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Abstract

Across diverse biomes and climate types, plants use water stored in bedrock to sustain transpiration. Bedrock water storage

($S {bedrock}$, mm), in addition to soil moisture, thus plays an important role in water cycling and should be accounted for

in the context of surface energy balances and streamflow generation. Yet, the extent to which bedrock water storage impacts

hydrologic partitioning and influences latent heat fluxes has yet to be quantified at large scales. This is particularly important in

Mediterranean climates, where the majority of precipitation is offset from energy delivery and plants must rely on water retained

from the wet season to support summer growth. Here we present a simple water balance approach and random forest model

to quantify the role of $S {bedrock}$ on controlling hydrologic partitioning and land surface energy budgets. Specifically, we

track evapotranspiration in excess of precipitation and mapped soil water storage capacity ($S {soil}$, mm) across the western

US in the context of Budyko’s water partitioning framework. Our findings indicate that $S {bedrock}$ is necessary to sustain

plant growth in forests in the Sierra Nevada — some of the most productive forests on Earth — as early as April every year,

which is counter to the current conventional thought that bedrock is exclusively used late in the dry season under extremely dry

conditions. We show that the average latent heat flux used in evapotranspiration of $S {bedrock}$ can exceed 100 $W/mˆ{2}$
during the dry season and the proportion of water that returns to the atmosphere would decrease dramatically without access

to $S {bedrock}$.
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Key Points:10
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Abstract17

Across diverse biomes and climate types, plants use water stored in bedrock to sustain18

transpiration. Bedrock water storage (Sbedrock, mm), in addition to soil moisture, thus19

plays an important role in water cycling and should be accounted for in the context of20

surface energy balances and streamflow generation. Yet, the extent to which bedrock wa-21

ter storage impacts hydrologic partitioning and influences latent heat fluxes has yet to22

be quantified at large scales. This is particularly important in Mediterranean climates,23

where the majority of precipitation is offset from energy delivery and plants must rely24

on water retained from the wet season to support summer growth. Here we present a25

simple water balance approach and random forest model to quantify the role of Sbedrock26

on controlling hydrologic partitioning and land surface energy budgets. Specifically, we27

track evapotranspiration in excess of precipitation and mapped soil water storage capac-28

ity (Ssoil, mm) across the western US in the context of Budyko’s water partitioning frame-29

work. Our findings indicate that Sbedrock is necessary to sustain plant growth in forests30

in the Sierra Nevada — some of the most productive forests on Earth — as early as April31

every year, which is counter to the current conventional thought that bedrock is exclu-32

sively used late in the dry season under extremely dry conditions. We show that the av-33

erage latent heat flux used in evapotranspiration of Sbedrock can exceed 100 W/m2 dur-34

ing the dry season and the proportion of water that returns to the atmosphere would de-35

crease dramatically without access to Sbedrock.36

Plain Language Summary37

Plants frequently use water stored in bedrock (Sbedrock) in order to grow. However,38

the proportion of precipitation that returns to the atmosphere (evapotranspiration) vs.39

to streams (runoff) as well as how much latent heat — the energy associated with evap-40

orating water — is used as a result of access to Sbedrock has not been measured. In Mediter-41

ranean climates, such as the western US, the majority of energy (sunlight) is received42

during the dry season and plants must rely on water stored belowground during the wet43

season to sustain summer growth. In this study, we present two methods for calculat-44

ing how much Sbedrock influences the amount of water returning to the atmosphere vs.45

streams and what that corresponds to in terms of latent heat energy at the surface. We46

use gridded data to compare the amount of water entering (precipitation) and exiting47

(evapotranspiration) the area and use a mapped soil water storage capacity product to48

draw conclusions about the timing and magnitude of plant transpiration that is a result49

of access to bedrock water. Our findings indicate that some of the Earth’s most produc-50

tive forests use Sbedrock early in the growing season, consuming over 100 W/m2 of la-51

tent heat energy in the summer.52

1 Introduction53

Globally, a greater proportion of precipitation is returned to the atmosphere via54

evapotranspiration (ET ) compared to oceans via streamflow (Q) (Jasechko et al., 2013;55

Trenberth et al., 2007). Locally, precipitation partitioning between streamflow and evap-56

otranspiration is mediated by local climate (Budyko, 1974). In asynchronous climates,57

where the majority of precipitation is offset from energy delivery (Feng et al., 2019; Klos58

et al., 2018), a substantial proportion of plant transpiration is sourced from bedrock wa-59

ter storage (Sbedrock) (Hahm et al., 2020; Hubbert, Beyers, & Graham, 2001; McCormick60

et al., 2021; Rempe & Dietrich, 2018; Rose et al., 2003; Witty et al., 2003). Yet, there61

have been no attempts to quantify the extent to which bedrock water storage alters an-62

nual hydrologic partitioning in asynchronous climates. Moreover, global climate mod-63

els (GCMs) typically only consider soil moisture dynamics when modelling latent heat64

flux — the transfer of heat between the terrestrial biosphere and atmosphere — which65

may work well for humid regions but poorly accounts for climates where plants rely on66
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water stored deep in the subsurface to compensate for a lack of precipitation during the67

summer dry season. Soil moisture content has been shown to influence extreme daily tem-68

peratures (Durre et al., 2000), regulate the number of large fires (Jensen et al., 2018) and69

length of the wildfire season (Rakhmatulina et al., 2021), and was a contributing factor70

to the 2003 record-breaking heat wave in Europe (Fischer et al., 2007). It stands to rea-71

son that bedrock water storage, in addition to soil moisture, should be considered when72

evaluating land energy budgets and hydrologic partitioning.73

The relative magnitudes of the water balance components at a location are dictated74

by the availability of water supply (precipitation) vs. demand (energy) (Budyko, 1974).75

Over long time frames, where change in storage (∆S) can be considered negligible, the76

ratio of evapotranspiration relative to precipitation (i.e. the evaporative index, ϵ = ET/P =77

1−Q/P ) can be estimated based on the ratio of potential evapotranspiration (PET )78

relative to precipitation (the aridity index, Φ = PET/P ; see Table 1 for a list of vari-79

ables and their definitions). In practice, most catchments fall near a single curve — the80

