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Abstract

A data-driven emulator for the baroclinic double gyre ocean simulation is presented in this study. Traditional numerical

simulations using partial differential equations (PDEs) often require substantial computational resources, hindering real-time

applications and inhibiting model scalability. This study presents a novel approach employing neural operators to address these

challenges in an idealized double-gyre ocean simulation. We propose a deep learning approach capable of learning the underlying

dynamics of the ocean system, complementing the classical methods, and effectively replacing the need for explicit PDE solvers

at inference time. By leveraging neural operators, we efficiently integrate the governing equations, providing a data-driven and

computationally efficient framework for simulating the double-gyre ocean circulation. Our approach demonstrates promising

results in terms of accuracy and computational efficiency, showcasing the potential for advancing ocean modeling through the

fusion of neural operators and traditional oceanographic methodologies. In comparison to a dynamical numerical model, we

obtain 600x speedups allowing us to create 2000-day ensembles in tens of seconds instead of hours.
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Key Points:9

• We present an emulator of a simplified ocean simulation called the double gyre.10
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• The emulator is capable of producing long ensembles which is a major challenge12

for data-driven methods.13
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Abstract14

A data-driven emulator for the baroclinic double gyre ocean simulation is presented15

in this study. Traditional numerical simulations using partial differential equations (PDEs)16

often require substantial computational resources, hindering real-time applications and17

inhibiting model scalability. This study presents a novel approach employing neural op-18

erators to address these challenges in an idealized double-gyre ocean simulation. We pro-19

pose a deep learning approach capable of learning the underlying dynamics of the ocean20

system, complementing the classical methods, and effectively replacing the need for ex-21

plicit PDE solvers at inference time. By leveraging neural operators, we efficiently in-22

tegrate the governing equations, providing a data-driven and computationally efficient23

framework for simulating the double-gyre ocean circulation. Our approach demonstrates24

promising results in terms of accuracy and computational efficiency, showcasing the po-25

tential for advancing ocean modeling through the fusion of neural operators and tradi-26

tional oceanographic methodologies. In comparison to a dynamical numerical model, we27

obtain 600x speedups allowing us to create 2000-day ensembles in tens of seconds instead28

of hours.29

Plain Language Summary30

We propose learning the dynamics of a simplified ocean simulation using a data-31

driven architecture called neural operators. Neural operators, recognized for their suit-32

ability in scientific computing and ability to learn mappings between function spaces,33

offer fast, differentiable surrogate models. This approach demonstrates the possibility34

of rapid modeling of the realistic ocean in the future.35

1 Introduction36

Fourier neural operators (FNO) have gained popularity in modeling of various phys-37

ical phenomena that are governed by partial differential equations (Li et al., 2020b, 2020a).38

They have been shown to successfully emulate fluid flow problems (Wen et al., 2021),39

shallow water equation solvers, and numerical weather prediction models (Pathak et al.,40

2022; Kurth et al., 2022) among others. The strength of FNOs lies in their ability to learn41

mappings between continuous function spaces from data (Kovachki et al., 2021). For ex-42

ample, when employed in weather prediction, FNO can learn the relationships between43

two states of the atmosphere separated by a given prediction interval, effectively emu-44

lating the time-stepping process. Kurth et al. (2022) show that their model, FourCast-45

Net, which utilizes Fourier neural operators is able to match the medium-range predic-46

tion accuracy of ECMWF’s (European Centre for Medium-Range Weather Forecasts)47

dynamical numerical weather prediction model at a fraction of the computational cost48

and time (80000 times faster). However, their model when iteratively timestepped can-49

not remain stable for longer than 25 days. This limitation is attributed to the problems50

arising due to the convergence of meridians at the poles. This issue is alleviated by the51

spherical Fourier neural operator (SFNO) of Bonev et al. (2023) by employing the more52

general spherical harmonic transform in the meridional direction. SFNO is able to gen-53

erate ensembles of upto a year as compared to 25 days of FourCastNet.54

Since FNOs work so well for atmospheric emulation a natural progression is to ex-55

tend them to emulate ocean simulations. In this study, as an initial foray into ocean em-56

ulation, we focus our attention on a simplified simulation known as the “Double Gyre”57

(Bryan, 1963; Cox & Bryan, 1984). The double gyre simulation is an idealized version58

of a northern hemispheric ocean basin forced by the easterly-westerly wind structure and59

equator-to-pole sea surface temperature gradient. Although SFNO produces better re-60

sults on the sphere than FNO our setup does not have poles, therefore we employ an FNO.61

We use training and testing data generated by running three MITgcm (Marshall et al.,62

–2–
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Figure 1. Top row shows the barotropic streamfunction from the MITgcm simulation, while

bottom shows that from the FNO prediction.

1997) simulations and compare the accuracy of our emulator with MITgcm. We show63

that the FNO-based emulator is up to 1000 times faster than MITgcm, and can produce64

long ensembles ranging into thousands of days.65

A comparison of vertically integrated (barotropic) streamfunction from the MIT-66

gcm simulation (ground truth) with that from the FNO prediction is shown in fig. 1. Pos-67

itive value in the southern half of the domain represents the subtropical gyre where the68

mean flow is clockwise, while negative value represents the subpolar gyre with anticlock-69

wise flow. Our double gyre simulation has waves propagating westward and geostrophic70

turbulence near the western boundary. The predictions in the bottom panels are gen-71

erated iteratively, that is, the first prediction in panel f is made from the initial condi-72

tion in panel a but all the other predictions are made from the previous prediction. The73

prediction interval is 10 days. The excellent match between the predictions in the bot-74

tom panels and truth in the top panels shows that the FNO emulator is good at learn-75

ing the dynamics of these waves and the western boundary turbulence. At around the76

90th day the prediction starts to diverge significantly from the ground truth as the un-77

derlying simulation becomes inherently unpredictable at this timescale.78

Almost all of the computational cost is incurred during the training phase. For ex-79

ample, the emulator in its present form requires 4 hours for pretraining and subsequently80

2 hours for multistep finetuning (see 3.3.4) on an Nvidia Tesla V-100 GPU. The subse-81

quent cost of producing a single ensemble is at least two orders of magnitude smaller than82

that of a traditional numerical model. For example, the 20-year long control MITgcm83

simulation was produced on 4 Intel E5 Hasswel-EP processors with 16 cores each run-84

ning at 2.1GHz in wall-clock time of 6.5 hours. In comparison, 20-year ensemble from85

FNO can be produced in 130 s, 60 s, or 40 s for prediction interval (∆t) of 5, 10, and 30 days,86

respectively, on one Nvidia Tesla V-100 GPU. This gives us speedups of 200, 400, and87

600 times, respectively, for ∆t of 5, 10, and 30 days. Note that this is not an apples-to-88

apples comparison because the two models were tested on different systems. However89

if they were tested on the same machine we are confident that the emulator would be90

orders of magnitude faster. Since the numerical model employs partial differential equa-91

tion solvers, it has to use a timestep of 300 s in accordance with the Courant-Freidrich-92

