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Abstract

The prediction of post-sunset equatorial plasma depletions (EPDs), often called ionospheric plasma bubbles, has remained a

challenge for decades. In this study, we introduce the Ionospheric Bubble Probability (IBP), an empirical model predicting

the occurrence probability of EPDs derived from 9 years of CHAMP and 8.5 years of Swarm magnetic field measurements.

The model predicts the occurrence probability of EPDs for a given longitude, day of year, local time and solar activity, for

the altitude range 350-500 km, and low geographic latitudes of ± 45*. IBP has been found to successfully reconstruct the

distribution of EPDs as reported in previous studies from independent data. IBP has been further evaluated using one-year of

partly untrained data of the Ionospheric Bubble Index (IBI). IBI is a Level 2 product of the Swarm satellite mission used for

EPD identification. The relative operating characteristics (ROC) curve shows positive excursion above the no-skill line with

Hanssen and Kuiper’s Discriminant (H&KSS) score of 0.66, 0.73, and 0.65 at threshold model outputs of 0.22, 0.18, and 0.18 for

Swarm A, B, and C satellites, respectively. Additionally, the reliability plots show proximity to the diagonal line with a fairly

decent Brier Skill Score (BSS) of 0.317, 0.320, and 0.316 for Swarm A, B, and C respectively. These tests indicate that the

model performs significantly better than a no-skill forecast. The IBP model offers a compelling glimpse into the future of EPD

forecasting, thus demonstrating its potential to reliably predict EPD occurrences. The IBP model is made publicly available.
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Abstract14

The prediction of post-sunset equatorial plasma depletions (EPDs), often called iono-15

spheric plasma bubbles, has remained a challenge for decades. In this study, we intro-16

duce the Ionospheric Bubble Probability (IBP), an empirical model to predict the oc-17

currence probability of EPDs derived from 9 years of CHAMP and 8.5 years of Swarm18

magnetic field measurements. The model predicts the occurrence probability of EPDs19

for a given longitude, day of year, local time and solar activity, for the altitude range 350-20

500 km, and low geographic latitudes of ± 45◦. IBP has been found to successfully re-21

construct the distribution of EPDs as reported in previous studies from independent data.22

IBP has been further evaluated using one-year of partly untrained data of the Ionospheric23

Bubble Index (IBI). IBI is a Level 2 product of the Swarm satellite mission used for EPD24

identification. The relative operating characteristics (ROC) curve shows positive excur-25

sion above the no-skill line with Hanssen and Kuiper’s Discriminant (H&KSS) score of26

0.66, 0.73, and 0.65 at threshold model outputs of 0.22, 0.18, and 0.18 for Swarm A, B,27

and C satellites, respectively. Additionally, the reliability plots show proximity to the28

diagonal line with a fairly decent Brier Skill Score (BSS) of 0.317, 0.320, and 0.316 for29

Swarm A, B, and C respectively. These tests indicate that the model performs signif-30

icantly better than a no-skill forecast. The IBP model offers a compelling glimpse into31

the future of EPD forecasting, thus demonstrating its potential to reliably predict EPD32

occurrences. The IBP model is made publicly available.33

Plain Language Summary34

[Post-sunset equatorial plasma depletions (EPDs), often called ionospheric plasma35

bubbles, are a severe threat for reliable radio wave communication. However, their pre-36

dictability has remained a challenge for the scientific community for decades. In this study,37

we introduce the Ionospheric Bubble Probability (IBP) model predicting the occurrence38

probability of post-sunset EPDs for a given longitude, day of year, local time and solar39

activity, for the altitude range 350-500 km, and low geographic latitudes of ± 45◦. To40

this aim we have used 9 years of CHAMP and 8.5 years of Swarm magnetic field mea-41

surements. The IBP model predictions have been found to agree well with climatologies42

derived from independent data and performs largely better than unskilled forecasts. The43

IBP model is made publicly available.]44

1 Introduction45

The post-sunset equatorial and low-latitude ionosphere is susceptible to irregular-46

ities associated with F region plasma instability, popularly known as equatorial plasma47

depletions (EPDs) or ionospheric plasma bubbles. EPDs are regions of steep plasma de-48

pletions of several orders of magnitude in electron density with scale sizes ranging from49

thousands of kilometers down to meters (e.g., D. L. Hysell & Seyler, 1998; Lühr et al.,50

2014; Su et al., 2001). EPD is believed to be governed by the Rayleigh-Taylor (RT) in-51

stability mechanism which operates at the bottomside F region when uplifted during evening52

time post-sunset rise driven by the pre-reversal enhancement (PRE) of zonal electric field53

over the dip equator (e.g., Balsley et al., 1972; Haerendel, 1973; Ossakow, 1981; Sultan,54

1996; Woodman & La Hoz, 1976; Tsunoda, 2005). The growth of RT instability depends55

on various ionospheric and thermospheric parameters which include F layer height, zonal56

(eastward) electric field, bottomside density gradient, meridional wind and perturbation57

in electron density in the form of seed (e.g., Kelley, 2009). EPDs have been found to ex-58

hibit serious threats to radio waves employed for satellite-based communication/navigation59

applications by producing random fluctuations in signal amplitude and phase known as60

scintillations. Based on simultaneous observations of plasma density and Global Posi-61

tioning System (GPS) observables on board the Swarm satellite mission, Xiong et al. (2016,62

2020) showed the positive relation between the strengths of EPDs and the severeness of63
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GPS scintillations to even total signal losses. Therefore, predicting EPD occurrence is64

of absolute necessity.65

Although the underlying principle of RT instability is well understood (e.g., Kel-66

ley, 2009; Sultan, 1996), understanding the variability in EPD occurrence on a day-to-67

day basis continues to be puzzling (e.g., Abdu, 2019; Basu et al., 2009; Carter et al., 2014;68

Chou et al., 2020; Manju & Aswathy, 2020; Rajesh et al., 2017; Retterer & Roddy, 2014;69

Saito & Maruyama, 2007; Shinagawa et al., 2018; Tsunoda et al., 2010, 2018; Yamamoto70

et al., 2018; Das et al., 2021; D. L. Hysell et al., 2022; Patra & Das, 2023). While the71

PRE has been found to show a remarkable agreement with EPD occurrence climatolog-72

ically (e.g., Clemesha & Wright, 1966; Dabas et al., 2003; Fejer et al., 1999; Gentile et73

al., 2006b; D. Hysell & Burcham, 2002; Stolle et al., 2008; Su et al., 2008; Tsunoda, 2005;74

Huang & Hairston, 2015), it fails to account on its day-to-day occurrence variability (e.g.,75

Abdu et al., 1983; Fukao et al., 2006; Saito & Maruyama, 2006, 2007). Intriguingly, the76

growth rate of RT instability has been found to display similar uncertainty (e.g., Shi-77

nagawa et al., 2018; Das et al., 2021; Aa et al., 2023). Since the EPD occurrence shows78

a large variability both in small- and large-longitudinal scales (e.g., Kil et al., 2009; Kil79

& Heelis, 1998a; Martinis et al., 2021; Singh et al., 1997; Stolle et al., 2008; Tsunoda et80

al., 2018; Tsunoda & White, 1981), predicting EPD occurrence becomes even more chal-81

lenging. Now, it is fairly well understood that missing understanding of the spatio-temporal82

behaviour of EPDs, i.e. growth, zonal movement and decay of EPDs, along with the paucity83

of continuous measurements of ionospheric parameters is the cause for the challenge in84

predicting the day-to-day occurrence variability of EPDs (e.g., Das et al., 2021; Li et al.,85

2021; D. L. Hysell et al., 2021; Patra & Das, 2023).86

While for a long time, traditional methods such as in situ density measurements,87

optical imagers and radio wave sounding have been employed to study the day-to-day,88

global, and climatological occurrence of EPDs (e.g., Woodman & La Hoz, 1976; Farley89

et al., 1970; Kudeki & Bhattacharyya, 1999; Sahai et al., 1994, 2000; Kil & Heelis, 1998b;90

Fagundes et al., 1999; Burke et al., 2004; Gentile et al., 2011; Huang et al., 2014; Mar-91

tinis & Mendillo, 2007; Das et al., 2021; Aa et al., 2023), subsequently, it has been found92

that magnetic field perturbations associated with the diamagnetic current linked to steep93

density gradient at the edges of the EPDs can also be used for characterizing EPDs (e.g.,94

Lühr et al., 2002; Rodŕıguez-Zuluaga et al., 2019). Diagnosing EPDs through those sig-95

natures in the magnetic field and electron density, Stolle et al. (2006) could successfully96

reconstruct the well-known EPB climatology using Flux-Gate Magnetometer (FGM) mea-97

surements on-board the Challenging Mini-Satellite Payload (CHAMP) which similarly98

were obtained by traditional methods based on plasma density data from other satel-99

lite missions (e.g., Gentile et al., 2006b; Xiong et al., 2010). This success led to the in-100

troduction of the Ionospheric Bubble Index (IBI) as a standard Level 2 (L2) data prod-101

uct of the Swarm mission for the detection of EPDs (e.g., Park et al., 2013). Recently,102

Reddy et al. (2023) have utilized a machine learning (ML) based AI Prediction of EPBs103

(APE) model to predict the IBI. Their model is derived from 8 years of Swarm data. Fea-104

ture analyses revealed that F10.7 is the most important feature in driving the EPB pre-105

dictions, whereas latitude is the least.106

The advantage of EPD climatology derived from in situ observations of polar-orbiting,107

Low Earth Orbit (LEO) satellites is their global coverage. However, it should be noted108

that these satellites can only detect those irregularities that have evolved into plumes109

reaching F region altitudes at or above the F2 peak. Conversely, the bottom-side F re-110

gion irregularities, from which plumes may evolve, occur more frequently than F region111

plumes are observed, e.g., almost every evening throughout the year and solar cycle, e.g.,112

in the American sector. A comprehensive investigation of the irregularity occurrence de-113

rived from 20 years of incoherent scatter radar data at the Jicamarca radio observatory114

has been provided by Zhan et al. (2018). Accordingly, based on 10 years of ground-based115

GPS observations distributed in South America, Macho et al. (2022) indicated some ac-116
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tivity of weak scintillations also during low solar flux years, while moderate or intense117

scintillations did only occur during moderate or high solar flux years.118

This article introduces an empirical model of the occurrence probability of post-119

sunset F region EPDs called the Ionospheric Bubble Probability (IBP) model. The IBP120

is derived from the detection of magnetic field perturbations associated with EPDs ob-121

tained from 9 years of CHAMP and 8.5 years of Swarm observations in the geomagnetic122

field. The model predicts the EPD occurrence rate for a given longitude, day of year,123

local time and solar activity, for the altitude range 350-500 km, and low geographic lat-124

itudes of ± 45°. The occcurrence probability is given in the range of 0 to 1, from a 0%125

to 100% probability, respectively. The structure of this manuscript goes as following. Sec-126

tion 2 provides a description of the data on which the model is based, section 3 describes127

the model development methods, section 4 shows the model results, section 5 provides128

model validation and discussion, and finally, conclusions are described in section 7. The129

forward model code is available from URL: https://igit.iap-kborn.de/ibp/ibp-model.130

2 Data131

2.1 Swarm satellite mission132

The Swarm satellite mission is a constellation consisting of three identical satel-133

lites Alpha, Bravo and Charlie (A, B and C) launched in November 2013 into near-circular134

orbits at an altitude of approximately 490 km (Friis-Christensen et al., 2006; Olsen et135

al., 2013). Following orbital maneuvers in April 2014, Swarm A and C fly in a side-by-136

side configuration with an inclination of 87.4◦ and an initial altitude of about 460 km137

(see Figure 1), while Swarm B flies at an inclination of 88◦ and at a higher orbit of ini-138

tially about 530 km altitude. Swarm B has been precessing away from the lower pair at139

a rate of approximately 1.5 h of local time per year while Swarm A and C precess west-140

ward in local time at a rate of 2.7 h per month (Knudsen et al., 2017). The Swarm satel-141

lites cover all local times about every 4 months. The satellites carry, among other instru-142

ments, a magnetometer package consisting of an Absolute Scalar Magnetometer (ASM)143

and a Vector Field Magnetometer (VSM), which provides precise measurements of the144

Earth’s magnetic field at the satellite location at 1 Hz frequency. Each satellite also car-145

ries a spherical Langmuir probe as part of the Electric Field Instrument (EFI) provid-146

ing plasma density observations at 2 Hz frequency (Knudsen et al., 2017).147

It is known that EPDs can be detected by high-precision magnetometers on board148

low earth orbit (LEO) satellites from their diamagnetic effects as regions of locally de-149

pleted plasma are characterized by enhanced magnetic field strength (e.g., Lühr et al.,150