Budyko curve — when plotted in ET/P versus PET/P space, with deviations from this81

curve resulting from seasonality (Feng et al., 2012; Hickel & Zhang, 2006; Xing et al.,82

2018), vegetation cover (Chen et al., 2013; R. Donohue et al., 2007; M. Liu et al., 2022;83

L. Zhang et al., 2001), subsurface storage dynamics (Milly, 1994a), and other catchment-84

specific characteristics (e.g. Lhomme & Moussa, 2016; H. Yang et al., 2014). Numerous85

parametric extensions have been proposed to the Budyko equation (e.g. Choudhury, 1999;86

Fu, 1981, etc.) and a general solution has been mathematically derived that captures the87

catchment characteristics in a single parameter (H. Yang et al., 2008). The relationship88

described by Budyko also emerges from process-based hydrological models (e.g. R. J. Dono-89

hue et al., 2012; Entekhabi & Rodriguez-Iturbe, 1994; Feng et al., 2015; Porporato et al.,90

2004, etc.).91

Early approaches for estimating subsurface storage deficits, calculated by taking92

the difference between precipitation and evaporation over time, date back to at least the93

1960s (Grindley, 1960, 1968). In the literature, these methods were used mostly to es-94

timate groundwater recharge (e.g. Finch, 2001; Rushton & Ward, 1979; Rushton et al.,95

2006, etc.) and were limited by spatial and temporal data resolution. More recently, re-96

motely sensed water fluxes have been used to estimate root-zone storage capacities (SR)97

at large scales. For example, continental-scale SR has been estimated using mass bal-98

ance approaches (e.g. de Boer-Euser et al., 2016; Gao et al., 2014; Stocker et al., 2023)99

and a methodology for estimating SR at a global scale has been proposed by Wang-Erlandsson100

et al. (2016), and extended to account for snow cover by Dralle et al. (2021), which has101

been used to investigate ecosystem resilience (Singh et al., 2022), plant water-use sen-102

sitivity resulting from interannual rainfall variability (Dralle et al., 2020), and drought103

coping mechanisms in rainforest-savanna transects (Singh et al., 2020). Existing field-104

scale measurements (e.g. Rempe & Dietrich, 2018), which cannot be extrapolated over105

larger scales due to the spatial heterogeneity of plant rooting structures across different106

climates soil types and bedrock weathering patterns (Gentine et al., 2012; Sivandran &107

Bras, 2013), align well with satellite-derived SR (McCormick et al., 2021). Root-zone stor-108

age capacities calculated via the deficit method influence the proportion of precipitation109

that returns to the atmosphere, for a given aridity index, in Australian catchments (Cheng110

et al., 2022). When combined with existing soil water storage capacity datasets (e.g. Grid-111

ded National Soil Survey Geography Database (gNATSGO); Soil Survey Staff, 2019),112

satellite-derived SR has been used to estimate Sbedrock for the contiguous United States113

(McCormick et al., 2021).114

In this study, we examine the extent to which the bedrock root-zone, which extends115

beneath the typically thin (< 1 m) soil profile, influences water and energy budgets in116

the western US. More specifically, we investigate how plant access to bedrock water con-117

trols water partitioning and latent heat fluxes. We use a simple water balance approach118

combined with a national soil coverage database (i.e. gNATSGO), gridded water flux data,119
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and a recent dataset of gridded subsurface water storage capacity to provide insights re-120

garding the transfer of water found exclusively in bedrock to the atmosphere. We quan-121

tify the total amount of annual evapotranspiration accessed from the bedrock root-zone,122

and show that plant growth in many parts of the western US relies on bedrock water sur-123

prisingly early into the growing season, counter to conventional understandings that bedrock124

is used only late in the dry season. Finally, we use a random forest model to corrobo-125

rate the mass-balance inferences of yearly evapotranspiration that is attributed to ac-126

cess to bedrock water reserves.127

In providing a simple, reproducible framework for quantifying the impacts of Sbedrock128

on hydrologic and energy partitioning we look to answer three questions: (1) How early129

into the growing season do plants in asynchronous climates rely on Sbedrock to sustain130

summer growth?; (2) How does access to bedrock water impact the partitioning of pre-131

cipitation into evapotranspiration versus streamflow?; and (3) What is the latent heat132

flux associated with plant use of bedrock water?133

2 Methods134

To assess bedrock controls on water and energy partitioning, we apply two approaches:135

(1) an annual water balance, which calculates the total inferred yearly evapotranspira-136

tion sourced from bedrock by tracking incoming and outgoing water fluxes; and (2) a ran-137

dom forest model, which estimates the total yearly evapotranspiration sourced from bedrock138

using a selection of input variables considered to be predictors of evapotranspiration. The139

water balance method provides conservative, lower-bound constraints on bedrock wa-140

ter use based on conservation of mass, while the random forest model represents a ’best141

estimate’ approach that relies on additional climate predictors beyond evapotranspira-142

tion and precipitation fluxes.143

In both cases, gridded timeseries of water flux data, in combination with an exist-144

ing soil water capacity dataset (gNATSGO), are used to estimate the mean annual evap-145

otranspiration sourced from bedrock. However, the input variables of the models differ.146

The water balance method tracks incoming (precipitation) and outgoing (evapotranspi-147

ration) fluxes, at a pixel scale, to determine the amount of evapotranspiration that can148

be attributed to bedrock (i.e. ET in excess of soil water storage) in a typical water year.149

The random forest approach trains a model that predicts the mean annual evapotran-150

spiration based on a set of variables describing climate and total observed subsurface stor-151

age capacity, then replaces the total observed subsurface storage capacity with mapped152

soil water storage capacity to predict what total mean annual evapotranspiration would153

be without access to bedrock water storage; the difference in mean annual ET predic-154

tions between the model trained on the total storage vs. soil-storage capacity only is used155

to infer the amount of evapotranspiration attributed to bedrock water storage.156

Using the water balance approach, we additionally explore which areas in the west-157

ern contiguous US are prone to periods when the subsurface deficit is unable to be re-158

plenished on an annual basis (Fig. 2). Using these areas, we re-purpose the original ran-159

dom forest model, replacing the average annual root-zone storage deficit (SR) with max-160

imum root-zone storage deficit (Smax), to make inferences about the water partitioning161

properties of regions where the deficit does not always reset annually. Finally, we inves-162

tigate the timing of bedrock water use in the growing season and calculate the latent heat163

energy used to explore the role of plant use of bedrock water on land surface energy fluxes.164