Lewy condition. Our emulator has no such constraints as long as the prediction inter-93

val is within the decorrelation timescale.94
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Rest of the paper is organized as follows. Section 2 discusses prior studies employ-95

ing data-driven methods in weather and climate science. In section 3, we describe the96

numerical model setup as well as the emulator. Section 4 describes the solution obtained97

in the numerical model, while section 5 compares the predictions from our emulator with98

the numerical model. Discussion and summary is in section 6.99

2 Related Work100

Numerical weather and climate prediction models comprise finite difference equa-101

tions written on discrete grids. The finer the grid, the more computationally expensive102

the model becomes. There have been significant improvements in the forecast skill of cli-103

mate models in recent decades, but the computational requirements have only increased104

even with more efficient computers (Bauer et al., 2015). In search of computational ef-105

ficiency (e.g. Dewitte et al., 2021) as well as in light of increasing complexity of param-106

eterization schemes (e.g. Christensen & Zanna, 2022), data-driven approaches have re-107

cently become attractive. The appeal of data-driven approaches, especially deep learn-108

ing, lies in their ability to learn non-linear relationships hidden in large datasets at rel-109

atively low computational costs.110

One approach to improve efficiency is to decrease the resolution of the models. How-111

ever, decreasing the resolution requires good parameterization schemes of processes oc-112

curring on scales smaller than the grid size (Christensen & Zanna, 2022). To be clear,113

parameterization schemes are also required in high-resolution models, because there are114

always processes at even smaller scales, but this problem becomes especially pronounced115

in coarse-resolution models. A number of studies have recently shown that it is possi-116

ble to reasonably represent the effect of small-scale processes in terms of resolved pro-117

cesses using machine learning methods (e.g Bolton & Zanna, 2019; Zanna & Bolton, 2020;118

Guillaumin & Zanna, 2021; Yuval & O’Gorman, 2023). Another approach is to lever-119

age machine learning approaches in downscaling (super-resolving) numerical predictions120

made using relatively cheap coarse resolution models (e.g. Höhlein et al., 2020; Jiang et121

al., 2023).122

Recently, yet another approach that has become popular involves predicting a fu-123

ture state from an earlier state. In essence, this approach attempts to replace the en-124

tire numerical model with a machine-learning emulator. The emulator makes sense in125

certain scenarios. For example, in weather prediction operationally, the exact same nu-126

merical model is run every few hours, just with new parameters. Emulators can poten-127

tially make this process more efficient. So far, this approach has only been applied to128

atmospheric processes like weather forecasts, precipitation predictions, etc. For exam-129

ple, Dueben and Bauer (2018) use neural networks and training data from ERA5 reanal-130

ysis (Hersbach et al., 2020) to predict increments in 500 hpa geopotential heights one hour131

apart. They employ two fully-connected neural networks, first a local network that pre-132

dicts the state at a particular location from only its neighbors, and a global network that133

predicts the state at a given location from all other locations. They find that their lo-134

cal network performs better than the global one. They chain successive forecasts together135

and argue that neural networks would be limited to making predictions of very short timescales136

(a few hours). This shortcoming is attributed to the spatially limited nature of their neu-137

ral network, as long timescale predictions would require the model to learn relationships138

across longer length scales.139

Scher (2018) overcome this limitation by using deep convolutional neural networks140

and chaining successive forecasts together to form long predictions. They use numeri-141

cal climate simulations with simplified physics as ground truth and draw training and142

testing samples from them. Their neural network predicts horizontal velocities, temper-143

atures, and geopotential heights at 10 levels each. They train their emulator to operate144

over intervals of 1 to 14 days. They employ a neural network with the encoder-decoder145
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structure, which consists of layers where the dimensionality of the input is first reduced146

and then increased back to the original dimensionality. This allows the output of the net-147

work to be of the same dimension as the input. A suitably defined cost function, like mean148

square error with respect to a later time step, allows the output of the network to be in-149

terpreted as a dynamical state at this later time. Further, they show that output from150

the neural network can be fed back into it and iteratively chained to create long ensem-151

bles of simulations. They find that networks that directly predict future states at inter-152

mediate intervals, around 5 days, perform better than iterative 1-day forecasts chained153

5 times. They further extend their study in Scher and Messori (2019) with a hierarchy154

of more complicated models to generate training data and show that neural networks155

developed for simple models show promise in emulating more complex numerical mod-156

els. They also find that long climate emulations fail to capture features like the location157

of storm tracks or seasonal variations accurately.158

Rasp et al. (2020) provide a database, WeatherBench, which consists of standard-159

ized data necessary for good medium-range forecast. They, and more recently Ben-Bouallegue160

et al. (2023), also suggest metrics, like root mean square error (RMSE) and anomaly cor-161

relation coefficient (ACC) of specific fields, for benchmarking data-driven methods with162

state-of-the-art numerical weather prediction models. Rasp and Thuerey (2021) lever-163

age this dataset and demonstrate the use of ResNET, a convolutional neural network with164

residual connections and encoder-decoder layout, to perform short-range weather pre-165

diction. Further, Weyn et al. (2019) and Weyn et al. (2020) apply an improved convo-166

lutional neural network with deeper residual connections, U-Net, and a recurrent neu-167

ral network with long/short-term-memory (LSTM) to perform similar predictions. The168

introduction of residual connections is a major improvement over previous studies. Resid-169

ual connections allow the networks to efficiently learn autocorrelations that are ubiqui-170

tous in weather data. Another improvement introduced by Weyn et al. (2019) is using171

two successive timesteps as inputs to predict two successive future timesteps. This pre-172

sumably allows their model to learn conservation principles and makes their long-term173

climatology runs more reasonable. In spite of these improvements, the forecast skill of174

all of these models is inadequate compared to dynamical numerical weather prediction175

models.176

However, recently, the incorporation of ideas from graph neural networks and trans-177

former architectures has significantly improved the forecast skill of data-driven predic-178

tion models. The ability of these architectures to learn relationships between random179

locations seems to be particularly amenable to emulating fluid flows. For example, Cachay180

et al. (2021) and Zhou and Zhang (2023) predict ENSO up to a few months in advance181

using graph neural networks and geo-transformer, respectively. Some other recent mod-182

els that accurately predict short to medium-term weather are also based on ideas from183

graph neural networks and transformers (Bi et al., 2022; Lam et al., 2022; Nguyen et al.,184

2023).185

In spite of these improvements, all the above-mentioned methods only apply on fixed186

grids of their respective training data, do not have implicit knowledge that the predicted187

variables are functions on the sphere, and can not be evaluated at locations off their re-188

spective grids. These limitations are considerable challenges to making these methods189

more generally applicable. FourCastnet and SFNO address some of these underlying is-190

sues. An end to end neural operator approach of SFNO of Bonev et al. (2023) improves191

the skill of FourcastNet by decomposing the meridional direction in spherical harmon-192

ics rather than Fourier harmonics. This allows them to address the singularity at the poles,193

which Fourier decomposition on a rectangular domain cannot address. Furthermore, this194

model enables training and evaluation on various grids and datasets and allows evalu-195

ation of the atmosphere’s state at any point on Earth, a property lacking in prior neu-196

ral network-based approaches. At the time of writing ECMWF has operationalized (ECMWF197
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Charts, n.d.) FourCastNet, Graphcast (Lam et al., 2022), and Pangu-Weather (Bi et al.,198

