oil pipelines may also be 31 

affected by the influx of GICs. As such, developing models for accurate and timely forecast of 32 

GICs is essential for mitigating the potential hazards and safeguarding valuable systems from 33 

the extreme effects of these currents. In this work, we propose a machine learning model based 34 

on the Nonlinear Autoregression with Exogenous inputs (NARX) for forecasting GICs. The 35 

model developed here forecasts GICs using inputs solely based on the solar and interplanetary 36 

parameters. The solar and interplanetary parameters retrieved from Omni Web during the 37 

maximum and minimum phases of solar cycle 23 were utilized. The developed model takes the 38 

solar wind speed, Bz, IMF, AE, ASYH, and SYMH as inputs and the measured GICs obtained 39 

from the Finnish Meteorological Institute (Mäntsälä) as the target. We validated the model 40 

using measured GICs during the geomagnetic storm periods of November 20 – 23 2003, 41 

November 7 – 13 2004 and August 24 – 26, 2005. The model’s performance was evaluated 42 

using the cross-correlation coefficient (R), root-mean square error (RMSE)and the wavelet 43 

coherence analysis. The prediction accuracy for each of the individual storms are 69 %, 68 %, 44 

and 70 %, respectively. For these events, RMSEs of 1.17 A, 1.58 A and 0.56 A respectively 45 

were obtained in each case indicating the robustness of the model. The approach presented 46 

augments existing works and will contribute to the forecasting of GICs in areas where the 47 

geoelectric field and local geophysical parameters are not readily  available. 48 

 49 

 50 

 51 

 52 

 53 

Keywords: 54 

Geomagnetically induced currents; Nonlinear Autoregression with Exogenous;  Solar and 55 

interplanetary parameters; Machine learning; Artificial neural networks. 56 



3 

 

1. Introduction 57 

GICs are known to be ground manifestations of the complicated space weather 58 

phenomena that originate from the sun (Gaunt, 2016; Lakhina et al., 2021). They are low-59 

frequency quasi-dc currents produced as a result of the rapid changes of the Earth's 60 

geomagnetic field during solar wind-magnetosphere coupling (Dungey, 1961; Gonzalez et al., 61 

1994). The variations of the geomagnetic fields induce surface geoelectric fields due to the 62 

telluric currents flowing through the sub-surface structure of the Earth. The geoelectric fields 63 

are mainly driven by temporal changes in the magnetic field and the local geophysical 64 

parameters (Hajra, 2022). Therefore, the intensity of GIC is related to the strength of the 65 

geoelectric field. GICs mostly flow through the conductive Earth and can cause havoc on power 66 

transmission grids, oil pipelines, telecommunication systems, and train networks. Typical 67 

examples of GICs manifestations include the disruption of telegraph operations in North 68 

America during the Carrington storm in September 1859 (Loomis, 1861), the failure of the 69 

Hydro-Québec power system in Canada caused by the storm in March 1989 (Allen et al., 1989) 70 

and the collapse of a transformer close to Malmö, Sweden, during the Halloween storm in 71 

October 2003 (Pulkkinen et al., 2005). The adverse effects caused by GICs make the ability of 72 

their effective forecast crucial to the space community, industry, and nations. 73 

However, neither measurements of GICs nor the geoelectric field data, which is a 74 

preferable parameter for the estimate of GICs, are readily available. In the absence of available 75 

data, GICs are estimated as the derivative of ground magnetic field perturbation known as GICs 76 

proxy (Pulkkinen et al., 2013; Welling et al., 2018). Unfortunately, the GIC proxy does not 77 

substantially represent the phenomenon. This is because in the presence of the geoelectric field, 78 

GICs estimations is expressed as  79 

𝐺𝐼𝐶 = 𝑎𝐸𝑥 + 𝑏𝐸𝑦                                                                 (1)  80 

where 𝐸𝑥  and 𝐸𝑦  represents the local geoelectric fields in the north-south and east-west 81 

components respectively. Coefficients 𝑎 and 𝑏 are parameters dependent on the site topology 82 

and electrical characteristics of the system. They are known to be frequency dependent (Weigel 83 

and Cilliers, 2019). From Eq. (1), it is observed that in order to achieve the best model of the 84 