2003; Stolle et al., 2006; Park et al., 2013). For the Swarm mission, the European Space151

Agency (ESA) has introduced the Ionospheric Bubble Index (IBI) as a standard Level 2 (L2)152

data product, which is generated from in situ magnetic field and plasma observations153

onboard the Swarm satellites and provides detections of EPDs along Swarm orbits. The154

IBI product considers not only the characteristic small-scale variations in the magnetic155

field to detect EPDs but also the concurrent change in plasma density to confirm these156

detected EPDs. The detection threshold of EPDs based on their diamagnetic effects is157

set to 0.15 nT. If the correlation between the magnetic field and electron density is suf-158

ficiently high (i.e. p2>0.5, where p is the pearson correlation coefficient), which confirms159

the diamagnetic effect, the magnetic fluctuation is flagged as confirmed EPD. The IBI160

product provides a binary indicator for each of the low latitude (below 45◦), night side161

(18-06LT), 1 Hz magnetic readings whether the measurement is affected by an EPD or162

not. If the data quality does not allow for EPD detection, e.g., due to enhanced noise163

or too many data gaps, the data is flagged by an integer value larger than 1. The de-164

tailed description of the IBI product and of its derivation is outlined in Park et al. (2013).165

Swarm data between 01 January 2014 and 31 December 2022 have been used in this study166
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Figure 1. Orbit altitude evolution of the CHAMP and Swarm satellites. The grey line in-

dicates daily values of the F10.7 solar activity index. The light grey areas indicate the times of

satellite data which where selected to derive the IBP model.

to derive the model. The mean satellite altitudes were around 480 km for Swarm A and167

C and 510 km for Swarm B (see Figure 1).168

2.2 CHAMP satellite mission169

CHAMP (CHallenging Minisatellite Payload) was launched on 15 July 2000 into170

a near-circular orbit with an inclination of 87.3◦ and an initial orbit altitude of 456 km171

(Reigber et al., 2002), which decayed to around 250 km in 2010 when the mission re-entered172

the atmosphere (see Figure 1). The study of geomagnetic field was one of the objectives173

behind this satellite mission. CHAMP carried both scalar and vector magnetometers,174

which provided precise measurements of the Earth’s magnetic field at the satellite al-175

titude at 1 Hz frequency. The first global survey of magnetic signatures of EPDs includ-176

ing a description of their detection in the magnetic field was published by Stolle et al.177

(2006). In order to derive the IBP model, the CHAMP magnetic data was re-processed178

by the IBI processor as used for the L2 Swarm product to ensure consistency of the de-179

tections between Swarm and CHAMP. Since the CHAMP mission provided electron den-180

sity measurements at only 15 s resolution, the correlation between magnetic field fluc-181

tuations and electron density was disabled in the processor when applied to CHAMP,182

because it was not expected to make meaningful contribution as is the case for the high183

resolution plasma density data from Swarm. Therefore, all detections in the magnetic184

field that exceeded a predefined threshold are identified as an EPD. CHAMP data be-185

tween 01 January 2001 and 31 December 2009 have been used to derive the model. The186

mean satellite altitude as shown in Figure 1 was around 360 km.187

2.3 Comparing CHAMP and Swarm data sets188

Figure 2 shows the probability density of orbits with EPD detections over local time189

for the CHAMP and Swarm satellites for the data periods between 01 January 2001 and190

31 December 2022. Figure 2a shows CHAMP data applied to a detection threshold of191

0.15 nT for EPDs as implemented for the Swarm IBI processor, but without confirma-192

tion through correlation with electron density. In Figure 2c, results for the Swarm satel-193

lites are shown under the same conditions as for Figure 2a but the EPDs detected by194

Swarm A,B,C satellites have been additionally confirmed by correlation with concurrent195

electron density measurements. In Figure 2c, the probability density of EPDs rapidly196

increases after 18LT, peaks between 20LT and 22LT and then gradually decreases. Very197

few EPDs are detected after 02LT. This behaviour is well known from several other in-198

dependent satellite observations (e.g., Gentile et al., 2006b; Xiong et al., 2010). For the199
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IBP model, we use the Swarm data that have been processed with a 0.15 nT detection200

threshold for EPDs and simultaneously correlated with electron density measurements201

as shown in Figure 2c. The probability density based on CHAMP data with the same202

threshold of 0.15 nT shows a flatter distribution with a maximum around 22LT and still203

relatively high values after 02LT in Figure 2a. The relatively large number of EPD de-204

tections between 02LT and 06LT for CHAMP, are detections with similar frequency and205

amplitude to EPDs but do not have corresponding signatures in electron density. Thus,206

the histogram is smeared out and we obtain a lower local maximum. Figure 2b shows207

the distribution of EPD detection for CHAMP but with a higher detection threshold of208

0.25 nT. This resulting histogram shows reduced detections of EPDs beyond 02LT and209

a higher probability density between 20-24LT, which is more consistent with observa-210

tions of EPDs dedections including the correlation between the magnetic field and plasma211

density. Additionally, when the correlations to electron density is not considered for EPDs212

detected from Swarm satellites, the probability distribution shown in Figure 2d resem-213

bles more closely with the EPD probability distribution shown for CHAMP with 0.25 nT214

detection threshold in Figure 2b than with the EPD probability distribution for 0.15 nT215

detection threshold shown in Figure 2a.216

For these reasons, the EPD detection thresholds as applied for Figures 2b and 2d217

have been chosen for CHAMP and Swarm data, respectively, to develop the IBP model.218

Additionally, we only consider CHAMP and Swarm data during periods with solar flux219

indices F10.7 ≥ 80 s.f.u and during geomagnetic quiet periods with Hp30 indices ≤ 3 (Tap-220

ping, 2013; Yamazaki et al., 2022). Setting a threshold for F10.7 improved the perfor-221

mance of the IBP model, e.g., reduces the overestimation of low occurrence rates (see222

also chapter 5.2).223

3 Model development224

The IBP model describing the EPD occurrence probability is based on parameter225

estimations for functions of local time, longitude, day of year (doy) and solar flux level.226

The model development is based on the assumption that an EPD has a random life-time227

and that it is detected by the satellite at an arbitrary time during the EPD’s existence.228

We further assume that the time of appearance of an EPD at a certain region has a con-229

stant mean and a given variance and may be modeled by a Gaussian distributed ran-230

dom variable. The random lifetime of an EPD is described by an exponential distributed231

random variable. For each EPD, a realization of its lifetime and its starting time is cre-232

ated which defines its time of existence. In addition, we make use of a Poisson distributed233

random variable to account for the possibility that several EPDs may appear at the same234

location during the same night. The parameters of the IBP model are described in Ta-235

ble 1.236

We make use of a half orbit integration of the IBI dataset (either ascending or de-237

scending), since no latitudinal distribution is modeled and it is also uncertain, if two de-238

tections during one pass are in fact the same EPD. If no EPD is detected along the satel-239

lite pass, the pass is flagged with 0. If at least one EPB is detected in the subset of IBI240

data, the pass is flagged with 1. Our model process is thus also constructed to have two241

Table 1. The basic model parameters used in the IBP model.

Parameter (units) Influence Distribution

µ(hours), σ(hours) mean and variance start-time Gaussian distribution
λ plasma bubble intensity Poisson distribution

1
γ (hours) expected lifetime of bubbles Exponential distribution
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Figure 2. Probability density of orbits with EPD detections over local time for the CHAMP

and Swarm missions.
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states, 0 and 1. To obtain a state of 1, a minimum one bubble has to appear before the242

satellite pass and in addition when adding its life time it has to exceed the time of the243

satellite pass. This may be expressed in the following way. Let T
(i)
0 , L(i), i ∈ N be the244

series of realizations of appearance times (in local time) and lifetimes of EPDs and the245

number of EPDs in that night be given by n. Then, we can define a process X(t), which246

describes the state of an EPD being detected during a satellite pass or not. For a given247

local time, t, we can write:248

X(t) = 1

{
n∑

i=1

1(T
(i)
0 < t) · 1(T (i)

0 + L(i) > t)

}
(1)

The first term of Equation 1 indicates the appearance of the bubble before time,249

t, while the second term indicates if its end of existence is past t. The function 1 rep-250

resents the indicator function and takes a value of 1 if the condition is valid, else the in-251

dicator function is 0. This function represents a process that has two states 0 and 1. A252

state of 0 denotes that no EPD is detected while a state of 1 denotes that a minimum253

of one EPD is detected in the satellite pass at the given time, which is identical to the254

integration of the dataset. Given the distributions (see Table 1), we can rewrite the prob-255

ability, P , of obtaining a flag of 1 as256

P [X(t) = 1] = 1− P [X(t) = 0]

= 1− P

[
{
Nλ∑
i=1

1(T
(i)
0 < t) · 1(T (i)

0 + L(i) > t)} = 0

]
= 1− eλ·I(t,γ,µ,σ)

(2)

where the integral I(t, γ, µ, σ) is defined as,257

I(t, γ, µ, σ) =

∫ t

−∞

1√
2πσ

e(
−(x−µ)2

2σ2 )(−e−γ(t−x))dx (3)

The complete derivation of Equation 2 can be found in Appendix A.258

3.1 Modeling the bubble intensity parameter259

Several parameters of this IBP model are not a single number, but are functions260

dependent on season, longitude, and F10.7. The global bubble intensity parameter, λ,261

varies with season, with the F10.7 index and also with longitude and can be represented262

as,263

λ = λ(doy, lon, F10.7) (4)

The longitudinal distribution of λ is given by a probability density function ϕmonth(lon)264

for each month. Since the integral of a probability density function equals 1, ϕmonth(lon)265

is not affecting the global intensity. Thus we may separate into global intensity and lon-266

gitudinal distribution. The global bubble intensity consists of three parts, a constant (C1),267

a linear fit including the F10.7 index (C2·F10.7) and an estimated function gosc(doy)268

to describe the seasonal dependency. Eventually λ can be written as269

λ(doy, lon, F10.7) = (gosc(doy) + C1 + C2 · F10.7) · ϕmonth(lon) (5)

–8–
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Figure 3. Monthly longitudinal densities obtained using kernel density estimation is shown in

solid red lines. The histogram in the background shows the monthly probability density of EPDs

as a function of longitude.

By substituting λ in Equation 2, we obtain270

P [X(t) = 1] = 1− e(gosc(doy)+C1+C2·F10.7)·ϕmonth(lon)·I(t,γ,µ,σ) (6)

3.2 Modeling the longitudinal probability density and timeshift func-271

tions272

The longitudinal probability density function ϕmonth(lon) is obtained using a ker-273

nel density estimation method. The density is estimated from the normalized EPD de-274

tections of the CHAMP and Swarm satellites. To determine the optimal bandwidth for275

the kernel density estimation of ϕmonth(lon), we apply a direct plug-in method devel-276

oped by Sheather & Jones (1991). To validate this choice of bandwidth, cross-validation277

was carried out where the bandwidth selected by employing the Sheather & Jones (1991)278

method was found to be optimal. We apply this kernel density estimator to the observed279

bubbles for each month and arrive at the monthly longitudinal densities, which are shown280

in Figure 3. The solid red lines in this figure show the longitudinal variation of ϕmonth(lon)281

for each month. Remarkable, already here, are the higher values of ϕmonth(lon) over the282

Atlantic/American sector during the months of November to February and the lower val-283

ues during May to August. The histogram shown in blue colour gives the monthly prob-284

ability density of EPDs detected from CHAMP and Swarm satellites as a function of lon-285

gitude.286

The time of appearance of EPD is modeled in this IBP model using a Gaussian dis-287

tribution with the parameters µ and σ. As it is known that the appearance of EPD may288

vary with season and longitude (see Figure 8, Stolle et al., 2008), this has been taken into289

account by adding a monthly timeshift function depending on longitude, tsmonth(lon),290

to the parameter µ0, which can be expressed as291

µ(month, lon) = µ0 + tsmonth(lon) (7)
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Figure 4. Dependence of monthly timeshift function on longitude. Here in the y-axis, 0 refers

to 24 LT.