2.1 Study Area165

We restricted our study area to winter-wet, summer-dry climate regions of the west-166

ern contiguous US. To identify these climate regions, we use the asynchronicity index167

(ASI, (Feng et al., 2019)) calculated from monthly TerraClimate precipitation and po-168

–4–



manuscript submitted to Water Resources Research

Figure 1. Conceptual diagram describing the root-zone storage characteristics of a typical wa-

ter year (Oct. 1 - Sep. 30) in regions characterized by asynchronous climates. At the beginning

of the wet season, the deficit accrued during the dry season begins to decrease as P > ET. Prior

to the beginning of the following dry season, the deficit returns to zero and remains at, or near,

zero until ET > P. When ET remains > P such that the deficit surpasses the soil water storage

capacity (Ssoil), plant transpiration is inferred to be a result of access to water stored below the

soil layer, i.e. Sbedrock. Figure is adapted from Lapides et al. (2022b) Fig. 1d.

tential evapotranspiration values (Abatzoglou et al., 2018). We limited the study domain169

to pixels with an asynchronicity index greater than or equal to 0.40, which is a slightly170

stricter threshold (0.36) than proposed by (Feng et al., 2019) to designate Mediterranean171

climates. The masked coverage of the contiguous US, as well as computed asynchronic-172

ity index values, are shown in Fig. S1.173

We additionally masked out pixels where:174

1. long-term evapotranspiration exceeds precipitation, e.g. due to irrigated agricul-175

tural lands or data error;176

2. land cover is classified as urban or water body; or177

3. soil water storage datasets (i.e. gNATSGO) do not have spatial coverage.178

For this process, we use a gridded climate product from point observations (Parameter-179

elevation Regressions on Independent Slopes Model (PRISM); C. Daly et al., 2015), the180

Penman-Monteith-Leuning ET product (Y. Zhang et al., 2019), the United States Ge-181

ological Survey (USGS) National Land Cover Database (NLCD) land cover classifica-182

tion (L. Yang et al., 2018), and the Gridded National Soil Survey Geographic Database183

(Soil Survey Staff, 2019). The pixel masking process follows the methodology defined by184

McCormick et al. (2021).185

All gridded timeseries data, including the products described above, are taken for186

the 2003 to 2017 water years (Oct. 1 - Sep. 30) and analyzed with the Google Earth En-187

gine Python application programming interface (API) (Gorelick et al., 2017).188
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2.2 Evaluating Storage via Water Balances189

Following McCormick et al. (2021), we estimate a lower-bound on the maximum190

annual root-zone storage deficit (SR) using the mass balance approached outlined by Wang-191

Erlandsson et al. (2016) and expanded to account for snow cover by Dralle et al. (2021)192

(500 m pixel scale). The technique takes the running integrated difference of land-atmosphere193

water fluxes exiting (Fout [L/T] = ET) and entering (Fin [L/T] = P) at a pixel. ET is194

sourced from PML V2 (500 m pixel scale; Y. Zhang et al., 2019) to represent Fout and195

P is extracted from PRISM (4638.3 m pixel scale; C. Daly et al., 2015), to represent Fin.196

Input data was converted from native resolution (shown in parentheses above) to 1000197

m and re-projected to the World Geodetic System 1984 (EPGS:4326) for analysis.198

First, the accumulated difference between Fout and Fin is taken for timeframe tn
to tn+1 and corrected for the presence of snow based on a snow cover threshold:

Atn→tn+1
=

tn+1∫
tn

(1− ⌈C − C0⌉) · Fout − Findt (1)

where C0 is a pre-defined threshold percentage of snow cover, C is snow cover, and ⌈·⌉199

is the ceiling operator. When C > C0, Fout is unaltered; when C ≤ C0, Fout is set to200

0, thereby ignoring ET when snowmelt may be present. This effectively avoids erroneously201

accumulating a storage deficit from ET during snowmelt when water may be infiltrat-202

ing into the root zone (without the need to run a full snowmelt model). We use the Nor-203

malized Difference Snow Index (NDSI) snow cover band (Hall et al., 2016) to compute204

snow cover and set the snow cover threshold to 10%.205

Second, the instantaneous root-zone storage deficit can be determined iteratively
via the following equation:

Dtn+1
= max(0, Dtn +Atn→tn+1

) (2)

where Dtn+1
is the deficit at time tn+1. If the deficit falls below zero, the cumulative vol-206

ume resets to zero as the subsurface has been replenished with water.207

At each pixel, we compute the mean annual maximum deficit (Dmax, evaluated Oct.208

1 → Sep. 30) and infer it to be a lower-bound on annual root-zone storage capacity (SR).209

Crucially, this assumes the root-zone storage deficit is replenished on a year-to-year ba-210

sis which, in many parts of western US, has been shown to not be the case (e.g. Fig. 2;211

Cui et al., 2022; Goulden & Bales, 2019; Hahm et al., 2022). We then calculate the max-212

imum root-zone storage capacity over the entire study period without the assumption213

of annual replenishment (Smax, evaluated Oct. 1 2002 → Sep. 30 2017) to investigate214

multi-year deficit accrual using the random forest model outlined in Sec. 2.5. We use Eq.215

2 to calculate D over the entire study period and take the maximum of those values to216

represent the lower-bound maximum root-zone storage capacity between Oct. 1 2002 (start)217

and Sep. 30 2017 (end):218

Smax
tstart→tend

= max(Dtstart
, Dtstart+1

, ... , Dtend
) (3)

ETbedrock, the minimum annual amount of evapotranspiration sourced from bedrock219

water storage, is inferred to be the difference between the average maximum annual root-220

zone storage deficit and the soil water storage capacity reported by the Gridded National221

Soil Survey Geographic Database (Soil Survey Staff, 2019). If the mean annual maxi-222

mum root-zone storage deficit does not exceed the reported value by gNATGSO, we take223

this to mean that Sbedrock is not needed to explain annual evapotranspiration and set224

