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Abstract

The role that continental margin sediments play in the global carbon cycle and the mitigation of climate change is currently not

well understood. Recent research has indicated that these sediments might store large amounts of organic carbon; however, Blue

Carbon research continues to focus on vegetated coastal ecosystems as actionable Blue Carbon. Marine sediments are considered

emerging Blue Carbon ecosystems, but to decide whether they are actionable requires better quantifications of organic carbon

stocks, accumulation rates, and the mitigation potential from avoided emissions. To close some of these knowledge gaps, we

spatially predicted organic carbon content, dry bulk density and sediment accumulation rates across the Norwegian margin. The

resulting predictions were used to estimate organic carbon stocks in surface sediments and their accumulation rates. We found

that organic carbon stocks are two orders of magnitude higher than those of vegetated coastal ecosystems and comparable to

terrestrial ecosystems in Norway. Accumulation rates of organic carbon are spatially highly variable and linked to geomorphology

and associated sedimentary processes. We identify shelf valleys with a glacial origin as hotspots of organic carbon accumulation

with a potentially global role due to their widespread occurrence on formerly glaciated continental margins. The complex and

heterogenous nature of continental margins regarding organic carbon accumulation means that to close existing knowledge gaps

requires detailed spatial predictions that account for those complexities. Only in this way will it be possible to evaluate whether

margin sediments might be actionable Blue Carbon ecosystems.
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Key Points: 13 

• Continental margin sediments are an overlooked store of organic carbon in the context of 14 

Blue Carbon. 15 

• Glacial troughs may be global hot spots of organic carbon accumulation. 16 

• The role of continental margins in the carbon cycle is more complex than previously 17 

thought. 18 

19 
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Abstract 20 

The role that continental margin sediments play in the global carbon cycle and the mitigation of 21 

climate change is currently not well understood. Recent research has indicated that these 22 

sediments might store large amounts of organic carbon; however, Blue Carbon research 23 

continues to focus on vegetated coastal ecosystems as actionable Blue Carbon. Marine sediments 24 

are considered emerging Blue Carbon ecosystems, but to decide whether they are actionable 25 

requires better quantifications of organic carbon stocks, accumulation rates, and the mitigation 26 

potential from avoided emissions. To close some of these knowledge gaps, we spatially predicted 27 

organic carbon content, dry bulk density and sediment accumulation rates across the Norwegian 28 

margin. The resulting predictions were used to estimate organic carbon stocks in surface 29 

sediments and their accumulation rates. We found that organic carbon stocks are two orders of 30 

magnitude higher than those of vegetated coastal ecosystems and comparable to terrestrial 31 

ecosystems in Norway. Accumulation rates of organic carbon are spatially highly variable and 32 

linked to geomorphology and associated sedimentary processes. We identify shelf valleys with a 33 

glacial origin as hotspots of organic carbon accumulation with a potentially global role due to 34 

their widespread occurrence on formerly glaciated continental margins. The complex and 35 

heterogenous nature of continental margins regarding organic carbon accumulation means that to 36 

close existing knowledge gaps requires detailed spatial predictions that account for those 37 

complexities. Only in this way will it be possible to evaluate whether margin sediments might be 38 

actionable Blue Carbon ecosystems. 39 

Plain Language Summary 40 

To keep global average temperature rise well below 2°C requires drastic emission reductions and 41 

a removal of carbon dioxide from the atmosphere. Part of the carbon dioxide removal could be 42 

achieved by nature itself, if ecosystems that remove substantial amounts of carbon from the 43 

atmosphere are protected, managed, or restored. In the marine environment, the focus has been 44 

placed on coastal ecosystems with rooted vegetation, as they remove carbon at high rates, are 45 

threatened by human activities and are amenable to management. Collectively, these are called 46 

actionable Blue Carbon ecosystems. More recently, marine sediments have been put forward, but 47 

these are currently labelled emerging Blue Carbon ecosystems due to existing knowledge gaps. 48 

To close some of these gaps we mapped the amount of organic carbon stored in sediments of the 49 

Norwegian seafloor and the rates at which it is accumulated. We found that there is 100 times 50 

more organic carbon in the seabed than in vegetated coastal ecosystems in Norway. Rates of 51 

organic carbon accumulation vary in space and are highest in glacial troughs. To improve our 52 

estimates of how much carbon accumulates in marine sediments globally will require to consider 53 

the complex nature of the continental margins. 54 

  55 
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1 Introduction 56 

The burial of organic carbon in seafloor sediments is crucial for moving carbon from the short-57 

term surface to the long-term geological cycle (Keil, 2017). This long-term carbon cycle is, in 58 

turn, controlling the concentration of atmospheric carbon dioxide (CO2) over geological 59 

timescales (Berner, 2003). The size of the organic carbon seafloor sink, and the relative 60 

contributions of the continental margins versus the deep-sea, have been a matter of research for 61 

the last 50 years or so. A first estimate, based on multiplying average organic carbon content of 62 

Holocene sediments by area and thickness, yielded 223 Tg C yr-1, of which 10% and 88% are 63 

deposited on the continental shelf and slope, respectively (Gershanovich et al., 1974; cited in 64 

Hedges & Keil, 1995). Berner (1982) argued that organic carbon is preferentially buried in 65 

deltaic shelf sediments (83% of a total burial rate of 126 Tg C yr-1). His estimates were 66 

subsequently revised by Hedges & Keil (1995) to account for organic carbon burial in sediments 67 

of the continental shelves and upper slopes, respectively, and estimated that roughly 90 % of 68 

organic carbon is buried in coastal and continental margin settings. 69 

Routine collection of ocean colour data with satellites has made it possible to estimate primary 70 

production, particle export, bottom flux, and burial of organic carbon with spatial detail. Muller-71 