–10–



manuscript submitted to Space Weather

The monthly variation of tsmonth(lon) as a function of longitude is shown in Fig-292

ure 4 where variations of up to 2 hours in tsmonth(lon) may be observed. The timeshift293

is estimated using a least-squares fit for the coefficients of the harmonic function described294

below295

tsmonth(lon) = t0 +

2∑
1

(t
(s)
i sin(i · lon

360
· 2π)) + (t

(c)
i cos(i · lon

360
· 2π)) (8)

The coefficients for the timeshift function can be estimated directly from the lo-296

cal time and the longitude of the detected EPDs using a least-squares fit, since we as-297

sume the lifetime parameter γ to be globally constant. However, the constant t0 may298

be affected, but this can be compensated by the estimation of parameter µ in a follow-299

ing step. By expanding I(t, γ, µ, σ) using Equation 3 and then substituting tsmonth(lon)300

in Equation 6, the model takes the following form:301

P [X(t) = 1] = 1− exp

{
(gosc(doy) + C1 + C2 · F10.7) · ϕmonth(lon)

·

(∫ t

−∞

1√
2πσ

exp

{
−(x− (µ+ tsmonth(lon)))

2

2σ2

}(
−e−γ(t−x)dx

)} (9)

Equation 9 provides a probability for each time, t, which is used to estimate whether302

the current data point is an EPD or not. We compare this estimated probability of EPDs303

with the observed EPD flag of 0 and 1 in the data and minimize the root mean square304

error (RMSE) to estimate the parameters µ, σ, γ, C1 and C2. It is important to note that305

since gosc(doy) is determined at a later step, we use λtmp in place of λ by setting gosc(doy)306

to 0 in Equation 9 while estimating µ, σ, γ, C1 and C2, where λtmp is given by307

λtmp = (C1 + C2 · F10.7) · ϕmonth(lon) (10)

and308

RMSE =

√√√√ 1

n

n∑
i=1

(Flagi − Pi)2 (11)

This RMSE was minimized using a BFGS (Broyden-Fletcher-Goldfarb-Shanno) method.309

This minimization method also has the option of passing on boundary conditions. To310

ensure that the actual minimum was reached reliably, the minimization was performed311

multiple times with randomized starting points.312

After estimating µ, σ, γ, C1 and C2 using Equation 9, we now estimate gosc(doy),313

which is a periodic function that takes the seasonal variability of the intensity of the EPDs314

into account. Without including this parameter in λ, the model cannot account for the315

well-known seasonal variability of EPDs. To resolve this issue, the residuals between the316

number of EPDs that are observed in the data and the number that are estimated by317

the model over a 5-day moving period are computed. From these residuals, a least-squares318

fit to estimate the coefficients for gosc(doy) is performed. The function gosc(doy) is de-319

veloped using a harmonic expansion and reads as320

gosc(doy) = g0 +

2∑
1

(g
(s)
i sin(i · doy

365
· 2π)) + (g

(c)
i cos(i · doy

365
· 2π)) (12)
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Table 2. IBP model coefficients

C1 C2 1
γ (hours) µ (hours) σ (hours)

-221.7870 4.3522 1.4121 -1.3386 1.0754

In summary, the procedure for solving for the parameters and coefficients of the321

IBP model follows the following steps:322

1. estimate monthly time-shift coefficients323

2. estimate monthly longitudinal densities324

3. estimate the global coefficients µ, σ, γ, C1 and C2325

4. compute residuals and estimate the coefficients for gosc326

The values of the coefficients µ, σ, γ, C1 and C2 obtained after minimization are327

summarized in Table 2.328

4 Results329

4.1 Climatology of EPD occurrence derived by the IBP model330

We first evaluate the IBP model with a constant input value of F10.7=150 s.f.u to331

examine if it is capable of describing the seasonal, longitudinal and localtime distribu-332

tions of EPDs that has been discussed in earlier works based on CHAMP, Swarm and333

other LEO satellite missions (e.g., Stolle et al., 2006; Gentile et al., 2006b; Xiong et al.,334

2010; Aa et al., 2020). The longitudinal and temporal distribution of EPDs along with335

its occurrence probability are shown in Figure 5 for solstice (June and December) and336

equinox months (March and September). The IBP model reproduces high occurrence337

probability of EPDs ranging between 50-90% over the South-American sector (75-25◦W)338

and low occurrence probability over the Pacific sector (180-120◦W) during the Decem-339

ber solstice. For this period, EPDs over the South American sector arise around 20 LT,340

peak between 21 and 22 LT and then rapidly decrease after 23 LT, which is consistent341

with its climatological variations as reported by the earlier independent works cited above.342

For the March/September equinox months, high occurrence probability of EPDs rang-343

ing between 50-70% is seen to extend eastward from the South American sector over to344

the West African sector (75◦W-30◦E). The temporal variation of EPDs for these peri-345

ods differ slightly as the occurrence probability of EPDs peaks around 21 LT during March346

and an hour later, around 22 LT, during September. Significant EPDs occurrence prob-347

ability reaching about 40% is also seen over the Pacific sector during equinox months.348

The IBP model records high occurrence probability of EPDs during June over the African349

(25◦W-50◦E) and Pacific sectors in pre-midnight hours while minima is recorded over350

the South American sector.351

4.2 Dependence of EPD occurrence on solar activity352

The occurrence of EPDs shows an evident dependence on solar activity with EPDs353

being more prevalent under solar maximum than solar minimum conditions (e.g., Gen-354

tile et al., 2006a). The performance of the IBP model in simulating the variability of EPDs355

under varying solar flux conditions is given in Figure 6. On the basis of the F10.7 index,356

we assess whether the IBP model reproduces a more frequent occurrence of EPDs un-357

der solar maximum than solar minimum conditions. We present the monthly global oc-358

currence rate of EPDs derived from the IBP model with F10.7 index ranging between359

80 and 200 s.f.u with increasing steps of 40 s.f.u in Figure 6. The monthly global occur-360
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Figure 5. Occurrence probability of EPDs presented as a function of longitude and local

time predicted by the IBP model at a constant F10.7 index of 150 s.f.u during (a) December, (b)

March, (c) June, and (d) September.

Figure 6. Occurrence probability of EPDs presented as a function of longitude and month

predicted by the IBP model at F10.7 values of (a) 80 s.f.u, (b) 120 s.f.u, (c) 160 s.f.u and (d)

200 s.f.u.
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rence rate from the IBP model, referred henceforth as monthly IBP index, is derived for361

a fixed value of F10.7 for all integer longitudes at a resolution of 5◦ at the middle of each362

month and averaged between 19 and 01 LT. We find that the IBP model reproduces the363

expected positive linear relationship between EPD occurrence rates and F10.7 index. The364

monthly IBP index generally retains negligible probabilities for F10.7 at 80 s.f.u except365

in the America-Atlantic-Africa sector during the equinoxes and solstice periods. How-366

ever, with increasing F10.7 levels, the monthly IBP indices begin to show significant prob-367

abilities as EPDs become more prevalent. Besides, with F10.7 at 120 s.f.u and above,368

the seasonal and longitudinal variations of the EPD occurrence rates are particularly well-369

characterized by the IBP model compared to its climatology (e.g., Gentile et al., 2006a)370

with monthly IBP index reaching highest rates around the equinoxes and winter solstice371

in the America-Atlantic-Africa region and lowest rates during November-February in the372

Pacific sector and during May-July in the America-Atlantic and Indian sectors. The re-373

sults from the IBP model showing a dependence on F10.7 levels compares well with the374

findings of Gentile et al. (2006b), which showed the climatology of EPD based on 15 years375

of plasma density measurements using the Defense Meteorological Satellite Program (DMSP)376

satellites.377

5 Assessment of the IBP model378

5.1 Overview of assessment methods379

The performance of probabilistic predictions by models developed for space weather380

phenomena have been typically quantified in the literature using skill scores and rela-381

tive (receiver) operating characteristic (ROC) curves (e.g., Barnes et al., 2016; Murray382

et al., 2017; Nishizuka et al., 2020). A skill score is generally defined as the measure of383

accuracy of forecasts of interest relative to the accuracy of the forecasts produced by some384

reference procedure (Murphy, 1988). A generic skill score takes the following form,385

Skill Score =
Aforecast −Areference

Aperfect −Areference
(13)

where Aforecast is the accuracy of the forecasting method under consideration, Aperfect386

is the accuracy of a perfect forecast and Areference is the accuracy of a reference method387

or the accuracy that is attainable by chance, which is usually chosen to be the clima-388

tology of the considered event. For probabilistic forecasts, a measure of accuracy is the389

mean square error (MSE), which can be used to calculate Aforecast as shown in Barnes390

et al. (2016) in the following way,391

Aforecast = MSE(pf , o) = ⟨(pf − o)2⟩ (14)

where pf is the forecast probability from the considered method and o is the value392

for binary outcomes (o = 0 for non event, o = 1 for an event). The MSE for a per-393

fect forecast, Aperfect, is 0.394

In this work, we use the Brier Skill Score (BSS) (Wilks, 1995) for evaluating the395

probability forecasting capability of the IBP model. BSS is calculated from the Brier score396

(BS) and climatological Brier score (BSc) by using the following equation,397

BSS =
BS −BSc

0−BSc
(15)

where BS = MSE(pf , o) and BSc = MSE(⟨o⟩, o). BSS can be complemented398

by a reliability diagram, which compares the forecast probabilities with the observed fre-399

quency of the events.400
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The quality of the probability forecasts are also assessed by using the ROC curve,401

which relates the true positive rate (TPR) or the probability of detection (POD) against402

the corresponding false alarm rate (FAR) (e.g., Swets, 1973; Mason, 1982). TPR or POD403

and FAR can be easily understood in case of a binary categorical forecasting system us-404

ing a 2× 2 contingency table (see Table 3).405

Table 3. 2× 2 contingency table for a binary, categorical forecasting system

Forecasts

Observation Positive Negative Total

Event True Positive (TP) False Negative (FN) TP+FN
Nonevent False Positive (FP) True Negative (TN) FP+TN
Total TP+FP FN+TN N=TP+FP+FN+TN

From the contingency table, POD and FAR are defined as follows (e.g., Mason, 1982)406

POD =
TP

TP + FN
and FAR =

FP

FP + TN
(16)

Probabilistic forecasts can be converted to binary, categorical forecasts by select-407

ing a probability threshold, Pth, such that any forecast probability over the threshold408

is considered to be a forecast for an event, and anything less is considered to be a fore-409

cast for a non-event. By varying this threshold value, contingency tables along with cor-410

responding POD and FAR can be determined for every Pth and based on these result-411

ing POD and FAR values, a ROC curve can be obtained. As POD and FAR are the axes412

of the ROC curve and they range between 0 and 1, the ROC curve for no-skill forecasts413

coincides with the 45◦ line from the origin passing through (0,0) and (1,1) with POD and414

FAR being equal. For a perfect forecast, the ROC curve connects the points (0,0), (0,1)415

and (1,1) with the values of POD and FAR being 1 and 0, respectively. The accuracy416

of binary, categorical forecasts can be determined using standard skill scores and can be417

summarized by the ROC Skill Score (ROCSS), also known as the Gini coefficient G1 (e.g.,418

Jolliffe & Stephenson, 2012) and by the Hanssen and Kuiper’s Discriminant (H&KSS),419

also known as the true skill statistic (TSS) or the Peirce skill score (e.g., Hanssen & Kuipers,420

1965; Murhy, 1993). G1 = 2×A−1.0 where A is the area under the ROC curve, and421

G1 = 1.0 denotes a perfect score. H&KSS can be written as,422

H&KSS = POD − FAR (17)

H&KSS takes into account the success due to random guessing and it ranges be-423

tween -1 and +1. A score of +1 indicates perfect agreement between predictions and ob-424

servations while a score of 0 or less indicate no-skill forecasting capability. As H&KSS425

can be sensitive to Pth, we also calculate the Gini coefficient to present a concise sum-426

mary of the assessment of the IBP model.427

5.2 Model evaluation428

We use one year of recent IBI index data from the Swarm A, B and C satellites be-429

tween July 2022 and June 2023 for the purpose of IBP model validation. During this pe-430

riod, the total number of orbits with and without EPD for each Swarm satellite are sum-431

marized in Table 4. For each orbit of the satellite, we first compute the EPD occurrence432
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probability from the IBP model for all longitude and local time that the satellite tra-433

verses. These probability outputs are then used to derive the maximum EPD occurrence434

probability for each satellite orbit. With different choices of probability threshold, Pth,435

we predict using this derived maximum EPD occurrence probability whether each satel-436

lite orbit contains or not contains EPD. The contingency tables for binary, categorical437

forecasts of EPD is then created by varying Pth and compared with the observed IBI data438

set. We chose a threshold step of 0.02 resulting in covering the Pth levels between 0 and439

