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Abstract

For seismographic stations with short acquisition duration, the signal-to-noise ratios (SNRs) of ambient noise cross-correlation

functions (CCFs) are typically low, preventing us from accurately measuring surface wave dispersion curves or waveform

characteristics. In addition, with low-quality CCFs, it is difficult to monitor temporal variations of subsurface physical states

or extract relatively weak signals such as body waves. In this study, we propose to use local attributes to improve the SNRs

of ambient noise CCFs, which allows us to enhance the quality of CCFs for stations with limited acquisition duration. Two

local attributes: local cross-correlation and local similarity, are used in this study. The local cross-correlation allows us to

extend the dimensionality of daily CCFs with computational costs similar to global cross-correlation. Taking advantage of this

extended dimensionality, the local similarity is then used to measure non-stationary similarity between the extended daily CCFs

with a reference stacking trace, which enables us to design better stacking weights to enhance coherent features and attenuate

incoherent background noises. Ambient noise recorded by several broadband stations from the USArray in North Texas and

Oklahoma, the Superior Province Rifting EarthScope Experiment in Minnesota and Wisconsin and a high-frequency nodal

array deployed in the San Bernardino basin are used to demonstrate the performance of the proposed approach for improving

the SNR of CCFs.
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Key Points:6

• Signal-to-noise ratio of ambient noise cross-correlation functions can be improved7

by using local cross-correlation and local similarity.8

• The local cross-correlation function is efficiently implemented by solving the heat9

equation.10

• Applications to broadband and high-frequency nodal arrays validate the effective-11

ness of the proposed method.12
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Abstract13

For seismographic stations with short acquisition duration, the signal-to-noise ra-14

tios (SNRs) of ambient noise cross-correlation functions (CCFs) are typically low, pre-15

venting us from accurately measuring surface wave dispersion curves or waveform char-16

acteristics. In addition, with low-quality CCFs, it is difficult to monitor temporal vari-17

ations of subsurface physical states or extract relatively weak signals such as body waves.18

In this study, we propose to use local attributes to improve the SNRs of ambient noise19

CCFs, which allows us to enhance the quality of CCFs for stations with limited acqui-20

sition duration. Two local attributes: local cross-correlation and local similarity, are used21

in this study. The local cross-correlation allows us to extend the dimensionality of daily22

CCFs with computational costs similar to global cross-correlation. Taking advantage of23

this extended dimensionality, the local similarity is then used to measure non-stationary24

similarity between the extended daily CCFs with a reference stacking trace, which en-25

ables us to design better stacking weights to enhance coherent features and attenuate26

incoherent background noises. Ambient noise recorded by several broadband stations from27

the USArray in North Texas and Oklahoma, the Superior Province Rifting EarthScope28

Experiment in Minnesota and Wisconsin and a high-frequency nodal array deployed in29

the San Bernardino basin are used to demonstrate the performance of the proposed ap-30

proach for improving the SNR of CCFs.31

Plain Language Summary32

Seismic ambient noise has been widely used for imaging and monitoring subsur-33

face structures by using cross-correlation functions (CCFs) of continuous recordings be-34

tween station pairs. Typically, we have to stack a lot of CCFs to enhance signals (e.g.,35

surface and body waves) of CCFs. However, for temporal monitoring purposes or those36

deployed arrays with short acquisition duration, it is impossible to have a lot of stack-37

ing. The lack of enough stacking could result in low signal-to-noise ratios (SNRs) of the38

CCFs. We proposed a new approach to improve the SNRs of CCFs by using two local39

attributes: local cross-correlation and local similarity. We first extend the CCFs to a higher40

dimension by using local cross-correlation, and then the local similarity is used to de-41

fine a better weighting factor for the final stacking. We use several field data examples42

to prove the effectiveness of the proposed approach.43
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1 Introduction44

With the assumption of homogeneously distributed noise sources, both theoreti-45

cal and experimental studies have demonstrated that empirical Green’s functions can46

be retrieved by cross-correlating continuous ambient noise records between two seismo-47

graphic stations (Aki, 1957; Claerbout, 1968; Buckingham et al., 1992; Lobkis & Weaver,48

2001; Weaver & Lobkis, 2001; Shapiro & Campillo, 2004; Wapenaar, 2004; Nakata et al.,49

2019). Both surface (Campillo & Paul, 2003; Shapiro & Campillo, 2004; Sabra et al., 2005)50

and body wave signals (Draganov et al., 2009; Zhan et al., 2010; Poli et al., 2012; Lin51

et al., 2013; Nakata et al., 2015) have been successively extracted from ambient noise record-52

ings. With empirical Green’s functions between each pair of stations in a seismic array,53

we are able to measure surface wave phase or group dispersion curves, and then perform54

surface wave tomography to estimate seismic properties in the subsurface. Compared55

with earthquake tomography, ambient noise tomography allows us to image tectonically56

inactive regions and achieve better cross-path coverages. To date, ambient noise cross-57

correlation functions (CCFs) have been successively used to investigate velocity as well58

as anisotropic structures within the crust and uppermost mantle (Shapiro et al., 2005;59

Y. Yang et al., 2007; Lin et al., 2008; Moschetti et al., 2010; Yao et al., 2010; Huang et60

al., 2010; Lin et al., 2011; Shen & Ritzwoller, 2016). Recently, ambient noise CCFs are61

combined with waveform inversion to better constrain subsurface velocity structures (Gao62

& Shen, 2014; M. Chen et al., 2014; Lee et al., 2014; Y. Liu et al., 2017; Sager et al., 2018;63

K. Wang et al., 2018; Zhu, 2018; Sager et al., 2020; Fan et al., 2022; Maguire et al., 2022).64

Taking advantage of continuous records, ambient noise CCFs can also be utilized to mon-65

itor temporal evolution of physical states in the subsurface (Brenguier et al., 2008; Nakata66

& Snieder, 2011; Hadziioannou et al., 2011; Mainsant et al., 2012; De Plaen et al., 2016;67

Q.-Y. Wang & Yao, 2020; Le Breton et al., 2021; Mao et al., 2022).68

Previous studies have demonstrated that we are able to improve the signal-to-noise69

ratios (SNRs) of ambient noise CCFs as well as reducing the effect of source direction-70

ality by increasing the stacking duration of signals (Bensen et al., 2007). To obtain high-71

quality CCFs, typically we have to use long continuous records and sometimes have to72

stack data with several years of acquisition. However, for some temporary experiments73

e.g., Brenguier et al. (2008); Issa et al. (2017); G. Liu et al. (2018); Dougherty et al. (2019);74

G. Chen et al. (2023); Wu et al. (2023), the SNRs of ambient noise CCFs are typically75

low, preventing us to measure robust surface wave dispersion curves or waveform char-76
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acteristics. For these cases, we have to design effective approaches to improve the SNRs77

of ambient noise CCFs. In addition, the SNRs are crucial for extracting weak coherent78

signals, such as body waves (Snieder, 2004; Nakata et al., 2015, 2016). There are sev-79

eral studies towards improving the SNR of ambient noise CCFs. For instance, Baig et80

al. (2009) designed better-stacking weights in the time-frequency domain with discrete81

orthogonal S transform, which allowed them to measure robust Rayleigh and Love ar-82

rivals for stations with long offsets. G. Li et al. (2018) further compared the performances83

of time and frequency domain inverse S transforms for this stacking procedure. Schimmel84

et al. (2011) used instantaneous phase coherence to avoid strong amplitude arrivals, such85

as earthquake signals, and enhance coherent features in noise records. Seats et al. (2012)86

and Clarke et al. (2011) utilized overlapped moving windows (Welch’s method) to im-87

prove the convergence of CCFs towards stable Green’s functions. In addition, wavelet88

and curvelet transforms have also been applied to denoise CCFs by Stehly et al. (2011)89

and Mao et al. (2022). Furthermore, Weaver and Yoritomo (2018) proposed several schemes90

to choose optimal weights for stacking so that the effective incident intensity distribu-91

tion is closer to isotropic. Xie et al. (2020) used the root-mean-square ratio to remove92

those CCFs with low SNR. A systematic evaluation and comparison of the performance93

of several stacking methods is discussed by X. Yang et al. (2023).94

In this study, we propose to use local attributes (Rickett & Lumley, 2001; Hale, 2006;95

Fomel, 2007a) to denoise CCFs when we have short acquisition durations. In compar-96

ison with global attributes, the local attributes enable us to extract non-stationary char-97

acteristics in seismic data. There are a variety of local attributes, including local sim-98

ilarity (Fomel, 2007a), local cross-correlation (Hale, 2006), local frequency (Fomel, 2007a)99

and local skewness (Fomel & van der Baan, 2014), etc. In this study, we use local cross-100

correlation (Hale, 2006) to extend the dimensionality of daily CCFs, and then use stack-101

ing weights measured by local similarity to improve the stacking quality of CCFs. The102

local cross-correlation can be considered as a natural extension of the Welch’s method103

(Seats et al., 2012) but with longer overlap windows and much lower computational costs.104

Its overall computational cost is similar to the conventional global cross-correlation. The105

local similarity has been used to measure non-stationary similarity between time-lapse106

images (Fomel & Jin, 2009), improve stacking quality of normal moveout data (G. Liu107

et al., 2009) as well as angle-domain common-imaging-gathers (Lin et al., 2011). All these108
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studies demonstrate the capability of using local similarity to improve the stacking qual-109

ity.110

We first review local cross-correlation and local similarity. Next, they are used to111

improve the SNRs of ambient noise CCFs with one-day and one-month acquisition du-112

rations. Continuous noise records from several broadband USArray stations in North Texas113

and Oklahoma, the Superior Province Rifting EarthScope Experiment in Minnesota and114

a high-frequency nodal array in the San Bernardino basin are used to demonstrate the115

performance of the proposed approach.116

2 Method117

2.1 Local cross-correlation118

The global cross-correlation function c(τ) between two signals f(t) and g(t) can

be defined (Nakata & Snieder, 2011; Harris et al., 2020) as follows:

c(τ) =

∫ ∞

−∞
f(t+ τ)g(t)dt . (1)

The result of the global cross-correlation is a function of time lag τ , which cannot cap-119

ture non-stationary time shifts between two input signals and therefore makes it diffi-120

cult to separate signals and noises. In order to fulfill this goal, one way is to perform time-121

windowed cross-correlation, which has much higher computational costs in comparison122

to Equation 1. In addition, there might be leakage and edge problems due to the selected123

window functions. To solve these problems, Hale (2006) designed an efficient algorithm124

to compute the local CCF and measure time-varying correlations between two signals.125