2022).199

3 Methods200

3.1 Numerical simulations201

We generate a ground-truth dataset by simulating a double-gyre (Bryan, 1963; Berloff202

& Meacham, 1998), an idealized representation of a real northern hemispheric ocean basin,203

using MITgcm, a dynamical model for ocean simulation (Marshall et al., 1997). The do-204

main extends from 0◦ to 62◦ in the east-west direction and from ys = 10◦N to yn =205

72◦N in the north-south direction. The resolution is 0.25◦× 0.25◦ implying 248× 248206

grid points on this area on the sphere. In the vertical direction we employ 15 levels span-207

ning a depth of 2000m with the grid thickness increasing from 50m at the surface to 190m208

at the bottom. This setup, a standard setup in MITgcm, is similar to the simulation in209

Cox and Bryan (1984).210

The model is forced by zonal wind at the surface given by211

τx = −τ0 cos

(
2π

y − ys
yn − ys

)
, (1)

where τ0 is the maximum wind velocity which can be specified. This profile of zonal wind212

forcing is motivated by the realistic meridional profile of wind, that is, westerlies at mid-213

latitudes and easterlies in the tropics. Additionally, temperature at the surface is relaxed214

to a meridional profile given by215

Tsurf =
Tmax − Tmin

ys − yn
∗ (yn − y) + Tmin, (2)

where Tmin and Tmax are the temperatures at the northern and southern edges of the216

domain, respectively, and can be specified. In this study, we have maintained Tmax =217

30 ◦C and Tmin = 10 ◦C, which represent a realistic equator-to-pole SST gradient. The218

meridional variation of SST induces a three-dimensional overturning circulation in the219

basin. The horizonal viscosity and diffusivity both are set to 500m2 s−1, while the ver-220

tical viscosity is 10−2 m2 s−1 and vertical diffusivity is 10−5 m2 s−1. We arrive at these221

values through trial and error. These values allow us to minimize numerical noise in the222

finite-difference schemes while retaining physical turbulence in the circulation patterns.223

No normal flow and no-slip boundary conditions are applied at all the lateral boundaries.224

Bottom boundary condition is free slip.225

We perform three simulations by varying the wind forcing as shown in the table226

1. Each simulation is integrated to statistically steady state after which velocities, pres-

Table 1. Numerical simulations

ID Experiment τ0 (Nm−2) Split

1 Control 0.1 Train
2 Low Wind 0.075 Train, Val
3 High Wind 0.125 Train

227

sure, and temperature are saved at an interval of 1 day for 200 years. Overall, 7200 snap-228

shots from each simulation are saved.229
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3.2 Training and validation datasets230

Data from simulations 2 and 3 (table 1) are entirely allocated for training, while231

that from simulation 1 is split evenly. First half is appended to the training dataset while232

the second half is allocated for validation. Thus, we make sure that the validation dataset233

is unseen during the training phase. This arrangement, a standard practice in machine234

learning studies, allows us to ensure that the neural operator does not overfit our train-235

ing data. We do not use a third held-out test dataset.236

More specifically, similar to Scher and Messori (2019) and Pathak et al. (2022), in237

this work, two-dimensional fields of various variables are passed as channels to the deep238

learning model. The first two channels are zonal velocities at surface and middepth, the239

second and third channels are for meridional velocities again at the surface and middepth.240

The next two channels are for surface and middepth temperature, while the next three241

channels are for pressure at the surface, middepth, and bottom. Due to the imposed SST242

relaxation, the vertical structure of the flow in the numerical model is baroclinic, that243

is there is a net flow towards the north of the basin near the surface and a return flow244

towards the south at mid-depth levels. Therefore, we determine that a good represen-245

tative sample of the flow would consist of surface layers as well as mid-depth layers. The246

pressure at surface also serves as direct proxy for sea surface height, which is a barotropic247

(vertically integrated) quantity. We also add a channel representing vertically integrated248

streamfunction as an additional barotropic quantity. Thus, we have 9 channels/variables249

representing the state of the ocean as input to the neural operator. Vertical structure250

in the ocean does not change drastically below the thermocline, therefore we deem that251

these channels are sufficient. Our testing suggests that adding more channels represent-252

ing intermediate depths only increases the model size without much accuracy gain.253

Additionally, we also append a two-dimensional map of wind forcing obtained ac-254

cording to eq. (1). This allows the neural operator to know when the intensity of the wind255

is changed. In the future, we plan to integrate this ocean model with an atmospheric sim-256

ulation. Wind and surface heat and moisture fluxes are the primary avenues through which257

the atmosphere and ocean influence each other. For the current simulations, we only in-258

clude wind as a forcing parameter. Thus, dataset for each simulation consists of 11 chan-259

nels as shown in fig 2.260

3.3 Fourier Neural Operator Architecture261

Fourier neural operator architecture employed here takes 2-dimensional fields of vari-262

ables and parameters at any given instant as input and gives the same fields at a later263

instant similar to the encoder-decoder structure employed by Scher (2018) and Scher and264

Messori (2019). The fields can be thought of as functions defined on a 2-dimensional do-265

main. Each of these 2-dimensional fields are stacked together to form a third dimension266

called channels or co-dimensions. In our case, the number of co-dimensions of the input267

function, u, is 11, and given the spatial resolution of h×w, h being the number of lat-268

itudes and w being the number of longitudes, the input function in the form of a ten-269

sor is of size 11×h×w as explained in section 3.2. The values of parameters used are270

shown in table 2. A graphical representation of the architecture is shown in fig. 2. The271

input tensor is shown on the left in fig. 2.272

3.3.1 Positional encoding and lifting273

In the first stage, called the positional encoding, we add two co-dimensions that274

represent the relative distance between each grid point in latitude and longitude direc-275

tions using sines and cosines similar to Vaswani et al. (2017). The role of these layers276

is to provide the neural operator with a sense of location. Thus, the function now at-277

tains a shape Cin × h× w. In the study of Pathak et al. (2022), a patching operation278
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Table 2. FNO hyperparameters