1. Thereafter, POD and FAR values are calculated for different contingency tables and440

ROC curves are generated for Swarm A, B and C satellites. These ROC curves are pre-441

sented in the upper panels of Figure 7 and are used to visualize H&KSS. When Pth is442

set to 1, no EPD detections are forecasted and hence TP=FP=0, which corresponds to443

the point (0,0) on the ROC curves. When Pth is set to 0, all detections are forecasted444

as EPD and hence FN=TN=0, which corresponds to the point (1,1) on the ROC curves.445

For Figures 7a-7c, we find that ROC curves stay well above the 45◦ no-skill forecast line446

shown here in dashed green color. The ROC curves also stay close to the FAR=0 while447

the POD rises, which suggests that the IBP model well forecasts EPD events. For Swarm448

satellites A, B and C, we find that H&KSS maximizes at at similar values, e.g., when449

Pth equals 0.22, 0.18 and 0.18, respectively, which is shown through dashed vertical black450

lines. H&KSS values reach 0.66, 0.73 and 0.65 for satellites A, B and C, respectively, which451

suggests that the forecasting capability of the IBP model is significantly better than a452

no-skill forecast. The Gini coefficient for Swarm A, B and C satellites are 0.80, 0.86 and453

0.80, respectively.454

Table 4. Total number of orbits with and without EPD for each Swarm satellite between July

2022 and June 2023

Satellite # of orbits

Total with EPDs without EPDs

A 3165 334 2831
B 3294 262 3032
C 3189 357 2832

In the lower panels of Figure 7, the BSS score and reliability plots that accompany455

it are presented for the three Swarm satellites. The BSS for Swarm A, B and C equal456

0.317, 0.320 and 0.316, respectively. The reliability plots are constructed by first select-457

ing probability intervals and then the frequency of observed events within each interval458

is estimated using the method described in Wheatland (2005). This observed frequency459

is then plotted against the predicted probability and the error bars are estimated based460

on the number of events that lie within each interval. On a reliability plot, perfect pre-461

diction corresponds to a 45° line when observed frequency equals the predicted proba-462

bility, which is plotted here using the dashed green lines in Figure 7d-f. Points lying above463

this line indicate underprediction while points located below this line imply overpredic-464

tion. We find that the IBP model underestimates the occurrence frequency of EPD when465

the predicted probability exceeds 0.7 for all three satellites. Below this predicted prob-466

ability value, the model slightly overestimates the occurrence frequency of EPD for all467

three satellites. We found, that the overestimation for low occurrence rates increases with468

the amount of data of very low solar flux. These times are usually free of EPD detec-469

tions in the topside F region. A reasonable results as shown in Figure 7, was found for470

a cutoff of F10.7 ≤ 80 s.f.u.. In summary, the model slightly underestimates the EPD471

occurrence at occasions of high EPD probability and it slightly overestimates the EPD472

occurrence of low EPD probability. The performance of the IBP model based on the eval-473

uation metrics used here above is summarized in Table 5.474
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Table 5. IBP model performance based on the evaluation metrics for Swarm data between

July 2022 and June 2023

Satellite H&KSS (Pth) G1 BSS

A 0.66 (0.22) 0.80 0.317
B 0.73 (0.18) 0.86 0.320
C 0.65 (0.18) 0.80 0.316

Figure 7. The top panels of the figure (a-c) show receiver operating characteristic (ROC)

plots depicting the probability of detection as a function of the false alarm rate by varying the

threshold above which an EPD is forecasted. In this case the maximum H&KSS occurs for p =

0.22, 0.18, 0.18 for Swarm A, B and C, respectively and is indicated by a dashed vertical line.

The random classifier line of the ROC plots is donated in dashed green colors. The bottom pan-

els (d-f) show reliability plots in which the observed frequency of EPDs is plotted as a function of

the forecast probability. Perfect reliability occurs when all points lie on the diagonal (x=y) line.

The error bars are based on the sample sizes in each relevant bin.

6 Application of the IBP model475

The IBP model estimates the occurrence probability of post-sunset equatorial plasma476

irregularities between 0 (EPDs not at all expected to occur) and 1 (EPDs are fully ex-477

pected to occur) for a given longitude, local time, day of year, and solar flux value. The478

performance of the IBP model has been assessed as an estimate largely exceeding a non-479

skilled forecast in section 5. Thus, the model can be used to predict IBP ocurrence with480

reasonable confidence. The model forward code is publicly made available, as being an481

official L2 product of the Swarm mission as given at https://swarmhandbook.earth482

.esa.int/catalogue/SW IBP CLI 2 . The forward model code itself and its documen-483

tations are available at Gitlab via https://igit.iap-kborn.de/ibp/ibp-model. The484

model code is provided in Python and is also available as a Python package. The model485
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coefficients will be updated with time, when more Swarm observations will be available.486

A yearly update is anticipated. Updates will be declared in the Gitlab documentation.487

Besides the consideration of the assessment results given in section 5, the user of488

the IBP model shall be aware of the following constraints. The IBP model489

• estimates the EPD occurrence rate at altitudes between 350 and 500 km, and does490

not give information on EPDs which do not reach these altitudes.491

• is not recommended to be applied for solar flux indices F10.7 ≤ 80 s.f.u. and F10.7 ≥ 200 s.f.u..492

• does not predict EPD occurrence depending on latitude. It provides the EPD oc-493

currence for a user-defined longitude, but integrated over latitude.494

7 Conclusions495

In this study, we have presented the IBP model by explaining its derivation, its as-496

sessment, and giving recommendations for its application. The main findings of this study497

are summarized below:498

• The IBP model is a statistical climatological model for predicting the occurrence499

probability of F region EPDs for a given local time, solar radio flux, day of year,500

and longitude.501

• It fully captures the climatology and solar flux dependence of EPDs at altitudes502

between 350 and 500 km. The model especially performs well in the American/Atlantic503

sector during December solstice and increased solar activity conditions, which is504

encouraging as this region and this season is a hotspot for EPDs.505

• Based on one year of recent Swarm magnetic data, which constitutes as partly non-506

trained data set for the assessment, the IBP model has been evaluated and var-507

ious evaluation metrics have been presented. The IBP model shows improved pre-508

diction capability compared to climatological forecasts with moderate skill scores.509

With the addition of more recent Swarm data, e.g., by updating the model pa-510

rameters, it is expected that the skill scores and accuracy of the IBP model en-511

hances further.512

• The IBP model is publicly made available at https://igit.iap-kborn.de/ibp/513

ibp-model.514

8 Open Research515

The CHAMP magnetic data set used in this paper (Rother & Michaelis, 2019) can516

be freely downloaded using the following ftp link, ftp://anonymous@isdcftp.gfz-potsdam517

.de/champ/. How to access the data and data citations can be found under https://518

isdc.gfz-potsdam.de/champ-isdc/access-to-the-champ-data/. The Swarm data519

set is publicly available from the European Space Agency website using the following web-520

site link https://earth.esa.int/eogateway/missions/swarm/data. The IBP model521

is publicly available with the Gitlab link https://igit.iap-kborn.de/ibp/ibp-model.522

The F10.7 index is accessible at https://lasp.colorado.edu/lisird/data/noaa radio523

flux. The Hp30 index (Matzka et al., 2022) is provided at https://kp.gfz-potsdam524

.de/en/hp30-hp60. All data sets and software are freely available from the stated links525

without the need for user registration. The CHAMP magnetic data set and the Hp30526

index are published under licence CC BY 4.0.527
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Appendix A Derivation of Equation 2531

P [X(t) = 1] = 1− P [X(t) = 0]

= 1− P

[
{
Nλ∑
i=1

1(T
(i)
0 < t) · 1(T (i)

0 + L(i) > t)} = 0
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& Chau, J. L. (2019). On the Balance Between Plasma and Magnetic Pressure741

Across Equatorial Plasma Depletions. Journal of Geophysical Research: Space742

Physics, 124 (7), 5936-5944. doi: https://doi.org/10.1029/2019JA026700743

Rother, M., & Michaelis, I. (2019). CH-ME-3-MAG - CHAMP 1 Hz Combined Mag-744

netic Field Time Series (Level 3) [Dataset]. GFZ Data Services. doi: https://doi745

.org/10.5880/GFZ.2.3.2019.004746

Sahai, Y., Aarons, J., Mendillo, M., Baumgardner, J., Bittencourt, J., & Takahashi,747

H. (1994). OI 630 nm imaging observations of equatorial plasma depletions at 16°748

S dip latitude. Journal of Atmospheric and Terrestrial Physics, 56 (11), 1461-1475.749

doi: https://doi.org/10.1016/0021-9169(94)90113-9750

Sahai, Y., Fagundes, P., & Bittencourt, J. (2000). Transequatorial F-region751

ionospheric plasma bubbles: solar cycle effects. Journal of Atmospheric and752

Solar-Terrestrial Physics, 62 (15), 1377-1383. doi: https://doi.org/10.1016/753

S1364-6826(00)00179-6754

Saito, S., & Maruyama, T. (2006). Ionospheric height variations observed by755

ionosondes along magnetic meridian and plasma bubble onsets. Annales Geophysi-756

cae, 24 (11), 2991–2996. doi: https://doi.org/10.5194/angeo-24-2991-2006757

Saito, S., & Maruyama, T. (2007). Large-scale longitudinal variation in ionospheric758

height and equatorial spread F occurrences observed by ionosondes. Geophysical759

Research Letters, 34 (16). doi: https://doi.org/10.1029/2007GL030618760

Sheather, S. J., & Jones, M. C. (1991). A Reliable Data-Based Bandwidth Selec-761

tion Method for Kernel Density Estimation. Journal of the Royal Statistical So-762

ciety: Series B (Methodological), 53 (3), 683-690. doi: https://doi.org/10.1111/j763

.2517-6161.1991.tb01857.x764

Shinagawa, H., Jin, H., Miyoshi, Y., Fujiwara, H., Yokoyama, T., & Otsuka, Y.765

(2018). Daily and seasonal variations in the linear growth rate of the Rayleigh-766

Taylor instability in the ionosphere obtained with GAIA. Progress in Earth and767

Planetary Science, 5 (1), 16. doi: https://doi.org/10.1186/s40645-018-0175-8768

Singh, S., Johnson, F. S., & Power, R. A. (1997). Gravity wave seeding of equatorial769

plasma bubbles. Journal of Geophysical Research: Space Physics, 102 (A4), 7399-770

7410. doi: https://doi.org/10.1029/96JA03998771
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Stolle, C., Lühr, H., Rother, M., & Balasis, G. (2006). Magnetic signatures of equa-776

torial spread F as observed by the CHAMP satellite. Journal of Geophysical Re-777

search: Space Physics, 111 (A2). doi: https://doi.org/10.1029/2005JA011184778

Su, S.-Y., Chao, C. K., & Liu, C. H. (2008). On monthly/seasonal/longitudinal vari-779

ations of equatorial irregularity occurrences and their relationship with the post-780

sunset vertical drift velocities. Journal of Geophysical Research: Space Physics,781

113 (A5). doi: https://doi.org/10.1029/2007JA012809782

Su, S.-Y., Yeh, H. C., & Heelis, R. A. (2001). ROCSAT 1 ionospheric plasma and783

electrodynamics instrument observations of equatorial spread F: An early transi-784

tional scale result. Journal of Geophysical Research: Space Physics, 106 (A12),785

29153-29159. doi: https://doi.org/10.1029/2001JA900109786

Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh-Taylor instability787

leading to the occurrence of equatorial spread F. Journal of Geophysical Research:788

Space Physics, 101 (A12), 26875-26891. doi: https://doi.org/10.1029/96JA00682789

Swets, J. A. (1973). The Relative Operating Characteristic in Psychology: A tech-790

nique for isolating effects of response bias finds wide use in the study of perception791

and cognition. Science, 182 (4116), 990–1000.792

Tapping, K. F. (2013). The 10.7cm solar radio flux (f10.7). Space Weather , 11 (7),793

394-406. doi: https://doi.org/10.1002/swe.20064794

Tsunoda, R. T. (2005). On the enigma of day-to-day variability in equatorial795

spread F. Geophysical Research Letters, 32 (8). doi: https://doi.org/10.1029/796

2005GL022512797

Tsunoda, R. T., Bubenik, D. M., Thampi, S. V., & Yamamoto, M. (2010). On798

large-scale wave structure and equatorial spread F without a post-sunset rise of799

the F layer. Geophysical Research Letters, 37 (7). doi: https://doi.org/10.1029/800

