
P
os
te
d
on

22
N
ov

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
06
69
48
.8
36
79
54
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Exploring Variable Synergy in Multi-Task Deep Learning for

Hydrological Modeling

Wenyu Ouyang1, Xuezhi Gu1, Lei Ye1, Xiaoning Liu1, and Chi ZHANG1

1Dalian University of Technology

November 22, 2023

Abstract

Despite advances in hydrological Deep Learning (DL) models using Single Task Learning (STL), the intricate relationships

among multiple hydrological components and model inputs might not be comprehensively encapsulated. This study employed a

Long Short-Term Memory (LSTM) neural network and the CAMELS dataset to develop a Multi-Task Learning (MTL) model,

predicting streamflow and evapotranspiration across multiple basins. An optimal multi-task loss weight ratio was determined

manually during the validation phase for all 591 selected basins with streamflow data-gaps under 5%. During test period, MTL

showed median Nash-Sutcliffe Efficiency predictions for streamflow and evapotranspiration at 0.69 and 0.92, consistent with

two STL models. The MTL’s strength appeared when predicting the non-target variable, surface soil moisture, using probes

derived from LSTM cell states—representative of the internal DL model workings. This prediction showed a median correlation

coefficient of 0.90, surpassing the 0.88 and 0.89 achieved by the streamflow and evapotranspiration STL models, respectively.

This outcome suggests that MTL models could reveal additional rules aligned with hydrological processes through the inherent

correlations among multiple hydrological variables, thereby enhancing their reliability. We termed this as “variable synergy,”

where MTL can simultaneously predict varied targets with comparable STL performance, augmented by its robust internal

representation. Harnessing this, MTL promises enhanced predictions for high-cost observational variables and a comprehensive

hydrological model.
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Abstract 10 

Despite advances in hydrological Deep Learning (DL) models using Single Task 11 

Learning (STL), the intricate relationships among multiple hydrological components and model 12 

inputs might not be comprehensively encapsulated. This study employed a Long Short-Term 13 

Memory (LSTM) neural network and the CAMELS dataset to develop a Multi-Task Learning 14 

(MTL) model, predicting streamflow and evapotranspiration across multiple basins. An optimal 15 

multi-task loss weight ratio was determined manually during the validation phase for all 591 16 

selected basins with streamflow data-gaps under 5%. During test period, MTL showed median 17 

Nash-Sutcliffe Efficiency predictions for streamflow and evapotranspiration at 0.69 and 0.92, 18 

consistent with two STL models. The MTL's strength appeared when predicting the non-target 19 

variable, surface soil moisture, using probes derived from LSTM cell states—representative of 20 

the internal DL model workings. This prediction showed a median correlation coefficient of 21 

0.90, surpassing the 0.88 and 0.89 achieved by the streamflow and evapotranspiration STL 22 

models, respectively. This outcome suggests that MTL models could reveal additional rules 23 

aligned with hydrological processes through the inherent correlations among multiple 24 

hydrological variables, thereby enhancing their reliability. We termed this as "variable synergy," 25 

where MTL can simultaneously predict varied targets with comparable STL performance, 26 

augmented by its robust internal representation. Harnessing this, MTL promises enhanced 27 

predictions for high-cost observational variables and a comprehensive hydrological model. 28 

1 Introduction 29 

Deep learning (DL) models, specifically Long Short-Term Memory (LSTM) neural 30 

networks (Hochreiter & Schmidhuber, 1997), have exhibited notable proficiency for data 31 

integration and generalization in hydrological modeling (Feng et al., 2020; Kratzert, Klotz, 32 

Herrnegger, et al., 2019; Kratzert, Klotz, Shalev, et al., 2019; Ma et al., 2021). Their ability to 33 

efficiently leverage big data, discern high-dimensional relationships between variables and 34 

building general models, as posited by the Universal Approximation Theorem (Hornik et al., 35 