Hyperparameter Value

Batch size 8
Learning rate 0.01
h,w (248,248)
Nh, Nw (64, 64)
L 3
Cin, Cout 13, 10
Clift, Cproj 256, 256
C 128
Chidden 4× C
σ ReLU
∆t 5, 10, and 30 days
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Figure 2. A rough sketch of the FNO architecture is shown. The input function, u, has 11

channels representing velocities, temperature, pressure, streamfunction, and wind. Two channels

encoding the latitude-longitude positions are added. The output function has 10 channels repre-

senting velocities, temperature, pressure, and streamfunction. The operator is composed of the

lifting, FNO, and projection blocks. We choose three FNO blocks as shown.
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is also applied. While this allows reducing the size of the input array in the horizontal279

direction, it comes at the cost of losing the resolution-invariance property of the FNO280

architecture. Therefore, we avoid the patching operation in this study.281

The channel dimension consisting of Cin channels is further expanded into C chan-282

nels by passing the tensor to a two layer fully-connected neural network with learnable283

weights:284

u ← σ(Wlift,1 u+ blift,1), (3)

u ← Wlift,2 u+ blift,2, (4)

where Wlift,1 and Wlift,2 have shapes Clift×Cin and C×Clift, respectively. Biases blift,1285

and blift,2 have shapes Clift and C, respectively. At this stage the input function of Cin286

co-dimensions is encoded into a latent space of C co-dimensions.287

3.3.2 FNO Block: Spatial and channel mixing288

In the second stage, the encoded tensor of shape C×h×w is passed into the FNO289

blocks (Li et al., 2020a, 2020b). FNO blocks consist of spatial mixing and channel mix-290

ing steps. First, the input tensor u is recast into the shape h×w×C. Then a Fourier291

transform is applied along horizontal dimensions and only the first Nh and Nw modes292

are retained so that the shape of X becomes Nh×Nw×C. The phases and amplitudes293

associated with each wavenumber are then transformed by multiplying with block-specific294

learnable weights Rl
1, R

l
2, R

l
3, and Rl

4 of shapes Nh×Nh. An inverse transform is then295

taken which transforms the tensor back into latitude-longitude space. The tensor is then296

recast into the shape C × h × w. This process is called spatial mixing (Lee-Thorp et297

al., 2021; Rao et al., 2021; Guibas et al., 2021) because it allows the model to learn re-298

lationships in the horizontal (latitude-longitude) dimensions. Spatial mixing operation299

can be mathematically represented as300

uorig ← u, (5)

u ← F (u), (6)

u ←
[
Rl

1Re(u)−Rl
2Im(u)

]
+ i

[
Rl

1Im(u) +Rl
2Re(u)

]
, (7)

u ←
[
Rl

3Re(u)−Rl
4Im(u)

]
+ i

[
Rl

3Im(u) +Rl
4Re(u)

]
, (8)

u ← F−1(u), (9)

u ← σ(u) +W l
1 uorig + bl1, (10)

where F and F−1 are the Fourier and inverse Fourier transforms, and W l
1 are the weight301

tensors and bl1 is the bias tensor for lth layer. Re and Im represent the real and imag-302

inary parts of a complex number. Note that expressions (6)—(9) are performed in se-303

ries, that is, u is updated at every step in place. The role of these operations is to cast304

the tensor u from its original function space into a new function space modified by the305

learnable weights Rl
1, R

l
2, R

l
3, and Rl

4. Finally, in expression (10) we employ the Gaus-306

sian error linear unit (Hendrycks & Gimpel, 2016) non-linearity shown by σ and add back307

the original function multiplied by learnable weight W l and bias bl of shapes C×C and308

C, respectively. This residual connection allows the model to learn autocorrelations. Ex-309

pressions (5)—(10) represent the spatial mixing process. The shape of u at the end of310

equation (10) is C × h× w.311

Alternatively, if we assume after the Fourier transform in equation (6), u = H eiθ,312

equation (7) can be represented as313

u← Rl ei(θ+α), (11)

where Rl = H
√

Rl 2
1 +Rl 2

2 , α = tan−1
(
Rl

2/R
l
1

)
. This representation makes it clear314

that spatial mixing in equation (7) learns a mapping from a Fourier space (H, θ) to a315

new Fourier space (Rl, θ + α). Similar mapping is learned in equation (8).316

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Traditional convolutional neural networks require deep networks to learn relation-317

ships between locations that are far apart. Performing the convolution in the wavenum-318

ber space alleviates this issue. Another advantage of the Fourier transform is that higher319

order Fourier modes can be ignored which further improves computational efficiency. For320

example, our horizontal dimensions h×w allow h
2 ×w Fourier modes but we only re-321

tain first Nh×Nw modes. Therefore, the weights Rl
1, R

l
2, R

l
3, and Rl

4 have dimensions322

Nh×Nh. In the mlp-mixer (Tolstikhin et al., 2021), spatial mixing is performed with-323

out the Fourier transform which does not allow truncation of higer-order Fourier modes.324

This limitation makes their spatial mixing step computationally expensive.325

In the channel mixing phase, the C channels are transformed into a new set of C326

channels by multiplying by learnable weights and a non-linearity. Mathematically, this327

operation is represented by328

uorig ← u, (12)

u ← σ(W l
2 u+ bl2), (13)

u ← W l
3 u+ bl3, (14)

u ← u+W l
4 ⊙ uorig + bl4, (15)

where the weights W l
2 and W l

3 have dimensions Chidden × C and C × Chidden, respec-329

tively. Biases, bl2 and bl3, have dimensions Chidden and C, respectively. The weight W l
4330

and bias bl4 with shapes C provide a residual pathway and facilitate autocorrelations like331

in the spatial mixing phase. Layer normalization is performed after spatial mixing as well332

as channel mixing.333

Notice that there is a residual pathway that bypasses the spatial and channel mix-334

ing stages. The expectation is that the small scale variability lost due to discarded Fourier335

modes can be learned through residual connections. In the spirit of best practice in deep336

learning, these blocks are repeated where output from one block is sent as an input to337

the next block. For our run, we set the depth L = 3 where we find a good compromise338

between lowest loss and computational efficiency.339

3.3.3 Projection340

The tensor shown on the right in fig. 2 shows the state of the final tensor, u ob-341

tained by decoding the C channels into the required number of output channels Cout with342

a two layer fully-connected neural network called projection. Mathematically, the pro-343

jection channel is represented as below:344

u ← σ(Wproj,1 u+ bproj,1), (16)

u ← Wproj,2 u+ bproj,2, (17)

where Wproj,1 and Wproj,2 have shapes C×Cproj and Cout×Cproj, respectively. Biases345

bproj,1 and bproj,2 have shapes Cproj and Cout, respectively.346

3.3.4 Pretraining and Finetuning347

The loss is defined as the mean squared error between the tensor of shape Cout×348

h×w and the ground truth tensor at a later instant ∆t time later similar to Scher (2018).349

The neural operator can be represented concisely as350

ûi+1 = G(ui), (18)

where i is any instant and i+1 is an instant ∆t time later and G represents the series351

of operations described in section 3.3. For our study ∆t is set to 5, 10, and 30 days. Loss352

is defined as353

LPT = L2(ui+1, ûi+1) + 0.01L1(ui+1, ûi+1), (19)
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where354

L2(uj, ûj) =
1

N

∑
b,h,w,c

(uj − ûj)
2, (20)

and355

L1(uj, ûj) =
1

N

∑
b,h,w,c

| uj − ûj |, (21)

N = b× h×w×C. Here h and w represent the number of gridpoints in latitude and356

longitude, respectively, and C is the number of co-dimensions (Cout). The evaluation in357

eq. (18) is performed over b training samples. Note that ui+1 is the ground truth and358

ûi+1 is the FNO prediction from the initial condition ui. L2 loss tends to amplify large359

errors while there is no such bias in the L1 loss (Esmaeilzadeh et al., 2020). Therefore,360

it is a good practice to use a weighted combination of both. Minimizing the loss in eq.361

(19) over the training data gives an emulator with learned weights and biases that per-362

forms reasonably on validation data. This step is called the pretraining step.363