GIC phenomenon, one must have a practical way to estimate the geoelectric fields as well as 85 

an understanding of the near-space environment (Pulkkinen et al., 2012). Additionally, 86 

familiarity with the local geophysical parameters of the technological system under 87 

investigation is necessary (Pulkkinen et al., 2001; Viljanen et al., 2006).  88 
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For the past decade, efforts have been made to overcome some of these pressing issues 89 

associated with estimations of GICs because information on the estimation of the geoelectric 90 

field and characteristics of the system parameters are readily not available. Several empirical 91 

models have been developed for estimating the geoelectric field perturbations ( e.g., Ngwira et 92 

al., 2014; Weigel, 2003; Weimer, 2013; Wintoft, 2005; Zhang et al., 2012). Additionally, 93 

several researchers have contributed to the quest of understanding of GICs including their 94 

generation and propagation mechanisms. For example, Heyns et al., (2021) reported that long-95 

lasting GICs can be driven by pulsation activity during corotating interaction region storms. 96 

Hajra, (2022) and Pulkkinen et al., (2001) found that the sub-auroral zone GICs occurrence is 97 

centered around local midnight due to their association with auroral activity (Akasofu and 98 

Aspnes, 1982; Campbell, 1980). 99 

GICs hazards have socio-economic ramifications because modern civilization is 100 

becoming excessively reliant on complex electrical systems (Oughton et al., 2017). As a result, 101 

many efforts have been made to mitigate the effects of these currents through developing 102 

forecasting models that can give estimates of the levels of induced currents to expect  ( e.g., 103 

Bailey et al., 2022; Keesee et al., 2020; Siddique and Mahmud, 2022). Most of these models 104 

depend on the use of the geoelectric field, which are mostly not available, necessitating the use 105 

of alternate methods to derive this information. In this work, we report on a robust GICs 106 

forecasting model using ANN and information from solar and interplanetary parameters, which 107 

are readily available and easily accessible. The NARX neural network, which is a dynamic 108 

recurrent neural network, offers the needed advantage due to its ability to retain past 109 

information when applied in time-series studies. 110 

Artificial Neural Networks (ANN) are information processing neurons that function based on 111 

the idea that basic processing units, when connected to one another in a network, can function 112 

as a unit (Pappoe et al., 2023). This kind of system mimics the functional behavior of biological 113 

neurons (Poulton, 2002). They have been utilized in different areas to solve many complex 114 

nonlinear problems (Miller, 1993; Unnikrishnan, 2014). Given that GICs are nonlinear in 115 

nature, forecasting this phenomenon requires a nonlinear approach. The NARX neural network 116 

is an ANN and one of the most well-liked approaches that has been applied in nonlinear 117 

systems, mainly because of its dynamic recurrent nature (Billings, 2013; Boaghe et al., 2001). 118 

In space physics, NARX neural network has been utilized to model and forecast several 119 

space weather phenomena. For instance, Ayala Solares et al., (2016) employed NARX neural 120 

networks to predict the global magnetic disturbance in near-Earth space. In addition, Bhaskar 121 

and Vichare, (2019) also utilized NARX neural networks to forecast SYMH and ASYH indices 122 
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during geomagnetic storms in solar cycle 24. NARX neural networks have also been utilized 123 

to obtain the most influential coupling functions that affect the evolution of the magnetosphere 124 

(Boynton et al., 2011), and to predict the Dst index using multiresolution wavelet models (Wei, 125 

2004). The promising results obtained from the aforementioned authors validate the use of 126 

NARX neural network for forecasting and prediction purposes. In this work, we employed the 127 

NARX neural network to explore its feasibility to forecast GICs by leveraging historical data 128 

of solar and interplanetary parameters during the maximum and minimum phases of solar cycle 129 

23 (i.e., January 2000 to August 2005). This current paper is organized as follows: in section 130 

2, we described the dataset used in the model development; the architecture of the NARX 131 

neural network employed in this study is described in section 3; section 4 explains the method 132 

together with reasons for our choice of inputs for the model development; the results and 133 

discussions are presented in Section 5; and Section 6 talks about the summary and conclusions 134 

made from this current study. 135 

 136 

2. Database 137 

The contribution of solar and interplanetary parameters is crucial for expounding on the 138 

variability of GICs. The solar and interplanetary parameters used in the current study cover 139 