It was first used to measure non-stationary warpings between time-lapse migration im-126

ages. Later, the local cross-correlation was applied to measure non-stationary travel time127

differences between two seismograms, which can be utilized to constrain subsurface ve-128

locity structures through full-waveform inversion (Dı́az & Sava, 2015).129

The idea of local cross-correlation is similar to the moving window cross-correlation130

for capturing transient time shifts, but with much higher computational efficiency. In131

addition, it helps us to separate signal and noise in a higher dimension. Taking advan-132

tage of several properties of Gaussian windows, such as the product of two Gaussian win-133

dows is still a Gaussian function, the computational cost of local cross-correlation can134

be reduced as similar to that of global cross-correlation. For instance, the Gaussian-windowed135
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versions of signals f(t) and g(t) can be represented as136

f̂(t, t0) = f(t)ω(t0 − t) ,

ĝ(t, t0) = g(t)ω(t0 − t) . (2)

where ω(t0−t) is the Gaussian window function located at t0, i.e., ω(t0−t) = 1√
2πσ

e−(t0−t)2/2σ2

.137

Here σ is the standard deviation, which controls the width of the Gaussian window. With138

these windowed signals, we are able to compute the cross-correlation function at each139

local time step t0. Without optimization, the computational cost of this moving window140

cross-correlation is O(NlNwNs). Here, Nl, Nw and Ns are the numbers of samples for141

time lags, Gaussian window, and input signals, respectively.142

The windowed cross-correlation can be written as143

c(t0, τ) =

∫ ∞

−∞
f(t+ τ, t0 + τ)g(t, t0)dt

=

∫ ∞

−∞
f(t+ τ)ω(t0 − t)g(t)ω(t0 − t)dt

=

∫ ∞

−∞
f(t+ τ)g(t)W (t, t0)dt , (3)

where144

W (t, t0) = ω(t0 − t)ω(t0 − t) =
1

2πσ2
e−(t0−t)2/σ2

. (4)

W (t, t0) is again a Gaussian function with a smaller width σ/
√
2 compared to w(t0−145

t). Based on this property, we can first compute the pre-stacked cross-correlation between146

two signals, i.e., h(t, τ) = f(t+τ)g(t). It is then filtered by a Gaussian function W (t, t0)147

as148

c(t0, τ) =

∫ ∞

−∞
h(t, τ)W (t, t0)dt . (5)

Combining with some efficient recursive Gaussian filter algorithms (Deriche, 1993; Al-149

varez & Mazorra, 1994; Van Vliet et al., 1998), the computational cost of implement-150

ing Equation 3 can be similar as the global cross-correlation shown in Equation 1, i.e.,151

O(NlNs). This makes it attractive for processing large-scale datasets, such as contin-152

uous ambient noise records.153

2.2 Recursive Gaussian convolution154

How to efficiently compute the convolution of a signal or an image with a Gaus-155

sian function is a common problem in data processing. There are several ways to per-156

form this filtering procedure. For instance, by taking advantage of the Fourier transform,157
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Gaussian convolution can be computed efficiently as elemental-wise multiplication in the158

frequency domain. Another efficient way to implement the Gaussian filter is to consider159

the result as the solution of the following heat equation:160

∂u

∂y
− ∂2u

∂x2
= 0 ,

u(x, 0) = f(x) . (6)

Here, if we let y = σ2/2, then the final solution of the above heat equations u(x, y) is161

equivalent to the convolution of signal f(x) with a Gaussian function ω(x) = 1√
2πσ

e−x2/2σ2

.162

This heat equation can be solved by using finite-difference schemes. Alvarez and Mazorra163

(1994) used this property to derive an efficient procedure to compute the Gaussian con-164

volution. For instance, they discretized the simulation domain with165

uj
i = u(i∆x, j∆y) , (7)

Here ∆x and ∆y are the grid spacings along the spatial and time directions, i and j are166

the associate indices. Then, the finite-difference solution of the above heat equation can167

be written as168

uj+1
i − uj

i

∆t
−

uj+1
i+1 + uj+1

i−1 − 2uj+1
i

∆x2
= 0 . (8)

Let λ = ∆y/∆x2, then169

(1 + 2λ)uj+1
i − λuj+1

i−1 − λuj+1
i+1 = uj

i . (9)

We can solve this implicit finite-difference equation using the following filter170

H(z) =
ν

λ

1

(1− νz−1)(1− νz)
, (10)

with171

ν =
1 + 2λ−

√
(1 + 4λ)

2λ
. (11)

The above filtering procedure can be efficiently solved by using the following three steps,172

marching from uj
i to uj+1

i as173

uj′

i = uj
i + νuj′

i−1 ,

uj′′

i = uj′

i + νuj′′

i+1 ,

uj+1
i =

ν

λ
uj′′

i . (12)

The first and second steps in the above procedure are the applications of causal and acausal174

filters, respectively. The third step is just a simple multiplication. Thanks to the uncon-175

ditional stability of this implicit solution (Alvarez & Mazorra, 1994), only a few itera-176

tions (four iterations are used in this study to propagate along the time dimension y)177
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enable us to converge to the solution of the Gaussian filter. Therefore, the time grid can178

be defined by ∆y = σ2/(2Ny), where Ny is the total number of iterations. Combining179

this recursive Gaussian filter with Equation 5, we are able to efficiently compute the lo-180

cal cross-correlation function. For example, for a certain τ , the source term for Equa-181

tion 6 is the pre-stacked cross-correlation h(t, τ). Then solution of the corresponding heat182

equation is the non-stationary CCFs u(t, τ) at this particular τ .183

Figure 1 shows a simple example to illustrate the advantages of local cross-correlation184

over global cross-correlation. There are non-stationary time shifts for three events at 1,185

3 and 5 s between two input signals. The global cross-correlation is shown in Figure 1b.186

Although it captures the correct time shifts around -0.4 s, 0.1 s and 0.3 s, it does not187

carry any useful information about the locations of these time shifts. The local cross-188

correlation is presented in Figure 1c, with three energy spots located at the right loca-189

tions with correct time lags. This local cross-correlation function enables us to extend190

the dimensionality of the input signals as well as the cross-correlation function, which191

can be utilized to design a better strategy to improve stacking quality as discussed be-192

low.193

2.3 Local similarity194

Local similarity is a local attribute that allows us to measure non-stationary sim-195

ilarity between two time series or images (Fomel & Jin, 2009; G. Liu et al., 2009, 2011).196

First, the global similarity between two signals f(t) and g(t) can be defined as follows197

s =

∫
f(t)g(t)dt√∫

f2(t)dt
√∫

g2(t)dt
. (13)

In comparison with the global cross-correlation in Equation 1, the global similarity can198

be considered as a zero-lag cross-correlation function normalized by the energies of each199

signal. Therefore, it is insensitive to the absolute amplitudes of input signals. Its mag-200

nitude ranges from -1 to 1. Similar to local cross-correlation, local similarity was designed201

to measure non-stationary similarity between time-lapse images (Rickett & Lumley, 2001;202

Fomel & Jin, 2009). Once taking the square of Equation 13 on both sides, we can write203

its discretized version as204

s2 =
(fTg)(gT f)

(fT f)(gTg)
. (14)

–8–



manuscript submitted to JGR: Solid Earth

Fomel (2007a) considered the above equation as the solution to the following two least-205

squares problems:206

s1 = arg min
s1

|Fs1 − g| ,

s2 = arg min
s2

|Gs2 − f | . (15)

Here, F and G are the diagonal operators constructed from the elements of input vec-207

tors f and g, respectively. Shaping regularization (Fomel, 2007b) and a conjugate gra-208

dient method can be used to solve the above least-squares problems. Then, the local sim-209

ilarity can be computed as elemental-wise multiplication between s1 and s2 as210

s =
√
s1s2 . (16)

As pointed out in Fomel (2007a), the normalized local correlation can be considered as211

the first iteration from local similarity. Compared to a scalar value for the global sim-212

ilarity in Equation 13, the local similarity is a vector with the same length as the input213

signals. It can also be utilized to measure the similarity between two 2D or 3D images214

with high efficiency.215

2.4 Stacking strategy with local similarity216

From local cross-correlation, we obtain a function c(t, τ). The simplest way to cal-217

culate the CCF c1(τ) is to use the following linear stacking218

c1(τ) =
1

N

∑
t

c(t, τ) . (17)

If we use the above expression to compute noise CCF, its result is similar to the direct219

implementation of Equation 1. In this study, we choose c1(τ) as a reference trace and220

then compute the local similarity s(t, τ) between c1(τ) and c(t, τ). Once with the local221

similarity, we can use the following strategy to improve the stacking quality222

c2(τ) =
1

N

∑
t

α(t, τ)c(t, τ) , (18)

with223

α(t, τ) =


s(t, τ)− α0 , if α(t, τ) > α0

0 , if α(t, τ) ≤ α0

(19)

Here α0 is a pre-defined parameter to decide the stacking level. This stacking procedure224

has been applied to enhance coherent signals for normal moveout corrected data (G. Liu225

et al., 2009) and angle-domain common-image-gathers (G. Liu et al., 2011). In this study,226
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we use it to improve the stacking quality of noise CCFs. In practice, α(t, τ) is a soft thresh-227

old solved in the seislet domain (Daubechies et al., 2004; G. Liu et al., 2009). Compared228

with the similarity shown in Figure 1d, the clipped similarity (α(t, τ) in Eq. 19 ) in Fig-229

ure 1f shows zero background values away from signal regions, while keeping almost 1.0230

weights around the signal regions. This helps to suppress noises away from the signal231

regions. Because this synthetic test does not involve noises, the weighted prestack local232

correlations (c2(τ) in Eq. 18) shown in Figure 1e are basically identical to the prestack233

local correlations shown in Figure 1c. To validate the effectiveness of the proposed method234

to improve the SNR, we give its definition used in this study as235

SNR =

√√√√ 1
Ns

∫ s2
s1

f2(t)dt
1

Nn

∫ n2

n1
f2(t)dt

. (20)

Where [s1,s2] and [n1,n2] represent signal and noise windows, Ns and Nn denote the num-236

ber of time samples for signal and noise, respectively.237

2.5 Workflow238

In summary, the proposed method based on two local attributes can be implemented239

through the following six steps:240

1. Download and preprocess continuous ambient noise data for each station, and cut241

them into daily recordings.242

2. Calculate the pre-stacked cross-correlation function h(t, τ) = f(t+τ)g(t) as shown243

in Equation 3 between daily recordings from station pairs.244

3. Stack all daily global stacking CCFs and extend it along the time axis to obtain245

two-dimensional data as a reference.246

4. Solve the heat equation in Equation 6 to obtain a daily local CCF. Note here, the247

pre-stacked CCF is the source term f(x) in Equation 6, and the local CCF is also248

two-dimensional data.249

5. Calculate the daily local similarity between the reference CCF (step 3) and the250

daily local CCF(step 4).251

6. Stack all daily local CCFs weighted by the local similarity according to Equation252

18 for each station pair.253
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3 Numerical examples254

We download continuous ambient noise data, which are then processed by using255

the NoisePy package (Jiang & Denolle, 2020) following standard procedures from Bensen256

et al. (2007). It includes deconvolution of instrument responses, bandpass filter (2–10257

s), time domain normalization and spectral whitening. The preprocessed data are used258

to retrieve the CCFs and demonstrate the advantages of the proposed method.259

3.1 One-day records260

Figures 2a and b are vertical component displacements for the USArray stations261