Once the pretraining loss is minimized, we perform the finetuning step. In the fine-364

tuning step, the model is used to predict the next two timesteps from an initial time step,365

that is366

ûi+1 = G(ui), (22)

ûi+2 = G(ûi+1). (23)

The loss is now defined as367

LFT = L2(ui+1, ûi+1) + L2(ui+2, ûi+2) + L1(ui+1, ûi+1) + L1(ui+2, ûi+2). (24)

Minimizing this loss gives a model that is finetuned to make multistep predictions. We368

expect that the finetuning stage allows the emulator to further reinforce conservation prin-369

ciples, thus rendering stability to long-term predictions. Pathak et al. (2022) employ this370

technique in their emulator of ERA5 atmospheric data, but their emulator blows up af-371

ter about three weeks of predictions. Note that their stability horizons are shorter be-372

cause their aim is to emulate the full-scale atmosphere without any idealizations. Per-373

haps the simplifying nature of idealization in our study makes our emulator stable. Yet374

another way to teach conservation principles to the emulator is via the method suggested375

by Weyn et al. (2019), that is to design the emulator to ingest two time steps and out-376

put two later timesteps. To summarize, the parameters used for FNO are given in ta-377

ble 2.378

4 Description of circulation in the double gyre numerical simulations379

In observations of the Atlantic Ocean there is a decreasing pattern of SSH from the380

low latitudes to high latitudes in the northern hemisphere (e.g. Fu et al. (2020)). A strong381

western boundary current flows along the east coast of the US and turns offshore at around382

the location where SSH changes sign. An idealized representation of the north Atlantic383

basin is given by the double gyre simulation shown in Fig. 3. It shows the mean stream-384

function, SSH, and sea surface temperature (SST) for the double gyre control simula-385

tion (experiment 1 in table 1). The large-scale pattern in the middle panel is qualitita-386

tively similar to that in the first figure of Fu et al. (2020). Additionally, the streamfunc-387

tion in panel shows that there are two gyres encapsulated by the regions of positive and388

negative streamfunctions. The gyre circulation around positive (negative) values is clock-389

wise (counter-clockwise). On the western edge of these gyres, there are rapidly flowing390

western boundary currents. These currents are hotspots of mesoscale variablity as can391

be seen through the wiggles in streamfunction as well as SSH fields. The temperature392

pattern in panel c mimics the large-scale meridional SST gradient, but there is turbu-393

lent activity near the western boundary. The western boundary current and its offshoot394

can be thought of as analogous to the storm tracks in the atmosphere (Bryan, 1963). Scher395
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and Messori (2019) noted that their emulators failed to correctly estimate the storm track396

locations in long climate runs. Our use of FNO seems to address this issue.397

The above discussion of spatial patterns holds true for experiments 2 and 3 in ta-398

ble 1. Only difference from the control experiment is that the magnitudes of the gyre399

streamfunctions vary with wind forcing. Increasing wind speed leads to stronger gyre400

circulation and enhanced streamfunctions (not shown). We expect the emulator to learn401

this relationship between the ocean dynamics and wind forcing magnitude.
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Figure 3. (a) Streamfunction (106 m3 s−1), (b) SSH anomaly (m), (c) SST (◦C) in the control

simulation at a randomly chosen instant.

402

5 Predictions with FNO403

In this section, we compare the predictions made by the emulator with the ground404

truth for 15 randomly chosen initial conditions. Note that we use the simulation from405

MITgcm as the ground truth. The decorrelation time scale for this simulation is about406

three months. Therefore, we compare the FNO predictions against ground truth over407

two time scales — we compare the short-term prediction skill i.e. skill up to 100 days408

and long-term prediction skill i.e. skill up to 2000 days. Note that since 2000 days is well409

beyond the decorrelation time-scale of the simulation, we only expect statistics like the410

global mean of variables and kinetic energy spectrum to be conserved for a successful411

prediction. For the short-term prediction we expect the RMSE of the predicted time-412

series with the ground truth to be lower than that of the ground truth with climatol-413

ogy and persistence.414

5.1 Short-term prediction skill415

Similar to Rasp and Thuerey (2021), Scher and Messori (2019), and Pathak et al.416

(2022) we show the RMSE as a metric of the model skill. We choose surface speed, sur-417

face hydrostatic pressure anomaly (P/ρ0), and surface temperature (T ) as reasonable418

indicators of prediction skill. We focus mainly on the surface fields because, typically,419

in the oceans, largest variability is found near the surface, while the deep ocean tends420

to be quiescent. Nevertheless, the skills at deeper levels are comparable (not shown). In421

fig. 4, we compare the skill of FNO prediction with that of climatology and persistence.422

The climatology here is the pointwise time-mean of MITgcm simulation. We treat MIT-423

gcm simulation as the ground truth and calculate its RMSE with this mean. For calcu-424

lating RMSE with respect to persistence, we assume the initial condition to be the pre-425

diction for all subsequent time steps. The RMSE between MITgcm simulation (ground426
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Figure 4. RMSE as a function of time for 15 ensembles with randomly chosen initial condi-

tions from the testing dataset. Ensembles were integrated with ∆t = 5days, ∆t = 10days, and

∆t = 30days for the top, middle, and bottom rows, respectively. The first, second, and third

columns represent surface speed (m s−1), surface pressure anomaly (P/ρ, m s−2), and SST (◦C),

respectively. The solid red lines represent the mean RMSE of predicted ensembles with ground

truth, solid black lines represent the RMSE of ground truth ensembles with climatology, and solid

blue lines represent the RMSE of ground truth ensembles with persistence. The shaded regions

show the limits of the 10th and 90th percentiles obtained from 15 ensembles. Note that all the

predicted ensembles here were obtained using the finetuned model.
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truth) and the initial condition then gives the RMSE of persistence. In fig. 5 the RMSE427

of FNO prediction is lower than that of climatology and persistence thereby indicating428

that the FNO emulator is learning meaningful relationships from the training data. The429

RMSEs for velocities are lower than climatology and persistence up to the decorrelation430

time scale of about 3 months, while those for surface pressure and SST are lower for longer.431

This is expected because smale-scale features like eddies and sharp currents appear in432

velocity fields, while pressure and SST fields are dominated by large-scale equator-to-433

pole meridional gradients.434
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Figure 5. RMSE as a function of time for 15 ensembles with randomly chosen initial condi-

tions from the testing dataset. Ensembles were integrated with ∆t = 5days, ∆t = 10days, and

∆t = 30days for the top, middle, and bottom rows, respectively. The first, second, and third

columns represent surface speed (m s−1), surface pressure anomaly (P/ρ, m s−2), and SST (◦C),

respectively. The solid black lines represent the mean RMSE of ensembles integrated with the

pretrained emulator, while the solid red lines represent the means of those integrated with fine-

tuned emulator. The dotted black lines and the shaded red regions show the limits of the 10th

and 90th percentiles obtained from 15 ensembles for pretrained and finetuned models, respec-

tively.