1989), has been noteworthy in hydrology (Nearing et al., 2021; Shen, 2018). Consequently, they 36 

were widely employed in modeling and predicting a range of hydrological variables, such as 37 

streamflow, soil moisture, water temperature and dissolved oxygen (Liu et al., 2022; Nearing et 38 

al., 2021; Rahmani et al., 2021; Zhi et al., 2023). Despite these advancements, DL models might 39 
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learn improper patterns in hydrological modeling, even in the presence of robust goodness-of-fit 40 

results (Yokoo et al., 2022). A possible reason for this could be the focus of many deep-learning-41 

based hydrological models on univariate modeling, which means they center their simulations on 42 

a single variable. Such an approach might increase the risk of overfitting in single-variable 43 

modeling, leading to an inadequate representation of relationships between model inputs and 44 

various hydrological components. 45 

Conventionally, Physically Based Hydrological Models (PBHM) are also calibrated 46 

primarily using single variable data, commonly streamflow (Herman et al., 2018). However, 47 

some research has emphasized that models calibrated exclusively with streamflow may generate 48 

inadequate simulations for other water balance components (Becker et al., 2019; Tobin & 49 

Bennett, 2017; Yassin et al., 2017). Given that the hydrological process encompasses a multitude 50 

of variables involved in complex physical subprocesses, including surface and subsurface 51 

streamflow, soil water, and evapotranspiration (Shah et al., 2021), it is reasonable to incorporate 52 

additional components in the calibration of hydrological models. This could aid in constraining 53 

the solution of model parameters within a more viable parameter space (Dembélé, Hrachowitz, et 54 

al., 2020). Previous studies in physics-based modeling have shown that by incorporating a more 55 

rational representation of hydrological processes and calibrating model parameters with multiple 56 

model outputs, the overall predictive accuracy of hydrological variables could be improved, both 57 

in temporal and spatial generalization (Dembélé, Ceperley, et al., 2020; Tong et al., 2021, 2022). 58 

While PBHMs are often calibrated using single-variable data, it is essential to note that 59 

they inherently consider the physical mechanisms of all involved variables through meaningful 60 

equations. Therefore, despite potential imperfection, PBHMs generally exhibit a reduced 61 

tendency for overfitting. On the other hand, due to their layered design and flexible architecture, 62 

DL models are more vulnerable to overfitting for one target. For example, many PBHMs can 63 

reasonably estimate evapotranspiration (Dembélé, Hrachowitz, et al., 2020; Shah et al., 2021; 64 

Yeste et al., 2023), whereas DL models struggle to predict it without direct training. This 65 

underscores the importance of further research into multi-variable calibration. Moreover, the 66 

advancements in hydrological remote sensing have facilitated the accumulation of extensive 67 

remotely-sensed hydrological variable data (McCabe et al., 2017), forming a basis for the 68 

exploration and analysis of DL models with multiple interrelated outputs. 69 
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In machine learning, multi-task learning (MTL) is an approach that enables a model to 70 

simultaneously learn the relationships between inputs and outputs of multiple tasks (Zhang & 71 

Yang, 2022). To learn the shared information between different tasks, the model needs to 72 

establish connections between the parameter spaces of different tasks in the MTL model. Hard 73 

Parameter Sharing is a prevalent method for achieving MTL (Vandenhende et al., 2022). This 74 

approach allows multiple tasks to share some encoding layers, known as shared layers, along 75 

with different task-specific layers for decoding and output. This method allows the MTL model 76 

to simultaneously learn correlations between multiple tasks and the unique features intrinsic to 77 

each task. Shared layers minimize memory usage during operation and eliminate computational 78 

cost of features within the shared layers, thereby improving the efficiency of training and testing 79 

relative to multiple single-task learning (STL) models (Vandenhende et al., 2019). Furthermore, 80 

the complementary information shared among related tasks may enable the model to learn a 81 

more generalized function relationship (Standley et al., 2020), thereby reducing the risk of 82 

overfitting. 83 

Given the intrinsic interconnectedness of hydrological variables within a water cycle 84 

process, it is plausible to introduce MTL to hydrological deep learning-based modeling. Several 85 

studies have started to investigate the efficacy of MTL in hydrological models. Initial studies in 86 