Sbedrock = 0. This does not necessarily mean that bedrock water storage was not used225
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to support evapotranspiration, but rather that the deficit tracking approach is unable226

to detect it.227

Finally, we compute the average first month of year (MOYbedrock) when bedrock228

must be used to explain observed evapotranspiration, by determining the observed month229

(for the 2003 - 2017 water years) when mean annual root-zone deficit exceeds the total230

amount of available storage in the soil, implying any evapotranspiration sourced from231

the subsurface beyond this date must include water sourced from bedrock storage. This232

does not mean that bedrock storage was not accessed in prior months but rather that233

it cannot be tracked using the deficit approach. Therefore, this is the latest possible month234

that bedrock water is used, because it assumes that i) ET is first sourced from Ssoil un-235

til it is completely depleted, and ii) that deficits are replenished annually, which may not236

be the case.237

2.3 Water Partitioning238

Within the Budyko (1974) framework, the long-term partitioning of P into ET and239

Q is a function of the long-term ratio of PET to P. Under these conditions, Q is assumed240

to include both overland runoff and lateral subsurface flow resulting from infiltration (hence241

∆S ≈ 0). We took observed evaporative indices (ϵobs = ET/P ) by dividing the mean242

annual evapotranspiration by precipitation for the 2003 - 2017 water years using data243

collected from the gridded products described above. We also infer what the evapora-244

tive index would be if plants did not have access to bedrock water (ϵw/o bedrock) by re-245

moving Sbedrock = SR − Ssoil (the minimum amount of bedrock water used in an av-246

erage year) from the observed evaporative index. If SR does not exceed Ssoil, then our247

method cannot detect the influence of bedrock on the evaporative index:248

ϵw/o bedrock =

{
ETobs / P if SR ≤ Ssoil

[ETobs − (SR − Ssoil)] / P if SR > Ssoil

(4)

Following this, the relative change (expressed as a percentage) in evaporative in-
dex without access to bedrock water is the difference between ϵw/o bedrock and ϵobs rel-
ative to ϵobs:

∆ϵ =

(
ϵw/o bedrock − ϵobs

ϵobs

)
∗ 100 (5)

Streamflow data from 128 minimally impacted USGS watershed gauges in the west-249

ern US are in agreement (Nash-Sutcliffe efficiency of 0.93) with the precipitation (PRISM)250

and evapotranspiration (PML) data used in our analysis (Fig. S2). Therefore, we find251

it reasonable to estimate Q from the water balance (i.e. Q = P - ET) as, over long time252

frames, the net groundwater flow out of a catchment is negligible (i.e. ∆S ≈ 0). We253

calculated the runoff ratio (RR) as the difference between one and the observed evap-254

orative index (RR = 1− ϵ).255

2.4 Energy Partitioning256

We infer the monthly total latent heat flux associated with evapotranspiration sourced257

from bedrock. The latent heat, i.e. the energy required to change from the liquid to va-258

por phase, is equal to the the energy required to evaporate the accrued monthly deficit259

(in mm of water) beyond that provided by soil. We report this value in units of power260

per unit of area (W/m2). First, we take the total bedrock water storage extracted for261

evapotranspiration between two months:262

ETbedrock, month = max(0, min(Di+1 −Di, Di+1 − Ssoil)) (6)
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where Di is the deficit at the beginning of month i. To account for the deficit sourced263

from Ssoil, the difference between months i and i+1 is compared against the difference264

between month i+1 and Ssoil, returning the lesser of the two values. If this value is be-265

low zero, bedrock was not needed to account for evapotranspiration during the month266

and ETbedrock, month is set to zero. This calculation assumes that plants first exhaust any267

available soil water and subsequently use bedrock water. If plants exhaust soil water and268

bedrock water simultaneously throughout the dry season, the method used here to quan-269

tify the total latent heat flux associated with bedrock water during the dry season is not270

erroneous but rather would shift the bedrock-associated latent heat flux patterns ear-271

lier into the dry season.272

Secondly, ETbedrock, month (mm) is converted to power per unit area metric (Ee)
based on the enthalpy of vaporization of a known mass of water:

Ee = (ETbedrock, month) ∗ (ρw) ∗ (∆Hv) ∗ (1/t) (7)

where ρw is the density of water (1000 g/L), ∆Hv is the latent heat of vaporization of273

water (2257 J/g), which we do not adjust for local variations in temperature or pressure,274

and t is the total seconds between the ith and i+1th month (1 mm of liquid water per275

square meter is one liter). The resulting value is an average latent heat flux per second276

(i.e. power, W ) per m2 (unit area) for a given time frame.277

2.5 Random Forest Model278

The random forest regression model represents an alternative approach to calcu-279

lating ETbedrock, and is employed here as a means of corroborating the lower-bound, wa-280

ter mass balance inferences described above. The approach uses climatic (ASI and Φ)281

and subsurface storage (SR) characteristics to train a model to predict observed mean282

annual evapotranspiration, and then feeds Ssoil in place of SR into the trained model to283

determine what mean annual ET would be without access to bedrock water storage.284

Random forest regression is a predictive machine learning algorithm that consists285

of a collection of decision trees, which are randomly populated with samples, where the286

final output is the average of the results of each individual tree (Breiman, 2001). Each287

individual model (tree) is uncorrelated, producing many unrelated errors which, when288

combined into a single collective model, will increase prediction accuracy. We use three289

input variables: SR, ASI, and Φ to predict annual evapotranspiration. All random for-290

est regression models were implemented using the Random Forest module provided by291

Scikit-learn, an open-source Python machine learning package (Pedregosa et al., 2011).292

The random forest model was trained by randomly selecting 70% of the data as a train-293

ing set and setting 30% aside for validation purposes. Hyperparameters were set to de-294

fault (scikit-learn v1.3.0) with the exception of minimum leaf samples and maximum fea-295

tures, which were set to 5 (default is 1) and the square root of the number of features296

(1.0), respectively. Hyperparameters were chosen to best optimize computing time as tweak-297

ing the hyperparameters did not significantly improve model performance. The model298

was run using 20, 40, 80, 120, and 200 trees with improvements in the models perfor-299

mance beyond 40 trees being negligible. Therefore, we chose to run the final product us-300

ing 40 trees to minimize computing time.301

ASI values are calculated using the method outlined by Feng et al. (2019). Follow-302

ing Eq. 2, SR values can be quantified by taking the mean of the maximum deficit ob-303

served each water year, resetting the deficit annually. Φ is measured by taking annual304

cumulative PET (ΣPET ) relative to P (ΣP ) and averaging across all water years. P and305