TA.234A and TA.Z36A recorded on October 10th, 2010. The inter-station between this262

station pair is 213 km. As shown in Figure 3a, the SNR of the global cross-correlation263

is relatively low because we only use daily records. Only causal Rayleigh waves can be264

clearly observed in this CCF. Both amplitude and time-frequency spectra of the global265

cross-correlation function are presented in Figures 3b and c, respectively. Besides the dom-266

inant Rayleigh wave arrival, there are many background noises, especially from 0.2 to267

0.5 Hz. The local cross-correlation between Figures 2a and b is shown in Figure 2c. With268

the local cross-correlation, we are able to extend the 1D CCF to a 2D image, which can269

be used to measure local similarity and design a better strategy to improve stacking qual-270

ity. Although there are many incoherent background noises in Figure 2c, it includes a271

vertical coherent feature around time lags between 60 to 90 s. If we use a simple linear272

stacking for Figure 2c along the time axis (Equation 17), we will obtain the same sig-273

nal as the global cross-correlation shown in Figure 3a. Next, we compute the local sim-274

ilarity between Figure 2c and the raw stacked CCF shown in Figure 3a. In the local sim-275

ilarity result (Figure 2d), the coherent signals between 60 to 90 s stand out in compar-276

ison to the background noise level. With the stacking weights based on the local sim-277

ilarity (Equation 18), the new CCF and its amplitude/time-frequency spectra are pre-278

sented in Figures 3d–f. Compared with the global CCF in Figures 3a–c, the incoherent279

noises are significantly reduced without changing the dominant Rayleigh wave arrival.280

In the meanwhile, the overall amplitude spectrum does not change before and after ap-281

plying the stacking weights (Figures 3b and e). Now, it is much easier for us to measure282

the phase or group dispersion curves of Rayleigh waves for the newly stacked signal (Fig-283

ure 3d).284
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3.2 One-month records285

Figures 4a and b present ambient noise CCFs for daily records (October 2010) by286

using global cross-correlation and local attributes, respectively. With these local attributes,287

incoherent background noises are attenuated while surface wave signals are preserved and288

much easier for us to measure. We observe alternative causal and acausal surface wave289

signals, which might come from the changes in ambient noise source distributions. Since290

there is data redundancy for Figure 4b, instead of directly stacking it over the time axis,291

we calculate local similarity again between the raw stacked CCF (Figure 5a) with Fig-292

ure 4b, which is shown in Figure 4c. Again, coherent signals, such as surface wave pack-293

ages, stand out in comparison with background noises. Figures 5a and d compare the294

raw stacked CCF and the new signal with local attributes. We observe significant im-295

provement of the new signal in terms of SNR. Based on the time-frequency analysis shown296

in Figures 5c and f, the dispersive characteristics of Rayleigh waves are preserved while297

background noises from 0.1 to 0.3 Hz are attenuated. Similar to the previous daily ex-298

ample, the overall amplitude spectra do not change too much between these two CCFs.299

Next, we compare the convergence of the raw global cross-correlation and the new300

result based on local attributes. Figure 6a shows the convergence of the raw daily global301

CCFs over one month. With the increasing stacking duration, the SNR is improved and302

coherent Rayleigh wave signals stand out gradually. However, the convergence and im-303

provement of SNR are relatively low (Figure 7b). Here we use a one-month stacked CCF304

as the reference trace to compute the similarity between two signals (Equation 13). In305

this test, the signal window is [-100, -50] s and [50, 100] s, while the noise window ranges306

from [-200, -150] s and [150, 200] s. Improvements for the local attribute stacking CCF307

are shown in Figure 6b. In addition, another causal signal appears around 50 s after 10308

days of stacking, which could be body waves or higher mode surface waves with an ap-309

parent velocity about 4.3 km/s. But those incoherent events (e.g., 20 s) are relatively310

well suppressed. We also speculate that the improvement of SNR with our method is sig-311

nificant with only several days of stacking (Figure 7b). By stacking with more than 10312

days, both the correlation coefficient and SNR gradually become stable (Figure 7). It313

is intriguing that the first 5 days CCFs show strong acausal signals (e.g., -80 s in Fig-314

ures 6a-b) and our improved SNR shows a bump around 5 days (Figure 7b). This might315

indicate the noise sources were mainly from station Z36A to station 234A before the first316

5 days. Then more complex noise sources from stations 234A to station Z36A appeared317
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and resulted in stronger causal signals (e.g. 50-80 s) and complex noises in CCFs. As318

a result, the SNR goes lower from 5-12 day stacking and gradually turns high with longer319

stacking.320

We further test the proposed approach for 20 USArray stations deployed in North321

Texas and Oklahoma(Figure 8). One-month data (October 2010) are used for both raw322

stacking and the new approach. Comparisons of these two results can be found in Fig-323

ure 9. We observe the SNRs of the new approach are much higher in comparison with324

the classical stacking approach. Except for the dominant Rayleigh waves, we also no-325

tice that there might be additional earlier arriving weaker events emerging from 500 km326

distance (highlighted by dark blue arrows). For example, the early arrival at about 640327

km has an apparent velocity of 3.5 km/s, which is higher than the group velocity (∼2.6328

km/s) of the dominant Rayleigh waves. It could be a candidate for head/diving body329

waves or higher mode surface waves contaminated with noises. Even they are weak sig-330

nals, our method can retain them as long as they are coherent.331

Next, we test the proposed approach for several stations from three dense arrays332

and surrounding stations deployed in Minnesota and Wisconsin around the Midconti-333

nent Rift (Figure 10; Wolin et al., 2015). Figure 11 shows the comparisons of one-month334

stacked CCFs based on the conventional approach and the proposed procedure. It is ob-335

vious the SNRs are improved quite a lot for most traces shown in Figure 11c with the336

proposed method. The overall average of the SNR from the traditional stacking method337

(4.8) is much smaller than the one (35.4) from the proposed method. Although the noise338

level between 6-15 s period is lower, the SNRs are improved from 6.7 to 53.8 by using339

the proposed stacking method as shown in Figure 12. It is interesting that SNRs for data340

in 15-30 s period band (Figure 13) are smaller compared to those in the periods of 6-15341

s, and the proposed method helps us to improve the SNRs as expected. Panels d-f show342

the improved SNRs from two-month stacking compared with the monthly stacking (pan-343

els a-c) of Figures 11-13. We speculate that with a two-month stacking duration, the im-344

provements of SNRs using conventional linear stacking are larger than the proposed method,345

but the SNRs from one-month stacking of the proposed method are still higher than those346

from two-month stacking with the conventional method. This is important for monitor-347

ing time-lapse changes of near-surface velocity changes with temporary arrays which usu-348

ally have quite short acquisition durations (Nakata et al., 2016; Issa et al., 2017; Mor-349

dret et al., 2020; Zhang et al., 2022).350
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3.3 Applications to a nodal array351

Between 2017 and 2019, 10 linear dense Distribution of Basin Amplification Seis-352

mic Investigation (BASIN) nodal arrays (SG1–SG4, and SB1–SB6) were deployed in the353

San Gabriel and San Bernardino basins for Fine characterization of basin shapes and depths354

(Y. Li et al., 2022; X. Wang et al., 2021). We apply our method to the SB1 array to val-355

idate its performance. The SB1 array (Figure. 14a) consists of 239 Fairfield ZLand nodes356

with standard 5 Hz 3-component geophones with spatial sampling of ∼250 m. It was de-357

ployed for approximately one month. The basin depth beneath the SB1 array is about358

0-3.0 km (Y. Li et al., 2022), therefore, it is essential to have more measurements at lower359

period bands, such as 1.0-5.0 s. The data downloading and preprocessing are similar to360

previous tests except the continuous noises were down-sampled with a sampling frequency361

of 4 Hz and then bandpass filtered between 1-20 s.362

Taking the first station as the master station, the corresponding CCFs are arranged363

according to their offset and displayed in Figure 14. As expected, with 5 days of stack-364

ing (Figure 14b), the CCFs from traditional linear stacking have strong noises for all sta-365

tion pairs. The 30-day stacking clearly improves the data quality so that we can observe366

the dominant acausal Rayleigh waves. Compared with CCFs from linear stacking, the367

proposed method helps us to enhance coherent signals even with only 5 days of stack-368

ing. The 30-day stacking further improves the data quality. Next, we measure phase dis-369

persion curves for the stacked CCFs, which are the input for surface wave tomography370

(Yao et al., 2006; Fang et al., 2015). There are three criteria to make sure the measured371

dispersion curves are stable. (1) The SNR is larger than 5.0; (2) The inter-station dis-372

tance is larger than 1.5 wavelength at corresponding periods (Bensen et al., 2007; G. Chen373

et al., 2023). (3) The picked phase velocity is within ± 12% of a 3D reference phase ve-374

locity model. Here the 3D reference phase velocity model is constructed from a local to-375

mographic model, CVM-S 4.26 (Lee et al., 2014), by conducting a forward modeling based376

on the fast-marching method (Rawlinson & Sambridge, 2004; Fang et al., 2015). Thanks377

to the improvement of SNR from our method, more high-quality dispersion curves pass378

the selection criteria with 5-day stacking compared with those measured from linear stack-379

ing as illustrated in Figure 15. More importantly, the number of measurements for 1-380

5 s and 10-15 s period bands are also increased. These are further improved for 30-day381

stacked CCFs using the proposed method.382
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4 Discussions383

Commonly used ambient noise processing procedures (Bensen et al., 2007) require384

stacking over long, continuous records to enhance coherent signals, also require the as-385

sumption of evenly distributed ambient sources in order to obtain good estimates of Green’s386

functions. However, both conditions impose constraints on the application of temporary387

arrays with short acquisition duration.388

To improve the SNR of CCFs stacked with a short duration, Xie et al. (2020) pro-389

posed a root-mean-square-ratio selective (RMSRS) stacking procedure to remove those390

CCFs that negatively contribute to the SNR of the final stacked CCF. It is realized by391

comparing the root-mean-square ratio of signals and noises for each CCF and the stacked392

CCF. Therefore, its effectiveness depends on an accurate definition of signal/noise win-393

dows. Here, we compare the conventional linear stacking, proposed procedure and RM-394