January 2000 to August 2005. These years form part of the maximum and minimum phases of 140 

solar cycle 23. The high cadence (1-min resolutions) of solar wind speed, Bz, IMF, AE, ASYH, 141 

and SYMH were obtained from the Space Physics data archives of the Goddard Space Flight 142 

Center (OMNIWeb). These data are available for free to the general public for educational 143 

purposes and can be accessed from: https://omniweb.gsfc.nasa.gov/. As part of the data 144 

preprocessing phase, linear interpolation was employed to mitigate gaps in the solar and 145 

interplanetary data. The 10-s resolution GIC dataset measured at the Finnish natural oil pipeline 146 

(Mäntsäla) was used in this study. The retrieved data was resampled to 1-minute to match the 147 

resolution of the solar and interplanetary data prior to model development. The GIC dataset 148 

can be accessed through the Space and Earth Observation Center of the Finish Meteorological 149 

Institute at https://space.fmi.fi/gic/man_ascii/. Three geomagnetic storms that occurred on 150 

November 20 –23 2003, November 7 –13 2004 and August 24 –26 2005, were used to validate 151 

the model’s performance. The details of these storms are presented in Section 5 of this work. 152 

A total of 1161729 datasets were obtained and used for model development. The data was 153 

divided into 80% (929383) training, 10% (116173) testing and 10% (116173) was used to 154 

validate the model. This approach of data division is necessary to ensure that the model learns 155 

the input-output relationship without suffering from overfitting. Conventionally, the validation 156 

https://omniweb.gsfc.nasa.gov/
https://space.fmi.fi/gic/man_ascii/
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and testing sets are used to investigate the generalizability and performance of the model during 157 

training. 158 

 159 

3. NARX Neural Network 160 

The NARX neural network is a recurrent dynamic neural network suitable for forecasting and 161 

modelling various nonlinear systems, such as time series (Cadenas et al., 2016). A time series 162 

is a sequence of vectors depending on time, e.g., GICs. NARX consists of a Multilayer 163 

Perceptron (MLP), which takes model inputs and assigns time stamps to them, later referenced 164 

as delays for computing new output. The model architecture used in this work comprise of both 165 

open and close loops. The open-loop architecture, shown in Fig. 1 was utilized to train the 166 

model. At this stage, the training is mainly achieved from the present and true past values of 167 

the time series. The use of true past values as input gives it a major advantage. The architecture 168 

has a time-delayed feedback, d. As shown in Fig. 1, the input layer receives the external input 169 

values with different time lags. In addition, the past outputs (known as context inputs) are fed 170 

as inputs to the network with a history, H. The second layer is known as the hidden layer. In 171 

principle, the function of the hidden layer is to perform nonlinear transformations and 172 

computations on the inputs to enable the model to learn more complex tasks. The output layer 173 

is the last layer, which scales the hidden layer output to match the target. 174 

 175 

 176 

Figure 1. The open-loop NARX neural network architecture used for training the model. It 177 

consists of 6 inputs and 9 context inputs, a hidden layer with 10 neurons, and an output layer 178 

with 1 neuron representing the forecast GICs. 179 

 180 

The mathematical equation governing the NARX model described above is expressed as 181 

𝑈𝑡 = 𝜓(𝑈𝑡−1, … , 𝑈𝑡−𝐻; 𝑃𝑡 … 𝑃𝑡−𝑑)                                                 (2)  182 

where 𝑈𝑡  represents the output of the network, and the input vector is denoted by P. The length 183 

of the history is denoted by H and d denotes the input history. The output of the network 184 

depends on the present, past, and history of the output, respectively. The hyperbolic tangent 185 
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function (Tansig) was utilized as the activation function purposely to introduce nonlinearity 186 

into the model. This function is expressed as 187 

𝑍 =  
𝑒𝑥  − 𝑒−𝑥

𝑒𝑥  + 𝑒−𝑥                                                                            (3) 188 