2009GL042357801

Tsunoda, R. T., Saito, S., & Nguyen, T. T. (2018). Post-sunset rise of equatorial802

F layer—or upwelling growth? Progress in Earth and Planetary Science, 5 (1), 22.803

doi: https://doi.org/10.1186/s40645-018-0179-4804

Tsunoda, R. T., & White, B. R. (1981). On the generation and growth of equa-805

torial backscatter plumes 1. Wave structure in the bottomside F layer. Journal of806

Geophysical Research: Space Physics, 86 (A5), 3610-3616. doi: https://doi.org/10807

.1029/JA086iA05p03610808

Wheatland, M. S. (2005). A statistical solar flare forecast method. Space Weather ,809

3 (7). doi: https://doi.org/10.1029/2004SW000131810

Wilks, D. (1995). Forecast verification. Statistical methods in the atmospheric sci-811

ences. Academic Press New York, NY, USA.812

Woodman, R. F., & La Hoz, C. (1976). Radar observations of F region equatorial ir-813

regularities. Journal of Geophysical Research (1896-1977), 81 (31), 5447-5466. doi:814

https://doi.org/10.1029/JA081i031p05447815
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Key Points:8

• The IBP model to estimate the occurrence probability of post-sunset equatorial9

plasma depletions (EPDs) is introduced.10

• IBP shows high performance in predicting EPD occurrence for longitude, local time,11

day of year, solar activity, at altitudes of 350-500 km.12

• The IBP model is publicly available including documentation.13

Corresponding author: Claudia Stolle, cstolle@iap-kborn.de

–1–



manuscript submitted to Space Weather

Abstract14

The prediction of post-sunset equatorial plasma depletions (EPDs), often called iono-15

spheric plasma bubbles, has remained a challenge for decades. In this study, we intro-16

duce the Ionospheric Bubble Probability (IBP), an empirical model to predict the oc-17

currence probability of EPDs derived from 9 years of CHAMP and 8.5 years of Swarm18

magnetic field measurements. The model predicts the occurrence probability of EPDs19

for a given longitude, day of year, local time and solar activity, for the altitude range 350-20

500 km, and low geographic latitudes of ± 45◦. IBP has been found to successfully re-21

construct the distribution of EPDs as reported in previous studies from independent data.22

IBP has been further evaluated using one-year of partly untrained data of the Ionospheric23

Bubble Index (IBI). IBI is a Level 2 product of the Swarm satellite mission used for EPD24

identification. The relative operating characteristics (ROC) curve shows positive excur-25

sion above the no-skill line with Hanssen and Kuiper’s Discriminant (H&KSS) score of26

0.66, 0.73, and 0.65 at threshold model outputs of 0.22, 0.18, and 0.18 for Swarm A, B,27

and C satellites, respectively. Additionally, the reliability plots show proximity to the28

diagonal line with a fairly decent Brier Skill Score (BSS) of 0.317, 0.320, and 0.316 for29

Swarm A, B, and C respectively. These tests indicate that the model performs signif-30

icantly better than a no-skill forecast. The IBP model offers a compelling glimpse into31

the future of EPD forecasting, thus demonstrating its potential to reliably predict EPD32

occurrences. The IBP model is made publicly available.33

Plain Language Summary34

[Post-sunset equatorial plasma depletions (EPDs), often called ionospheric plasma35

bubbles, are a severe threat for reliable radio wave communication. However, their pre-36

dictability has remained a challenge for the scientific community for decades. In this study,37

we introduce the Ionospheric Bubble Probability (IBP) model predicting the occurrence38

probability of post-sunset EPDs for a given longitude, day of year, local time and solar39

activity, for the altitude range 350-500 km, and low geographic latitudes of ± 45◦. To40

this aim we have used 9 years of CHAMP and 8.5 years of Swarm magnetic field mea-41

surements. The IBP model predictions have been found to agree well with climatologies42

derived from independent data and performs largely better than unskilled forecasts. The43

IBP model is made publicly available.]44

1 Introduction45

The post-sunset equatorial and low-latitude ionosphere is susceptible to irregular-46

ities associated with F region plasma instability, popularly known as equatorial plasma47

depletions (EPDs) or ionospheric plasma bubbles. EPDs are regions of steep plasma de-48

pletions of several orders of magnitude in electron density with scale sizes ranging from49

thousands of kilometers down to meters (e.g., D. L. Hysell & Seyler, 1998; Lühr et al.,50

2014; Su et al., 2001). EPD is believed to be governed by the Rayleigh-Taylor (RT) in-51

stability mechanism which operates at the bottomside F region when uplifted during evening52

time post-sunset rise driven by the pre-reversal enhancement (PRE) of zonal electric field53

over the dip equator (e.g., Balsley et al., 1972; Haerendel, 1973; Ossakow, 1981; Sultan,54

1996; Woodman & La Hoz, 1976; Tsunoda, 2005). The growth of RT instability depends55

on various ionospheric and thermospheric parameters which include F layer height, zonal56

(eastward) electric field, bottomside density gradient, meridional wind and perturbation57

in electron density in the form of seed (e.g., Kelley, 2009). EPDs have been found to ex-58

hibit serious threats to radio waves employed for satellite-based communication/navigation59

applications by producing random fluctuations in signal amplitude and phase known as60

scintillations. Based on simultaneous observations of plasma density and Global Posi-61

tioning System (GPS) observables on board the Swarm satellite mission, Xiong et al. (2016,62

2020) showed the positive relation between the strengths of EPDs and the severeness of63
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GPS scintillations to even total signal losses. Therefore, predicting EPD occurrence is64

of absolute necessity.65

Although the underlying principle of RT instability is well understood (e.g., Kel-66

ley, 2009; Sultan, 1996), understanding the variability in EPD occurrence on a day-to-67

day basis continues to be puzzling (e.g., Abdu, 2019; Basu et al., 2009; Carter et al., 2014;68

Chou et al., 2020; Manju & Aswathy, 2020; Rajesh et al., 2017; Retterer & Roddy, 2014;69

Saito & Maruyama, 2007; Shinagawa et al., 2018; Tsunoda et al., 2010, 2018; Yamamoto70

et al., 2018; Das et al., 2021; D. L. Hysell et al., 2022; Patra & Das, 2023). While the71

PRE has been found to show a remarkable agreement with EPD occurrence climatolog-72

ically (e.g., Clemesha & Wright, 1966; Dabas et al., 2003; Fejer et al., 1999; Gentile et73

al., 2006b; D. Hysell & Burcham, 2002; Stolle et al., 2008; Su et al., 2008; Tsunoda, 2005;74

Huang & Hairston, 2015), it fails to account on its day-to-day occurrence variability (e.g.,75

Abdu et al., 1983; Fukao et al., 2006; Saito & Maruyama, 2006, 2007). Intriguingly, the76

growth rate of RT instability has been found to display similar uncertainty (e.g., Shi-77

nagawa et al., 2018; Das et al., 2021; Aa et al., 2023). Since the EPD occurrence shows78

a large variability both in small- and large-longitudinal scales (e.g., Kil et al., 2009; Kil79

& Heelis, 1998a; Martinis et al., 2021; Singh et al., 1997; Stolle et al., 2008; Tsunoda et80

al., 2018; Tsunoda & White, 1981), predicting EPD occurrence becomes even more chal-81

lenging. Now, it is fairly well understood that missing understanding of the spatio-temporal82

behaviour of EPDs, i.e. growth, zonal movement and decay of EPDs, along with the paucity83

of continuous measurements of ionospheric parameters is the cause for the challenge in84

predicting the day-to-day occurrence variability of EPDs (e.g., Das et al., 2021; Li et al.,85

2021; D. L. Hysell et al., 2021; Patra & Das, 2023).86

While for a long time, traditional methods such as in situ density measurements,87

optical imagers and radio wave sounding have been employed to study the day-to-day,88

global, and climatological occurrence of EPDs (e.g., Woodman & La Hoz, 1976; Farley89

et al., 1970; Kudeki & Bhattacharyya, 1999; Sahai et al., 1994, 2000; Kil & Heelis, 1998b;90

Fagundes et al., 1999; Burke et al., 2004; Gentile et al., 2011; Huang et al., 2014; Mar-91

tinis & Mendillo, 2007; Das et al., 2021; Aa et al., 2023), subsequently, it has been found92

that magnetic field perturbations associated with the diamagnetic current linked to steep93

density gradient at the edges of the EPDs can also be used for characterizing EPDs (e.g.,94

Lühr et al., 2002; Rodŕıguez-Zuluaga et al., 2019). Diagnosing EPDs through those sig-95

natures in the magnetic field and electron density, Stolle et al. (2006) could successfully96

reconstruct the well-known EPB climatology using Flux-Gate Magnetometer (FGM) mea-97

surements on-board the Challenging Mini-Satellite Payload (CHAMP) which similarly98

were obtained by traditional methods based on plasma density data from other satel-99

lite missions (e.g., Gentile et al., 2006b; Xiong et al., 2010). This success led to the in-100

troduction of the Ionospheric Bubble Index (IBI) as a standard Level 2 (L2) data prod-101

uct of the Swarm mission for the detection of EPDs (e.g., Park et al., 2013). Recently,102

Reddy et al. (2023) have utilized a machine learning (ML) based AI Prediction of EPBs103

(APE) model to predict the IBI. Their model is derived from 8 years of Swarm data. Fea-104

ture analyses revealed that F10.7 is the most important feature in driving the EPB pre-105

dictions, whereas latitude is the least.106

The advantage of EPD climatology derived from in situ observations of polar-orbiting,107

Low Earth Orbit (LEO) satellites is their global coverage. However, it should be noted108

that these satellites can only detect those irregularities that have evolved into plumes109

reaching F region altitudes at or above the F2 peak. Conversely, the bottom-side F re-110

gion irregularities, from which plumes may evolve, occur more frequently than F region111

plumes are observed, e.g., almost every evening throughout the year and solar cycle, e.g.,112

in the American sector. A comprehensive investigation of the irregularity occurrence de-113

rived from 20 years of incoherent scatter radar data at the Jicamarca radio observatory114

has been provided by Zhan et al. (2018). Accordingly, based on 10 years of ground-based115

GPS observations distributed in South America, Macho et al. (2022) indicated some ac-116
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tivity of weak scintillations also during low solar flux years, while moderate or intense117

scintillations did only occur during moderate or high solar flux years.118

This article introduces an empirical model of the occurrence probability of post-119

sunset F region EPDs called the Ionospheric Bubble Probability (IBP) model. The IBP120

is derived from the detection of magnetic field perturbations associated with EPDs ob-121

tained from 9 years of CHAMP and 8.5 years of Swarm observations in the geomagnetic122

field. The model predicts the EPD occurrence rate for a given longitude, day of year,123

local time and solar activity, for the altitude range 350-500 km, and low geographic lat-124

itudes of ± 45°. The occcurrence probability is given in the range of 0 to 1, from a 0%125

to 100% probability, respectively. The structure of this manuscript goes as following. Sec-126

tion 2 provides a description of the data on which the model is based, section 3 describes127

the model development methods, section 4 shows the model results, section 5 provides128

model validation and discussion, and finally, conclusions are described in section 7. The129

forward model code is available from URL: https://igit.iap-kborn.de/ibp/ibp-model.130

2 Data131

2.1 Swarm satellite mission132

The Swarm satellite mission is a constellation consisting of three identical satel-133

lites Alpha, Bravo and Charlie (A, B and C) launched in November 2013 into near-circular134

orbits at an altitude of approximately 490 km (Friis-Christensen et al., 2006; Olsen et135

al., 2013). Following orbital maneuvers in April 2014, Swarm A and C fly in a side-by-136

side configuration with an inclination of 87.4◦ and an initial altitude of about 460 km137

(see Figure 1), while Swarm B flies at an inclination of 88◦ and at a higher orbit of ini-138

tially about 530 km altitude. Swarm B has been precessing away from the lower pair at139

a rate of approximately 1.5 h of local time per year while Swarm A and C precess west-140

ward in local time at a rate of 2.7 h per month (Knudsen et al., 2017). The Swarm satel-141

lites cover all local times about every 4 months. The satellites carry, among other instru-142

ments, a magnetometer package consisting of an Absolute Scalar Magnetometer (ASM)143

and a Vector Field Magnetometer (VSM), which provides precise measurements of the144

Earth’s magnetic field at the satellite location at 1 Hz frequency. Each satellite also car-145

ries a spherical Langmuir probe as part of the Electric Field Instrument (EFI) provid-146

ing plasma density observations at 2 Hz frequency (Knudsen et al., 2017).147

It is known that EPDs can be detected by high-precision magnetometers on board148

low earth orbit (LEO) satellites from their diamagnetic effects as regions of locally de-149

pleted plasma are characterized by enhanced magnetic field strength (e.g., Lühr et al.,150