Karger et al. (2005) estimated that continental margins may be responsible for >40% of the 72 

organic carbon sequestration in the ocean. An even higher estimate of 98% for margins was 73 

published by Dunne et al. (2007). The same authors also estimated that 85% of the total burial 74 

flux (0.67 ± 0.45 Pg C yr-1) occurred on continental shelves (shallower than 200 m). The latter, 75 

however, is in contradiction to de Haas et al. (2002) suggesting that shelf areas do not 76 

accumulate substantial amounts of organic carbon under present day conditions and, only locally, 77 

are considerable amounts of organic carbon buried. De Haas et al. (2002) concluded that the role 78 

of shelves as sinks for organic carbon is overestimated due to recurrent hydrodynamic processes 79 

that prevent its deposition in comparison to deeper continental slopes. 80 

More recently, it has been claimed that the importance of seafloor sediments as places of organic 81 

carbon sequestration is somewhat diminished in comparison to vegetated coastal ecosystems 82 

(saltmarshes, mangroves, and seagrass meadows), which would account for 46% of the marine 83 

organic carbon burial despite covering only 0.2% of the ocean surface (Duarte et al., 2005, 84 

2013). Vegetated coastal ecosystems have been a focus of research over the last ten to fifteen 85 

years under the concept of Blue Carbon (Nellemann et al., 2009). As these ecosystems might be 86 

able to remove CO2 from the atmosphere at high rates, store fixed CO2 as organic carbon over 87 

timescales of centuries or longer, and are frequently threatened by human activities, it has been 88 

suggested that management, conservation, and restoration of vegetated coastal ecosystems might 89 

significantly contribute to greenhouse gas removal from the atmosphere (Lovelock & Duarte, 2019). 90 

Other ecosystems might satisfy the above definition of actionable Blue Carbon, but research gaps 91 

currently preclude from a classification as such. Emerging Blue Carbon ecosystems include wild 92 

and cultivated macroalgae, unvegetated tidal flats, and marine sediments (Howard et al., 2023). 93 

Continental shelf and slope (margin) sediments might exhibit lower organic carbon stocks and 94 

accumulation rates per unit area but cover much larger areas than vegetated coastal ecosystems. 95 

The large spatial extent might weigh out the low areal stocks and accumulation rates, but the 96 

importance of continental margins as places of organic carbon accumulation and storage relative 97 

to vegetated coastal ecosystems is currently not well understood. While our knowledge on local, 98 

regional, and global organic carbon stocks has steeply increased over the past few years (Atwood 99 

et al., 2020; Diesing et al., 2017, 2021; Hunt et al., 2020; Lee et al., 2019; Legge et al., 2020; 100 

Smeaton et al., 2021; Wilson et al., 2018), there currently exist knowledge gaps regarding 101 
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organic carbon accumulation in margin sediments. Specifically, we lack spatially explicit 102 

quantifications of organic carbon accumulation rates and related uncertainties in the estimates. 103 

Such knowledge gaps could be filled with the application of machine learning spatial models, as 104 

exemplified by Diesing et al. (2021). Accounting for the complex nature of continental margins 105 

with zones of rapid carbon cycling and accumulation juxtaposed (Diesing et al., 2021; de Haas et 106 

al., 2002) will be an important consideration. 107 

This study investigates the significance of continental margin sediments in terms of organic 108 

carbon accumulation and storage potential. We do not aim to estimate organic carbon burial, as 109 

the reference depths below which organic carbon is assumed to be removed from the short-term 110 

surface carbon cycle vary between studies and organic carbon might not even be irreversibly 111 

buried or preserved (Bradley et al., 2022). Instead, we estimate the amount of organic carbon that 112 

accumulates in the seabed on a timescale of approximately 100 - 150 years. Specifically, we aim 113 

to answer how much organic carbon is accumulated and stored in surface sediments (0 – 10 cm) 114 

on the Norwegian continental margin and discuss its hotspot potential for carbon storage in 115 

contrast to vegetated coastal ecosystems and terrestrial ecosystems. 116 

1.1 Study site 117 

Our area of interest (Figure 1) comprises the Norwegian continental shelf and slope (after Harris 118 

et al., 2014), which we define here as the Norwegian continental margin. We also include 119 

shallow parts of the abyss (deep sea) within 50 km distance from the seaward boundary of the 120 

slope to make best use of existing data. We further subdivide the continental shelf into shallow 121 

shelf (above 200 m water depth), deep shelf (between 200 m water depth and the shelf break) 122 

and shelf valleys (irrespective of water depth), as mapped by Harris et al. (2014). On the 123 

formerly glaciated continental margin of Norway, most shelf valleys are of glacial origin and as 124 

such could also be considered as glacial troughs. Our study site spans 26° of latitude and 125 

approximately 3000 km between the North Sea and the Arctic Ocean north off Svalbard. 126 
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 127 
Figure 1. Overview of the area of interest (AoI): Left – Water depth (GEBCO Bathymetric 128 

Compilation Group, 2019), regional seas and locations mentioned in the text. CB – Central Bank, 129 

SB – Spitsbergen Bank, Sk – Skagerrak. Right – Geomorphological units based on Harris et al. 130 

(2014). The continental shelf is further subdivided into shallow shelf (0 to 200 m water depth) 131 

and deep shelf (200 m depth to the shelf edge). 132 

2 Data 133 

2.1 Response variables 134 

To derive organic carbon stocks and accumulation rates it is necessary to spatially predict dry 135 

bulk density, organic carbon content, and sediment accumulation rates (also referred to as linear 136 

sedimentation rates). Several studies have shown that an important predictor for organic carbon 137 

content is the silt-clay (mud) content in seafloor sediments (Diesing et al., 2017; Wilson et al., 138 