       189 

where x represents the input vectors. After the inputs are processed by the activation function, 190 

the output of the 𝑗𝑡ℎ hidden layer node is given by: 191 

𝐹𝑗  =  𝑡𝑎𝑛ℎ ( ∑ 𝑊𝑗𝑛 𝑥𝑛  +  ∑ 𝑊𝑗ℎ 𝐶ℎ  + 𝑏𝑗

𝐻

ℎ = 1

𝑇

𝑛 = 1

)                                       (4) 192 

In Eq. (4), the value of the input node 𝑛 is represented by 𝑥𝑛, and the total number of input 193 

nodes is 𝑇, 𝐶 represents the past input, 𝑊𝑗𝑛  is a connecting weight between the input node (𝑛) 194 

and hidden node (𝑗), 𝑏𝑗 is a bias of the 𝑗𝑡ℎ neuron in the hidden layer (Bhaskar and Vichare, 195 

2019). Eq. (5) expresses the NARX network output (U(t)), which may be written as a linear 196 

summation of all outputs from hidden layer neurons and output bias 𝑏𝑜 . 197 

𝑈(𝑡) = ∑ 𝑊𝑜𝑗 𝐻𝑗  + 𝑏𝑜

𝑠

𝑗 = 1

                                                                   (5) 198 

where the weight of the hidden node to the output node is denoted by 𝑊𝑜𝑗 , and 𝑠 represents the 199 

number of hidden layer nodes. 200 

After successfully training the network, the close-loop NARX architecture was employed in 201 

forecasting GICs. This type of NARX architecture is similar to the Feed-forward neural 202 

network (FNN) described by (Omondi et al., 2022a). In this architectural state, the inputs are 203 

fed into the hidden layer. The hidden layer nonlinearly transforms the received inputs and the 204 

output of each of the neurons in the hidden layer are sent to the output layer. The transfer 205 

function present in the output layer ensures that the network’s output is similar to the input 206 

signal. In our study, the output obtained is referred to as the forecast GICs. 207 

 208 

3.1. Network Accuracy Parameters 209 

Three metrics, the cross-correlation coefficient (R), root-mean-square error (RMSE) and 210 

wavelet coherence were used to evaluate the model’s performance. The RMSE was calculated 211 

by taking the square root of the cost function expressed in Eq. 6.  212 

 213 

𝐸 = 
1

𝑁
 ∑ (𝑇𝑘  − 𝑂𝑘)2

𝑁

𝑘 =1 

                                                             (6) 214 
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where T and O are the target and output of the network, respectively and N is the total number 215 

of samples. The R, defined by Eq. 7, was used to determine the similarities between the forecast 216 

and the observed GICs. 217 

 218 

𝑅 =  
∑ (𝑇𝑘  − 𝑇̅)(𝑂𝑘  −  𝑂̅)𝑁

𝑘=1

√∑ (𝑇𝑘  − 𝑇̅)2𝑁
𝑘 = 1 √∑ (𝑂𝑘  − 𝑂̅)2𝑁

𝑘 = 1

                                    (7) 219 

where 𝑇̅ and 𝑂̅ are the average values of target and output, respectively. All other symbols have 220 

their usual meanings as above. We utilized wavelet-based coherence analysis to study the time-221 

frequency properties of the observed and forecast GICs. The approach employed follows the 222 

procedure described by (Omondi et al., 2022b, 2022a). 223 

 224 

4. Method 225 

As stated earlier, ANN forecasting comprises three steps: training, validation, and testing 226 

(Simon Haykin, 1999). The model’s architecture consists of 1 input layer with 6 neurons and 227 

9 context inputs, 1 hidden layer with 10 neurons, and 1 output layer containing 1 neuron 228 

representing the forecast GICs. This architecture was adopted due to its appreciable 229 

computation time following multiple trials. The inputs used are solar wind speed, Bz, IMF, AE, 230 

ASYH and SYMH. These parameters were chosen knowing that: (1) Intense magnetospheric 231 

compressions are associated with high solar wind speeds, which may induce stronger 232 

interactions and high energy transfer (2) The southward directed IMF favors magnetic dayside 233 

reconnection, seeds geomagnetic storms, and enhances energy transfer which drives 234 

magnetospheric currents (3) The AE index indicates the level of magnetic activity and energy 235 

transfer from the solar wind to the magnetosphere-ionosphere system. Its response is the 236 

intensification of auroral and polar region currents, which are positively associated with GICs 237 

(Akasofu and Aspnes, 1982). (4) The longitudinal symmetric (SYMH) and asymmetry 238 