SRS stacking for the station pair TA.A12A-TA.A18A at 10-35 s period band. The sig-395

nal window (Figure 17c) is defined with the reference time tref and maximum period of396

interest Tmax as [tref−2Tmax, tref+2Tmax]. Here, the reference time tref = d/vref is397

defined by the inter-station distance d (425 km) and a reference group velocity vref (3.0398

km/s). The noise window is defined from 0 to the signal windows and 4Tmax out of the399

signal windows (Xie et al., 2020). Compared with linear stacking, the RMSRS stacking400

successfully suppresses the noises within the defined noise windows and therefore improves401

the SNR as highlighted in Figures 17d and f. Similarly, our approach also successfully402

attenuates those incoherent noises and significantly improves the SNR, which is about403

two times the other two methods. However, the coherent signal at about 75 seconds with404

an apparent velocity of 5.6 km/s is retained by our approach due to the similarity be-405

tween local CCFs and the stacked CCFs. The main reason that the RMSRS-based method406

helps to suppress this signal is because they are selected as noises. Such selection seems407

to be challenging to deal with low-SNR CCFs at shorter period bands (3-16 s) obtained408

from the high-frequency nodal array (Figure 14). As illustrated in Figures 14d, the im-409

provement of selective stacking is limited compared with linear stacking. On the con-410

trary, our approach significantly improves the stacking quality and helps us to obtain more411

high-quality dispersion curves. We note here that, for fair comparisons, the RMSRS-based412

method is implemented on the raw stacked CCFs. For better performance, Xie et al. (2020)413

suggested using RMSRS stacking at several narrow period bands so that it could define414

a better selection window, which is out of the scope of this study.415
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Although the proposed approach helps us to improve the SNR of CCFs with only416

several days of stacking, the non-causality and asymmetry, which mainly arise from the417

uneven distribution of ambient noise sources, remain challenging. For tomography pur-418

poses, theoretical works indicate that phase velocities can be estimated from the empir-419

ical Green’s functions, which are obtained by taking the negative time derivative of the420

symmetric cross-correlation under the assumption of a spatially homogeneous ambient-421

noise source distribution (Lobkis & Weaver, 2001; Sabra et al., 2005; Snieder, 2004; Yao422

et al., 2006; Lin et al., 2008). As suggested by Yao et al. (2006), inhomogeneous source423

distribution may contribute to 1–3 percent inconsistency between phase velocity mea-424

surements and the traditional earthquake-based two-station method between periods of425

20–30 s. Therefore, the “symmetric“ CCF is usually taken by the average of the cross-426

correlation at positive and negative correlation lag times (Yao et al., 2006; Lin et al., 2008).427

However, how much such averaged CCFs affect tomography results remains unknown.428

On the other hand, several studies suggested measuring full-waveform differences of CCFs429

and source location simultaneously (Tromp et al., 2010; Sager et al., 2018; Datta et al.,430

2023), which naturally mitigates the uncertainty caused by the source distributions. In431

both cases, it is important for us to obtain high SNR CCFs, especially for short-duration432

nodal arrays. In addition, because the high-quality phase velocity measurements obtained433

from 5-day stacking (Figure 15c) by the proposed approach is comparable with those ob-434

tained from the 30-day linear stacking, the surface wave-based monitoring (Durand et435

al., 2011; Brenguier et al., 2020) seems to be possible, albeit coda waves are mostly used436

(Mao et al., 2019, 2020; Luo et al., 2023). Another potential application for our approach437

could be weak coherent signal extraction, such as body waves (Zhan et al., 2010; Poli438

et al., 2012; Nakata et al., 2015, 2016; Mao et al., 2020). Body waves extracted from am-439

bient noise CCFs have been proven to be capable of improving the imaging resolution440

compared to surface wave tomography (Nakata et al., 2015). As illustrated in Figures441

6 and 14, those coherent signals with an apparent velocity larger than 4.0 km/s might442

be good candidates for body waves, although we are not able to rule out the possibil-443

ity of higher-order surface waves.444

The last factor we need to consider is the computational and memory cost for our445

approach. Taking station pair TA.A12A and TA.A18A as an example, we have 30 days446

of recordings and 86400-time samples for each day. The cross-correlation time lag varies447

from -480 s to 480 s for every 1 s. We calculate the global cross-correlations every 60 min-448
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utes with 75% overlaps, which yields 91 subset CCFs for each day. They are then nor-449

malized and stacked to obtain the dayily CCF. Finally, 30 days of global cross-correlation450

and linear stacking take 47.9 s and 0.02 s, respectively, while the local cross-correlation,451

local similarity and weighted stacking take 196.7 s, 12,150 s and 78.3 s. We note here,452

that the local cross-correlation solved with our method actually contains 86,400 CCFs453

for each day. It helps us to extend the dimension of CCFs dramatically (534 times the454

number of global CCFs), but with only four times the computational cost compared to455

global stacking. Whereas, such a high dimension, in turn, greatly decreases the efficiency456

of our approach. To mitigate this problem, the local CCFs are downsampled 60 times457

(from 1.0 s to 60 s) by taking the average CCFs for every 60 samples, and then the com-458

putational cost for local similarity and weighted stacking is decreased to 167.1 and 10.0459

s, respectively. The final stacked CCFs by using these local CCFs are almost the same460

as the original local CCFs. Overall, the computational cost for the proposed approach461

is 7.8 times the computational cost compared to the hourly global stacking, but with 15.8462

times more CCFs. In addition, increasing the cross-correlation time window (e.g., from463

one hour to three hours) does not affect the efficiency of our approach, but will increase464

the computational time for global cross-correlation. Finally, we compare the computa-465

tion cost using the nodal array. For each station, we have 345,600 time samples per day466

with a 4 Hz sampling frequency. The cross-correlation time lag varies from -120 s to 120467

s for every 0.25 s. The global and local CCFs are calculated the same as in the previ-468

ous example. To save computational costs, we downsample the local CCFs 60 times (from469

0.25 s to 15 s). Then all station-pairs are distributed to 72 CPU cores for parallel com-470

putations. Our approach takes 5792.0 s and the traditional linear stacking takes 792.0471

s. The final stacked CCFs are compared in section 3.3. In conclusion, our approach sig-472

nificantly helps us to improve the SNR of CCFs, but with about 7.5 times the compu-473

tation cost compared to traditional linear stacking. Such extra computational costs are474

bearable compared to the following computational costs tomography (Zhu, 2018; Wu et475

al., 2023; G. Chen et al., 2023).476

5 Conclusion477

In this study, by taking advantage of local attributes, we present a new approach478

to increase the SNRs of ambient noise CCFs. Two local attributes are used in this study:479

local cross-correlation and local similarity. The local cross-correlation is employed to ex-480
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tend the dimensionality of daily CCFs, and the local similarity is used to design better-481

stacking weights to enhance coherent signals and attenuate incoherent background noises.482

Applications to ambient noise records from several broadband stations and a high-frequency483

nodal array demonstrate the performance of the proposed approach. With higher SNRs,484

we are able to extract more high-quality dispersion curves, which are important for sur-485

face wave tomography. In addition, 5-day stacking by our approach can produce CCFs486

comparable to 30-day linear stacking in terms of SNRs, demonstrating its potential ap-487

plications for time-lapse monitoring. In addition, extracting coherent weak signals, such488

as body waves, could be another application of the proposed approach.489
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Figure 1. Comparison of local and global cross-correlations. Panel(a) shows two signals

with non-stationary time shifts. Three events with time shifts of -0.4 s, 0.1 s and 0.3 s are used.

Panels (b) and (c) present global and local cross-correlations, respectively. Here, the 1D global

cross-correlations are extended along the time dimension for better comparisons with local cross-

correlations. σ is set to 0.2 s so that it is small enough to capture the non-stationary property

of these two signals. Panels (d) and (f) show the similarity (s in Equation 16) between local

and global cross-correlations before and after applying a threshold (α(t, τ) in Equation 19), re-

spectively. Panel e shows the prestack local cross-correlations weighted by local similarity (c2 in

Equation 18)

.

sheet (wais) divide camp. Journal of Geophysical Research: Earth Surface,774

e2022JF006777.775

Zhu, H. (2018). Crustal wave speed structure of north texas and oklahoma based on776

ambient noise cross-correlation functions and adjoint tomography. Geophysical777

Journal International , 214 (1), 716–730.778
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Figure 2. Local cross-correlation and local similarity for one-day CCFs between stations

TA.234A and TA.Z36A on October 10, 2010. Panels (a) and (b) show one-day records for sta-

tions TA.234A and TA.Z36A, respectively. Panel (c) presents local cross-correlation between

these two signals. Panel (d) shows the local similarity between panel (c) and the linearly stacked

signal shown in Figure 3a. The causal Rayleigh waves between 60-80 s can be clearly observed in

panel (d).
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Figure 3. Comparisons of one-day CCFs from simple stacking and stacking with local at-

tributes. Panel (a) shows the CCF with simple linear stacking (Equation 1). Panels (b) and (c)

are the amplitude and time-frequency spectra of panel (a), respectively. Panel (d) is the CCF

stacked with local similarity. Panels (e) and (f) are the amplitude and time-frequency spectra of

panel (d).
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Figure 4. Comparisons of daily CCFs within one month (October 2010) for simple stacking

(a) and stacking with local attribute (b). Panel (c) shows the local similarity between panel (b)

and the linear stacked result shown in Figure 5a.

Figure 5. The same setting as Figure 3 except for monthly stacked results on October 2010.
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Figure 6. Comparisons of convergence for conventional (a) and the proposed procedure

(b). The causal and acasual signals could be clearly identified around ±80 s with an apparent

group velocity of 2.7 km/s. After 10 days of stacking, we observe a causal coherent signal appear

around 50 s with an apparent velocity of 4.3 km/s, possibly representing body waves.
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Figure 7. Improvements of correlation coefficients (a) and SNRs (b) for one-month stacking

results. Black stars and open red circles are the results of the conventional stacking procedure

and the proposed approach. The reference trace for calculating the correlation coefficients is the

30-day raw stack.
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Figure 8. Distributions of the USArray stations in north Texas and Oklahoma used for com-

parisons in Figure 9.
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Figure 9. Comparisons of one-month stacked CCFs averaged from negative and positive lags

from conventional approach (a) and the proposed procedure (b) for station pairs shown in Figure

8.
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Figure 10. 35 seismic stations used for comparisons shown in Figures 11-13. The SM, SN

and SS stations are parts of the Superior Province Rifting Earthscope Experiment (Wolin et al.,

2015). Other stations come from the USArray Transportable Array. The background color is the

Bouguer gravity anomaly (Woollard, 1965), where the linear feature with positive (blue) values

highlights the extension of the Mid-continent Rift.
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Figure 11. Comparisons of one-month stacked CCFs averaged from negative and positive

lags (without bandpass filter) from conventional approach (a) and proposed procedure (b). The

improvement of averaged SNR for each trace is shown in panel (c) with black (conventional) and

red (proposed) dots. Panels d-f are the same as panels a-c except for two-month stacking. The

short magenta and blue solid lines in panel (d) represent the signal and noise windows used to

calculate the SNRs shown in panels c and f.
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Figure 12. The same setting as Figure 11, but for the stacked data bandpass filtered between

6-15 s.
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Figure 13. Same as Figure 11 but from the stacked data bandpass filtered between 15-30 s.
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Figure 14. (a) Station distribution of one dense array deployed in the San Bernardino basin.

The red triangle denotes the master station while the other black ones are stations used to calcu-

late the CCFs. The red dots represent faults from the U.S. Geological Surveys. Shot gathers of 5

days (b) linear, (e) proposed local and (d) root-mean-square ratio based selective (RMSRS) (Xie

et al., 2020) stacking. The blue and dark green lines in panels c and e are acausal and causal

arrival times with a group velocity of 1.5 km/s and 3.5 km/s, respectively. They are used to high-

light the potential ranges of Rayleigh wave arrivals. The blue and dark green lines in panels d

and g are used to define the signal windows for root-mean-square ratio calculation. Panels (e-g)

display the corresponding 30-day stacking results.
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Figure 15. Comparison of selected phase dispersion curves from 5-day raw (a), proposed (b)

and RMSRS (c) stacking CCFs displayed in Figures 14b-d. Panels (b), (d) and (f) show the num-

ber of measurements for every 0.5 s from 1.0 s to 15.0 s.
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Figure 16. Similar to Figure 15 but from 30-day stacking CCFs displayed in Figures 14e-g

.
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Figure 17. Comparisons of convergence for conventional (a), the proposed procedure (b) and

root-mean-square-ratio selective (RMSRS) (Xie et al., 2020) stacking of the TA.A12A-TA.A18A

station pair. Panels (d-e) compare 15-day stacked CCFs of the three stacking methods at 10-20,

15-30 and 20-35 s period bands. The blue numbers are the SNR for the corresponding trace. To

calculate the SNR, we choose 57-221 s as the signal window and 221-357 s as the noise window.