2003; Stolle et al., 2006; Park et al., 2013). For the Swarm mission, the European Space151

Agency (ESA) has introduced the Ionospheric Bubble Index (IBI) as a standard Level 2 (L2)152

data product, which is generated from in situ magnetic field and plasma observations153

onboard the Swarm satellites and provides detections of EPDs along Swarm orbits. The154

IBI product considers not only the characteristic small-scale variations in the magnetic155

field to detect EPDs but also the concurrent change in plasma density to confirm these156

detected EPDs. The detection threshold of EPDs based on their diamagnetic effects is157

set to 0.15 nT. If the correlation between the magnetic field and electron density is suf-158

ficiently high (i.e. p2>0.5, where p is the pearson correlation coefficient), which confirms159

the diamagnetic effect, the magnetic fluctuation is flagged as confirmed EPD. The IBI160

product provides a binary indicator for each of the low latitude (below 45◦), night side161

(18-06LT), 1 Hz magnetic readings whether the measurement is affected by an EPD or162

not. If the data quality does not allow for EPD detection, e.g., due to enhanced noise163

or too many data gaps, the data is flagged by an integer value larger than 1. The de-164

tailed description of the IBI product and of its derivation is outlined in Park et al. (2013).165

Swarm data between 01 January 2014 and 31 December 2022 have been used in this study166

–4–



manuscript submitted to Space Weather

Figure 1. Orbit altitude evolution of the CHAMP and Swarm satellites. The grey line in-

dicates daily values of the F10.7 solar activity index. The light grey areas indicate the times of

satellite data which where selected to derive the IBP model.

to derive the model. The mean satellite altitudes were around 480 km for Swarm A and167

C and 510 km for Swarm B (see Figure 1).168

2.2 CHAMP satellite mission169

CHAMP (CHallenging Minisatellite Payload) was launched on 15 July 2000 into170

a near-circular orbit with an inclination of 87.3◦ and an initial orbit altitude of 456 km171

(Reigber et al., 2002), which decayed to around 250 km in 2010 when the mission re-entered172

the atmosphere (see Figure 1). The study of geomagnetic field was one of the objectives173

behind this satellite mission. CHAMP carried both scalar and vector magnetometers,174

which provided precise measurements of the Earth’s magnetic field at the satellite al-175

titude at 1 Hz frequency. The first global survey of magnetic signatures of EPDs includ-176

ing a description of their detection in the magnetic field was published by Stolle et al.177

(2006). In order to derive the IBP model, the CHAMP magnetic data was re-processed178

by the IBI processor as used for the L2 Swarm product to ensure consistency of the de-179

tections between Swarm and CHAMP. Since the CHAMP mission provided electron den-180

sity measurements at only 15 s resolution, the correlation between magnetic field fluc-181

tuations and electron density was disabled in the processor when applied to CHAMP,182

because it was not expected to make meaningful contribution as is the case for the high183

resolution plasma density data from Swarm. Therefore, all detections in the magnetic184

field that exceeded a predefined threshold are identified as an EPD. CHAMP data be-185

tween 01 January 2001 and 31 December 2009 have been used to derive the model. The186

mean satellite altitude as shown in Figure 1 was around 360 km.187

2.3 Comparing CHAMP and Swarm data sets188

Figure 2 shows the probability density of orbits with EPD detections over local time189

for the CHAMP and Swarm satellites for the data periods between 01 January 2001 and190

31 December 2022. Figure 2a shows CHAMP data applied to a detection threshold of191

0.15 nT for EPDs as implemented for the Swarm IBI processor, but without confirma-192

tion through correlation with electron density. In Figure 2c, results for the Swarm satel-193

lites are shown under the same conditions as for Figure 2a but the EPDs detected by194

Swarm A,B,C satellites have been additionally confirmed by correlation with concurrent195

electron density measurements. In Figure 2c, the probability density of EPDs rapidly196

increases after 18LT, peaks between 20LT and 22LT and then gradually decreases. Very197

few EPDs are detected after 02LT. This behaviour is well known from several other in-198

dependent satellite observations (e.g., Gentile et al., 2006b; Xiong et al., 2010). For the199
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IBP model, we use the Swarm data that have been processed with a 0.15 nT detection200

threshold for EPDs and simultaneously correlated with electron density measurements201

as shown in Figure 2c. The probability density based on CHAMP data with the same202

threshold of 0.15 nT shows a flatter distribution with a maximum around 22LT and still203

relatively high values after 02LT in Figure 2a. The relatively large number of EPD de-204

tections between 02LT and 06LT for CHAMP, are detections with similar frequency and205

amplitude to EPDs but do not have corresponding signatures in electron density. Thus,206

the histogram is smeared out and we obtain a lower local maximum. Figure 2b shows207

the distribution of EPD detection for CHAMP but with a higher detection threshold of208

0.25 nT. This resulting histogram shows reduced detections of EPDs beyond 02LT and209

a higher probability density between 20-24LT, which is more consistent with observa-210

tions of EPDs dedections including the correlation between the magnetic field and plasma211

density. Additionally, when the correlations to electron density is not considered for EPDs212

detected from Swarm satellites, the probability distribution shown in Figure 2d resem-213

bles more closely with the EPD probability distribution shown for CHAMP with 0.25 nT214

detection threshold in Figure 2b than with the EPD probability distribution for 0.15 nT215

detection threshold shown in Figure 2a.216

For these reasons, the EPD detection thresholds as applied for Figures 2b and 2d217

have been chosen for CHAMP and Swarm data, respectively, to develop the IBP model.218

Additionally, we only consider CHAMP and Swarm data during periods with solar flux219

indices F10.7 ≥ 80 s.f.u and during geomagnetic quiet periods with Hp30 indices ≤ 3 (Tap-220

ping, 2013; Yamazaki et al., 2022). Setting a threshold for F10.7 improved the perfor-221

mance of the IBP model, e.g., reduces the overestimation of low occurrence rates (see222

also chapter 5.2).223

3 Model development224

The IBP model describing the EPD occurrence probability is based on parameter225

estimations for functions of local time, longitude, day of year (doy) and solar flux level.226

The model development is based on the assumption that an EPD has a random life-time227

and that it is detected by the satellite at an arbitrary time during the EPD’s existence.228

We further assume that the time of appearance of an EPD at a certain region has a con-229

stant mean and a given variance and may be modeled by a Gaussian distributed ran-230

dom variable. The random lifetime of an EPD is described by an exponential distributed231

random variable. For each EPD, a realization of its lifetime and its starting time is cre-232

ated which defines its time of existence. In addition, we make use of a Poisson distributed233

random variable to account for the possibility that several EPDs may appear at the same234

location during the same night. The parameters of the IBP model are described in Ta-235

ble 1.236

We make use of a half orbit integration of the IBI dataset (either ascending or de-237

scending), since no latitudinal distribution is modeled and it is also uncertain, if two de-238

tections during one pass are in fact the same EPD. If no EPD is detected along the satel-239

lite pass, the pass is flagged with 0. If at least one EPB is detected in the subset of IBI240

data, the pass is flagged with 1. Our model process is thus also constructed to have two241

Table 1. The basic model parameters used in the IBP model.

Parameter (units) Influence Distribution

µ(hours), σ(hours) mean and variance start-time Gaussian distribution
λ plasma bubble intensity Poisson distribution

1
γ (hours) expected lifetime of bubbles Exponential distribution
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Figure 2. Probability density of orbits with EPD detections over local time for the CHAMP

and Swarm missions.
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states, 0 and 1. To obtain a state of 1, a minimum one bubble has to appear before the242

satellite pass and in addition when adding its life time it has to exceed the time of the243

satellite pass. This may be expressed in the following way. Let T
(i)
0 , L(i), i ∈ N be the244

series of realizations of appearance times (in local time) and lifetimes of EPDs and the245

number of EPDs in that night be given by n. Then, we can define a process X(t), which246

describes the state of an EPD being detected during a satellite pass or not. For a given247

local time, t, we can write:248

X(t) = 1

{
n∑

i=1

1(T
(i)
0 < t) · 1(T (i)

0 + L(i) > t)

}
(1)

The first term of Equation 1 indicates the appearance of the bubble before time,249

t, while the second term indicates if its end of existence is past t. The function 1 rep-250

resents the indicator function and takes a value of 1 if the condition is valid, else the in-251

dicator function is 0. This function represents a process that has two states 0 and 1. A252

state of 0 denotes that no EPD is detected while a state of 1 denotes that a minimum253

of one EPD is detected in the satellite pass at the given time, which is identical to the254

integration of the dataset. Given the distributions (see Table 1), we can rewrite the prob-255

ability, P , of obtaining a flag of 1 as256

P [X(t) = 1] = 1− P [X(t) = 0]

= 1− P

[
{
Nλ∑
i=1

1(T
(i)
0 < t) · 1(T (i)

0 + L(i) > t)} = 0

]
= 1− eλ·I(t,γ,µ,σ)

(2)

where the integral I(t, γ, µ, σ) is defined as,257

I(t, γ, µ, σ) =

∫ t

−∞

1√
2πσ

e(
−(x−µ)2

2σ2 )(−e−γ(t−x))dx (3)

The complete derivation of Equation 2 can be found in Appendix A.258

3.1 Modeling the bubble intensity parameter259

Several parameters of this IBP model are not a single number, but are functions260

dependent on season, longitude, and F10.7. The global bubble intensity parameter, λ,261

varies with season, with the F10.7 index and also with longitude and can be represented262

as,263

λ = λ(doy, lon, F10.7) (4)

The longitudinal distribution of λ is given by a probability density function ϕmonth(lon)264

for each month. Since the integral of a probability density function equals 1, ϕmonth(lon)265

is not affecting the global intensity. Thus we may separate into global intensity and lon-266

gitudinal distribution. The global bubble intensity consists of three parts, a constant (C1),267

a linear fit including the F10.7 index (C2·F10.7) and an estimated function gosc(doy)268

to describe the seasonal dependency. Eventually λ can be written as269

λ(doy, lon, F10.7) = (gosc(doy) + C1 + C2 · F10.7) · ϕmonth(lon) (5)
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Figure 3. Monthly longitudinal densities obtained using kernel density estimation is shown in

solid red lines. The histogram in the background shows the monthly probability density of EPDs

as a function of longitude.

By substituting λ in Equation 2, we obtain270

P [X(t) = 1] = 1− e(gosc(doy)+C1+C2·F10.7)·ϕmonth(lon)·I(t,γ,µ,σ) (6)

3.2 Modeling the longitudinal probability density and timeshift func-271

tions272

The longitudinal probability density function ϕmonth(lon) is obtained using a ker-273

nel density estimation method. The density is estimated from the normalized EPD de-274

tections of the CHAMP and Swarm satellites. To determine the optimal bandwidth for275

the kernel density estimation of ϕmonth(lon), we apply a direct plug-in method devel-276

oped by Sheather & Jones (1991). To validate this choice of bandwidth, cross-validation277

was carried out where the bandwidth selected by employing the Sheather & Jones (1991)278

method was found to be optimal. We apply this kernel density estimator to the observed279

bubbles for each month and arrive at the monthly longitudinal densities, which are shown280

in Figure 3. The solid red lines in this figure show the longitudinal variation of ϕmonth(lon)281

for each month. Remarkable, already here, are the higher values of ϕmonth(lon) over the282

Atlantic/American sector during the months of November to February and the lower val-283

ues during May to August. The histogram shown in blue colour gives the monthly prob-284

ability density of EPDs detected from CHAMP and Swarm satellites as a function of lon-285

gitude.286

The time of appearance of EPD is modeled in this IBP model using a Gaussian dis-287

tribution with the parameters µ and σ. As it is known that the appearance of EPD may288

vary with season and longitude (see Figure 8, Stolle et al., 2008), this has been taken into289

account by adding a monthly timeshift function depending on longitude, tsmonth(lon),290

to the parameter µ0, which can be expressed as291

µ(month, lon) = µ0 + tsmonth(lon) (7)
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Figure 4. Dependence of monthly timeshift function on longitude. Here in the y-axis, 0 refers

to 24 LT.
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The monthly variation of tsmonth(lon) as a function of longitude is shown in Fig-292

ure 4 where variations of up to 2 hours in tsmonth(lon) may be observed. The timeshift293

is estimated using a least-squares fit for the coefficients of the harmonic function described294

below295

tsmonth(lon) = t0 +

2∑
1

(t
(s)
i sin(i · lon

360
· 2π)) + (t

(c)
i cos(i · lon

360
· 2π)) (8)