MTL hydrological modeling primarily focused on incorporating more components in water 87 

balance, especially at large scales with abundant data. These studies utilized the water balance 88 

equation as a physical constraint and ensure that multiple interrelated hydrological processes are 89 

jointly optimized (Kraft et al., 2020). At the basin scale, Sadler et al. (2022) undertook research 90 

on MTL modeling in daily streamflow and water temperature, revealing that for certain sites and 91 

some MTL settings (like the scaling factor, denoting the ratio of loss from different tasks), MTL 92 

could enhance prediction accuracy across multiple tasks. Li et al. (2023) improved streamflow 93 

modeling with spatiotemporal DL models and an MTL approach in three basins. Building on 94 

these advancements, MTL has been adapted for a variety of hydrological targets, such as soil 95 

moisture (satellite and local in situ) (Liu et al., 2023), satellite precipitation estimation (rain/no-96 

rain classification and rain rate) (Bannai et al., 2023), and aquifer transmissivity and storativity 97 

(Vu & Jardani, 2022). However, as the trend of modeling multiple variables has emerged, the 98 

precise benefits of MTL and how it behaves in terms of temporal and spatial generalization still 99 

not be fully understanded, particularly in scenarios with large-sample basins. 100 
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Deep learning models have the potential to revolutionize our understanding of 101 

hydrological processes, but their reliability remains a topic of ongoing research. This study 102 

aimed not only to assess a model's potential for enhancing predictive performance but also to 103 

gauge its reliability by verifying if the input-output correlations learned by the model align with 104 

the established laws of hydrological processes. Various interpretative methods exist for 105 

hydrological deep learning models (Hu et al., 2021; Kratzert et al., 2021; Schmidt et al., 2020), 106 

but most are primarily used to analyze the attribution of input variables, not the internal states of 107 

DL models, thus posing challenges for our objectives. In natural language processing, supervised 108 

models known as “probes” have been devised to predict properties from representations 109 

(Belinkov et al., 2017; Hewitt & Liang, 2019), offering a way to inspect the learnt patterns of 110 

deep learning models. By leveraging such interpretability methods, we aimed to discern what the 111 

DL model truly learns for hydrological modeling. For example, Lees et al. (2022) adopted the 112 

probe method to analyze the relationship between the cell state and a non-target hydrological 113 

variable, thereby examining the plausibility of the processes LSTMs acquired. 114 

The aim of this study was to construct MTL deep neural network models and conduct a 115 

comprehensive evaluation of their predictive performance in terms of both temporal and spatial 116 

generalizability across large-sample basins. We also investigated whether these models could 117 

learn more dependable correlations, potentially providing new "correct" insights that align with 118 

hydrological laws. Our approach integrated both MTL and STL techniques and evaluated their 119 

performance to examine the generalization capabilities and overall reliability of MTL. 120 

2 Data and Methods 121 

We utilized the Catchment Attributes and Meteorology for Large-Sample Studies 122 

(CAMELS) dataset (Addor et al., 2017), comprising 671 relatively undisturbed basins across the 123 

contiguous United States (CONUS). This dataset was widely used as a benchmark dataset for 124 

hydrological deep-learning-based modeling (Fang et al., 2022; Feng et al., 2020; Jiang et al., 125 

2020; Kratzert, Klotz, Shalev, et al., 2019; X. Li et al., 2022). Given that evapotranspiration is 126 

frequently observed via remote sensing (Xu et al., 2019) and can serve as an output variable in 127 

hydrological models (Zhao, 1992), we integrated remotely observed evapotranspiration with the 128 

CAMELS dataset and considered it along with ground-observed streamflow as MTL target. 129 