PET are summed monthly totals taken from TerraClimate (Abatzoglou et al., 2018).306

We then replace SR with Ssoil and re-run the analysis using the predictive model pro-307

duced using SR. Framed another way, we forced the model to assume there is no longer308

access to Sbedrock to infer changes in annual evapotranspiration without access to bedrock309

reserves.310
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Table 1. Description of referenced variables

Variable Dimensions Description

A L Accumulated difference; calculated as Fout - Fin over
a given timeframe

ASI (-) Asynchronicity index
C (-) Snow cover
C0 (-) Snow cover threshold
Dmax L Maximum observed annual root-zone deficit
Dmin L Minimum observed root-zone storage deficit in a year
Dtn+1

L Root-zone storage deficit measured at time tn+1

Ee MT−3 Latent heat flux associated with evapotranspiration
sourced from bedrock water storage, expressed as
power per unit area

ET LT−1 Evapotranspiration
ETobs LT−1 Observed evapotranspiration
ETbedrock LT−1 Minimum annual evapotranspiration sourced from

bedrock water storage
ETbedrock, month L Monthly (dry season) evapotranspiration sourced

from bedrock water storage
Fin LT−1 Inflow
Fout LT−1 Outflow
MOYbedrock (-) Average month of year when bedrock is needed to

explain evapotranspiration
n (-) Variable used to quantify differences in the evapora-

tive index for a particular aridity index, defined by
(H. Yang et al., 2008)

P LT−1 Precipitation
Pobs LT−1 Observed precipitation
PET LT−1 Potential evapotranspiration
Q LT−1 Runoff (streamflow)
RR (-) Runoff ratio; calculated as 1− ϵ
Sbedrock L Minimum plant-available water storage capacity in

bedrock, inferred from largest deficit in an average
water year less mapped Ssoil

Smax L The minimum root-zone plant-available storage ca-
pacity, inferred from maximum deficit observed over
entire time period of analysis

SR L Mean annual root-zone storage capacity inferred from
maximum deficit observed over a water year

Ssoil L The maximum amount of plant-available water ca-
pable of being stored in the soil profile, from soils
mapping

t T Time
∆Hv ML2T−2 Enthalpy of vaporization of water
∆S LT−1 Change in storage
∆ϵ (-) Relative difference between ϵobs and ϵw/o bedrock

ϵ (-) Evaporative index; calculated as ET/P
ϵobs (-) Observed evaporative index; calculated as ETobs/Pobs

ϵw/o bedrock (-) Observed evaporative index without bedrock water
storage; calculated as ϵobs (ETobs − Sbedrock/Pobs)

ρw L−3M Density of water
Φ (-) Aridity index; calculated as PET/P
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Finally, following the extended methodology of Sec. 2.2, which removes the assump-311

tion of a yearly resetting deficit, we isolate pixels that have observed multi-year deficit312

accruals during the study period to investigate the influence of extended drought con-313

ditions on water partitioning. Between Oct. 1 2002 and Sep. 30 2017, we calculate the314

number of years where the deficit was not replenished by taking the minimum root-zone315

storage deficit (Dmin) observed each water year for all pixels. If Dmin > 0 in a given316

water year, we take that to mean that the deficit was not replenished in that water year.317

The resulting pixels were divided into three classes: 1) Deficit resets annually (all years),318

2) Deficit resets most years (deficit resets >66% of the years), and 3) Deficit resets in-319

termittently (deficit resets <66% of the years) (Fig. 2). For these pixels, we amend the320

original random forest model to use Smax, as opposed to SR, in order to better repre-321

sent the extent to which Sbedrock alters hydrologic partitioning in areas where multi-year322

deficits occur. All other model characteristics (i.e. hyperparameters, input variables, etc.)323

were retained from the original random forest model.324

W
ater flux or root-zone storage deficit (m

m
)

Figure 2. During the study period (Oct. 1 2002 to Sep. 30 2017), the annual deficit returned

to zero every year for the regions shown in brown (map on the left). Regions shown in teal and

orange, respectively, did not reset in some years (<33% of the study period) or did not reset

frequently, often for multiple years in a row (>33%). For each category, a corresponding example

time series of the study period is shown on the right with the relevant fluxes necessary to com-

pute root-zone storage deficit. In forests covering over 26,500 km2 (land covers 1-5 in Fig. S21),

the root-zone storage deficit does not reset annually.

3 Results325

Our primary findings are that i) soil water storage capacity (Ssoil) does not explain326

deviations from the Budyko-curve in asynchronous climates (Fig. 3), ii) the proportion327

of terrestrial precipitation returned to the atmosphere (vs. streamflow) is strongly in-328

fluenced by plant use of bedrock water reserves (Fig. 4), iii) Sbedrock is needed to sus-329

tain dry season plant transpiration surprisingly early into the growing season (Fig. 5),330

and iv) the summer latent heat flux associated with evapotranspiration of bedrock wa-331

ter is substantial (Fig. 7) and warrants further research with respect to land surface en-332

ergy interactions. Below, we expand on these findings and highlight particular regions333

–10–



manuscript submitted to Water Resources Research

of interest where Sbedrock plays an important role in the local water and energy parti-334

tioning patterns.335

Figure 3. More water is returned to the atmosphere for a given precipitation (higher evapo-

rative index) in locations with more potential evapotranspiration relative to precipitation (aridity

index), as shown in this Budyko-space density plot of individual pixels (1000m) with asyn-

chronous climates (ASI ≥ 0.40) in contiguous United States. The evaporative index for a

particular aridity index (expressed in terms of the catchment characteristic, n, where higher n

denotes a higher evaporative index for a particular aridity index, see (H. Yang et al., 2008) for

derivation) is not well explained by soil water storage (Ssoil), as shown by the density plot inset.