2018). As this important predictor layer did not exist in the area of interest, we spatially 139 

predicted it. We also predicted the spatial distribution of substrate types and the depositional 140 

environments and used the class probabilities as predictors. Substrate type is potentially an 141 

important predictor for mud content, dry bulk density, and organic carbon content, while the 142 

depositional environment might be important to predict sedimentation rates. Table 1 summarises 143 

the variables that have been estimated, how they were derived, and how they were used in the 144 

process we describe. 145 

 146 
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Table 1. Overview of variables that were estimated, how they were derived and how they were 147 

used. Reference is also made to the respective figures and repositories. 148 

 149 

Variable Derived by Used Figure Repository 

Substrate type Spatial prediction As predictor variable S1 Zenodo 

Depositional 

environment 

Spatial prediction As predictor variable S2 Zenodo 

Mud content Spatial prediction As predictor variable S3 Zenodo 

Dry bulk density Spatial prediction To calculate organic 

carbon stocks and 

accumulation rates 

S4 Zenodo 

Organic carbon 

content 

Spatial prediction To calculate organic 

carbon stocks and 

accumulation rates 

S5 Zenodo 

Sediment 

accumulation rate 

Spatial prediction To calculate organic 

carbon accumulation rates 

S6 Zenodo 

Organic carbon stock Calculation (eq. 2) For analysis 2 Pangaea 

Organic carbon 

accumulation rate 

Calculation (eq. 4) For analysis 4 Pangaea 

 150 

2.1.1 Substrate type and depositional environment 151 

Maps of substrate type and depositional environment are routinely produced by expert 152 

interpretation at local, regional and overview scales as part of the Mareano seafloor mapping 153 

programme (www.mareano.no/en). However, these maps currently cover only a fraction of the 154 

Norwegian margin (Figures S1 and S2). We therefore decided to fill the existing coverage gaps 155 

by spatial prediction. We treated the existing maps as response data by converting the polygon 156 

shapefiles into raster data with a resolution of 4 km aligned to the predictor raster stack (see 157 

chapter 2.2 for details) using the Polygon to Raster function in ArcGIS 10.8.2, with maximum 158 

combined area as cell assignment type. The raster datasets were subsequently converted into 159 

point data (Raster to Point function) with the substrate type or depositional environment class as 160 

attribute. The original classifications contained more than 30 substrate types and six classes of 161 

depositional environment. These were simplified to eight substrate types and three classes of 162 

depositional environment, respectively (Table S1 and S2). 163 

2.1.2 Mud content 164 

Grain-size data (mud, sand, and gravel content) were obtained from the PANGAEA database 165 

(Felden et al., 2023), the ICES Data Portal contaminants dataset (https://data.ices.dk/), the 166 

Environmental Monitoring database MOD (DNV, 2023), the Geological Survey of Norway and 167 

the Mareano chemistry database (https://mareano.no/en/maps-and-data/chemical-data). Data 168 

were pre-processed by replacing records of 0 weight-% with 0.001 weight-% and rescaling to 169 

achieve fraction sums of 100 weight-% (Martín-Fernandéz & Thió-Henestrosa, 2006). This was 170 

necessary as additive log-ratios (Pawlowsky-Glahn & Olea, 2004) were subsequently calculated 171 

due to the compositional nature of the grain-size data.  172 

2.1.3 Dry bulk density 173 

Dry bulk density data were obtained from the PANGAEA database via a data warehouse query. 174 

The downloaded data were restricted to the upper 0.5 m of the sediment column. Furthermore, 175 

http://www.mareano.no/en
https://data.ices.dk/
https://mareano.no/en/maps-and-data/chemical-data
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we used data on mud content from the Mareano chemistry database to calculate porosity () 176 

according to an empirical equation (Jenkins, 2005) and ultimately dry bulk density (𝜌𝑑) 177 

according to 𝜌𝑑 = (1 − )𝜌𝑠 with grain density, 𝜌𝑠 = 2.65 g cm-3. 178 

2.1.4 Organic carbon content and sediment accumulation rates 179 

Data on organic carbon content and 210Pb-derived sediment accumulation rates were obtained 180 

from the MOSAIC database (Paradis et al., 2023; van der Voort et al., 2020). The datasets 181 

included data from the Mareano chemistry database among others. 182 

2.1.5 Pseudo samples 183 

Datasets compiled from the literature or obtained from databases are frequently biased. For 184 

example, sediment accumulation rates are usually only reported in areas where sediments are 185 

deposited and caution is advised when spatially predicting such data (Jenkins, 2018). One 186 

strategy to deal with this limitation is to include pseudo-observations (Hengl et al., 2017); in this 187 

case records of 0 cm yr-1 sediment accumulation in areas that are erosional in nature. Similar 188 

approaches have previously been adopted by Diesing et al. (2021) and Mitchell et al. (2021). We 189 

randomly placed pseudo samples within the area predicted as Erosion or Transport (Figure S2).  190 

Additionally, we observed that coarse-grained sediments (muddy sandy gravel, sandy gravel, and 191 

gravel) were under-represented in our datasets. We therefore included a limited number (n < 192 

100) of stations where these sediments had been observed and randomly assigned a sediment 193 

composition adhering to their class definitions (Folk, 1954). These pseudo-observations were 194 

used in the grain-size and dry bulk density datasets. 195 

2.2 Predictors variables 196 

We created a raster stack of predictor variables that we considered potentially relevant for 197 

predicting the response variables and that were available with (near) full coverage in the area of 198 

interest at a sufficiently high spatial resolution. The resolution that was finally chosen was 4 km, 199 

which translates to a map scale of approximately 1 : 8,000,000 according to a recommended 200 

formula in Hengl (2006). The raster stack was projected to the Lambert azimuthal equal area 201 

projection. 202 

We included variables on seafloor terrain (bathymetry, topographic position, distance to nearest 203 

shoreline), ocean colour (chlorophyll-a, primary production and suspended particulate matter), 204 

biogeochemisty (surface partial pressure of CO2, dissolved molecular oxygen of bottom water), 205 

sea ice concentration, bottom fishing intensity (swept area ratio), and oceanography (current 206 

speed, temperature, and salinity). Multi-annual statistics (mean, minimum, maximum, and range) 207 

were calculated for most predictors (Table S3). 208 

3 Methods 209 

3.1 Spatial predictions 210 

3.1.1 Machine learning algorithms 211 

We chose the random forest (RF) algorithm (Breiman, 2001) to spatially predict the response 212 

variables substrate type, depositional environment, and mud content. Further, we use the quantile 213 

regression forest (QRF) algorithm (Meinshausen, 2006) to make spatial predictions of the 214 
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response variables dry bulk density, organic carbon content and 210Pb-derived sediment 215 

accumulation rates. QRF can be seen as an extension of the RF algorithm, which has shown high 216 

predictive accuracy in several studies across various research domains (Huang et al., 2014; 217 