The coefficients for the timeshift function can be estimated directly from the lo-296

cal time and the longitude of the detected EPDs using a least-squares fit, since we as-297

sume the lifetime parameter γ to be globally constant. However, the constant t0 may298

be affected, but this can be compensated by the estimation of parameter µ in a follow-299

ing step. By expanding I(t, γ, µ, σ) using Equation 3 and then substituting tsmonth(lon)300

in Equation 6, the model takes the following form:301

P [X(t) = 1] = 1− exp

{
(gosc(doy) + C1 + C2 · F10.7) · ϕmonth(lon)

·

(∫ t

−∞

1√
2πσ

exp

{
−(x− (µ+ tsmonth(lon)))

2

2σ2

}(
−e−γ(t−x)dx

)} (9)

Equation 9 provides a probability for each time, t, which is used to estimate whether302

the current data point is an EPD or not. We compare this estimated probability of EPDs303

with the observed EPD flag of 0 and 1 in the data and minimize the root mean square304

error (RMSE) to estimate the parameters µ, σ, γ, C1 and C2. It is important to note that305

since gosc(doy) is determined at a later step, we use λtmp in place of λ by setting gosc(doy)306

to 0 in Equation 9 while estimating µ, σ, γ, C1 and C2, where λtmp is given by307

λtmp = (C1 + C2 · F10.7) · ϕmonth(lon) (10)

and308

RMSE =

√√√√ 1

n

n∑
i=1

(Flagi − Pi)2 (11)

This RMSE was minimized using a BFGS (Broyden-Fletcher-Goldfarb-Shanno) method.309

This minimization method also has the option of passing on boundary conditions. To310

ensure that the actual minimum was reached reliably, the minimization was performed311

multiple times with randomized starting points.312

After estimating µ, σ, γ, C1 and C2 using Equation 9, we now estimate gosc(doy),313

which is a periodic function that takes the seasonal variability of the intensity of the EPDs314

into account. Without including this parameter in λ, the model cannot account for the315

well-known seasonal variability of EPDs. To resolve this issue, the residuals between the316

number of EPDs that are observed in the data and the number that are estimated by317

the model over a 5-day moving period are computed. From these residuals, a least-squares318

fit to estimate the coefficients for gosc(doy) is performed. The function gosc(doy) is de-319

veloped using a harmonic expansion and reads as320

gosc(doy) = g0 +

2∑
1

(g
(s)
i sin(i · doy

365
· 2π)) + (g

(c)
i cos(i · doy

365
· 2π)) (12)
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Table 2. IBP model coefficients

C1 C2 1
γ (hours) µ (hours) σ (hours)

-221.7870 4.3522 1.4121 -1.3386 1.0754

In summary, the procedure for solving for the parameters and coefficients of the321

IBP model follows the following steps:322

1. estimate monthly time-shift coefficients323

2. estimate monthly longitudinal densities324

3. estimate the global coefficients µ, σ, γ, C1 and C2325

4. compute residuals and estimate the coefficients for gosc326

The values of the coefficients µ, σ, γ, C1 and C2 obtained after minimization are327

summarized in Table 2.328

4 Results329

4.1 Climatology of EPD occurrence derived by the IBP model330

We first evaluate the IBP model with a constant input value of F10.7=150 s.f.u to331

examine if it is capable of describing the seasonal, longitudinal and localtime distribu-332

tions of EPDs that has been discussed in earlier works based on CHAMP, Swarm and333

other LEO satellite missions (e.g., Stolle et al., 2006; Gentile et al., 2006b; Xiong et al.,334

2010; Aa et al., 2020). The longitudinal and temporal distribution of EPDs along with335

its occurrence probability are shown in Figure 5 for solstice (June and December) and336

equinox months (March and September). The IBP model reproduces high occurrence337

probability of EPDs ranging between 50-90% over the South-American sector (75-25◦W)338

and low occurrence probability over the Pacific sector (180-120◦W) during the Decem-339

ber solstice. For this period, EPDs over the South American sector arise around 20 LT,340

peak between 21 and 22 LT and then rapidly decrease after 23 LT, which is consistent341

with its climatological variations as reported by the earlier independent works cited above.342

For the March/September equinox months, high occurrence probability of EPDs rang-343

ing between 50-70% is seen to extend eastward from the South American sector over to344

the West African sector (75◦W-30◦E). The temporal variation of EPDs for these peri-345

ods differ slightly as the occurrence probability of EPDs peaks around 21 LT during March346

and an hour later, around 22 LT, during September. Significant EPDs occurrence prob-347

ability reaching about 40% is also seen over the Pacific sector during equinox months.348

The IBP model records high occurrence probability of EPDs during June over the African349

(25◦W-50◦E) and Pacific sectors in pre-midnight hours while minima is recorded over350

the South American sector.351

4.2 Dependence of EPD occurrence on solar activity352

The occurrence of EPDs shows an evident dependence on solar activity with EPDs353

being more prevalent under solar maximum than solar minimum conditions (e.g., Gen-354

tile et al., 2006a). The performance of the IBP model in simulating the variability of EPDs355

under varying solar flux conditions is given in Figure 6. On the basis of the F10.7 index,356

we assess whether the IBP model reproduces a more frequent occurrence of EPDs un-357

der solar maximum than solar minimum conditions. We present the monthly global oc-358

currence rate of EPDs derived from the IBP model with F10.7 index ranging between359

80 and 200 s.f.u with increasing steps of 40 s.f.u in Figure 6. The monthly global occur-360

–12–



manuscript submitted to Space Weather

Figure 5. Occurrence probability of EPDs presented as a function of longitude and local

time predicted by the IBP model at a constant F10.7 index of 150 s.f.u during (a) December, (b)

March, (c) June, and (d) September.

Figure 6. Occurrence probability of EPDs presented as a function of longitude and month

predicted by the IBP model at F10.7 values of (a) 80 s.f.u, (b) 120 s.f.u, (c) 160 s.f.u and (d)

200 s.f.u.
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rence rate from the IBP model, referred henceforth as monthly IBP index, is derived for361

a fixed value of F10.7 for all integer longitudes at a resolution of 5◦ at the middle of each362

month and averaged between 19 and 01 LT. We find that the IBP model reproduces the363

expected positive linear relationship between EPD occurrence rates and F10.7 index. The364

monthly IBP index generally retains negligible probabilities for F10.7 at 80 s.f.u except365

in the America-Atlantic-Africa sector during the equinoxes and solstice periods. How-366

ever, with increasing F10.7 levels, the monthly IBP indices begin to show significant prob-367

abilities as EPDs become more prevalent. Besides, with F10.7 at 120 s.f.u and above,368

the seasonal and longitudinal variations of the EPD occurrence rates are particularly well-369

characterized by the IBP model compared to its climatology (e.g., Gentile et al., 2006a)370

with monthly IBP index reaching highest rates around the equinoxes and winter solstice371

in the America-Atlantic-Africa region and lowest rates during November-February in the372

Pacific sector and during May-July in the America-Atlantic and Indian sectors. The re-373

sults from the IBP model showing a dependence on F10.7 levels compares well with the374

findings of Gentile et al. (2006b), which showed the climatology of EPD based on 15 years375

of plasma density measurements using the Defense Meteorological Satellite Program (DMSP)376

satellites.377

5 Assessment of the IBP model378

5.1 Overview of assessment methods379

The performance of probabilistic predictions by models developed for space weather380

phenomena have been typically quantified in the literature using skill scores and rela-381

tive (receiver) operating characteristic (ROC) curves (e.g., Barnes et al., 2016; Murray382

et al., 2017; Nishizuka et al., 2020). A skill score is generally defined as the measure of383

accuracy of forecasts of interest relative to the accuracy of the forecasts produced by some384

reference procedure (Murphy, 1988). A generic skill score takes the following form,385

Skill Score =
Aforecast −Areference

Aperfect −Areference
(13)

where Aforecast is the accuracy of the forecasting method under consideration, Aperfect386

is the accuracy of a perfect forecast and Areference is the accuracy of a reference method387

or the accuracy that is attainable by chance, which is usually chosen to be the clima-388

tology of the considered event. For probabilistic forecasts, a measure of accuracy is the389

mean square error (MSE), which can be used to calculate Aforecast as shown in Barnes390

et al. (2016) in the following way,391

Aforecast = MSE(pf , o) = ⟨(pf − o)2⟩ (14)

where pf is the forecast probability from the considered method and o is the value392

for binary outcomes (o = 0 for non event, o = 1 for an event). The MSE for a per-393

fect forecast, Aperfect, is 0.394

In this work, we use the Brier Skill Score (BSS) (Wilks, 1995) for evaluating the395

probability forecasting capability of the IBP model. BSS is calculated from the Brier score396

(BS) and climatological Brier score (BSc) by using the following equation,397

BSS =
BS −BSc

0−BSc
(15)

where BS = MSE(pf , o) and BSc = MSE(⟨o⟩, o). BSS can be complemented398

by a reliability diagram, which compares the forecast probabilities with the observed fre-399

quency of the events.400
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The quality of the probability forecasts are also assessed by using the ROC curve,401

which relates the true positive rate (TPR) or the probability of detection (POD) against402

the corresponding false alarm rate (FAR) (e.g., Swets, 1973; Mason, 1982). TPR or POD403

and FAR can be easily understood in case of a binary categorical forecasting system us-404

ing a 2× 2 contingency table (see Table 3).405

Table 3. 2× 2 contingency table for a binary, categorical forecasting system

Forecasts

Observation Positive Negative Total

Event True Positive (TP) False Negative (FN) TP+FN
Nonevent False Positive (FP) True Negative (TN) FP+TN
Total TP+FP FN+TN N=TP+FP+FN+TN

From the contingency table, POD and FAR are defined as follows (e.g., Mason, 1982)406

POD =
TP

TP + FN
and FAR =

FP

FP + TN
(16)

Probabilistic forecasts can be converted to binary, categorical forecasts by select-407

ing a probability threshold, Pth, such that any forecast probability over the threshold408

is considered to be a forecast for an event, and anything less is considered to be a fore-409

cast for a non-event. By varying this threshold value, contingency tables along with cor-410

responding POD and FAR can be determined for every Pth and based on these result-411

ing POD and FAR values, a ROC curve can be obtained. As POD and FAR are the axes412

of the ROC curve and they range between 0 and 1, the ROC curve for no-skill forecasts413

coincides with the 45◦ line from the origin passing through (0,0) and (1,1) with POD and414

FAR being equal. For a perfect forecast, the ROC curve connects the points (0,0), (0,1)415

and (1,1) with the values of POD and FAR being 1 and 0, respectively. The accuracy416

of binary, categorical forecasts can be determined using standard skill scores and can be417

summarized by the ROC Skill Score (ROCSS), also known as the Gini coefficient G1 (e.g.,418

Jolliffe & Stephenson, 2012) and by the Hanssen and Kuiper’s Discriminant (H&KSS),419

also known as the true skill statistic (TSS) or the Peirce skill score (e.g., Hanssen & Kuipers,420

1965; Murhy, 1993). G1 = 2×A−1.0 where A is the area under the ROC curve, and421

G1 = 1.0 denotes a perfect score. H&KSS can be written as,422

H&KSS = POD − FAR (17)

H&KSS takes into account the success due to random guessing and it ranges be-423

tween -1 and +1. A score of +1 indicates perfect agreement between predictions and ob-424

servations while a score of 0 or less indicate no-skill forecasting capability. As H&KSS425

can be sensitive to Pth, we also calculate the Gini coefficient to present a concise sum-426

mary of the assessment of the IBP model.427

5.2 Model evaluation428

We use one year of recent IBI index data from the Swarm A, B and C satellites be-429

tween July 2022 and June 2023 for the purpose of IBP model validation. During this pe-430

riod, the total number of orbits with and without EPD for each Swarm satellite are sum-431

marized in Table 4. For each orbit of the satellite, we first compute the EPD occurrence432
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probability from the IBP model for all longitude and local time that the satellite tra-433

verses. These probability outputs are then used to derive the maximum EPD occurrence434

probability for each satellite orbit. With different choices of probability threshold, Pth,435

we predict using this derived maximum EPD occurrence probability whether each satel-436

lite orbit contains or not contains EPD. The contingency tables for binary, categorical437

forecasts of EPD is then created by varying Pth and compared with the observed IBI data438

set. We chose a threshold step of 0.02 resulting in covering the Pth levels between 0 and439