3.1 Deviations From the Budyko-curve are Poorly Explained by Soil Wa-336

ter Storage Capacity337

In our asynchronous climate (ASI ≥ 0.40) study area, the aridity index explains338

the primary trend in the evaporative index for individual pixels, consistent with the Budyko339

(1974) findings for catchments (Fig. 3). However, for a given aridity index, there remain340

deviations from the curve. It is a commonly hypothesized that, for a particular climate341

(held constant here by the use of ASI), subsurface storage capacity may explain devi-342

ations from the Budyko-curve (Miller et al., 2012). Using the catchment characteristic343

n to quantify differences in the evaporative index for a particular aridity index (H. Yang344

et al., 2008), where higher n denotes higher ET/P for a given aridity index, we find that345

soil water storage capacity (Ssoil) alone only explains 11% (R2 = 0.11) of the variance346

in n and, therefore, is a poor explanation for deviations from the Budyko-curve across347

western US (Fig. 3 inset). Indeed, Ssoil accounts for only a portion of the below-ground348

storage capacity and, in many places, is comparatively small relative to Sbedrock (e.g. Mc-349

Cormick et al., 2021). Removing ET sourced from bedrock (ETbedrock) drastically shifts350

the Budyko-curve (Fig. S4). In the following sections, we explore the extent to which351

Sbedrock may control water and energy partitioning.352
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a) b)
ETsbedrock 

(mm)
ΔET/P 

(%)

= SR < Ssoil = SR < Ssoil

Figure 4. (a) Average value of the largest annually (water year) observed root-zone

storage deficit (SR) in excess of Ssoil. (b) The relative change in evaporative index when

evapotranspiration inferred to be sourced from bedrock storage (ETbedrock) is removed, i.e.

(ET − ETSbedrock )/P . (a) inspired by Fig. 3 of McCormick et al. (2021). Across large areas of

the western US, annual evapotranspiration would be hundreds of millimeters less and the propor-

tion of precipitation returned to the atmosphere would decrease without access to bedrock water.

3.2 Large Proportions of the Precipitation Returned to the Atmosphere353

is Sourced from Sbedrock354

In the following section, the spatial patterns of ETbedrock, ET/P, and Q/P in the355

western US, derived using the water balance and random forest methods, are presented.356

Fig. 4 shows the spatial patterns of evapotranspiration inferred to be sourced from bedrock357

(ETbedrock) and relative change in evaporative index without access to bedrock (∆ET/P )358

using the water balance method (see Fig. S5 and S6 for derivation). The correspond-359

ing figures using the random forest model can be found in the supplementary informa-360

tion Figs. S9 (ET), S10 (ET/P), and S11 (Q/P). In each case, areas shown in gray rep-361

resent pixels where bedrock-derived ET was unable to be identified by the proposed meth-362

ods.363

Across the western US, the evaporative index is up to 91% higher (favoring ET)364

as a result of plant access to bedrock water reserves as opposed to using soil water stor-365

age alone. Broadly, evapotranspiration inferred to be sourced from bedrock (ETbedrock)366

increases and relative evaporative index decreases moving south from the USA-Canada367

border (Fig. 4). In particular, the Northern California Coast Ranges, the southern Cas-368

cades, the Transverse Ranges and the Sierra Nevada are most reliant on Sbedrock for dry369

season transpiration. The mean and median changes in relative evaporative index of all370

pixels in the western US that detected Sbedrock use were -16.6 and -13.2%, respectively,371

using the water balance method. Up to 782 mm of evapotranspiration is inferred to be372

sourced from bedrock water with mean and median values of 75.8 and 47.9 mm across373

all pixels, respectively. Areas highlighted in gray did not detect evapotranspiration sourced374

from bedrock using the deficit approach (i.e. SR < Ssoil). These areas are mostly lim-375
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ited to the coastal Pacific Northwest, where the aridity index tends to be lower than the376

rest of the region (Fig. S3), and account for roughly one quarter of all pixels in the study.377
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Month of 
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= SR < Ssoil

Figure 5. Typical month in which the annual root-zone storage deficit (SR) exceeds the soil

water storage capacity (Ssoil), implying plant transpiration beyond this point must be using

Sbedrock to sustain growth. Patterns suggest bedrock water is needed to sustain plant growth

very early into the growing season for many parts of the western US.

The random forest model driven by mean annual maximum observed Sbedrock makes378

qualitatively similar predictions (R2 = 0.965; Fig. S8) to the water balance approach based379

on mean yearly values (Fig. 6). Areas with a non-resetting deficit are more reliant on380

Sbedrock to sustain mean annual evapotranspiration when Smax is substituted for SR. In381

these areas, Smax exceeds SR by a median value of 82.4 mm (Fig. S20) and Ssoil val-382

ues are low (Fig. S5). For transparency the original model informed by SR was re-run383

in non-resetting pixels as well (Figs. S12-S15). Using only non-resetting pixels (i.e. teal384

and orange in Fig. 2), predicted mean and median ETbedrock increased from 87.1 and385

54.4 mm to 100.1 and 70.4 mm, respectively, when SR was substituted with Smax and386

a new random forest model was run (Fig. S17). Similarly, mean (median) relative evap-387

orative index (ϵw/o bedrock) decreased from -19.0% (-14.8) to -23.5% (-22.6) when account-388

ing for a non-resetting deficit (Fig. S18-S19). Interestingly, when Smax is used as an pre-389

dictor instead of SR, the relative importance of aridity index as a predictor increases sub-390

stantially (Fig. S16).391

3.3 Sbedrock is Needed to Sustain Plant Growth Early into the Grow-392

ing Season and Contributes Substantial Latent Heat Flux as Sum-393

mer Progresses394

Regions of high ETbedrock (Fig. 4, S9) also correspond to areas that require Sbedrock395

to sustain plant growth surprisingly early into the growing season (Fig. 5) and involve396

large bedrock-water associated latent heat fluxes in the hot summer months (Fig. 7). The397

average first day of the year when Sbedrock is needed to account for evapotranspiration398

(in other words when SR > Ssoil) is 190 (July 9) and over 21% of the study area must399

use bedrock water to account for ET prior to the beginning of summer (June 21) (Fig.400
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Figure 6. On the left, binned (0.5°) relative change in evaporative index (ET/P) without

access to Sbedrock using the water balance method (blue) and random forest model (red). On

the right, the total area of pixels within each latitudinal band (gray) and the total area of pixels

where ET sourced from bedrock water (ETbedrock) was not detected using the water balance

method (black). Stars show to the latitudinal locations of relevant major cities in the western

United States. Across all latitudes, the random forest model predictions align closely with the

results of the annual water balance model.