Mutanga et al., 2012; Oliveira et al., 2012; Prasad et al., 2006). RF can be used for both 218 

classification and regression modelling, while QRF deals only with regression tasks. RF is an 219 

ensemble technique that grows many trees and aggregates the majority class (classification) or 220 

conditional mean (regression) from each tree in a forest to make an ensemble prediction. QRF 221 

also returns the whole conditional distribution of the response variable, based on which other 222 

measures of central tendency (e.g., median) and of prediction uncertainty can be obtained. 223 

Following common practice in the global soil mapping community (Arrouays et al., 2014; 224 

Heuvelink, 2014), we used the 90 % prediction interval (PI90) as a measure of spatially explicit 225 

uncertainty. PI90 gives the range of values within which the true value is expected to occur nine 226 

times out of ten, with a one in 20 probability for each of the two tails (Arrouays et al., 2014). It is 227 

defined as  228 

𝑷𝑰𝟗𝟎 =  𝒒𝟎.𝟗𝟓 − 𝒒𝟎.𝟎𝟓         (1) 229 

with q0.95 and q0.05 being the 0.95 and 0.05 quantiles of the distribution, respectively. We 230 

chose the median as a measure of central tendency, as the conditional distributions are most 231 

likely non-normal, and the median is not affected by extreme outliers. 232 

3.1.2 Pre-processing 233 

Prior to modelling, the predictor raster stack was cropped to the area of interest. Areas mapped as 234 

“Rock and boulders” in the substrate type model were excluded from further analysis, as we are 235 

only interested in the sedimentary environment. The datasets of the response variables organic 236 

carbon content and dry bulk density included information on depth below seabed. These datasets 237 

were filtered to only include records between 0 cm and 10 cm depth. The response data were 238 

averaged in those cases where more than one value was falling into a grid cell of the predictor 239 

stack. 240 

3.1.3 Predictor variable selection 241 

Although it is prudent to initially select a wide range of predictors, it is generally recommended 242 

to limit the number of predictors that are finally used for modelling. This is especially true when 243 

the number of records in the response data set is low. Variable selection can be achieved in 244 

different ways. Here we chose forward feature (variable) selection as implemented in the 245 

package CAST (Meyer et al., 2018). The algorithm first trains models based on all possible 246 

combinations of two predictor variables. The best combination is retained and tested for the best 247 

performance with a third variable. Additional variables are added until the performance stops 248 

improving. The model performance was calculated as R2 using a spatial cross-validation scheme 249 

(see below). Prior to forward feature selection, a predictor variable pre-selection was executed to 250 

limit processing time. This pre-selection process initially only retained important variables that 251 

performed better than random variables using the Boruta algorithm (Kursa & Rudnicki, 2010). In 252 

the second step of the variable pre-selection, a de-correlation analysis was carried out to limit the 253 

collinearity. This was achieved with the vifcor function of the package usdm (Naimi et al., 2014). 254 

The function requires a correlation threshold and the predictor variables as input to calculate the 255 

variance inflation factor (VIF). The correlation threshold was stepwise decreased from 1 with a 256 
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step size of 0.01 until the VIF was below 2.5 to avoid a problematic amount of collinearity 257 

(Johnston et al., 2018). 258 

3.1.4 Model performance 259 

Model performance needs to be estimated for model tuning, variable selection, and model 260 

validation. Model performance estimation is frequently based on k-fold cross validation, 261 

whereby the response data are split into k folds, a model is built on k – 1 folds, and validated 262 

against the fold which was not used for model building. This process is repeated k times. In 263 

standard, non-spatial machine learning applications, this k-fold split is performed randomly on 264 

the response data. However, this is not appropriate in the case of spatial data as spatial 265 

autocorrelation might lead to inflated estimates of model performance (Ploton et al., 2020; 266 

Roberts et al., 2017). Folds therefore need to be spatially separated and this was achieved with 267 

the function cv_spatial of the package blockCV (Valavi et al., 2019). Block size was initially 268 

determined by estimating the spatial autocorrelation range of the response data with the automap 269 

package (Hiemstra et al., 2009). The distance functions of the sample-to-sample, prediction-to-270 

sample, and cross validation distances were plotted with the plot_geodist function of CAST 271 

(Meyer & Pebesma, 2021) and the block size altered by applying a multiplier to the spatial 272 

autocorrelation range until there was a visual agreement between the distance functions of the 273 

prediction-to-sample and cross validation distances. 274 

The performance of the final regression models (mud content, dry bulk density, organic carbon 275 

content and sediment accumulation rate) was assessed based on the explained variance (R2) and 276 

the root mean square error (RMSE). The performance of the classification models (Substrate 277 

type and Depositional environment) was assessed with the overall accuracy (Congalton, 1991) 278 

and the balanced error rate (BER, Luts et al., 2010), which is the average of the proportion of 279 

wrong classifications in each class, thereby accounting for class imbalances.  280 

3.1.5 Area of applicability 281 

Although it is technically possible to predict the response variable over the full extent of the 282 

predictor variables, such predictions might be unreliable where they extrapolate beyond the 283 

predictor variable space that has been captured by the model (Meyer & Pebesma, 2021, 2022). It has 284 

therefore been suggested to estimate the area of applicability (AOA) of a model, where the 285 

combination of predictor variables is similar to what the model has been trained with. This can 286 

be achieved with the aoa function of the package CAST (Meyer et al., 2023).  287 

3.1.6 Qualitative evaluation 288 

Additionally, we used expert judgement to evaluate whether the predicted patterns were 289 

reasonable by comparing them with existing maps and a general understanding of the involved 290 

processes and their products. Although such an assessment is qualitative and somewhat 291 

subjective, it is currently the only way to incorporate expert knowledge and we consider it an 292 

essential part of the mapping process. 293 

3.2 Calculation of organic carbon stocks 294 

Organic carbon stocks (OCS) are calculated by multiplying the predicted organic carbon contents 295 