(ASYH) components quantify magnetic perturbations. Enhanced reconnection at the 239 

magnetopause is manifested in the higher values of ASYH and negative excursions in SYMH, 240 

which defines the strength of the ring current. We employed GICs measured at the Finnish oil 241 

pipeline (Mäntsäla) as the target variable in this study. During the training phase, we employed 242 

the Levenberg-Marquardt back-propagation algorithm known to be the fastest and first-choice 243 

algorithm for supervised learning (Basterrech et al., 2011). Here, the weights are updated using 244 

the delta rule expressed as 245 
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Δ𝑤 = (𝑖 +  1)  =  −𝑛
𝑑𝐸

𝑑𝑤
 +  𝑎. Δ𝑤(𝑖)                                                   (8) 246 

where 𝑤 denotes the weights of the nodes, 𝑖 is the epoch, 𝑎 and 𝑛 denote momentum parameter 247 

and learning rate, respectively. The learning rate controls the learning speed, whereas the 248 

momentum parameter is used to avoid local minimums. To optimize the learning speed, 𝑛 is 249 

adjusted in each iteration according to the network’s performance.  250 

 251 

5. Results and Discussion 252 

5.1. Network Performance 253 

The model’s performance at each phase of the model development is shown in Fig. 2. The 254 

figure shows that the mean square error decreases with increasing epochs after each iteration 255 

and converges when minimal errors occur. In this work, the error given by the RMSE is 0.308 256 

A obtained at epoch 22. Beyond this epoch, any further training might suffer from overfitting 257 

on the validation set. Conversely, when a model achieves its optimum training, the process is 258 

automatically terminated, and signaled “complete”. Thus, the model is ready for independent 259 

testing on an unseen dataset. A model must have an appreciable training time to minimize 260 

computation costs and future updates as seen in Fig. 2. 261 

 262 
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Figure 2. Training performance of the NARX neural network. The optimal point marked with 263 

a green circle with the fewest errors was obtained at epoch 22. The training, validation and 264 

testing steps have almost the same mean square error. 265 

Fig. 3 shows the linear regression metrics between the target (observed GICs) and the model 266 

output (forecast GICs) obtained at epoch 22 during the training. The total correlation 267 

coefficient (R) obtained for the model’s overall performance was 0.72. This explains a good 268 

similarity between the output and target, indicating good training accuracy. 269 

 270 

 271 

Figure 3. The linear regression metric of the target and forecast output with the line of best fit  272 

during the training phase of the model. From top to bottom; (a) represents the training, (b) 273 

represents the validation; (c) is the testing and (d) is the overall performance of the model. 274 

a b 

c d 
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 275 

5.2. Forecasting by NARX Model 276 

The robustness of the developed model was validated using three geomagnetic storms. The 277 

intensity of the geomagnetic storms was evaluated using the SYMH (i.e., weak storm, SYMH 278 

≥ -50 nT; moderate storm, -50 > SYMH ≥ -100 nT; intense storm, -100 > SYMH ≥ -250 nT; 279 

and super-intense storm, SYMH < -250 nT) (Gonzalez et al., 1994). 280 

 281 

5.2.1. November 20 – 23 2003 Storm 282 

Figure 4 shows the fluctuations in solar and interplanetary parameters and the responses 283 

observed in the forecast and the measured GICs for the storm period November 20–23, 2003. 284 

The storm's sudden commencement (SSC) (indicated with a red dashed line) was observed at 285 

around midday on 20th November 2003. The storm sudden commencement, measured by a 286 

short increase in ring current, given by the SYMH, was characterized by a sharp increase in the 287 

solar wind dynamic pressure resulting from the arrival of the wind propelled shock at the bow 288 

of the magnetosphere(Tsurutani et al., 1999). The large fluctuations observed in the Bz 289 

component (panel a) may be attributed to the presence of Alfvén waves (Adhikari, 2015). The 290 

southward orientation led to a dayside reconnection, resulting in charged particles damped into 291 

the magnetosphere. During this time, there was a sharp increase in the solar wind speed (panel 292 

b) which lasted for hours, indicating that this storm was geoeffective and mainly caused by 293 

coronal mass ejections (Goswami, 2019), evidenced by the increase in magnetic field strength 294 

field shown in (panel c). The depression of the geomagnetic field due to the storm-time ring 295 

current particle enhancement (Shelley et al., 1972) is shown in (panel d). From this panel, it is 296 

observed that the storm was super-intense (SYMH ≤ -400 nT) (Gonzalez et al., 1994). The 297 

recovery phase of the storm, mainly characterized by a gradual increase in the SYMH, started 298 

on November 21, 2003. The high increase in ASYH (panel e) explains the high asymmetric 299 

response of the magnetosphere during the storm. This resulted from increased charged particles 300 

allowed to enter the magnetosphere after reconnection. As charged particles were damped into 301 

the magnetosphere, the eastward electrojet current flowing at ~ 100km was enhanced, leading 302 

to an increase in the AE index as seen in (panel f) (i.e., increased auroral activity) (Lemaire, 303 