S7). In June, the majority of the study area in California has a noticeable latent heat401

flux associated with ET sourced from bedrock. By August, there is widespread latent402

heat flux across the western US, with July and August having the highest average val-403

ues.404

4 Discussion405

The findings presented in this study highlight the importance of Sbedrock on wa-406

ter and energy partitioning in the western US. Below we discuss the possible implica-407

tions of these findings on land-atmosphere interactions. We begin by situating our study408

within the context of the Budyko framework and discuss how this influences hydrologic409

partitioning. We then discuss the role of factors like geology on controlling the amount410

of Sbedrock and, consequently, hydrologic and energy partitioning. Finally, we address411

limitations to our study and offer potential future opportunities to advance the topic.412
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May June July

August September

Average latent heat flux 
used in evapotranspiration 

of water sourced from 
bedrock (W/m2)

Figure 7. Average latent heat flux (equivalent units to solar irradiance, W/m2) used in evap-

otranspiration that is sourced from Sbedrock during the growing season. In large parts of the

western US, in particular northern California and the Sierra Nevada mountain ranges, a large

latent heat flux is associated with evapotranspiration of bedrock water every summer.

4.1 Sbedrock Controls on Water and Energy Partitioning413

The catchment water balance in asynchronous climates often deviates substantially414

from expectations set by the Budyko curve (Berghuijs et al., 2020; De Lavenne & Andréassian,415

2018; Potter et al., 2005; Viola et al., 2017). We found that in the western US, asynchronic-416

ity and root-zone storage capacity are two of the strongest predictors for mean annual417

evapotranspiration (Figs S8, S12, S16), consistent with previous studies focusing on soil418

water storage that showed that ET is favored with increasing soil water storage capac-419

ity (Feng et al., 2012; Milly, 1994a, 1994b; Padrón et al., 2017; Porporato et al., 2004),420

as well as studies highlighting the importance of seasonality (Feng et al., 2012; Gerrits421

et al., 2009; Hickel & Zhang, 2006; Xing et al., 2018; Yokoo et al., 2008) and water stor-422

age capacity (Chen et al., 2013; Cheng et al., 2022; E. Daly et al., 2019; R. J. Donohue423

et al., 2012; Gentine et al., 2012; Hickel & Zhang, 2006; Milly, 1994a, 1994b; Potter et424

al., 2005; Rodriguez-Iturbe et al., 1999; Williams et al., 2012; Woods, 2003). We take425

this analysis a step further, by differentiating soil from bedrock, to elucidate basic fea-426

tures of how root-zone water is divided between hydrogeologically distinct subsurface lay-427

ers. Our results suggest Ssoil alone poorly explains deviations from the Budyko-curve428
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(Fig. 3), and indicate that Sbedrock plays a comparatively larger role on controlling hy-429

drologic partitioning in the western US. This is confirmed by our findings in Figs. 4, S4-430

S6, S9-11, and is in agreement with similar findings by McCormick et al. (2021), and hillslope-431

scale observational studies (Dralle et al., 2018; Hahm et al., 2019b, 2022; Lapides et al.,432

2022a; Rempe & Dietrich, 2018). Moreover, if Sbedrock influences near-surface climate433

properties in a similar manner to soil moisture (e.g. Brabson et al., 2005; Koster et al.,434

2004; Haarsma et al., 2009), current GCMs may under-estimate the influence of subsur-435

face storage on extreme temperatures and heat waves (e.g. Seneviratne et al., 2006; Dif-436

fenbaugh et al., 2007), precipitation formation (e.g. Alfieri et al., 2008; Ek & Holtslag,437

2004; Taylor, 2015), and changes in planetary boundary layer (PBL) circulation patterns438

(e.g. Sousa et al., 2020; Ookouchi et al., 1984).439

4.2 Sbedrock Influences on Runoff Generation440

Some forms of runoff generation require unsaturated storage deficits to be replen-441

ished prior to significant runoff production (McDonnell et al., 2021; Sayama et al., 2011).442

Recently, Lapides et al. (2022b) showed that the ’missing’ snowmelt runoff during the443

2021 spring melt period in California (California Department of Water Resources, 2021)444

could be attributed to deep root-zone storage deficits caused by drought conditions. These445

areas, and many other parts of the western US, have among the largest observed SR in446

the contiguous US and the fraction of SR attributed to bedrock is substantial (McCormick447

et al., 2021). Our results agree with these findings and highlight that Sbedrock has ma-448

jor implications for runoff generation in the mountainous West. Deficit-based approaches449

represent a potential method for scaling up hillslope (e.g. S. P. Anderson et al., 1997;450

Salve et al., 2012; Tromp-van Meerveld et al., 2007), catchment (e.g. Ajami et al., 2011),451

and watershed-scale (e.g. Sayama et al., 2011) studies to explain and predict runoff production—452

the ”Holy Grail” of hydrology (Beven, 2006)—at large scales. While our findings sug-453

gest bedrock storage heavily influences runoff patterns, especially in southwest (Fig. S11),454

there is a need for more studies investigating these dynamics and, in particular, field-455

scale studies to confirm the trends presented here.456

4.3 Geological Influences on Sbedrock as a Controlling Factor in Vege-457

tation Structure458

Evidence supporting the notion that forest ecosystems rely on moisture stored in459

weathered bedrock to sustain dry season growth goes back several decades (e.g. Arkley,460

1981; Jones & Graham, 1993; Rose et al., 2003; Witty et al., 2003). In many cases, bedrock461

water constitutes a majority of the total subsurface water available to sustain transpi-462

ration (e.g. M. Anderson et al., 1995; Hubbert, Graham, & Anderson, 2001; Rose et al.,463

2003; McCormick et al., 2021). Here, we demonstrate that bedrock storage dynamics in-464

fluence water and energy partitioning at large scales and throughout many parts of the465

western US. The extent of bedrock weathering impacts its pore size distribution with depth,466

and therefore plant-available water storage properties (Klos et al., 2018; Dawson et al.,467