(G) with the predicted dry bulk densities (d) and the sediment thickness (d = 0.1 m): 296 
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𝑶𝑪𝑺 (𝒌𝒈 𝒎−𝟐) =
𝑮 (%)

𝟏𝟎𝟎
∙ 𝟏𝟎𝟎𝟎 ∙ 𝝆𝒅 (𝒈 𝒄𝒎−𝟑) ∙ 𝒅 (m)     (2) 297 

Calculations were carried out for the whole area and limited to the joint AOA of the organic 298 

carbon and dry bulk density models. 299 

The total reservoir size mOC was calculated by summing OCS of all pixels and multiplying with 300 

the area of one pixel (A = 16,000,000 m2): 301 

𝒎𝑶𝑪(𝑻𝒈) = (𝑨(𝒎𝟐) ∙ ∑ 𝑶𝑪𝑺 (𝒌𝒈 𝒎−𝟐))/𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎    (3) 302 

3.3 Calculation of organic carbon accumulation rates 303 

Organic carbon accumulation rates (OCAR) are calculated by multiplying organic carbon 304 

contents (0 – 10 cm) with dry bulk densities and sediment accumulation rates (w): 305 

𝑶𝑪𝑨𝑹 (𝒈 𝒎−𝟐 𝒚𝒓−𝟏) =
𝑮 (%)

𝟏𝟎𝟎
∙ 𝝆𝒅 (𝒈 𝒄𝒎−𝟑) ∙ 𝝎(𝒄𝒎 𝒚𝒓−𝟏) ∙ 𝟏𝟎, 𝟎𝟎𝟎   (4) 306 

Calculations were carried out for the whole area and limited to the joint AOA of the organic 307 

carbon, dry bulk density and sediment accumulation rate models. 308 

The total mass of organic carbon that is accumulated annually (OCA) is calculated by summing 309 

OCAR of all pixels and multiplying with the area of one pixel (A = 16,000,000 m2): 310 

𝑶𝑪𝑨(𝑻𝒈 𝒚𝒓−𝟏) = (𝑨(𝒎𝟐) ∙ ∑ 𝑶𝑪𝑨𝑹 (𝒈 𝒎−𝟐 𝒚𝒓−𝟏))/𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎  (5) 311 

3.4 Propagation of uncertainties 312 

Uncertainties were propagated by taking the square root of the sum of squared relative 313 

uncertainties: 314 

𝜹𝑶𝑪𝑺 = 𝑶𝑪𝑺 ∙ √(
𝜹𝑮

𝑮
)

𝟐

+ (
𝜹𝝆𝒅

𝝆𝒅
)

𝟐

        (6) 315 

𝜹𝑶𝑪𝑨𝑹 = 𝑶𝑪𝑨𝑹 ∙ √(
𝜹𝑮

𝑮
)

𝟐

+ (
𝜹𝝆𝒅

𝝆𝒅
)

𝟐

+ (
𝜹𝝎

𝝎
)

𝟐

             (7) 316 

The symbol  signifies the uncertainty of a quantity. 317 

4 Results and discussion 318 

4.1 Model Performance 319 

The characteristics and performance indicators of the six spatial models are summarised in Table 320 

2. It is important to stress that the performance indicators were derived in a spatial cross-321 

validation scheme and were expected to be lower than those derived from random cross-322 

validation, which was frequently employed in previous studies. Despite this, our model on 323 

organic carbon content explains 77% of the variance in the data. This is comparable to studies 324 

which did not employ spatial cross-validation (Atwood et al., 2020; Diesing et al., 2017; Lee et 325 

al., 2019). The mud content model had a similar R2 value of 0.76, higher than those of previously 326 

published models (Mitchell et al., 2019; Stephens & Diesing, 2015; Wilson et al., 2018). The dry 327 

bulk density model explained 70% of the variance. This is, to our knowledge, the first published 328 

model on this seafloor sediment property. The model for sediment accumulation rates performed 329 
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somewhat poorer, explaining 32% of the variance. Previous studies have shown that predicting 330 

sediment accumulation rates with machine learning can be challenging (e.g., Mitchell et al., 331 

2021). However, based on a comparison with published maps (Bøe et al., 1996; de Haas et al., 332 

1997; Pathirana et al., 2014) and our expert judgement, we conclude that the overall patterns of 333 

sediment accumulation (Fig. S6) are reasonable. The model on the depositional environment 334 

performed well with an overall accuracy of 81% and a balanced error rate of 0.28. The lower 335 

performance of the substrate type model might be attributable to the higher number of classes 336 

(eight vs three).  337 

This is one of the first marine studies that employed the concept of the area of applicability 338 

(Meyer & Pebesma, 2021). All models had areas of applicability larger than 80% of the total 339 

area, two of them (substrate type and organic carbon content) even >90%. The resulting maps 340 

(Figures 2-3, S1-S6) are therefore applicable to at least 80% of the area of interest. 341 

 342 

Table 2. Summary of the six models and their performance. Model types: RF- Random Forest; 343 

QRF – Quantile Regression Forest. BER – Balanced Error Rate. RMSE – Root Mean Squared 344 

Error. AOA – Area of Applicability. 345 

 346 
Response 

variable 

Type Unit Number 

of 

samples 

Number of 

predictors 

Model Accuracy BER RMSE R2 AOA 

(% of 

total 

area) 

Substrate type categorical - 23798 9 RF 0.59 0.53 - - 91.22 

Depositional 

environment 

categorical - 13305 9 RF 0.81 0.28 - - 88.02 

Mud content1 continuous weight

-% 

4531 9 RF - - 1.456 0.76 81.53 

Dry bulk 
density 

continuous g cm-3 606 10 QRF - - 0.192 0.70 88.57 

Organic carbon 

content 

continuous weight

-% 

697 8 QRF - - 0.339 0.77 91.32 

Sediment 

accumulation 

rate 

continuous cm yr-1 220 8 QRF - - 0.135 0.32 88.19 

1Model information relates to the additive log-ratio model.  347 

4.2 Substantial amounts of organic carbon are stored in continental margin sediments 348 

Organic carbon stocks of the upper 0.1 m of seafloor sediments range between 0.11 and 349 