Initially, we evaluated the performance of the models using the CAMELS dataset. As LSTM 130 
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hydrological models can store hidden information that represents hydrological knowledge, we 131 

employed physical interpretability methods (Lees et al., 2022) to compare the correlation 132 

relationships between internal states and outputs of MTL and STL models. This approach 133 

facilitated an understanding of the internal states of the trained models and provided evidence for 134 

varying degrees of reliability among the models. 135 

2.1 Dataset 136 

The development of MTL models that simultaneously consider the output of multiple 137 

hydrological variables necessitates the assembly of datasets incorporating several hydrological 138 

model output variables. In the CAMELS dataset, for general hydrological modeling outputs, only 139 

streamflow data are obtained from observations, with the other variables' outputs derived through 140 

hydrological simulation. Thus, to explore the potential for MTL based on the CAMELS dataset, 141 

we expanded the available data for the basins in CAMELS. 142 

We retrieved the evapotranspiration data from the MOD16A2 data product (Running et 143 

al., 2017) from the Google Earth Engine (GEE) data catalog (Gorelick et al., 2017). This dataset, 144 

comprising an 8-day temporal resolution and a 500-meter spatial resolution, spans from 2001-01-145 

01 to the present. However, it's noteworthy that while most data collection periods are 8 days, the 146 

final collection period of each year is adjusted to 5 days for non-leap years and 6 days for leap 147 

years. The algorithm behind the MOD16 data product employs the Penman-Monteith equation, 148 

which is supplemented with daily meteorological reanalysis data and other MODIS remote 149 

sensing data products. The output includes several raster data layers, including actual 150 

evapotranspiration (ET). The pixel values in the ET data layer denote the sum of daily values for 151 

each resolution period. In this study, ET was used as the output observation for model training. 152 

To derive the basin-mean daily time series of ET data, we used Map-Reduce functions in GEE 153 

(Gorelick et al., 2017). Specifically, each pixel from the gridded ET data was allocated to a 154 

specific region, leveraging weighted reducers to ensure accurate assignment. 155 

The CAMELS data covers the period from 1980-01-01 to 2014-12-31, while the ET data 156 

is only available from 2001-01-01 onwards. To secure a sufficient data period, we extended each 157 

time series in the supplementary CAMELS dataset to 2021-09-30. As a result, the period 158 

considered for all models in this study was from 2001-01-01 to 2021-09-30. The NLDAS-2 159 

(NASA, 2018), Phase 2 of the North American Land Data Assimilation System and one of the 160 
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sources of meteorological data in CAMELS, was used as the basin meteorological forcing data. 161 

The daily time series basin-mean forcing data were obtained in GEE using the same method as 162 

for ET. Additionally, we supplemented the streamflow data from 2015-01-01 to 2021-09-30 163 

from the U.S. Geological Survey (USGS) National Water Information System (NWIS) (USGS, 164 

2019). To mitigate the influence of excessive missing data on the results, we selected basins with 165 

a streamflow data loss rate of less than 5% during the overall period analyzed. This resulted in 166 

the inclusion of 591 of the 671 CAMELS basins. Attributes related to soil, geology, topography, 167 

land use types, and climate from the CAMELS dataset were also used as inputs for all models in 168 

this study. For more information on these inputs, see Table 1. 169 

This study used surface soil moisture (SSM) to assess the reliability of the STL and MTL 170 

models (details provided in section 2.5). The data source was the SMAP global SSM dataset 171 

(Mladenova et al., 2019) from GEE. The basin-averaged SMAP grid data was obtained using the 172 

same method as for ET data acquisition. Consequently, the daily time series data for the SSM of 173 

each basin were compiled. 174 

Table 1. Hydrological variables selected as inputs and outputs to single- and multi-task deep 175 

learning models based on the augmented CAMELS dataset. 176 

Variable Type Variable Name Description Unit 

Forcings 

total_precipitation Daily total precipitation kg/m2 

potential_evaporation Potential evaporation kg/m2 

temperature Air temperature at 2 meters above the surface °C 

specific_humidity 
Specific humidity at 2 meters above the 

surface 
kg/kg 

shortwave_radiation Surface downward shortwave radiation W/m2 

potential_energy Convective available potential energy J/kg 

Attributes 

Terrain 

elev_mean  Basin mean elevation m 

slope_mean  Basin mean slope m/km 

area_gages2 Basin area km2 

Land 

Cover 

frac_forest Forest proportion - 

lai_max Maximum monthly mean of leaf area index - 

lai_diff  Difference between the maximum and - 
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2.2 Multi-task LSTM 177 