2020). These properties in turn depend on climate, tectonics, and geology. The mech-468

anisms responsible for the transformation of fresh to weathered bedrock, which in turn469

increases subsurface moisture storage potential, are well established (see for overview,470

e.g. S. L. Brantley, 2010; Graham et al., 2010) but remain difficult to investigate due to471

limitations in accessing deep bedrock samples (see for overview, e.g. Zanner & Graham,472

2005). Recently, the Critical Zone (CZ) sciences community has proposed methods for473

predicting weathered bedrock patterns (Riebe et al., 2017) based on advancements in474

geophysics (e.g. Slim et al., 2015; St. Clair et al., 2015), geochemistry (e.g. S. Brantley475

et al., 2013; Lebedeva et al., 2007; Lebedeva & Brantley, 2013), and geomorphology (e.g.476

R. S. Anderson et al., 2013; Rempe & Dietrich, 2014). A reliable and testable method477

for predicting weathered bedrock patterns would serve as an important stepping stone478

in understanding the complex interactions between subsurface properties and aboveground479
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processes. For example, root-zone storage capacities and plant community composition480

have been shown to differ drastically in two adjacent, climatically similar watersheds in481

California due to contrasting geological substrates (Hahm et al., 2019b). More recently,482

Hahm et al. (2023) highlighted areas where geologic substrates overlapped with lower483

than ’climatically expected’ SR and argued that plant growth in these areas is inhibited484

directly by porosity and/or permeability (e.g. Hahm et al., 2019b; Jiang et al., 2020; H. Liu485

et al., 2021) or indirectly via nutrient limitation (e.g. Hahm et al., 2014) and toxicity486

(e.g. Kruckeberg, 1992). However, extending these findings to include the influence of487

bedrock structure and geology on hydrologic partitioning has not been investigated. The488

present study underscores the necessity to further investigate bedrock weathering mech-489

anisms as we move towards a holistic approach in CZ sciences.490

5 Limitations491

Limiting our study to distributed, remotely sensed, or spatially interpolated datasets492

may introduce substantial uncertainty in the results. Although the prevalence of system-493

atic errors (e.g. cloud filtering, sensors, etc.) is a known limitation to using remotely sensed494

data, we found that precipitation (PRISM) in excess of evapotranspiration (PML) aligned495

well with USGS streamflow data in 128 minimally impacted catchments in our study area496

(Fig. S2 and Rempe et al. (2022)). There are limited field data to validate our inferences;497

however, McCormick et al. (2021) synthesised existing datasets and found the observa-498

tions that were consistent with deficit-based methods. The accuracy of satellite-based499

data has improved dramatically in recent decades (Dubovik et al., 2021) and, when cou-500

pled with finer-scale field studies (i.e. watershed to hillslope), allows for macro-scale as-501

similation of topics that underpin important hydrologic problems. While we are confi-502

dent in the data presented here we emphasize the need to further implement field-based503

studies.504

To calculate the annual water balance, we first explored the scenario in which the505

subsurface storage deficit returned to zero annually. This is not always the case. There506

is ample evidence suggesting that many western forests have prolonged, multi-year deficits507

(e.g. Cui et al., 2022; Goulden & Bales, 2019; Hahm et al., 2022; P.-W. Liu et al., 2022).508

During our analysis we calculated the number of instances per pixel where the subsur-509

face storage deficit did not return to zero in a given year and concluded that, in many510

cases, the deficit either resets intermittently or very infrequently. When isolating for ar-511

eas where the deficit has been shown to not reset, our findings suggest that Sbedrock plays512

an even bigger role in hydrologic and energy partitioning than previously suggested by513

our annual water balance and corroborative random forest model. Despite being limited514

by some of the lowest soil water storage capacities in the contiguous US (see McCormick515

et al. (2021) Extended Data Fig. 2b), these areas boast many of the largest maximum516

root-zone storage (Smax) values computed between 2003 - 2017 and, consequently, the517

largest Sbedrock. The importance of Sbedrock to dry season plant transpiration in asyn-518

chronous climates is not a new idea (e.g. McCormick et al., 2021; Milly, 1994a); how-519

ever, research underpinned by these ideas rarely accounts for the possibility of multi-year520

deficits. We posit that Sbedrock is likely underestimated in areas with non-resetting deficits521

and that, in regions that are currently transitioning towards Mediterranean climates as522

a result of warming trends (e.g. British Columbia), the magnitude of available Sbedrock523

may be a limiting factor of future plant growth. In the results section, we reported the524

typical day (and month) of year when evapotranspiration begins using Sbedrock based on525

the proposed water balance model and argued that Sbedrock is necessary to sustain growth526

early into the dry season for many parts of the western US. We did not recalculate this527

value using a multi-year deficit for regions where the deficit does not return to zero an-528

nually. However, assuming wet season precipitation fully percolates into Sbedrock prior529

to the dry season, we expect many areas are permanently using Sbedrock to sustain sum-530

mer growth.531
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6 Conclusion532

In this study, we introduce a simple and reproducible annual water balance frame-533

work for assessing the role of Sbedrock on water partitioning within the context of the Budyko534

framework. We employ this framework to investigate the timing of evapotranspiration535

inferred to be sourced from Sbedrock and the magnitude of summer latent heat flux pro-536

duced as a result of access to Sbedrock. Finally, we use a random forest regression algo-537

rithm to corroborate our findings and then re-purpose the random forest model to ex-538

plore further areas where the root-zone storage deficit does not reset annually. Our find-539

ings suggest that, in the western contiguous US: 1) Sbedrock is necessary to explain plant540

transpiration very early into the growing season; 2) the proportion of precipitation re-541

turning to atmosphere would drastically decrease without access to Sbedrock; 3) the amount542

of latent heat flux produced as a result evapotranspiration sourced from bedrock is sub-543

stantial during the summer; and 4) in regions where the root-zone storage deficit frequently544

does not reset, the magnitude of evapotranspiration sourced from Sbedrock is greater, thereby545

further influencing the water and energy partitioning properties. These results confirm546

that Sbedrock plays a key role in the local hydrologic cycle and potentially influences the547

severity and frequency of wildfire and mass die-off events. Further research contribut-548

ing to the role of Sbedrock on the land surface energy balance — e.g. extreme temper-549

atures, heat waves, wind patterns, etc. — would prove beneficial in understanding the550

factors governing tree death and wildfire, an issue that is prevalent across the western551

US.552
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