The magenta short lines (57-221 s) are used to define the signal windows for RMSRS calcula-

tion. The green dashed rectangles are used to highlight the improvement of the RMSS stacking

method. Both RMSRS stacking and our proposed approaches help us to improve the SNR at

different period bands.
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Abstract13

For seismographic stations with short acquisition duration, the signal-to-noise ra-14

tios (SNRs) of ambient noise cross-correlation functions (CCFs) are typically low, pre-15

venting us from accurately measuring surface wave dispersion curves or waveform char-16

acteristics. In addition, with low-quality CCFs, it is difficult to monitor temporal vari-17

ations of subsurface physical states or extract relatively weak signals such as body waves.18

In this study, we propose to use local attributes to improve the SNRs of ambient noise19

CCFs, which allows us to enhance the quality of CCFs for stations with limited acqui-20

sition duration. Two local attributes: local cross-correlation and local similarity, are used21

in this study. The local cross-correlation allows us to extend the dimensionality of daily22

CCFs with computational costs similar to global cross-correlation. Taking advantage of23

this extended dimensionality, the local similarity is then used to measure non-stationary24

similarity between the extended daily CCFs with a reference stacking trace, which en-25

ables us to design better stacking weights to enhance coherent features and attenuate26

incoherent background noises. Ambient noise recorded by several broadband stations from27

the USArray in North Texas and Oklahoma, the Superior Province Rifting EarthScope28

Experiment in Minnesota and Wisconsin and a high-frequency nodal array deployed in29

the San Bernardino basin are used to demonstrate the performance of the proposed ap-30

proach for improving the SNR of CCFs.31

Plain Language Summary32

Seismic ambient noise has been widely used for imaging and monitoring subsur-33

face structures by using cross-correlation functions (CCFs) of continuous recordings be-34

tween station pairs. Typically, we have to stack a lot of CCFs to enhance signals (e.g.,35

surface and body waves) of CCFs. However, for temporal monitoring purposes or those36

deployed arrays with short acquisition duration, it is impossible to have a lot of stack-37

ing. The lack of enough stacking could result in low signal-to-noise ratios (SNRs) of the38

CCFs. We proposed a new approach to improve the SNRs of CCFs by using two local39

attributes: local cross-correlation and local similarity. We first extend the CCFs to a higher40

dimension by using local cross-correlation, and then the local similarity is used to de-41

fine a better weighting factor for the final stacking. We use several field data examples42

to prove the effectiveness of the proposed approach.43
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1 Introduction44

With the assumption of homogeneously distributed noise sources, both theoreti-45

cal and experimental studies have demonstrated that empirical Green’s functions can46

be retrieved by cross-correlating continuous ambient noise records between two seismo-47

graphic stations (Aki, 1957; Claerbout, 1968; Buckingham et al., 1992; Lobkis & Weaver,48

2001; Weaver & Lobkis, 2001; Shapiro & Campillo, 2004; Wapenaar, 2004; Nakata et al.,49

2019). Both surface (Campillo & Paul, 2003; Shapiro & Campillo, 2004; Sabra et al., 2005)50

and body wave signals (Draganov et al., 2009; Zhan et al., 2010; Poli et al., 2012; Lin51

et al., 2013; Nakata et al., 2015) have been successively extracted from ambient noise record-52

ings. With empirical Green’s functions between each pair of stations in a seismic array,53

we are able to measure surface wave phase or group dispersion curves, and then perform54

surface wave tomography to estimate seismic properties in the subsurface. Compared55

with earthquake tomography, ambient noise tomography allows us to image tectonically56

inactive regions and achieve better cross-path coverages. To date, ambient noise cross-57

correlation functions (CCFs) have been successively used to investigate velocity as well58

as anisotropic structures within the crust and uppermost mantle (Shapiro et al., 2005;59

Y. Yang et al., 2007; Lin et al., 2008; Moschetti et al., 2010; Yao et al., 2010; Huang et60

al., 2010; Lin et al., 2011; Shen & Ritzwoller, 2016). Recently, ambient noise CCFs are61

combined with waveform inversion to better constrain subsurface velocity structures (Gao62

& Shen, 2014; M. Chen et al., 2014; Lee et al., 2014; Y. Liu et al., 2017; Sager et al., 2018;63

K. Wang et al., 2018; Zhu, 2018; Sager et al., 2020; Fan et al., 2022; Maguire et al., 2022).64

Taking advantage of continuous records, ambient noise CCFs can also be utilized to mon-65

itor temporal evolution of physical states in the subsurface (Brenguier et al., 2008; Nakata66

& Snieder, 2011; Hadziioannou et al., 2011; Mainsant et al., 2012; De Plaen et al., 2016;67

Q.-Y. Wang & Yao, 2020; Le Breton et al., 2021; Mao et al., 2022).68

Previous studies have demonstrated that we are able to improve the signal-to-noise69

ratios (SNRs) of ambient noise CCFs as well as reducing the effect of source direction-70

ality by increasing the stacking duration of signals (Bensen et al., 2007). To obtain high-71

quality CCFs, typically we have to use long continuous records and sometimes have to72

stack data with several years of acquisition. However, for some temporary experiments73

e.g., Brenguier et al. (2008); Issa et al. (2017); G. Liu et al. (2018); Dougherty et al. (2019);74

G. Chen et al. (2023); Wu et al. (2023), the SNRs of ambient noise CCFs are typically75

low, preventing us to measure robust surface wave dispersion curves or waveform char-76
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acteristics. For these cases, we have to design effective approaches to improve the SNRs77

of ambient noise CCFs. In addition, the SNRs are crucial for extracting weak coherent78

signals, such as body waves (Snieder, 2004; Nakata et al., 2015, 2016). There are sev-79

eral studies towards improving the SNR of ambient noise CCFs. For instance, Baig et80

al. (2009) designed better-stacking weights in the time-frequency domain with discrete81

orthogonal S transform, which allowed them to measure robust Rayleigh and Love ar-82

rivals for stations with long offsets. G. Li et al. (2018) further compared the performances83

of time and frequency domain inverse S transforms for this stacking procedure. Schimmel84

et al. (2011) used instantaneous phase coherence to avoid strong amplitude arrivals, such85

as earthquake signals, and enhance coherent features in noise records. Seats et al. (2012)86

and Clarke et al. (2011) utilized overlapped moving windows (Welch’s method) to im-87

prove the convergence of CCFs towards stable Green’s functions. In addition, wavelet88

and curvelet transforms have also been applied to denoise CCFs by Stehly et al. (2011)89

and Mao et al. (2022). Furthermore, Weaver and Yoritomo (2018) proposed several schemes90

to choose optimal weights for stacking so that the effective incident intensity distribu-91

tion is closer to isotropic. Xie et al. (2020) used the root-mean-square ratio to remove92

those CCFs with low SNR. A systematic evaluation and comparison of the performance93

of several stacking methods is discussed by X. Yang et al. (2023).94

In this study, we propose to use local attributes (Rickett & Lumley, 2001; Hale, 2006;95

Fomel, 2007a) to denoise CCFs when we have short acquisition durations. In compar-96

ison with global attributes, the local attributes enable us to extract non-stationary char-97

acteristics in seismic data. There are a variety of local attributes, including local sim-98

ilarity (Fomel, 2007a), local cross-correlation (Hale, 2006), local frequency (Fomel, 2007a)99

and local skewness (Fomel & van der Baan, 2014), etc. In this study, we use local cross-100

correlation (Hale, 2006) to extend the dimensionality of daily CCFs, and then use stack-101

ing weights measured by local similarity to improve the stacking quality of CCFs. The102

local cross-correlation can be considered as a natural extension of the Welch’s method103

(Seats et al., 2012) but with longer overlap windows and much lower computational costs.104

Its overall computational cost is similar to the conventional global cross-correlation. The105

local similarity has been used to measure non-stationary similarity between time-lapse106

images (Fomel & Jin, 2009), improve stacking quality of normal moveout data (G. Liu107

et al., 2009) as well as angle-domain common-imaging-gathers (Lin et al., 2011). All these108
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studies demonstrate the capability of using local similarity to improve the stacking qual-109

ity.110

We first review local cross-correlation and local similarity. Next, they are used to111

improve the SNRs of ambient noise CCFs with one-day and one-month acquisition du-112

rations. Continuous noise records from several broadband USArray stations in North Texas113

and Oklahoma, the Superior Province Rifting EarthScope Experiment in Minnesota and114

a high-frequency nodal array in the San Bernardino basin are used to demonstrate the115

performance of the proposed approach.116

2 Method117

2.1 Local cross-correlation118

The global cross-correlation function c(τ) between two signals f(t) and g(t) can

be defined (Nakata & Snieder, 2011; Harris et al., 2020) as follows:

c(τ) =

∫ ∞

−∞
f(t+ τ)g(t)dt . (1)

The result of the global cross-correlation is a function of time lag τ , which cannot cap-119

ture non-stationary time shifts between two input signals and therefore makes it diffi-120

cult to separate signals and noises. In order to fulfill this goal, one way is to perform time-121

windowed cross-correlation, which has much higher computational costs in comparison122

to Equation 1. In addition, there might be leakage and edge problems due to the selected123

window functions. To solve these problems, Hale (2006) designed an efficient algorithm124

to compute the local CCF and measure time-varying correlations between two signals.125

It was first used to measure non-stationary warpings between time-lapse migration im-126

ages. Later, the local cross-correlation was applied to measure non-stationary travel time127

differences between two seismograms, which can be utilized to constrain subsurface ve-128

locity structures through full-waveform inversion (Dı́az & Sava, 2015).129

The idea of local cross-correlation is similar to the moving window cross-correlation130

for capturing transient time shifts, but with much higher computational efficiency. In131

addition, it helps us to separate signal and noise in a higher dimension. Taking advan-132

tage of several properties of Gaussian windows, such as the product of two Gaussian win-133

dows is still a Gaussian function, the computational cost of local cross-correlation can134

be reduced as similar to that of global cross-correlation. For instance, the Gaussian-windowed135
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versions of signals f(t) and g(t) can be represented as136

f̂(t, t0) = f(t)ω(t0 − t) ,

ĝ(t, t0) = g(t)ω(t0 − t) . (2)

where ω(t0−t) is the Gaussian window function located at t0, i.e., ω(t0−t) = 1√
2πσ

e−(t0−t)2/2σ2

.137

Here σ is the standard deviation, which controls the width of the Gaussian window. With138

these windowed signals, we are able to compute the cross-correlation function at each139

local time step t0. Without optimization, the computational cost of this moving window140

cross-correlation is O(NlNwNs). Here, Nl, Nw and Ns are the numbers of samples for141

time lags, Gaussian window, and input signals, respectively.142

The windowed cross-correlation can be written as143

c(t0, τ) =

∫ ∞

−∞
f(t+ τ, t0 + τ)g(t, t0)dt

=

∫ ∞

−∞
f(t+ τ)ω(t0 − t)g(t)ω(t0 − t)dt

=

∫ ∞

−∞
f(t+ τ)g(t)W (t, t0)dt , (3)

where144

W (t, t0) = ω(t0 − t)ω(t0 − t) =
1

2πσ2
e−(t0−t)2/σ2

. (4)