LSTMs have become a prevalent choice in hydrological modeling due to their ability to 178 

capture temporal sequences and intricate patterns in the data. In this framework, MTL 179 

simultaneously optimizes multiple related tasks, leveraging shared representations, while STL 180 

focuses on optimizing one specific task. In this study, both MTL and STL models incorporated 181 

LSTM structures. The LSTMs, analogous to those proposed in prior research (Feng et al., 2020; 182 

Ma et al., 2021), including our previous study (Ouyang et al., 2021), operated as N-to-N models.  183 

This N-to-N term indicates that for every N input sequences, N output sequences are generated. 184 

These models leverage meteorological forcings and static basin attributes to predict daily 185 

discharge in the CAMELS dataset. We developed MTL models using a hard parameter sharing 186 

architecture (Vandenhende et al., 2022). The STLs’ structure was totally same with the MTL’s 187 

minimum monthly mean values of the leaf 

area index 

dom_land_cover_frac 
Proportion of major land cover types to 

watershed area 
- 

dom_land_cover Major land cover types - 

Soil 

root_depth_50 
Average soil layer thickness containing the 

top 50% of the root system 
m 

soil_depth_statgso Soil depth m 

soil_porosity Soil porosity - 

soil_conductivity Saturated hydraulic conductivity cm/hr 

max_water_content Maximum soil water holding capacity m 

Geology 

geol_class_1st 
Most common geological category in the 

watershed 
- 

geol_class_2nd 
Second most common geological category in 

the watershed 
- 

geol_porosity Subsurface porosity - 

geol_permeability Subsurface permeability m2 

Model Outputs streamflow Daily streamflow in the outlet of a basin m3/s 

evaportranspiration 
Basin mean daily actual 

evaportranspiration 
mm/day 
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except that they only calculated the loss of one output variable. With this setting, we controlled 188 

the varying factor and the difference between STL and MTL was only the output. 189 

Figure 1 presents the structure of a single time-step unit in the MTL hydrological model. 190 

Central to this design is a shared layer, composed of a fully connected input layer and an LSTM 191 

unit. The input layer consisted of two layers, each containing 256 neurons. As data progresses 192 

through the LSTM, it attempts to express the intricate temporal patterns of hydrological 193 

processes. Emerging from this shared space are multiple, parallel fully connected output layers, 194 

each corresponding to a hydrological task. Each task-specific output’s neurons were arranged in 195 

two layers, with 128 and 1 neurons, respectively. Both the input and output fully connected 196 

layers introduce non-linearity through the ReLU activation function. To summarize, during 197 

forward computation of the model, inputs pass through a shared layer, generating long sequential 198 

multiple feature variables. Then these variables are moved through different output layers to 199 

generate the corresponding multiple outputs. 200 

 201 

Figure 1. Illustration of the MTL hydrological model. The model inputs, 𝒙𝑭, comprise a vector 202 

of raw meteorological forcing inputs, and outputs, 𝒚𝑸  and 𝒚𝑬𝑻  represent the streamflow and 203 

evapotranspiration, respectively. The LSTM's internal state in the t-th period is denoted by the 204 

cell state, 𝒄𝒕  and hidden state, 𝒉𝒕 . In each period, 𝒑𝒕  represents the prediction and 𝒐𝒕  is the 205 

observed data. The missing data in a given period is indicated by "-". The symbol "mean" 206 

enclosed in a circle represents the mean value of selected periods. 207 

Backpropagation in these models allows the independent updating of weight and bias 208 

parameters for task-specific output layers, based solely on the losses of the current layer and 209 

independent of other output losses. However, updates to the shared LSTM layer parameters 210 

depend on multiple outputs. The following equations illustrate these updates: 211 
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 𝜃𝑇(𝑖 + 1) = 𝜃𝑇(𝑖) − 𝛼∇𝜃𝑇𝐿(𝜃𝑇(𝑖), 𝜃𝑆(𝑖))  (1) 212 