3.34 kg m-2, while the uncertainty varies between 0.21 and 4.04 kg m-2 (Figure 2). Stocks are 350 

lowest (<0.5 kg m-2) on the North Sea shelf, shelf banks in the Norwegian Sea, along the shelf 351 

edge and slope foot and in parts of the southern Barents Sea. Conversely, stocks are highest 352 

(>2 kg m-2) off the northern and western coasts of Svalbard and in a southwest-northeast oriented 353 

band from Spitsbergen Bank to Central Bank. However, the calculated stocks on Spitsbergen 354 

Bank lie outside the joint area of applicability of the organic carbon and dry bulk density models 355 

and might be unrealistic, as coarse sediments (Bjørlykke et al., 1978) and mobile bedforms 356 

(Bellec et al., 2019) are widespread on the bank (Figures S1 and S2). Interestingly, the highest 357 

stocks as described above are located north of the marginal ice zone (Figure 2). In the seasonally 358 

sea ice covered northern area, higher stocks could reflect a highly variable primary production 359 

regime with efficient vertical export and less recycling than in the southern Barents Sea. Indeed, 360 

measured accumulation rates of organic carbon here are more than twice as high as in the ice-361 

free southern region (Faust et al., 2020) reflecting the modern ecosystem with higher primary 362 

productivity but lower vertical organic flux rates in the southern than in the northern Barents Sea. 363 
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In addition, sea-ice induced lateral transport and subsequent release of terrestrial organic carbon 364 

can further accelerate deposition of primary produced organic carbon in the marginal ice zone 365 

(Knies & Martinez, 2009). Shelf valleys tend to have higher organic carbon stocks than their 366 

surrounding areas. This contrast is particularly stark between the Norwegian Trough and the 367 

North Sea shelf, indicating that shelf sediments can act in distinctly different ways in the context 368 

of organic carbon processing (Diesing et al., 2021). Indeed, centres of organic carbon 369 

accumulation and oxidation (Bianchi et al., 2018) might lie in close proximity to each other. 370 

 371 
Figure 2. Organic carbon stocks of surficial (0 – 10 cm) sediments on the Norwegian continental 372 

margin. Stocks were calculated from predicted dry bulk densities (Figure S4) and organic carbon 373 

contents (Figure S5). Left - Estimated organic carbon stocks (kg C m-2). MIZ – marginal ice zone 374 

based on Itkin et al. (2014). Centre – Prediction uncertainty (kg m-2), expressed as the 90% 375 

prediction interval. Right – Joint area of applicability (AOA) of the models. Areas predicted as 376 

rock in the substrate type model (Figure S1) were excluded from the analysis. 377 

 378 

The reservoir size of margin sediments in Norway was calculated to 1,002 ± 1,485 Tg C within 379 

the area of interest and 793 ± 1,152 Tg C within the joint area of applicability. By comparison, 380 

current best estimates of reservoir sizes in vegetated coastal ecosystems (salt marshes, eelgrass 381 

meadows and brown macroalgae) in the Nordic countries (Greenland, Iceland, Faroe Islands, 382 

Norway, Denmark, Sweden, and Finland) amount to 9.26 Tg C (Krause-Jensen et al., 2022). The 383 

organic carbon reservoir size of vegetated coastal ecosystems in Norway has been estimated to 384 

be 5 – 22 Tg C (Bartlett et al., 2020). Continental margin sediments thus store approximately two 385 

orders of magnitude more organic carbon than coastal vegetated ecosystems, even though we 386 

have only considered the upper 0.1 m of the sediment column while other estimates typically 387 

refer to the upper 1 m (Figure 3). Reservoir sizes of margin sediments might even be comparable 388 

to terrestrial ecosystems such as forest soils (1,240 – 1,830 Tg C) and wetlands (890 – 389 

2,089 Tg C) in Norway (Bartlett et al., 2020). Despite the remaining uncertainties in the 390 

estimates, it would appear that continental margin sediments store substantial amounts of organic 391 

carbon and have so far been overlooked in the context of Blue Carbon. 392 
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 393 
Figure 3. Comparison of various organic carbon reservoir sizes in Norway: Surficial seabed 394 

sediments harbour between 793 Tg C (inside the AOA) and 1002 Tg C (inside and outside 395 

AOA). The reservoir size of vegetated coastal ecosystems (VCE) is much smaller (5 – 22 Tg C). 396 

Surficial seabed sediments have organic carbon reservoir sizes comparable to several terrestrial 397 

ecosystems such as wetlands and forests. Inner circles depict lower limit and outer circles upper 398 

limit of the estimated range of values. Data on Blue Carbon and terrestrial ecosystems are taken 399 

from Bartlett et al. (2020). 400 

4.3 Complex patterns of organic carbon accumulation 401 

As we used 210Pb-derived sediment accumulation rates, the following estimates refer to 402 

accumulation over the last 100 - 150 yr based on its half-life of 22.2 yr and an integration time of 403 

approximately five to seven times the half-life (Goldberg, 1963).  404 
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 405 
Figure 4. Organic carbon accumulation rates on the Norwegian continental margin. Organic 406 

carbon accumulation rates were calculated from organic carbon stocks of surficial (0 – 10 cm) 407 

sediments (Figure 2) and sediment accumulation rates (Figure S6). Left - Estimated organic 408 

carbon accumulation rates (g C m-2 yr-1). MIZ – marginal ice zone based on Itkin et al. (2014). 409 

Centre – Prediction uncertainty (g C m-2 yr-1), expressed as the 90% prediction interval. Note that 410 

the uncertainty is not defined in areas with sedimentation rates of 0 cm yr-1 (see equation 7). 411 

Right – Joint area of applicability of the models. Areas predicted as rock in the substrate type 412 

model (Figure S1) were excluded from the analysis. 413 

 414 

Organic carbon accumulation rates range from 0.0 to 106.4 g C m-2 yr-1, with uncertainties 415 

varying between 2.4 and 264.7 g C m-2 yr-1 (Figure 4). Zero-accumulation of organic carbon is 416 

linked to the North Sea shelf, the shelf break, shelf banks in the Norwegian Sea, and Spitsbergen 417 