W (t, t0) is again a Gaussian function with a smaller width σ/
√
2 compared to w(t0−145

t). Based on this property, we can first compute the pre-stacked cross-correlation between146

two signals, i.e., h(t, τ) = f(t+τ)g(t). It is then filtered by a Gaussian function W (t, t0)147

as148

c(t0, τ) =

∫ ∞

−∞
h(t, τ)W (t, t0)dt . (5)

Combining with some efficient recursive Gaussian filter algorithms (Deriche, 1993; Al-149

varez & Mazorra, 1994; Van Vliet et al., 1998), the computational cost of implement-150

ing Equation 3 can be similar as the global cross-correlation shown in Equation 1, i.e.,151

O(NlNs). This makes it attractive for processing large-scale datasets, such as contin-152

uous ambient noise records.153

2.2 Recursive Gaussian convolution154

How to efficiently compute the convolution of a signal or an image with a Gaus-155

sian function is a common problem in data processing. There are several ways to per-156

form this filtering procedure. For instance, by taking advantage of the Fourier transform,157
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Gaussian convolution can be computed efficiently as elemental-wise multiplication in the158

frequency domain. Another efficient way to implement the Gaussian filter is to consider159

the result as the solution of the following heat equation:160

∂u

∂y
− ∂2u

∂x2
= 0 ,

u(x, 0) = f(x) . (6)

Here, if we let y = σ2/2, then the final solution of the above heat equations u(x, y) is161

equivalent to the convolution of signal f(x) with a Gaussian function ω(x) = 1√
2πσ

e−x2/2σ2

.162

This heat equation can be solved by using finite-difference schemes. Alvarez and Mazorra163

(1994) used this property to derive an efficient procedure to compute the Gaussian con-164

volution. For instance, they discretized the simulation domain with165

uj
i = u(i∆x, j∆y) , (7)

Here ∆x and ∆y are the grid spacings along the spatial and time directions, i and j are166

the associate indices. Then, the finite-difference solution of the above heat equation can167

be written as168

uj+1
i − uj

i

∆t
−

uj+1
i+1 + uj+1

i−1 − 2uj+1
i

∆x2
= 0 . (8)

Let λ = ∆y/∆x2, then169

(1 + 2λ)uj+1
i − λuj+1

i−1 − λuj+1
i+1 = uj

i . (9)

We can solve this implicit finite-difference equation using the following filter170

H(z) =
ν

λ

1

(1− νz−1)(1− νz)
, (10)

with171

ν =
1 + 2λ−

√
(1 + 4λ)

2λ
. (11)

The above filtering procedure can be efficiently solved by using the following three steps,172

marching from uj
i to uj+1

i as173

uj′

i = uj
i + νuj′

i−1 ,

uj′′

i = uj′

i + νuj′′

i+1 ,

uj+1
i =

ν

λ
uj′′

i . (12)

The first and second steps in the above procedure are the applications of causal and acausal174

filters, respectively. The third step is just a simple multiplication. Thanks to the uncon-175

ditional stability of this implicit solution (Alvarez & Mazorra, 1994), only a few itera-176

tions (four iterations are used in this study to propagate along the time dimension y)177
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enable us to converge to the solution of the Gaussian filter. Therefore, the time grid can178

be defined by ∆y = σ2/(2Ny), where Ny is the total number of iterations. Combining179

this recursive Gaussian filter with Equation 5, we are able to efficiently compute the lo-180

cal cross-correlation function. For example, for a certain τ , the source term for Equa-181

tion 6 is the pre-stacked cross-correlation h(t, τ). Then solution of the corresponding heat182

equation is the non-stationary CCFs u(t, τ) at this particular τ .183

Figure 1 shows a simple example to illustrate the advantages of local cross-correlation184

over global cross-correlation. There are non-stationary time shifts for three events at 1,185

3 and 5 s between two input signals. The global cross-correlation is shown in Figure 1b.186

Although it captures the correct time shifts around -0.4 s, 0.1 s and 0.3 s, it does not187

carry any useful information about the locations of these time shifts. The local cross-188

correlation is presented in Figure 1c, with three energy spots located at the right loca-189

tions with correct time lags. This local cross-correlation function enables us to extend190

the dimensionality of the input signals as well as the cross-correlation function, which191

can be utilized to design a better strategy to improve stacking quality as discussed be-192

low.193

2.3 Local similarity194

Local similarity is a local attribute that allows us to measure non-stationary sim-195

ilarity between two time series or images (Fomel & Jin, 2009; G. Liu et al., 2009, 2011).196

First, the global similarity between two signals f(t) and g(t) can be defined as follows197

s =

∫
f(t)g(t)dt√∫

f2(t)dt
√∫

g2(t)dt
. (13)

In comparison with the global cross-correlation in Equation 1, the global similarity can198

be considered as a zero-lag cross-correlation function normalized by the energies of each199

signal. Therefore, it is insensitive to the absolute amplitudes of input signals. Its mag-200

nitude ranges from -1 to 1. Similar to local cross-correlation, local similarity was designed201

to measure non-stationary similarity between time-lapse images (Rickett & Lumley, 2001;202

Fomel & Jin, 2009). Once taking the square of Equation 13 on both sides, we can write203

its discretized version as204

s2 =
(fTg)(gT f)

(fT f)(gTg)
. (14)
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Fomel (2007a) considered the above equation as the solution to the following two least-205

squares problems:206

s1 = arg min
s1

|Fs1 − g| ,

s2 = arg min
s2

|Gs2 − f | . (15)

Here, F and G are the diagonal operators constructed from the elements of input vec-207

tors f and g, respectively. Shaping regularization (Fomel, 2007b) and a conjugate gra-208

dient method can be used to solve the above least-squares problems. Then, the local sim-209

ilarity can be computed as elemental-wise multiplication between s1 and s2 as210

s =
√
s1s2 . (16)

As pointed out in Fomel (2007a), the normalized local correlation can be considered as211

the first iteration from local similarity. Compared to a scalar value for the global sim-212

ilarity in Equation 13, the local similarity is a vector with the same length as the input213

signals. It can also be utilized to measure the similarity between two 2D or 3D images214

with high efficiency.215

2.4 Stacking strategy with local similarity216

From local cross-correlation, we obtain a function c(t, τ). The simplest way to cal-217

culate the CCF c1(τ) is to use the following linear stacking218

c1(τ) =
1

N

∑
t

c(t, τ) . (17)

If we use the above expression to compute noise CCF, its result is similar to the direct219

implementation of Equation 1. In this study, we choose c1(τ) as a reference trace and220

then compute the local similarity s(t, τ) between c1(τ) and c(t, τ). Once with the local221

similarity, we can use the following strategy to improve the stacking quality222

c2(τ) =
1

N

∑
t

α(t, τ)c(t, τ) , (18)

with223

α(t, τ) =


s(t, τ)− α0 , if α(t, τ) > α0

0 , if α(t, τ) ≤ α0

(19)

Here α0 is a pre-defined parameter to decide the stacking level. This stacking procedure224

has been applied to enhance coherent signals for normal moveout corrected data (G. Liu225

et al., 2009) and angle-domain common-image-gathers (G. Liu et al., 2011). In this study,226
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we use it to improve the stacking quality of noise CCFs. In practice, α(t, τ) is a soft thresh-227

old solved in the seislet domain (Daubechies et al., 2004; G. Liu et al., 2009). Compared228

with the similarity shown in Figure 1d, the clipped similarity (α(t, τ) in Eq. 19 ) in Fig-229

ure 1f shows zero background values away from signal regions, while keeping almost 1.0230

weights around the signal regions. This helps to suppress noises away from the signal231

regions. Because this synthetic test does not involve noises, the weighted prestack local232

correlations (c2(τ) in Eq. 18) shown in Figure 1e are basically identical to the prestack233

local correlations shown in Figure 1c. To validate the effectiveness of the proposed method234

to improve the SNR, we give its definition used in this study as235

SNR =

√√√√ 1
Ns

∫ s2
s1

f2(t)dt
1

Nn

∫ n2

n1
f2(t)dt

. (20)

Where [s1,s2] and [n1,n2] represent signal and noise windows, Ns and Nn denote the num-236

ber of time samples for signal and noise, respectively.237

2.5 Workflow238

In summary, the proposed method based on two local attributes can be implemented239

through the following six steps:240

1. Download and preprocess continuous ambient noise data for each station, and cut241

them into daily recordings.242

2. Calculate the pre-stacked cross-correlation function h(t, τ) = f(t+τ)g(t) as shown243

in Equation 3 between daily recordings from station pairs.244

3. Stack all daily global stacking CCFs and extend it along the time axis to obtain245

two-dimensional data as a reference.246

4. Solve the heat equation in Equation 6 to obtain a daily local CCF. Note here, the247

pre-stacked CCF is the source term f(x) in Equation 6, and the local CCF is also248

two-dimensional data.249

5. Calculate the daily local similarity between the reference CCF (step 3) and the250

daily local CCF(step 4).251

6. Stack all daily local CCFs weighted by the local similarity according to Equation252

18 for each station pair.253
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3 Numerical examples254

We download continuous ambient noise data, which are then processed by using255

the NoisePy package (Jiang & Denolle, 2020) following standard procedures from Bensen256

et al. (2007). It includes deconvolution of instrument responses, bandpass filter (2–10257

s), time domain normalization and spectral whitening. The preprocessed data are used258

to retrieve the CCFs and demonstrate the advantages of the proposed method.259

3.1 One-day records260

Figures 2a and b are vertical component displacements for the USArray stations261

TA.234A and TA.Z36A recorded on October 10th, 2010. The inter-station between this262

station pair is 213 km. As shown in Figure 3a, the SNR of the global cross-correlation263

is relatively low because we only use daily records. Only causal Rayleigh waves can be264

clearly observed in this CCF. Both amplitude and time-frequency spectra of the global265

cross-correlation function are presented in Figures 3b and c, respectively. Besides the dom-266

inant Rayleigh wave arrival, there are many background noises, especially from 0.2 to267