Fig. 5 compares the RMSE of pretrained FNO and multistep-finetuned FNO with435

ground truth. We find that the RMSE of predictions made at 5-day intervals is more than436
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Figure 6. Streamfunction (106 m3 s−1) on the 60th day (top row) and 2000th day for the

ground truth (first columun), and one FNO ensemble with prediction intervals of 5, 10 and 30

days (second, third, and fourth columns, respectively).

those made at 10-day and 30-day intervals. This finding is similar to that of Scher (2018)437

where their weather prediction emulator had the best accuracy at intermediate predic-438

tion intervals. Moreover, panels in the first row indicate that for the 5-day prediction439

interval, the RMSE of pretrained model is higher than that of the finetuned model. For440

the 10-day and 30-day prediction intervals (middle and bottom rows, respectively), the441

RMSE of pretrained and finetuned models is comparable. This indicates that multistep442

finetuning has a more profound effect on short than on intermediate and long prediction443

intervals. This shows that the lack of skill at short term prediction intervals arises from444

the basic fact that at short timescales the state of the underlying ocean variables does445

not change by much. Multistep finetuning ameliorates this limitation to some extent by446

effectively increasing the prediction interval (Li et al., 2021). Ideally, with more compu-447

tational capability it would be worthwhile to perform multistep finetuning on more than448

two timesteps. On the longer end of prediction intervals (60 days and above, not shown),449

the state of the ocean might be too decorrelated for the model to learn meaningful pre-450

dictability. Therefore, the model makes best predictions at intermediate intervals.451

5.2 Long-term prediction skill452

A desirable quality of numerical models, forced by a time-invariant forcing, is the453

maintenance of a statistically steady state, that is, global means of no predicted quan-454

tity should deviate by a large amount under steady forcing with forward integration. The455

numerical model usually achieves this through conserving quantities like mass and en-456

ergy. Since, we don’t explicitly prescribe these conservation laws to the emulator we hope457

that it learns them from the training data.458

Fig. 6 compares the barotropic streamfunction predicted by iterative FNO ensem-459

bles from the same initial condition at 60th day and 2000th day. Two months is within460

the decorrelation scale of the experiment therefore we see that there is qualitative agree-461

ment between all panels in the top row. The panel c with 10-day prediction interval per-462

forms better especially near the western boundary where most of the turbulence is seen.463
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Figure 7. Kinetic energy spectrum as a function of wavenumber for the initial condition,

1000th day (blue), and 2000th day (red). Dotted and solid lines show the spectrums for MITgcm

simulation (truth) and FNO predictions, respectively. First, second, and third panels use FNO

models with prediction intervals of 5, 10, and 30 days, respectively.

On the 2000th day, however, all predictions are distinct from each other. This is expected464

because of the chaotic nature of the underlying phenomenon. Tiny differences in pre-465

dictions within the decorrelation scale would grow as the iterative predictions timestep466

beyond the decorrelation scale. However, it is encouraging that the spatial scale of the467

anomalies is retained even after 2000 days of integration. This can be seen from fig. 7,468

where the FNO simulations retain the scales of variability even after 2000 days. We have469

also provided an animation of streamfunction as supplementary material from one en-470

semble with ∆t of 10 days.471

It should be noted that the 5-day prediction interval ensemble (fig. 6f) begins to472

get diffused around the 1800th day. This can also been seen in the energy spectrum (fig. 7a)473

where the energy in FNO prediction at small wavenumbers exceeds that in the ground474

truth. This limitation of the 5-day prediction interval stems from similar reasons as pointed475

out in the previous sections. The state of the ocean does not change much in 5 days. There-476

fore, we need extensive multistep finetuning. In the current study, we have only performed477

multistep training using two succesive timesteps. We perhaps need to use more timesteps478

to improve 5-day interval FNO emulator.479

Fig. 8 shows the RMSE of surface speeds, surface pressure, and SST with respect480

to climatology and persistence. The projections with 5-day intervals produce significant481

errors, especially for surface pressure and SST after about 500 days of integration indi-482

cating that the conclusions from fig. 6 and fig. 7 are not limited to one ensemble.483

6 Summary and discussion484

In this study, we present an emulator that accurately predicts the forward evolu-485

tion of the double gyre simulation. As far as we know, this is the first emulator that uses486

the state-of-the-art Fourier neural operators for ocean simulation. We specifically focus487

on the importance of prediction interval used to generate iterative forecasts. We show488

that the emulator stays stable for creating long ensembles at intermediate prediction in-489

tervals of about O(10 days). Shorter prediction intervals require extensive multistep fine-490

tuning. Longer prediction intervals lie beyond the decorrelation scale of the experiment491

and fail to learn meaningful relationships in the underlying data.492

A prominent feature of the emulator introduced here is its long-term stability. As493

far as we are aware, previous studies except Bonev et al. (2023) have failed to maintain494

the spectrum of variability in long prediction ensembles. These limitations stem from495

the nature of the neural networks used. CNNs, for example, are inherently diffusive. The496
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Figure 8. RMSE as a function of time for 15 ensembles with randomly chosen initial condi-

tions from the testing dataset. Ensembles were integrated with ∆t = 5days, ∆t = 10days, and

∆t = 30days for the top, middle, and bottom rows, respectively. The first, second, and third

columns represent surface speed (m s−1), surface pressure anomaly (P/ρ, m s−2), and SST (◦C),

respectively. The solid red lines represent the mean RMSE of predicted ensembles with ground

truth, solid black lines represent the RMSE of ground truth ensembles with climatology, and solid

blue lines represent the RMSE of ground truth ensembles with persistence. The shaded regions

show the limits of the 10th and 90th percentiles obtained from 15 ensembles. Note that all the

predicted ensembles here were obtained using the finetuned model.
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most commonly used mean square error metric also tends to minimize errors only on large497

scales, thereby leading to smoother emulations. The Fourier neural operator used in this498

study overcomes these issues as it performs convolutions in the wavenumber space. This499

aspect has a profound effect on distant geographic locations that might be correlated.500

For traditional CNNs, the neural network has to be deep for two geographically distant501

locations to start exchanging information, while with the use of Fourier transform in FNO502

the information exchange takes place globally in the first layer itself of the neural net-503

work.504

An additional feature of FNOs is that they are resolution-invariant. This allows505

us, for example, to train the network at higher resolution and make inferences at a lower506

resolution. We earmark exploiting this property of FNOs for a future study.507

7 Open Research508

The code for the emulator is available at https://github.com/suyashbire1/oceanfourcast509

(Bire & Lütjens, 2023).510

The training and testing datasets used in this study will be uploaded to an open511

data-sharing platform before the review process is over.512
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Höhlein, K., Kern, M., Hewson, T., & Westermann, R. (2020, Nov). A comparative594

study of convolutional neural network models for wind field downscaling. Mete-595

orological Applications, 27 (6). Retrieved from http://dx.doi.org/10.1002/596

met.1961 doi: 10.1002/met.1961597

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Jiang, P., Yang, Z., Wang, J., Huang, C., Xue, P., Chakraborty, T. C., . . . Qian, Y.598