2003). Panel g shows the observed (blue solid lines) and forecast (red broken lines) GICs 304 

during the storm period. During the entire storm period, recorded GIC peaks were about -20 305 

A. These high-amplitude GICs have been found to be "extreme" (Pulkkinen et al., 2001). Most 306 
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of the high-amplitude GICs were found to occur during the main phase of the storm. From the 307 

figure, it is observed that the GICs (both observed and forecast) have a good correlation with 308 

the solar and interplanetary parameters during the entire storm period.  309 

 310 

 311 

Figure 4. Solar and interplanetary parameters together with their association with observed 312 

and forecast GICs during the geomagnetic storm observed on November 20 – 23 2003. From 313 

top to bottom, panels show the fluctuations in (a) Bz, (b) solar wind speed, (c) IMF, (d) SYMH, 314 

(e) ASYH, (f) AE, and (g) GICs (observed GICs are blue colored solid lines and forecast GICs 315 

are red colored broken lines). 316 

 317 

5.2.2. November 7 – 13 2004 Storm 318 

Figure 5 shows the fluctuations in solar and interplanetary parameters observed during the 319 

storm on November 7 – 13 2004. Inferences from the plots follow the same pattern as described 320 

above. This storm was super-intense, with SYM-H reaching about -400 nT (Gonzalez et al., 321 

1994). However, there were peaks of GICs that were much higher than in the previous event. 322 

The high peaks observed are resulted from the further compression of the geomagnetic field 323 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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with SYMH reaching about -250 nT (moderate storm) after the recovery of the first storm. This 324 

storm is regarded as a substorm, having an initial peak in the late hours on the 9th November, 325 

2004 and a second peak on the 10th November, 2004. Substorms drive intense peaks of GICs 326 

due to an increased influx of particle density from the night side into the magnetosphere, which 327 

is probably the reason for the high peaks observed during this storm (Ngwira et al., 2018). A 328 

good association existed between the solar and interplanetary parameters and the observed and 329 

predicted GICs. Another interesting observation was that almost no GIC events were associated 330 

with the second excursion (SYMH ~ -280 nT) on the 10th November, 2004, which needs further 331 

discussion. 332 

 333 

Figure 5. Solar and interplanetary parameters together with their association with observed 334 

and forecast GICs during the geomagnetic storm observed on November 7 – 13 2004. From 335 

top to bottom, panels show the fluctuations in (a) Bz, (b) solar wind speed, (c) IMF, (d) SYM-336 

H, (e) ASY/H, (f) AE, and (g) GICs (observed GICs are blue colored solid lines and forecast 337 

GICs are red colored broken lines). 338 

 339 

 340 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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5.2.3. August 24 – 26 2005 Storm 341 

Figure 6 shows the variation of the solar and interplanetary parameters observed during an 342 

intense storm from August 24 –26 2004. The plots follow the same pattern as described above. 343 

The storm was intense because the SYMH reached about -200 nT (Gonzalez et al., 1994). The 344 

peaks of GICs recorded during this period are very low compared to the aforementioned values. 345 

A maximum peak of 10 A was observed during this period. The low values of the peaks resulted 346 

from the storm’s low strength. This validates the argument that the peak of GICs observed may 347 

be directly related to the strength of geomagnetic activity. Even though this work does not 348 

consider events on geomagnetic quiet days, we should expect very low GIC peaks on a 349 

geomagnetic quiet day compared to a geomagnetic active day. 350 

 351 

Figure 6. Solar and interplanetary parameters together with their association with observed 352 

and forecast GICs during the geomagnetic storm observed on August 24 – 26 2005. From top 353 

to bottom, panels show the fluctuations in (a) Bz, (b) solar wind speed, (c) IMF, (d) SYM-H, 354 