0.5 Hz. The local cross-correlation between Figures 2a and b is shown in Figure 2c. With268

the local cross-correlation, we are able to extend the 1D CCF to a 2D image, which can269

be used to measure local similarity and design a better strategy to improve stacking qual-270

ity. Although there are many incoherent background noises in Figure 2c, it includes a271

vertical coherent feature around time lags between 60 to 90 s. If we use a simple linear272

stacking for Figure 2c along the time axis (Equation 17), we will obtain the same sig-273

nal as the global cross-correlation shown in Figure 3a. Next, we compute the local sim-274

ilarity between Figure 2c and the raw stacked CCF shown in Figure 3a. In the local sim-275

ilarity result (Figure 2d), the coherent signals between 60 to 90 s stand out in compar-276

ison to the background noise level. With the stacking weights based on the local sim-277

ilarity (Equation 18), the new CCF and its amplitude/time-frequency spectra are pre-278

sented in Figures 3d–f. Compared with the global CCF in Figures 3a–c, the incoherent279

noises are significantly reduced without changing the dominant Rayleigh wave arrival.280

In the meanwhile, the overall amplitude spectrum does not change before and after ap-281

plying the stacking weights (Figures 3b and e). Now, it is much easier for us to measure282

the phase or group dispersion curves of Rayleigh waves for the newly stacked signal (Fig-283

ure 3d).284
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3.2 One-month records285

Figures 4a and b present ambient noise CCFs for daily records (October 2010) by286

using global cross-correlation and local attributes, respectively. With these local attributes,287

incoherent background noises are attenuated while surface wave signals are preserved and288

much easier for us to measure. We observe alternative causal and acausal surface wave289

signals, which might come from the changes in ambient noise source distributions. Since290

there is data redundancy for Figure 4b, instead of directly stacking it over the time axis,291

we calculate local similarity again between the raw stacked CCF (Figure 5a) with Fig-292

ure 4b, which is shown in Figure 4c. Again, coherent signals, such as surface wave pack-293

ages, stand out in comparison with background noises. Figures 5a and d compare the294

raw stacked CCF and the new signal with local attributes. We observe significant im-295

provement of the new signal in terms of SNR. Based on the time-frequency analysis shown296

in Figures 5c and f, the dispersive characteristics of Rayleigh waves are preserved while297

background noises from 0.1 to 0.3 Hz are attenuated. Similar to the previous daily ex-298

ample, the overall amplitude spectra do not change too much between these two CCFs.299

Next, we compare the convergence of the raw global cross-correlation and the new300

result based on local attributes. Figure 6a shows the convergence of the raw daily global301

CCFs over one month. With the increasing stacking duration, the SNR is improved and302

coherent Rayleigh wave signals stand out gradually. However, the convergence and im-303

provement of SNR are relatively low (Figure 7b). Here we use a one-month stacked CCF304

as the reference trace to compute the similarity between two signals (Equation 13). In305

this test, the signal window is [-100, -50] s and [50, 100] s, while the noise window ranges306

from [-200, -150] s and [150, 200] s. Improvements for the local attribute stacking CCF307

are shown in Figure 6b. In addition, another causal signal appears around 50 s after 10308

days of stacking, which could be body waves or higher mode surface waves with an ap-309

parent velocity about 4.3 km/s. But those incoherent events (e.g., 20 s) are relatively310

well suppressed. We also speculate that the improvement of SNR with our method is sig-311

nificant with only several days of stacking (Figure 7b). By stacking with more than 10312

days, both the correlation coefficient and SNR gradually become stable (Figure 7). It313

is intriguing that the first 5 days CCFs show strong acausal signals (e.g., -80 s in Fig-314

ures 6a-b) and our improved SNR shows a bump around 5 days (Figure 7b). This might315

indicate the noise sources were mainly from station Z36A to station 234A before the first316

5 days. Then more complex noise sources from stations 234A to station Z36A appeared317
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and resulted in stronger causal signals (e.g. 50-80 s) and complex noises in CCFs. As318

a result, the SNR goes lower from 5-12 day stacking and gradually turns high with longer319

stacking.320

We further test the proposed approach for 20 USArray stations deployed in North321

Texas and Oklahoma(Figure 8). One-month data (October 2010) are used for both raw322

stacking and the new approach. Comparisons of these two results can be found in Fig-323

ure 9. We observe the SNRs of the new approach are much higher in comparison with324

the classical stacking approach. Except for the dominant Rayleigh waves, we also no-325

tice that there might be additional earlier arriving weaker events emerging from 500 km326

distance (highlighted by dark blue arrows). For example, the early arrival at about 640327

km has an apparent velocity of 3.5 km/s, which is higher than the group velocity (∼2.6328

km/s) of the dominant Rayleigh waves. It could be a candidate for head/diving body329

waves or higher mode surface waves contaminated with noises. Even they are weak sig-330

nals, our method can retain them as long as they are coherent.331

Next, we test the proposed approach for several stations from three dense arrays332

and surrounding stations deployed in Minnesota and Wisconsin around the Midconti-333

nent Rift (Figure 10; Wolin et al., 2015). Figure 11 shows the comparisons of one-month334

stacked CCFs based on the conventional approach and the proposed procedure. It is ob-335

vious the SNRs are improved quite a lot for most traces shown in Figure 11c with the336

proposed method. The overall average of the SNR from the traditional stacking method337

(4.8) is much smaller than the one (35.4) from the proposed method. Although the noise338

level between 6-15 s period is lower, the SNRs are improved from 6.7 to 53.8 by using339

the proposed stacking method as shown in Figure 12. It is interesting that SNRs for data340

in 15-30 s period band (Figure 13) are smaller compared to those in the periods of 6-15341

s, and the proposed method helps us to improve the SNRs as expected. Panels d-f show342

the improved SNRs from two-month stacking compared with the monthly stacking (pan-343

els a-c) of Figures 11-13. We speculate that with a two-month stacking duration, the im-344

provements of SNRs using conventional linear stacking are larger than the proposed method,345

but the SNRs from one-month stacking of the proposed method are still higher than those346

from two-month stacking with the conventional method. This is important for monitor-347

ing time-lapse changes of near-surface velocity changes with temporary arrays which usu-348

ally have quite short acquisition durations (Nakata et al., 2016; Issa et al., 2017; Mor-349

dret et al., 2020; Zhang et al., 2022).350
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3.3 Applications to a nodal array351

Between 2017 and 2019, 10 linear dense Distribution of Basin Amplification Seis-352

mic Investigation (BASIN) nodal arrays (SG1–SG4, and SB1–SB6) were deployed in the353

San Gabriel and San Bernardino basins for Fine characterization of basin shapes and depths354

(Y. Li et al., 2022; X. Wang et al., 2021). We apply our method to the SB1 array to val-355

idate its performance. The SB1 array (Figure. 14a) consists of 239 Fairfield ZLand nodes356

with standard 5 Hz 3-component geophones with spatial sampling of ∼250 m. It was de-357

ployed for approximately one month. The basin depth beneath the SB1 array is about358

0-3.0 km (Y. Li et al., 2022), therefore, it is essential to have more measurements at lower359

period bands, such as 1.0-5.0 s. The data downloading and preprocessing are similar to360

previous tests except the continuous noises were down-sampled with a sampling frequency361

of 4 Hz and then bandpass filtered between 1-20 s.362

Taking the first station as the master station, the corresponding CCFs are arranged363

according to their offset and displayed in Figure 14. As expected, with 5 days of stack-364

ing (Figure 14b), the CCFs from traditional linear stacking have strong noises for all sta-365

tion pairs. The 30-day stacking clearly improves the data quality so that we can observe366

the dominant acausal Rayleigh waves. Compared with CCFs from linear stacking, the367

proposed method helps us to enhance coherent signals even with only 5 days of stack-368

ing. The 30-day stacking further improves the data quality. Next, we measure phase dis-369

persion curves for the stacked CCFs, which are the input for surface wave tomography370

(Yao et al., 2006; Fang et al., 2015). There are three criteria to make sure the measured371

dispersion curves are stable. (1) The SNR is larger than 5.0; (2) The inter-station dis-372

tance is larger than 1.5 wavelength at corresponding periods (Bensen et al., 2007; G. Chen373

et al., 2023). (3) The picked phase velocity is within ± 12% of a 3D reference phase ve-374

locity model. Here the 3D reference phase velocity model is constructed from a local to-375

mographic model, CVM-S 4.26 (Lee et al., 2014), by conducting a forward modeling based376

on the fast-marching method (Rawlinson & Sambridge, 2004; Fang et al., 2015). Thanks377

to the improvement of SNR from our method, more high-quality dispersion curves pass378

the selection criteria with 5-day stacking compared with those measured from linear stack-379

ing as illustrated in Figure 15. More importantly, the number of measurements for 1-380

5 s and 10-15 s period bands are also increased. These are further improved for 30-day381

stacked CCFs using the proposed method.382
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4 Discussions383

Commonly used ambient noise processing procedures (Bensen et al., 2007) require384

stacking over long, continuous records to enhance coherent signals, also require the as-385

sumption of evenly distributed ambient sources in order to obtain good estimates of Green’s386

functions. However, both conditions impose constraints on the application of temporary387

arrays with short acquisition duration.388

To improve the SNR of CCFs stacked with a short duration, Xie et al. (2020) pro-389

posed a root-mean-square-ratio selective (RMSRS) stacking procedure to remove those390

CCFs that negatively contribute to the SNR of the final stacked CCF. It is realized by391

comparing the root-mean-square ratio of signals and noises for each CCF and the stacked392

CCF. Therefore, its effectiveness depends on an accurate definition of signal/noise win-393

dows. Here, we compare the conventional linear stacking, proposed procedure and RM-394

SRS stacking for the station pair TA.A12A-TA.A18A at 10-35 s period band. The sig-395

nal window (Figure 17c) is defined with the reference time tref and maximum period of396

interest Tmax as [tref−2Tmax, tref+2Tmax]. Here, the reference time tref = d/vref is397

defined by the inter-station distance d (425 km) and a reference group velocity vref (3.0398

km/s). The noise window is defined from 0 to the signal windows and 4Tmax out of the399

signal windows (Xie et al., 2020). Compared with linear stacking, the RMSRS stacking400

successfully suppresses the noises within the defined noise windows and therefore improves401

the SNR as highlighted in Figures 17d and f. Similarly, our approach also successfully402

attenuates those incoherent noises and significantly improves the SNR, which is about403

two times the other two methods. However, the coherent signal at about 75 seconds with404

an apparent velocity of 5.6 km/s is retained by our approach due to the similarity be-405

tween local CCFs and the stacked CCFs. The main reason that the RMSRS-based method406

helps to suppress this signal is because they are selected as noises. Such selection seems407

to be challenging to deal with low-SNR CCFs at shorter period bands (3-16 s) obtained408

from the high-frequency nodal array (Figure 14). As illustrated in Figures 14d, the im-409

provement of selective stacking is limited compared with linear stacking. On the con-410

trary, our approach significantly improves the stacking quality and helps us to obtain more411

high-quality dispersion curves. We note here that, for fair comparisons, the RMSRS-based412

method is implemented on the raw stacked CCFs. For better performance, Xie et al. (2020)413

suggested using RMSRS stacking at several narrow period bands so that it could define414

a better selection window, which is out of the scope of this study.415
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Although the proposed approach helps us to improve the SNR of CCFs with only416

several days of stacking, the non-causality and asymmetry, which mainly arise from the417

uneven distribution of ambient noise sources, remain challenging. For tomography pur-418

poses, theoretical works indicate that phase velocities can be estimated from the empir-419

ical Green’s functions, which are obtained by taking the negative time derivative of the420

symmetric cross-correlation under the assumption of a spatially homogeneous ambient-421

noise source distribution (Lobkis & Weaver, 2001; Sabra et al., 2005; Snieder, 2004; Yao422

et al., 2006; Lin et al., 2008). As suggested by Yao et al. (2006), inhomogeneous source423

distribution may contribute to 1–3 percent inconsistency between phase velocity mea-424

surements and the traditional earthquake-based two-station method between periods of425