Bank, the latter in agreement with Pathirana et al. (2014). The main hotspot of organic carbon 418 

accumulation is to be found in the inner part of the Norwegian Trough in the Skagerrak. 419 

Additionally, elevated rates of organic carbon accumulation are widespread in the Barents Sea 420 

north of the marginal ice zone. However, calculated organic carbon accumulation rates lie 421 

outside the joint area of applicability of the organic carbon, dry bulk density and sediment 422 

accumulation models around Svalbard and on Spitsbergen Bank. Again, geomorphology acts as a 423 

major driver of the patterns of organic carbon accumulation. Depressions like shelf valleys act as 424 

centres of organic carbon accumulation due to high sedimentation rates (Figure S6), while 425 

shallow banks and plateaus show no accumulation at all due to their erosional character (Figure 426 

S2). The shelf edge shows no accumulation of organic carbon due to relatively strong currents 427 

preventing sediments and organic carbon from long-term accumulation. Conversely, the slope 428 

and upper part of the abyss are places of organic carbon accumulation. These patterns are also 429 

reflected in the mean organic carbon accumulation rates of geomorphological units: Mean rates 430 

are lowest on the shallow continental shelf (2.24 g C m-2 yr-1), which includes banks and 431 

plateaus, and highest in shelf valleys (8.23 g C m-2 yr-1), where they are nearly four times higher 432 

than on the inner shelf (Figure 5a). Elevated mean rates are also to be found on the deep 433 

continental shelf (5.33 g C m-2 yr-1), while slopes and the abyss exhibit moderate mean rates of 434 

2.92 g C m-2 yr-1 and 3.15 g C m-2 yr-1, respectively. 435 
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 436 

Figure 5. Organic carbon accumulation rates of the geomorphological units as shown in Figure 437 

1. Left – Mean organic carbon accumulation rates averaged over the five morphological units. 438 

Right – Total organic carbon accumulation, i.e., mean rates multiplied by area. 439 

 440 

Aggregated over the area of interest, the sediments of the Norwegian continental margin 441 

accumulate 7.5 ± 24.7 Tg C yr-1. Restricted to the joint area of applicability, organic carbon 442 

accumulation amounts to 5.6 ± 18.1 Tg C yr-1. For comparison, coastal vegetated ecosystems 443 

might accumulate 0.55 Tg C yr-1 in the Nordic countries (Krause-Jensen et al., 2022) and 0.25 – 444 

0.37 Tg C yr-1 in Norway (Bartlett et al., 2020). Expressed in equivalents of CO2, Norwegian 445 

margin sediments accumulate 20.6 Tg CO2-eq per year within the joint area of applicability. This 446 

is equivalent to 42% of Norway’s greenhouse gas emissions of 48.9 Tg CO2-eq in 2022 (SSB, 447 

2023). 448 

More than half of the accumulation of organic carbon is happening in shelf valleys (Figure 5b) 449 

due to their high accumulation rates per unit area (Figure 5a) and the large areas they occupy on 450 

the Norwegian continental margin (Figure 1), amounting to 388,288 km2. Shelf valleys are 451 

therefore centres of organic carbon accumulation on the Norwegian continental margin. Most of 452 

these geomorphological features are of glacial origin and could also be described as glacial 453 

troughs attributed to glacial erosion during the Pleistocene ice ages. Globally, glacial troughs are 454 

found on the formerly glaciated continental margins of North America, Eurasia, south America, 455 

and Antarctica, covering 3.66 million km2 of the seabed (Harris et al., 2014). If we assume that 456 

the rate of organic carbon accumulation in shelf valleys of 8.23 g C m-2 yr-1we derived is 457 

representative for glacial troughs globally, then these geomorphological features might 458 

accumulate 30 Tg C yr-1, which is comparable to fjords (21 – 25 Tg C/yr; Smith et al., 2015), 459 

seagrass meadows (14.7 - 27.4 Tg C/yr; Duarte et al., 2005; Taillardat et al., 2018), mangroves 460 

(13.5 - 26.1 Tg C/yr; Alongi, 2012; Breithaupt et al., 2012; Taillardat et al., 2018), and 461 

saltmarshes (10.1 - 10.2 Tg C/yr; Ouyang & Lee, 2014; Taillardat et al., 2018). Although our 462 

global estimate is currently tentative, it points to a hitherto overlooked environment with high 463 

potential for organic carbon accumulation. 464 

4.4 Towards a global map of organic carbon accumulation rates 465 

Previous estimates of organic carbon burial in seafloor sediments of the global ocean have 466 

frequently been non-spatial and only Burdige (2007) considered that large parts of continental 467 
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margins do not accumulate sediment and organic carbon (de Haas et al., 2002). Moreover, 468 

assumptions about how much organic carbon that is accumulated at the seafloor gets eventually 469 

buried are frequently very general. For example, Berner (1982) assumed a preservation rate of 470 

80% globally. Estimated organic carbon fluxes based on satellite data (Dunne et al., 2007; 471 

Muller-Karger et al., 2005) gave spatially explicit results, but also had to make assumptions 472 

about the burial efficiency, e.g., Muller-Karger et al. (2005) assumed burial efficiencies of 30% 473 

in the deep sea and 10% on margins. Moreover, such studies were not able to resolve the spatial 474 

complexities of continental margin processes, as they implicitly assumed a static ocean where 475 

organic matter sinks to the seafloor and resuspension, erosion and transport had little effect. 476 

Consequently, these studies estimated high rates of organic carbon burial across all margins. 477 