(2023, Jul). Efficient super-resolution of near-surface climate modeling using599

the fourier neural operator. Journal of Advances in Modeling Earth Systems,600

15 (7). Retrieved from http://dx.doi.org/10.1029/2023MS003800 doi:601

10.1029/2023ms003800602

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., &603

Anandkumar, A. (2021). Neural operator: Learning maps between function604

spaces. arXiv. Retrieved from https://arxiv.org/abs/2108.08481 doi:605

10.48550/ARXIV.2108.08481606

Kurth, T., Subramanian, S., Harrington, P., Pathak, J., Mardani, M., Hall, D.,607

. . . Anandkumar, A. (2022). FourCastNet: Accelerating global high-608

resolution weather forecasting using adaptive Fourier neural operators.609

arXiv. Retrieved from https://arxiv.org/abs/2208.05419 doi:610

10.48550/ARXIV.2208.05419611

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M.,612

Pritzel, A., . . . Battaglia, P. (2022). GraphCast: Learning skillful medium-613

range global weather forecasting. arXiv. Retrieved from https://arxiv.org/614

abs/2212.12794 doi: 10.48550/ARXIV.2212.12794615

Lee-Thorp, J., Ainslie, J., Eckstein, I., & Ontanon, S. (2021). FNet: Mixing tokens616

with Fourier transforms. arXiv. Retrieved from https://arxiv.org/abs/2105617

.03824 doi: 10.48550/ARXIV.2105.03824618

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., &619

Anandkumar, A. (2020a). Fourier neural operator for parametric partial differ-620

ential equations. arXiv. Retrieved from https://arxiv.org/abs/2010.08895621

doi: 10.48550/ARXIV.2010.08895622

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., &623

Anandkumar, A. (2020b). Neural operator: Graph kernel network for par-624

tial differential equations. arXiv. Retrieved from https://arxiv.org/abs/625

2003.03485 doi: 10.48550/ARXIV.2003.03485626

Li, Z., Liu-Schiaffini, M., Kovachki, N., Liu, B., Azizzadenesheli, K., Bhattacharya,627

K., . . . Anandkumar, A. (2021). Learning dissipative dynamics in chaotic628

systems. arXiv. Retrieved from https://arxiv.org/abs/2106.06898 doi:629

10.48550/ARXIV.2106.06898630

Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997, Mar). A631

finite-volume, incompressible Navier Stokes model for studies of the ocean632

on parallel computers. Journal of Geophysical Research: Oceans, 102 (C3),633

5753–5766. Retrieved from http://dx.doi.org/10.1029/96JC02775 doi:634

10.1029/96jc02775635

Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., & Grover, A. (2023). Cli-636

maX: A foundation model for weather and climate. arXiv. Retrieved from637

https://arxiv.org/abs/2301.10343 doi: 10.48550/ARXIV.2301.10343638

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mar-639

dani, M., . . . Anandkumar, A. (2022). FourCastNet: A global data-640

driven high-resolution weather model using adaptive Fourier neural opera-641

tors. arXiv. Retrieved from https://arxiv.org/abs/2202.11214 doi:642

10.48550/ARXIV.2202.11214643

Rao, Y., Zhao, W., Zhu, Z., Lu, J., & Zhou, J. (2021). Global filter networks for im-644

age classification. arXiv. Retrieved from https://arxiv.org/abs/2107.00645645

doi: 10.48550/ARXIV.2107.00645646

Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., & Thuerey,647

N. (2020, Nov). Weatherbench: A benchmark data set for data-driven648

weather forecasting. Journal of Advances in Modeling Earth Systems,649

12 (11). Retrieved from http://dx.doi.org/10.1029/2020MS002203 doi:650

10.1029/2020ms002203651

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Rasp, S., & Thuerey, N. (2021, Feb). Data-driven medium-range weather prediction652

with a resnet pretrained on climate simulations: A new model for Weather-653

Bench. Journal of Advances in Modeling Earth Systems, 13 (2). Retrieved from654

http://dx.doi.org/10.1029/2020MS002405 doi: 10.1029/2020ms002405655

Scher, S. (2018, Nov). Toward data-driven weather and climate forecasting: Approx-656

imating a simple general circulation model with deep learning. Geophysical Re-657

search Letters, 45 (22), 12,616-12,622. Retrieved from http://dx.doi.org/10658

.1029/2018GL080704 doi: 10.1029/2018gl080704659

Scher, S., & Messori, G. (2019, Jul). Weather and climate forecasting with neural660

networks: Using general circulation models (GCMs) with different complex-661

ity as a study ground. Geoscientific Model Development , 12 (7), 2797–2809.662

Retrieved from http://dx.doi.org/10.5194/gmd-12-2797-2019 doi:663

10.5194/gmd-12-2797-2019664

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T.,665

. . . Dosovitskiy, A. (2021). MLP-Mixer: An all-MLP architecture for vi-666

sion. arXiv. Retrieved from https://arxiv.org/abs/2105.01601 doi:667

10.48550/ARXIV.2105.01601668

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . .669

Polosukhin, I. (2017). Attention is all you need. arXiv. Retrieved from670

https://arxiv.org/abs/1706.03762 doi: 10.48550/ARXIV.1706.03762671

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., & Benson, S. M. (2021).672

U-FNO – an enhanced Fourier neural operator-based deep-learning model for673

multiphase flow. arXiv. Retrieved from https://arxiv.org/abs/2109.03697674

doi: 10.48550/ARXIV.2109.03697675

Weyn, J. A., Durran, D. R., & Caruana, R. (2019, Aug). Can machines learn to676

predict weather? Using deep learning to predict gridded 500-hpa geopotential677

height from historical weather data. Journal of Advances in Modeling Earth678

Systems, 11 (8), 2680–2693. Retrieved from http://dx.doi.org/10.1029/679

2019MS001705 doi: 10.1029/2019ms001705680

Weyn, J. A., Durran, D. R., & Caruana, R. (2020, Sep). Improving data-driven681

global weather prediction using deep convolutional neural networks on a cubed682

sphere. Journal of Advances in Modeling Earth Systems, 12 (9). Retrieved from683

http://dx.doi.org/10.1029/2020MS002109 doi: 10.1029/2020ms002109684

Yuval, J., & O’Gorman, P. A. (2023, Apr). Neural-network parameterization of685

subgrid momentum transport in the atmosphere. Journal of Advances in Mod-686

eling Earth Systems, 15 (4). Retrieved from http://dx.doi.org/10.1029/687

2023MS003606 doi: 10.1029/2023ms003606688

Zanna, L., & Bolton, T. (2020, Aug). Data-driven equation discovery of ocean689

mesoscale closures. Geophysical Research Letters, 47 (17). Retrieved from690

http://dx.doi.org/10.1029/2020GL088376 doi: 10.1029/2020gl088376691

Zhou, L., & Zhang, R.-H. (2023, Mar). A self-attention–based neural network for692

three-dimensional multivariate modeling and its skillful ENSO predictions. Sci-693

ence Advances, 9 (10). Retrieved from http://dx.doi.org/10.1126/sciadv694

.adf2827 doi: 10.1126/sciadv.adf2827695

–21–



Figure 1.