(e) ASY/H, (f) AE, and (g) GICs (observed GICs are blue colored solid lines and forecast GICs 355 

are red colored broken lines). 356 

 357 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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The forecast versus the observed GICs for the three storms is presented in Figures 7 - 358 

9 respectively. The trained model forecasts the GICs with good accuracy, including the small 359 

fluctuations in the peaks of the GICs. The forecast GICs look close to the observed GICs for 360 

all the storms. However, it is observed that the NARX model could not forecast to a good extent 361 

the large magnitude of the GICs. One possible reason for this observation is that the observed 362 

GICs events may be controlled more by parameters within the magnetosphere or ionosphere 363 

(Keesee et al., 2020). The results of the storm on November 20–23 2003 are presented in Fig. 364 

7. Figure 7a and 7b show the wavelet analysis for both the observed and forecasted GICs 365 

respectively. From 7a, the larger GIC (20th November 2003) appears to be within 0.1 to 10 366 

mHz, whereas the smaller event (22nd November, 2003) was in the 0.5 to 10 mHz range. A 367 

comparative analysis showed depicted the same frequency ranges for the predicted events in 368 

7b. Fig. 7c, shows a time series plot for the observed and forecast GICs. A correlation of 0.69 369 

and an explained variance of 0.31 were obtained. This relates to the good similarity between 370 

the observed and forecast GICs. The RMSE obtained during this storm is 1.17A. We also 371 

performed a wavelet coherence analysis between the observed and forecast GICs to study the 372 

similarity between the two signals. For a given wavelet coherence plot, the color bar defines 373 

the degree to which the two signals agree. An arrow that points to the right depicts good phase 374 

coherence between the two signals. Fig. 7d shows a high coherence between both events. It is 375 

also clear that the small event was adequately predicted than the larger one with degrees greater 376 

than 0.8 indicating the robustness of the model. 377 

Figures 8a and 8b represent the wavelet analysis of the GICs observed and forecasted 378 

during the second storm on November 7–12 2004. Here, the wavelet analysis shows a good 379 

similarity between the observed and forecast GIC. The two GIC events on 8 th and 9th November 380 

appeared in the 0.1 to 10 mHz frequency range with the same occurring for the predicted events 381 

in 8b within the cone of influence (COI). The time series plot for the storm event is presented 382 

in Figure 8c. The NARX model forecasted the observed GICs with a correlation accuracy of 383 

0.68, having an explained variance of 0.32 with an RMSE of 1.58A. This represents a good 384 

similarity between the observed and forecast GICs. Figure 8d represents the wavelet coherence 385 

analysis between the observed and forecast GICs. The figure shows that there is a high 386 

coherence between both events. The last storm considered for validation of this study occurred 387 

on August 24th–26th, 2005. The results obtained from the NARX model are presented in 388 

Figure 9. This was a single event which appeared dominant in the frequency range of about 0.2 389 

to 10 mHz, as shown in the wavelet analysis plots in Figures 9a and b. The high similarity 390 
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between both GICs indicates the robustness of the NARX model. Figure 9c represents the time 391 

analysis plot for the observed and forecasted GICs. Here, the correlation between both events 392 

during the storm period was 0.70, with an explained variance of 0.30. The RMSE obtained was 393 

0.56A.  394 

 395 

Figure 7. Forecast and observed GICs for the storm period on November 20 – 23 2003; (a) 396 

represents the wavelet analysis of the observed GIC; (b) represents wavelet analysis of forecast 397 

GIC; (c) represents the time series plot of the both the observed GICs (blue solid line) and 398 

forecast GIC (red broken line); (d) represents the wavelet coherence between both events.  399 

 400 

 401 

 402 

 403 

a b 

c d 
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 404 

Figure 8. Forecast and observed GICs for the storm period on November 7 –12, 2004; (a) 405 

represents the wavelet analysis of the observed GIC; (b) represents wavelet analysis of forecast 406 

GIC; (c) represents the time series plot of the both the observed GICs (blue solid line) and 407 

forecast GIC (red broken line); (d) represents the wavelet coherence between both events.  408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 
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 418 