1. Thereafter, POD and FAR values are calculated for different contingency tables and440

ROC curves are generated for Swarm A, B and C satellites. These ROC curves are pre-441

sented in the upper panels of Figure 7 and are used to visualize H&KSS. When Pth is442

set to 1, no EPD detections are forecasted and hence TP=FP=0, which corresponds to443

the point (0,0) on the ROC curves. When Pth is set to 0, all detections are forecasted444

as EPD and hence FN=TN=0, which corresponds to the point (1,1) on the ROC curves.445

For Figures 7a-7c, we find that ROC curves stay well above the 45◦ no-skill forecast line446

shown here in dashed green color. The ROC curves also stay close to the FAR=0 while447

the POD rises, which suggests that the IBP model well forecasts EPD events. For Swarm448

satellites A, B and C, we find that H&KSS maximizes at at similar values, e.g., when449

Pth equals 0.22, 0.18 and 0.18, respectively, which is shown through dashed vertical black450

lines. H&KSS values reach 0.66, 0.73 and 0.65 for satellites A, B and C, respectively, which451

suggests that the forecasting capability of the IBP model is significantly better than a452

no-skill forecast. The Gini coefficient for Swarm A, B and C satellites are 0.80, 0.86 and453

0.80, respectively.454

Table 4. Total number of orbits with and without EPD for each Swarm satellite between July

2022 and June 2023

Satellite # of orbits

Total with EPDs without EPDs

A 3165 334 2831
B 3294 262 3032
C 3189 357 2832

In the lower panels of Figure 7, the BSS score and reliability plots that accompany455

it are presented for the three Swarm satellites. The BSS for Swarm A, B and C equal456

0.317, 0.320 and 0.316, respectively. The reliability plots are constructed by first select-457

ing probability intervals and then the frequency of observed events within each interval458

is estimated using the method described in Wheatland (2005). This observed frequency459

is then plotted against the predicted probability and the error bars are estimated based460

on the number of events that lie within each interval. On a reliability plot, perfect pre-461

diction corresponds to a 45° line when observed frequency equals the predicted proba-462

bility, which is plotted here using the dashed green lines in Figure 7d-f. Points lying above463

this line indicate underprediction while points located below this line imply overpredic-464

tion. We find that the IBP model underestimates the occurrence frequency of EPD when465

the predicted probability exceeds 0.7 for all three satellites. Below this predicted prob-466

ability value, the model slightly overestimates the occurrence frequency of EPD for all467

three satellites. We found, that the overestimation for low occurrence rates increases with468

the amount of data of very low solar flux. These times are usually free of EPD detec-469

tions in the topside F region. A reasonable results as shown in Figure 7, was found for470

a cutoff of F10.7 ≤ 80 s.f.u.. In summary, the model slightly underestimates the EPD471

occurrence at occasions of high EPD probability and it slightly overestimates the EPD472

occurrence of low EPD probability. The performance of the IBP model based on the eval-473

uation metrics used here above is summarized in Table 5.474

–16–



manuscript submitted to Space Weather

Table 5. IBP model performance based on the evaluation metrics for Swarm data between

July 2022 and June 2023

Satellite H&KSS (Pth) G1 BSS

A 0.66 (0.22) 0.80 0.317
B 0.73 (0.18) 0.86 0.320
C 0.65 (0.18) 0.80 0.316

Figure 7. The top panels of the figure (a-c) show receiver operating characteristic (ROC)

plots depicting the probability of detection as a function of the false alarm rate by varying the

threshold above which an EPD is forecasted. In this case the maximum H&KSS occurs for p =

0.22, 0.18, 0.18 for Swarm A, B and C, respectively and is indicated by a dashed vertical line.

The random classifier line of the ROC plots is donated in dashed green colors. The bottom pan-

els (d-f) show reliability plots in which the observed frequency of EPDs is plotted as a function of

the forecast probability. Perfect reliability occurs when all points lie on the diagonal (x=y) line.

The error bars are based on the sample sizes in each relevant bin.

6 Application of the IBP model475

The IBP model estimates the occurrence probability of post-sunset equatorial plasma476

irregularities between 0 (EPDs not at all expected to occur) and 1 (EPDs are fully ex-477

pected to occur) for a given longitude, local time, day of year, and solar flux value. The478

performance of the IBP model has been assessed as an estimate largely exceeding a non-479

skilled forecast in section 5. Thus, the model can be used to predict IBP ocurrence with480

reasonable confidence. The model forward code is publicly made available, as being an481

official L2 product of the Swarm mission as given at https://swarmhandbook.earth482

.esa.int/catalogue/SW IBP CLI 2 . The forward model code itself and its documen-483

tations are available at Gitlab via https://igit.iap-kborn.de/ibp/ibp-model. The484

model code is provided in Python and is also available as a Python package. The model485
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coefficients will be updated with time, when more Swarm observations will be available.486

A yearly update is anticipated. Updates will be declared in the Gitlab documentation.487

Besides the consideration of the assessment results given in section 5, the user of488

the IBP model shall be aware of the following constraints. The IBP model489

• estimates the EPD occurrence rate at altitudes between 350 and 500 km, and does490

not give information on EPDs which do not reach these altitudes.491

• is not recommended to be applied for solar flux indices F10.7 ≤ 80 s.f.u. and F10.7 ≥ 200 s.f.u..492

• does not predict EPD occurrence depending on latitude. It provides the EPD oc-493

currence for a user-defined longitude, but integrated over latitude.494

7 Conclusions495

In this study, we have presented the IBP model by explaining its derivation, its as-496

sessment, and giving recommendations for its application. The main findings of this study497

are summarized below:498

• The IBP model is a statistical climatological model for predicting the occurrence499

probability of F region EPDs for a given local time, solar radio flux, day of year,500

and longitude.501

• It fully captures the climatology and solar flux dependence of EPDs at altitudes502

between 350 and 500 km. The model especially performs well in the American/Atlantic503

sector during December solstice and increased solar activity conditions, which is504

encouraging as this region and this season is a hotspot for EPDs.505

• Based on one year of recent Swarm magnetic data, which constitutes as partly non-506

trained data set for the assessment, the IBP model has been evaluated and var-507

ious evaluation metrics have been presented. The IBP model shows improved pre-508

diction capability compared to climatological forecasts with moderate skill scores.509

With the addition of more recent Swarm data, e.g., by updating the model pa-510

rameters, it is expected that the skill scores and accuracy of the IBP model en-511

hances further.512

• The IBP model is publicly made available at https://igit.iap-kborn.de/ibp/513

ibp-model.514
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is publicly available with the Gitlab link https://igit.iap-kborn.de/ibp/ibp-model.522

The F10.7 index is accessible at https://lasp.colorado.edu/lisird/data/noaa radio523

flux. The Hp30 index (Matzka et al., 2022) is provided at https://kp.gfz-potsdam524

.de/en/hp30-hp60. All data sets and software are freely available from the stated links525

without the need for user registration. The CHAMP magnetic data set and the Hp30526

index are published under licence CC BY 4.0.527
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Appendix A Derivation of Equation 2531

P [X(t) = 1] = 1− P [X(t) = 0]

= 1− P

[
{
Nλ∑
i=1

1(T
(i)
0 < t) · 1(T (i)

0 + L(i) > t)} = 0

]

= 1−
∞∑
i=1

e−λλ
k

k!
P
[
1(T

(1)
0 < t) · 1(T (1)

0 + L(1) > t) = 0
]i

= 1−
∞∑
i=1

e−λλ
k

k!
(1− P

[
1(T

(1)
0 < t) · 1(T (1)

0 + L(1) > t) = 1
]
)i

= 1−
∞∑
i=1

e−λλ
k

k!
(P
[
T

(1)
0 > t

]
+ P

[
T

(1)
0 + L(1) < t

]
)i

= 1− e−λ · eλ·(P
[
T

(1)
0 >t

]
+P

[
T

(1)
0 +L(1)<t

]
)

= 1− e
λ·(P

[
T

(1)
0 >t

]
+P

[
T

(1)
0 +L(1)<t

]
−1)

= 1− e
λ·(−P

[
T

(1)
0 <t

]
+P

[
T

(1)
0 +L(1)<t

]
)

= 1− e
λ·(−

∫ t
−∞

1√
2πσ

e
(
−(x−µ)2

2σ2 )
dx+

∫ t
−∞

1√
2πσ

e
(
−(x−µ)2

2σ2 )P [L1<t−x]dx

= 1− e
λ·(−

∫ t
−∞

1√
2πσ

e
(
−(x−µ)2

2σ2 )
dx+

∫ t
−∞

1√
2πσ

e
(
−(x−µ)2

2σ2 )(1−e−γ·(t−x))dx

= 1− e
λ·
( ∫ t

−∞
1√
2πσ

e
(
−(x−µ)2

2σ2 )
(−e−γ(t−x))dx

)
= 1− eλ·I(t,γ,µ,σ)

(A1)

References532

Aa, E., Zhang, S.-R., Coster, A. J., Erickson, P. J., & Rideout, W. (2023). Multi-533

instrumental analysis of the day-to-day variability of equatorial plasma bubbles.534

Frontiers in Astronomy and Space Sciences, 10 . doi: https://doi.org/10.3389/535

fspas.2023.1167245536

Aa, E., Zou, S., & Liu, S. (2020). Statistical Analysis of Equatorial Plasma Irreg-537

ularities Retrieved From Swarm 2013–2019 Observations. Journal of Geophysical538

Research: Space Physics, 125 (4), e2019JA027022. doi: https://doi.org/10.1029/539

2019JA027022540

Abdu, M. A. (2019). Day-to-day and short-term variabilities in the equatorial541

plasma bubble/spread F irregularity seeding and development. Progress in Earth542

and Planetary Science, 6 (1), 11. doi: https://doi.org/10.1186/s40645-019-0258-1543

Abdu, M. A., de Medeiros, R. T., Bittencourt, J. A., & Batista, I. S. (1983). Ver-544

tical ionization drift velocities and range type spread F in the evening equatorial545

ionosphere. Journal of Geophysical Research: Space Physics, 88 (A1), 399-402. doi:546

https://doi.org/10.1029/JA088iA01p00399547

Balsley, B. B., Haerendel, G., & Greenwald, R. A. (1972). Equatorial spread F:548

Recent observations and a new interpretation. Journal of Geophysical Research549

(1896-1977), 77 (28), 5625-5628. doi: https://doi.org/10.1029/JA077i028p05625550

Barnes, G., Leka, K. D., Schrijver, C. J., Colak, T., Qahwaji, R., Ashamari, O. W.,551

. . . Wagner, E. L. (2016). A comparison of flare forecasting methods. I. Results552

from the “All-Clear” workshop. The Astrophysical Journal , 829 (2), 89. doi:553

https://10.3847/0004-637X/829/2/89554

Basu, S., Basu, S., Huba, J., Krall, J., McDonald, S. E., Makela, J. J., . . . Groves,555

K. (2009). Day-to-day variability of the equatorial ionization anomaly and556

–19–



manuscript submitted to Space Weather

scintillations at dusk observed by GUVI and modeling by SAMI3. Journal of557

Geophysical Research: Space Physics, 114 (A4). doi: https://doi.org/10.1029/558

2008JA013899559

Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., & Su, S. Y. (2004).560

Longitudinal variability of equatorial plasma bubbles observed by DMSP and561

ROCSAT-1. Journal of Geophysical Research: Space Physics, 109 (A12). doi:562

https://doi.org/10.1029/2004JA010583563

Carter, B. A., Yizengaw, E., Retterer, J. M., Francis, M., Terkildsen, M., Marshall,564

R., . . . Zhang, K. (2014). An analysis of the quiet time day-to-day variability565

in the formation of postsunset equatorial plasma bubbles in the Southeast Asian566

region. Journal of Geophysical Research: Space Physics, 119 (4), 3206-3223. doi:567

https://doi.org/10.1002/2013JA019570568

Chou, M.-Y., Pedatella, N. M., Wu, Q., Huba, J. D., Lin, C. C. H., Schreiner,569

W. S., . . . Yue, J. (2020). Observation and Simulation of the Development570

of Equatorial Plasma Bubbles: Post-Sunset Rise or Upwelling Growth? Jour-571

nal of Geophysical Research: Space Physics, 125 (12), e2020JA028544. doi:572

https://doi.org/10.1029/2020JA028544573

Clemesha, B., & Wright, R. (1966). Spread-F and its Effects upon Radio Wave574

Propagation and Communications. P. Newman, Têchnivision. England , 3.575
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