 𝜃𝑆(𝑖 + 1) = 𝜃𝑆(𝑖) − 𝛼 ∑ 𝜔𝑗 [𝛻𝜃𝑆
(𝑗)
𝐿 (𝜃𝑆(𝑖), 𝜃𝑇

(𝑗)(𝑖))]𝑛
𝑗=1  (2) 213 

In these equations, 𝜃 denotes the weights and biases of the neural networks, with T and S 214 

representing the task-specific output and shared layers, respectively. The index I signifies the i-th 215 

training step, α denotes the learning rate, ∇ represents the gradient of the loss function relative to 216 

the weight parameter, and L() is the loss function itself. The j-th specific task is represented by j, 217 

𝜔𝑗 signifies the weights and bias corresponding to the j-th specific task and n stand for the total 218 

number of tasks.  219 

One of the challenges of constructing a multi-task learning model is balancing the loss 220 

from each task. This balance is crucial to avoid one task from dominating the model training and 221 

negatively impacting the learning of other tasks (Vandenhende et al., 2022). The MTL loss 222 

function, represented by equation (3), calculates the overall loss value for all tasks, where LMTL 223 

signifies the overall loss value for all tasks, Lj represents the loss value of the j-th task, and other 224 

variables have the same meaning as in equation (2). 225 

 𝐿MTL = ∑ ω𝑗
𝑛
𝑗=1 ⋅ 𝐿𝑗 (3) 226 

 ∑ ω𝑗
𝑛
𝑗=1 = 1 (4) 227 

Balancing tasks can be achieved by setting task-specific weights, represented as 𝜔𝑗, in the 228 

loss function. However, quantifying the weight of each task is challenging. Two usual 229 

approaches to task balancing exist: the uncertainty weighting method (Cipolla et al., 2018) and 230 

dynamic task prioritization (Guo et al., 2018). However, these methods adopt totally different 231 

views on the significance of tasks. The former balances task losses by considering homoscedastic 232 

uncertainty, assigning lesser weight to outputs with higher uncertainty and consequently higher 233 

weight to simpler tasks. But the latter prioritizes the learning of difficult tasks by assigning them 234 

higher task-specific weights. 235 

A more direct and simpler approach is manual loss weight assignment, which was also 236 

used in some related studies (B. Li et al., 2023; Sadler et al., 2022). This paper defined the loss 237 

weight ratio 𝜆  as the ratio of evapotranspiration and streamflow variable loss weights, 
𝜔𝐸𝑇

𝜔𝑄
. 238 

During the training period, multiple 𝜆 values were assigned, each corresponding to an MTL 239 
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model trained for all basins simultaneously. The model demonstrating the best overall prediction 240 

performance during the validation period was chosen for testing. 241 

The MTL model was designed to produce daily predictions for both streamflow and 242 

evapotranspiration. Although daily streamflow observation data is available, evapotranspiration 243 

observation data is cumulative and represents values over an 8-day interval. This interval is 244 

adjusted to 5 or 6 days in regular and leap years, respectively, to account for the final period of 245 

each year. Therefore, a specific design for the loss function calculation is necessary. As shown in 246 

Figure 1, the observed streamflow values were directly compared with predicted values. 247 

Meanwhile, predicted ET values were averaged over a period before being used to calculate the 248 

loss function. The first 𝑛𝑡𝑓 or last 𝑛𝑡𝑙 time-steps of the whole period could begin or end with a 249 

duration of less than 8 days. In such situations, we ignored the first 𝑛𝑡𝑓 non-value time-steps and 250 

multiplied the final observed value by 𝑛𝑡𝑙/8, 𝑛𝑡𝑙/5, or 𝑛𝑡𝑙/6, depending on whether the last period 251 

was the final period in a regular or leap year. Throughout the model training phase, the root-252 

mean-square error (RMSE) acted as the loss function. This same RMSE metric was applied to 253 

calculate the loss functions for each individual output under the MTL mode. 254 

2.3 General settings 255 

All models employed in this paper utilized the same input variables, including 6 256 

meteorological forcing variables and 17 attribute variables pertinent to soil, geology, topography, 257 

land use type, and climate. The details are provided in Table 1. One of the distinct advantages of 258 

deep learning models is their ability to automatically extract input features from an end-to-end 259 