20

30

40

50

60

70

La
t (

)
(a) Truth (day=0) (b) Truth (day=10) (c) Truth (day=30) (d) Truth (day=60) (e) Truth (day=90)

0 20 40 60
Lon ( )

(f) Pred. (day=10)

0 20 40 60
Lon ( )

(g) Pred. (day=30)

0 20 40 60
Lon ( )

(h) Pred. (day=60)

0 20 40 60
Lon ( )

(i) Pred. (day=90)

50

25

0

25

50

St
re

am
fu

nc
tio

n 
(1

06
m

3
s

1 )



Figure 2.



FNO Block

L
in

e
a
r

R
e
s
id

u
a
l

Spatial Mix

Channel Mix

Projection

Lifting
−(𝐶𝑖𝑛, ℎ, 𝑤)

−(𝐶𝑝𝑟𝑜𝑗 , ℎ, 𝑤)

−(𝐶, ℎ, 𝑤)

−(𝐶𝑜𝑢𝑡 , ℎ, 𝑤)

Positional 

Encoding Fourier

2x Linear

Activation

LayerNorm

+

FNO Block

FNO Block

…

Dense

Linear

LayerNorm

−(𝐶, 𝑁ℎ, 𝑁𝑤)

Dense

Linear

−(𝐶𝑙𝑖𝑓𝑡, ℎ, 𝑤)

−(𝐶, ℎ, 𝑤)

Dense

Linear

+

R
e
s
id

u
a
l

InvFourier
−(𝐶, ℎ, 𝑤)

𝑢(𝑡)

𝑢(𝑡 + Δ𝑡)

L
in

e
a
r

S
o
ftG

a
te



Figure 3.



0 10 20 30 40 50 60
Latitude ( )

20

30

40

50

60

70

Lo
ng

itu
de

 (
)

(a)

0 10 20 30 40 50 60
Latitude ( )

(b)

0 10 20 30 40 50 60
Latitude ( )

(c)

50 0 50
Streamfunction (Sv)

1 0 1
SSH (m)

0 10 20
SST ( C)



Figure 4.



0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sp

ee
d 

(m
s

1 )
×10 1 (a) t = 5 days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SS
T 

(
C

)

×10 1 (b) t = 5 days

0.0

0.2

0.4

0.6

0.8

1.0

P/
 (m

s
2 )

(c) t = 5 days

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

d 
(m

s
1 )

×10 1 (d) t = 10 days

0.0

0.5

1.0

1.5

2.0

2.5

3.0
SS

T 
(

C
)

×10 1 (e) t = 10 days

0.0

0.2

0.4

0.6

0.8

1.0

P/
 (m

s
2 )

(f) t = 10 days

0 50 100 150 200
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

d 
(m

s
1 )

×10 1 (g) t = 30 days

Prediction
Climatology
Persistence

0 50 100 150 200
Time (days)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SS
T 

(
C

)

×10 1 (h) t = 30 days

0 50 100 150 200
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

P/
 (m

s
2 )

(i) t = 30 days



Figure 5.



0.0

0.2

0.4

0.6

0.8

1.0
Sp

ee
d 

(m
s

1 )
×10 1 (a) t = 5 days

Finetuned
Pretrained

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SS
T 

(
C

)

×10 1 (b) t = 5 days

0

2

4

6

8

P/
 (m

s
2 )

×10 1 (c) t = 5 days

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

d 
(m

s
1 )

×10 1 (d) t = 10 days

0.0

0.5

1.0

1.5

2.0

2.5

3.0
SS

T 
(

C
)

×10 1 (e) t = 10 days

0

2

4

6

8

P/
 (m

s
2 )

×10 1 (f) t = 10 days

0 50 100 150 200
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

d 
(m

s
1 )

×10 1 (g) t = 30 days

0 50 100 150 200
Time (days)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SS
T 

(
C

)

×10 1 (h) t = 30 days

0 50 100 150 200
Time (days)

0

2

4

6

8

P/
 (m

s
2 )

×10 1 (i) t = 30 days



Figure 6.



20

30

40

50

60

70

La
t (

)
(a) Ground Truth (day 60) (b) t = 5 days (c) t = 10 days (d) t = 30 days

0 20 40 60
Lon ( )

20

30

40

50

60

70

La
t (

)

(e) Ground Truth (day 2000)

0 20 40 60
Lon ( )

(f) t = 5 days

0 20 40 60
Lon ( )

(g) t = 10 days

0 20 40 60
Lon ( )

(h) t = 30 days

40

20

0

20

40



Figure 7.



10 1 100

k (cycles deg 1)

101

102

103

104

105

E
ne

rg
y 

(m
2
s

2 )
(a) t = 5 days

Initial
pred. (day 1000)
truth (day 1000)
pred. (day 2000)
truth (day 2000)

10 1 100

k (cycles deg 1)

(b) t = 10 days

10 1 100

k (cycles deg 1)

(c) t = 30 days



Figure 8.



0.00

0.25

0.50

0.75

1.00

1.25

Sp
ee

d 
(m

s
1 )

×10 1 (a) t = 5 days

0

1

2

3

SS
T 

(
C

)

×10 1 (b) t = 5 days

0.00

0.25

0.50

0.75

1.00

1.25

P/
 (m

s
2 )

(c) t = 5 days

0.00

0.25

0.50

0.75

1.00

1.25

Sp
ee

d 
(m

s
1 )

×10 1
(d) t = 10 days

0

1

2

3
SS

T 
(

C
)

×10 1
(e) t = 10 days

0.00

0.25

0.50

0.75

1.00

1.25

P/
 (m

s
2 )

(f) t = 10 days

0 500 1000 1500 2000
Time (days)

0.00

0.25

0.50

0.75

1.00

1.25

Sp
ee

d 
(m

s
1 )

×10 1
(g) t = 30 days

Prediction
Climatology
Persistence

0 500 1000 1500 2000
Time (days)

0

1

2

3

SS
T 

(
C

)

×10 1
(h) t = 30 days

0 500 1000 1500 2000
Time (days)

0.00

0.25

0.50

0.75

1.00

1.25

P/
 (m

s
2 )

(i) t = 30 days



20

30

40

50

60

70

La
t (

)
(a) Truth (day=0) (b) Truth (day=10) (c) Truth (day=30) (d) Truth (day=60) (e) Truth (day=90)

0 20 40 60
Lon ( )

(f) Pred. (day=10)

0 20 40 60
Lon ( )

(g) Pred. (day=30)

0 20 40 60
Lon ( )

(h) Pred. (day=60)

0 20 40 60
Lon ( )

(i) Pred. (day=90)

50

25

0

25

50

St
re

am
fu

nc
tio

n 
(1

06
m

3
s

1 )



20

30

40

50

60

70

La
t (

)
(a) Ground Truth (day 60) (b) t = 5 days (c) t = 10 days (d) t = 30 days

0 20 40 60
Lon ( )

20

30

40

50

60

70

La
t (

)

(e) Ground Truth (day 2000)

0 20 40 60
Lon ( )

(f) t = 5 days

0 20 40 60
Lon ( )

(g) t = 10 days

0 20 40 60
Lon ( )

(h) t = 30 days

40

20

0

20

40


	Slide 1
	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8