20–30 s. Therefore, the “symmetric“ CCF is usually taken by the average of the cross-426

correlation at positive and negative correlation lag times (Yao et al., 2006; Lin et al., 2008).427

However, how much such averaged CCFs affect tomography results remains unknown.428

On the other hand, several studies suggested measuring full-waveform differences of CCFs429

and source location simultaneously (Tromp et al., 2010; Sager et al., 2018; Datta et al.,430

2023), which naturally mitigates the uncertainty caused by the source distributions. In431

both cases, it is important for us to obtain high SNR CCFs, especially for short-duration432

nodal arrays. In addition, because the high-quality phase velocity measurements obtained433

from 5-day stacking (Figure 15c) by the proposed approach is comparable with those ob-434

tained from the 30-day linear stacking, the surface wave-based monitoring (Durand et435

al., 2011; Brenguier et al., 2020) seems to be possible, albeit coda waves are mostly used436

(Mao et al., 2019, 2020; Luo et al., 2023). Another potential application for our approach437

could be weak coherent signal extraction, such as body waves (Zhan et al., 2010; Poli438

et al., 2012; Nakata et al., 2015, 2016; Mao et al., 2020). Body waves extracted from am-439

bient noise CCFs have been proven to be capable of improving the imaging resolution440

compared to surface wave tomography (Nakata et al., 2015). As illustrated in Figures441

6 and 14, those coherent signals with an apparent velocity larger than 4.0 km/s might442

be good candidates for body waves, although we are not able to rule out the possibil-443

ity of higher-order surface waves.444

The last factor we need to consider is the computational and memory cost for our445

approach. Taking station pair TA.A12A and TA.A18A as an example, we have 30 days446

of recordings and 86400-time samples for each day. The cross-correlation time lag varies447

from -480 s to 480 s for every 1 s. We calculate the global cross-correlations every 60 min-448
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utes with 75% overlaps, which yields 91 subset CCFs for each day. They are then nor-449

malized and stacked to obtain the dayily CCF. Finally, 30 days of global cross-correlation450

and linear stacking take 47.9 s and 0.02 s, respectively, while the local cross-correlation,451

local similarity and weighted stacking take 196.7 s, 12,150 s and 78.3 s. We note here,452

that the local cross-correlation solved with our method actually contains 86,400 CCFs453

for each day. It helps us to extend the dimension of CCFs dramatically (534 times the454

number of global CCFs), but with only four times the computational cost compared to455

global stacking. Whereas, such a high dimension, in turn, greatly decreases the efficiency456

of our approach. To mitigate this problem, the local CCFs are downsampled 60 times457

(from 1.0 s to 60 s) by taking the average CCFs for every 60 samples, and then the com-458

putational cost for local similarity and weighted stacking is decreased to 167.1 and 10.0459

s, respectively. The final stacked CCFs by using these local CCFs are almost the same460

as the original local CCFs. Overall, the computational cost for the proposed approach461

is 7.8 times the computational cost compared to the hourly global stacking, but with 15.8462

times more CCFs. In addition, increasing the cross-correlation time window (e.g., from463

one hour to three hours) does not affect the efficiency of our approach, but will increase464

the computational time for global cross-correlation. Finally, we compare the computa-465

tion cost using the nodal array. For each station, we have 345,600 time samples per day466

with a 4 Hz sampling frequency. The cross-correlation time lag varies from -120 s to 120467

s for every 0.25 s. The global and local CCFs are calculated the same as in the previ-468

ous example. To save computational costs, we downsample the local CCFs 60 times (from469

0.25 s to 15 s). Then all station-pairs are distributed to 72 CPU cores for parallel com-470

putations. Our approach takes 5792.0 s and the traditional linear stacking takes 792.0471

s. The final stacked CCFs are compared in section 3.3. In conclusion, our approach sig-472

nificantly helps us to improve the SNR of CCFs, but with about 7.5 times the compu-473

tation cost compared to traditional linear stacking. Such extra computational costs are474

bearable compared to the following computational costs tomography (Zhu, 2018; Wu et475

al., 2023; G. Chen et al., 2023).476

5 Conclusion477

In this study, by taking advantage of local attributes, we present a new approach478

to increase the SNRs of ambient noise CCFs. Two local attributes are used in this study:479

local cross-correlation and local similarity. The local cross-correlation is employed to ex-480
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tend the dimensionality of daily CCFs, and the local similarity is used to design better-481

stacking weights to enhance coherent signals and attenuate incoherent background noises.482

Applications to ambient noise records from several broadband stations and a high-frequency483

nodal array demonstrate the performance of the proposed approach. With higher SNRs,484

we are able to extract more high-quality dispersion curves, which are important for sur-485

face wave tomography. In addition, 5-day stacking by our approach can produce CCFs486

comparable to 30-day linear stacking in terms of SNRs, demonstrating its potential ap-487

plications for time-lapse monitoring. In addition, extracting coherent weak signals, such488

as body waves, could be another application of the proposed approach.489
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Figure 1. Comparison of local and global cross-correlations. Panel(a) shows two signals

with non-stationary time shifts. Three events with time shifts of -0.4 s, 0.1 s and 0.3 s are used.

Panels (b) and (c) present global and local cross-correlations, respectively. Here, the 1D global

cross-correlations are extended along the time dimension for better comparisons with local cross-

correlations. σ is set to 0.2 s so that it is small enough to capture the non-stationary property

of these two signals. Panels (d) and (f) show the similarity (s in Equation 16) between local

and global cross-correlations before and after applying a threshold (α(t, τ) in Equation 19), re-

spectively. Panel e shows the prestack local cross-correlations weighted by local similarity (c2 in

Equation 18)
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Figure 2. Local cross-correlation and local similarity for one-day CCFs between stations

TA.234A and TA.Z36A on October 10, 2010. Panels (a) and (b) show one-day records for sta-

tions TA.234A and TA.Z36A, respectively. Panel (c) presents local cross-correlation between

these two signals. Panel (d) shows the local similarity between panel (c) and the linearly stacked

signal shown in Figure 3a. The causal Rayleigh waves between 60-80 s can be clearly observed in

panel (d).
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Figure 3. Comparisons of one-day CCFs from simple stacking and stacking with local at-

tributes. Panel (a) shows the CCF with simple linear stacking (Equation 1). Panels (b) and (c)

are the amplitude and time-frequency spectra of panel (a), respectively. Panel (d) is the CCF

stacked with local similarity. Panels (e) and (f) are the amplitude and time-frequency spectra of

panel (d).
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Figure 4. Comparisons of daily CCFs within one month (October 2010) for simple stacking

(a) and stacking with local attribute (b). Panel (c) shows the local similarity between panel (b)

and the linear stacked result shown in Figure 5a.

Figure 5. The same setting as Figure 3 except for monthly stacked results on October 2010.
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Figure 6. Comparisons of convergence for conventional (a) and the proposed procedure

(b). The causal and acasual signals could be clearly identified around ±80 s with an apparent

group velocity of 2.7 km/s. After 10 days of stacking, we observe a causal coherent signal appear

around 50 s with an apparent velocity of 4.3 km/s, possibly representing body waves.
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Figure 7. Improvements of correlation coefficients (a) and SNRs (b) for one-month stacking

results. Black stars and open red circles are the results of the conventional stacking procedure

and the proposed approach. The reference trace for calculating the correlation coefficients is the

30-day raw stack.
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Figure 8. Distributions of the USArray stations in north Texas and Oklahoma used for com-

parisons in Figure 9.
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Figure 9. Comparisons of one-month stacked CCFs averaged from negative and positive lags

from conventional approach (a) and the proposed procedure (b) for station pairs shown in Figure

8.
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Figure 10. 35 seismic stations used for comparisons shown in Figures 11-13. The SM, SN

and SS stations are parts of the Superior Province Rifting Earthscope Experiment (Wolin et al.,

2015). Other stations come from the USArray Transportable Array. The background color is the

Bouguer gravity anomaly (Woollard, 1965), where the linear feature with positive (blue) values

highlights the extension of the Mid-continent Rift.

–35–



manuscript submitted to JGR: Solid Earth

Figure 11. Comparisons of one-month stacked CCFs averaged from negative and positive

lags (without bandpass filter) from conventional approach (a) and proposed procedure (b). The

improvement of averaged SNR for each trace is shown in panel (c) with black (conventional) and

red (proposed) dots. Panels d-f are the same as panels a-c except for two-month stacking. The

short magenta and blue solid lines in panel (d) represent the signal and noise windows used to

calculate the SNRs shown in panels c and f.
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Figure 12. The same setting as Figure 11, but for the stacked data bandpass filtered between

6-15 s.
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Figure 13. Same as Figure 11 but from the stacked data bandpass filtered between 15-30 s.
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Figure 14. (a) Station distribution of one dense array deployed in the San Bernardino basin.

The red triangle denotes the master station while the other black ones are stations used to calcu-

late the CCFs. The red dots represent faults from the U.S. Geological Surveys. Shot gathers of 5

days (b) linear, (e) proposed local and (d) root-mean-square ratio based selective (RMSRS) (Xie

et al., 2020) stacking. The blue and dark green lines in panels c and e are acausal and causal

arrival times with a group velocity of 1.5 km/s and 3.5 km/s, respectively. They are used to high-

light the potential ranges of Rayleigh wave arrivals. The blue and dark green lines in panels d

and g are used to define the signal windows for root-mean-square ratio calculation. Panels (e-g)

display the corresponding 30-day stacking results.
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Figure 15. Comparison of selected phase dispersion curves from 5-day raw (a), proposed (b)

and RMSRS (c) stacking CCFs displayed in Figures 14b-d. Panels (b), (d) and (f) show the num-

ber of measurements for every 0.5 s from 1.0 s to 15.0 s.
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Figure 16. Similar to Figure 15 but from 30-day stacking CCFs displayed in Figures 14e-g

.
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Figure 17. Comparisons of convergence for conventional (a), the proposed procedure (b) and

root-mean-square-ratio selective (RMSRS) (Xie et al., 2020) stacking of the TA.A12A-TA.A18A

station pair. Panels (d-e) compare 15-day stacked CCFs of the three stacking methods at 10-20,

15-30 and 20-35 s period bands. The blue numbers are the SNR for the corresponding trace. To

calculate the SNR, we choose 57-221 s as the signal window and 221-357 s as the noise window.

The magenta short lines (57-221 s) are used to define the signal windows for RMSRS calcula-

tion. The green dashed rectangles are used to highlight the improvement of the RMSS stacking

method. Both RMSRS stacking and our proposed approaches help us to improve the SNR at

different period bands.
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