perspective, rather than manually analyzing and extracting features from multiple input 260 

variables. Hence, the basin attribute data were directly copied to each period and concatenated 261 

with the meteorological input, creating the model's input vector without necessitating manual 262 

selection. 263 

The settings for data preprocess and model training aligned with our previous and related 264 

research (Ouyang et al., 2021; Rahmani et al., 2021) and were consistently applied to all models, 265 

including STL and MTL models, to ensure comparability. 266 

Before model training, normalization of input and output data samples is essential for the 267 

efficient optimization of the neural network weight by the gradient descent algorithm during 268 
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subsequent training. Test data also require normalization, and the statistical data used for 269 

normalization during testing is that used for training. After the model completed its predictions, 270 

the results are re-normalized back to their original dimension. 271 

Consistent with our previous research, the Adadelta algorithm, an adaptive learning rate 272 

scheme (Zeiler, 2012), was chosen as the optimization method for performing stochastic gradient 273 

descent on the neural network model parameters. To mitigate overfitting, dropout regularization 274 

was implemented during the training of LSTM models. Dropout applies a fixed mask, meaning 275 

once a connection weight is set to zero, it stays at zero for the entire training process. The loss 276 

function was the root mean square error between the observed and predicted values. The 277 

hyperparameter settings of all models in this study were as follows: the mini-batch size was 100, 278 

the training sequence length was 365, the number of hidden units per layer was 256, and the 279 

LSTM dropout rate was 0.5. 280 

In the evaluation phase, the Nash-Sutcliffe Efficiency (NSE) score was employed to 281 

assess streamflow and evapotranspiration prediction. NSE is a metric particularly suited to 282 

evaluate hydrological predictions. Additionally, other common metrics, such as the mean 283 

difference between modeled and observed values (Bias), RMSE, and Pearson's correlation 284 

(Corr), were also used to evaluate the models. 285 

2.4 Experiments 286 

This study devised two experiments to ascertain the conditions under which an MTL 287 

model could enhance the simultaneous prediction of each variable compared to STL models. In 288 

experiment A, we partitioned the dataset into training, validation, and test sets, with the 289 

validation data assisting in finding the optimal multi-task loss weight ratio 𝜆. The evaluation 290 

metrics of the STL and MTL models for each output were compared in this experiment. In 291 

experiment B, we further investigated the temporal and spatial generalization capabilities of the 292 

STL and MTL models using scaling curves to gain a deeper understanding of their differences. 293 

Experiment A: Comparison of STL and MTL models utilizing the entire dataset 294 

We first constructed an MTL model that predicted both streamflow and 295 

evapotranspiration. To assess any potential improvement in predictive capability, the 296 

performance of this model was compared with that of two STL models; one predicting 297 
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streamflow and the other predicting evapotranspiration. Notably, the STL model for streamflow 298 

did not encompass any input or output associated with evapotranspiration data, and vice versa. 299 

Employing the multi-task balance strategy outlined in Section 2.2, the multi-task loss 300 

weight ratio 𝜆  was manually assigned. We chose five 𝜆  values (2, 1, 1/3, 1/8, and 1/24) to 301 

conduct prediction experiments with the MTL model. The optimal model for the testing period 302 

was identified by evaluating the NSE values achieved for each variable in the basins during the 303 

validation period. The training, validation, and test periods were from 2001-10-01 to 2011-09-30, 304 

2011-10-01 to 2016-09-30, and 2016-10-01 to 2021-09-30, respectively. 305 

Experiment B: Assessment of model temporal and spatial generalization 306 

Generally, supplying more data for DL models often leads to superior model 307 

performance. As the number of basins expands, the temporal and spatial generalization of the 308 

models usually improve. Scaling curves, which depict the behavior of scaling relative to the 309 

amount of training data (Tsai et al., 2021), could be used to analyze how the models behave as 310 

the number of trained basins increases. By comparing the STL and MTL models, the conditions 311 

under which MTL models outperform STL models could be identified. 312 

For all models, a percentage of basins were randomly chosen for training, with the 313 

remaining basins used for temporal and spatial generalization evaluation. We chose 11 314 

percentage values: 5, 10, 20, 25, 33, 50, 66, 75, 80, 90 and 95. To mitigate geospatial bias, we 315 

ensured that each case included basins from every LEVEL-II ecoregion (Omernik & Griffith, 316 