Because of the vague definition of organic carbon burial (see the discrepancies between the 478 

values of burial efficiency cited above and Bradley et al. (2022)), we decided to estimate organic 479 

carbon accumulation rates instead. These are representative of the last 100 to 150 years, i.e., the 480 

time interval since the start of the industrial revolution and the increase of anthropogenic CO2 481 

emissions due to the burning of fossil fuels. We were also able to account for the complex nature 482 

of the Norwegian continental margin in terms of sediment erosion and deposition because the 483 

depositional environment is being mapped as part of the Mareano programme. 484 

Unlike organic carbon content (Lee et al., 2019) and stocks (Atwood et al., 2020), organic carbon 485 

accumulation rates have not been mapped globally with machine learning approaches. To do so 486 

will require a) data on organic carbon content, dry bulk density and sediment accumulation rates 487 

of sufficient quality and quantity, b) relevant predictor variables of global coverage and 488 

sufficient resolution, and c) spatial models that take into account the complex nature of 489 

continental margins, where centres of organic carbon accumulation and cycling might be found 490 

in close proximity to each other (Diesing et al., 2021; de Haas et al., 2002). While progress has 491 

been made to make relevant response (Felden et al., 2023; Paradis et al., 2023) and predictor 492 

variables (Assis et al., 2018) available, there are still several obstacles that need to be overcome. 493 

We consider the lack of a global map of the depositional environment as the main obstacle on a 494 

path towards a global map of organic carbon accumulation rates. Burdige (2007) used Emery’s 495 

(1968) map of relict sediments on the continental shelves of the global ocean as a proxy. 496 

However, this map does not exist electronically, might be outdated by now and is not explicitly 497 

depicting the depositional environment. The first task would therefore be to predict the 498 

depositional environment on continental margins globally. 499 

5 Conclusions 500 

We spatially predicted dry bulk density, organic carbon content and sediment accumulation rates 501 

of surface sediments on the continental margin of Norway to estimate organic carbon stocks and 502 

accumulation rates. Organic carbon reservoirs are two orders of magnitude larger than those of 503 

vegetated coastal ecosystems in Norway, even if we only considered the upper ten centimetres of 504 

the sediment column. Rates of organic carbon accumulation are spatially highly variable and 505 

highest in shelf valleys of mostly glacial origin. Considering the global extension of glacial 506 

troughs in the global ocean, these geomorphologic features might be accumulating as much 507 

organic carbon as fjords, seagrass meadows, mangroves, and saltmarshes. Global spatial 508 

predictions of sediment and organic carbon accumulation rates are required for a better 509 

understanding of the role of margin sediments in the carbon cycle and to evaluate whether 510 

continental margin sediments constitute actionable Blue Carbon ecosystems. 511 
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Original class Simplified class (code) 

Clay Mud (11) 

Mud Mud (11) 

Mud with sediment blocks Mud (11) 

Sandy clay Sandy mud (12) 

Sandy mud Sandy mud (12) 

Silt Mud (11) 

Muddy sand Muddy sand (13) 

Silty sand Muddy sand (13) 

Sand Sand (20) 

Gravelly mud Mud (11) 

Gravelly sandy mud Sandy mud (12) 

Gravelly muddy sand Muddy sand (13) 

Gravelly sand Coarse sediment (30) 

Muddy gravel Mixed sediment (40) 

Muddy sandy gravel Mixed sediment (40) 

Sandy gravel Coarse sediment (30) 

Gravel Coarse sediment (30) 

Gravel and cobbles Coarse sediment (30) 

Gravel, cobbles, and boulders Rock and boulders (50) 

Sand, gravel, and cobbles Coarse sediment (30) 

Mud/sand with cobbles/boulders Mosaic seafloor (60) 

Mud and sand with gravel, cobbles, and boulders Mosaic seafloor (60) 

Sand, gravel, cobbles, and boulders Coarse sediment (30) 

Compacted sediments or sedimentary bedrock Rock and boulders (50) 

Thin or discontinuous sediment cover on bedrock Rock and boulders (50) 

Original class Simplified class (code) 

Deposition from suspension Deposition from suspension (1) 

Deposition from suspension, local erosion of fine-

grained sediments 

Deposition from suspension (1) 

No or very slow deposition No or very slow deposition (7) 

Deposition from bottom currents Erosion or transport (5) 

Erosion, local deposition of sediments in topographic 

lows 

Erosion or transport (5) 

Erosion Erosion or transport (5) 
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Variable Unit Statistics Time period Source 

Bathymetry m - - (GEBCO Bathymetric Compilation Group, 

2019) 

Topographic 

position index 

m Focal window 

sizes 25, 75, 125 

- Calculated from bathymetry 

Distance to 

coastline 

m - - Calculated 

Primary 

productivity 

mg m-2 d-1 Mean, maximum 2010 – 2019 Copernicus-GlobColour 

(https://doi.org/10.48670/moi-00281) 

Chlorophyll-a 

concentration 

mg m-3 Mean, maximum 2010 – 2019 Copernicus-GlobColour 

(https://doi.org/10.48670/moi-00281) 

Suspended 

particulate 

matter 

g m-3 Mean, maximum 2010 – 2019 Copernicus-GlobColour 

(https://doi.org/10.48670/moi-00281) 

Surface partial 

pressure of 

CO2 

Pa Minimum, mean, 

maximum, range 

2010 - 2019 PISCES 

GLOBAL_REANALYSIS_BIO_001_029 

(http://dx.doi.org/10.25607/OBP-490) 

Sea ice 

concentration 

- Minimum, mean, 

maximum, range 

2010 - 2019 GLORYS12V1 

(https://doi.org/10.48670/moi-00021) 

Dissolved 

molecular 

oxygen 

mol m-3 Minimum, mean, 

maximum, range 

2000 - 2014 Bio-ORACLE v2.2 (https://www.bio-

oracle.org/index.php) 

Surface swept 

area ratio 

- Minimum, mean, 

maximum, range 

2009 -2016 OSPAR (https://odims.ospar.org/en/ 

search/?dataset=bottom_f_intensur) 

Bottom current 

speed 

m s-1 Mean, maximum 2005 -2007 Nordic4k 

(http://hdl.handle.net/11250/113861) 

Bottom 

temperature 

°C Minimum, mean, 

maximum, range 

2005 -2007 Nordic4k 

(http://hdl.handle.net/11250/113861) 

Bottom salinity PSU Minimum, mean, 

maximum, range 

2005 -2007 Nordic4k 

(http://hdl.handle.net/11250/113861) 