Figure 9. Forecast and observed GICs for the storm period on August 24 – 26, 2005; (a) 419 

represents the wavelet analysis of the observed GIC; (b) represents wavelet analysis of forecast 420 

GIC; (c) represents the time series plot of the both the observed GICs (blue solid line) and 421 

forecast GIC (red broken line); (d) represents the wavelet coherence between both events.  422 

 423 

Throughout the model validations, the correlation between the observed and forecast 424 

GICs obtained is higher than the results obtained by (Keesee et al., 2020). In Keesee et al., 425 

(2020), the authors employed both feed-forward neural network and long-short term memory 426 

(LSTM) networks to forecast GICs observed at Ottawa ground magnetometer station. They 427 

obtained a forecasting accuracy of 0.66 and 0.54 respectively for the storms considered in their 428 

studies. However, the authors attributed the low correlation to the procedures employed in 429 

forecasting the geoelectric field perturbations. Meanwhile, the results obtained here are almost 430 

close to the results obtained by (Lotz et al., 2017), where the authors developed models to 431 

forecast the separate components of the horizontal magnetic field at a mid-latitude station and 432 

obtained a correlation of 0.71 and 0.69 for the GICs forecasts. The results obtained from the 433 

NARX model are similar to those obtained during the model’s training, implying that the model 434 

a b 

c d 
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generalizes well and is consistent with the available data. In addition, the low RMSE values 435 

obtained show that the model is efficient in forecasting the GICs. However, it is worth 436 

mentioning that the accuracy of the NARX model decreases further depending on the storm’s 437 

intensity; intense storms have high accuracy compared to super intense storms. High amplitude 438 

GICs have relatively low forecasting accuracy by the model compared to low amplitude GICs. 439 

 440 

6. Summary and Conclusion 441 

Forecasting of GICs is a pressing problem in space weather. This is mainly because information 442 

about the geoelectric field and the local geophysical parameters needed for accurate GICs 443 

forecasting are not readily available. Therefore, developing an alternative means to forecast 444 

GICs is crucial to help protect ground infrastructure.  Researchers have tried to develop 445 

alternative means to forecast GICs for some time now. However, the complexity of the subject 446 

has seen just a few successes. To overcome this challenge, we developed a robust model for 447 

forecasting GICs using the NARX neural network with data from some solar and interplanetary 448 

parameters. This was achieved based on the good relationships between the solar and 449 

interplanetary parameters and GICs. The developed model uses solar and interplanetary 450 

parameters as inputs and forecast observed GICs measured at the Finnish oil pipeline 451 

(Mäntsäla). The model was evaluated based on the forecasting accuracy, the RMSE and the 452 

wavelet cross coherence. We validated the model using three geomagnetic storms that 453 

generated GICs. The first storm was a super intense storm observed from November 20 – 23 454 

2003. The NARX model forecast GICs observed during this storm with an accuracy of 69% 455 

and a RMSE of 1.17 A. The second storm was also super intense observed on November 7–12 456 

2004. An accuracy of 68% with a RMSE of 1.58 A was obtained during this storm. However, 457 

there was a substorm after the recovery of this storm. The substorm was found to be responsible 458 

for driving intense GIC peaks. The NARX model performed quite well in forecasting these 459 

high peaks with appreciable errors. The last storm was an intense storm observed on August 24 460 

– 26 2005. The forecasting accuracy obtained during this storm was 70% and a RMSE of 0.56 461 

A. The low RMSE values showed that the model generalizes well and becomes more accurate 462 

when learning from more historical datasets. In addition, we performed a wavelet coherence 463 

analysis between the observed and forecast GICs. A high coherence was obtained in all storms 464 

considered in the study, indicating the robustness of the developed model. The NARX model 465 

developed in this work generally forecasted the observed GICs to good accuracy. However, we 466 
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concluded that the model failed to accurately forecast the high magnitudes of the GICs due to 467 

processes within the magnetosphere and ionosphere that were not captured in the present 468 

model. We also compared the forecasting accuracy obtained with other works. It was realized 469 

that the accuracies were an improvements to the work reported by (Keesee et al., 2020). On the 470 

other hand, it was almost comparable to the results obtained by (Lotz et al., 2017) in forecasting 471 

GICs. With this knowledge about the potential of ANN in the current research, it is essential 472 

that future improvements focus on assimilating even more data to enhance model’s accuracy.  473 
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