2014), rendering them representative of the entire group. When the number of basins was 317 

limited, the selection process could introduce bias. Hence, we employed cross-validation to 318 

randomly select basins from the entire dataset repeatedly and computed the average median 319 

metric value across all cases as the result. The training period was the same as in Experiment A 320 

(2001-10-01 to 2011-09-30). No specific validation period was assigned as it was determined 321 

based on the best multi-task loss weight ratio 𝜆 obtained from Experiment A. The test period was 322 

from 2011-10-01 to 2021-09-30. 323 

2.5 Reliability Assessment 324 

We evaluated the reliability of deep learning models by comparing the predictive 325 

capabilities of probes in STL and MTL models. Our hypothesis posited that if the probes in MTL 326 
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models outperformed those in STL models in predicting non-target hydrological variables, then 327 

the MTL models were extracting more information, as the probes denoted the LSTM state 328 

vector's capacity to predict non-target variables. Such an outcome would further imply that MTL 329 

models were effectively identifying more credible correlations between inputs and multiple 330 

outputs. As DL models compress input information in their high-dimensional space based on the 331 

loss between observations and outputs, having more outputs implied that more information was 332 

encoded. Therefore, it was plausible to expect differences in the predictive performance of 333 

probes between STL and MTL models. 334 

The implementation of the latent variable's probe is outlined in detail below. We began 335 

by training STL or MTL models, then we input the concatenated meteorological forcing data and 336 

attributes (XF) from the testing period into the trained models (as depicted in Figure 2). Next, we 337 

extracted cell states for all periods and use these to train a linear regression model. This model 338 

took 256 units from each sample over each period as input and generated a non-target variable as 339 

output. Subsequently, we produced predictions from the probe and compare them with 340 

observations. Notably, both the training and testing periods for the probe were included in the 341 

testing for both STL and MTL models. For this paper, we adopted a 4:1 ratio for the training-to-342 

testing periods for the probes. 343 

In both STL and MTL models used for streamflow (Q), evapotranspiration (ET), or both, 344 

surface soil moisture (SSM) was the non-target variable for STL or MTL models and serves as 345 

the target variable for the probe. In the STL model of streamflow, ET was the non-target 346 

variable, and for the STL model of ET, Q was the non-target variable. Even though the probe 347 

was typically used for non-target variables in deep learning models, we used it to probe both Q 348 

and ET in all STL and MTL models to thoroughly examine the differences between STL and 349 

MTL models. We evaluated the correlation of the predictive performance of probes in both STL 350 

and MTL models. The probes for ET or Q could assist us in understanding how probes behave 351 

with target variables. A stronger correlation for the SSM probe in the MTL model could suggest 352 

that the implicit information in the MTL model aligns more closely with the actual hydrological 353 

process. 354 
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 355 

Figure 2. Illustration of the training process of a latent variable's probe. Each cell state in one 356 

period is considered a single sample for the linear regressor. The input for the regressor matches 357 

the size of the cell state (256 units), while the output size is 1, representing a single latent 358 

variable. 359 

3 Results 360 

3.1 Prediction performance of MTL and STL models 361 

Upon examining the performance of the two variables during the validation period, 𝜆=1/3 362 

was chosen for the MTL model evaluation in testing period. Further details can be found in 363 

Supporting Information Figure S1. In this section, we focus on the results for testing period. 364 

As depicted in Figure 3, the performance metrics of the MTL and STL models for both 365 

streamflow and evapotranspiration prediction are relatively similar. For streamflow prediction, 366 

the median value of the RMSE of the MTL model is 4.32 (m³/s), marginally lower than that of 367 

the STL model. The Correlation and NSE median values are almost identical to those of the STL 368 

model, at 0.86 and 0.69, respectively, albeit with slightly superior upper and lower boundaries of 369 

the box plot. The Bias of the MTL model for streamflow prediction is nearer to 0 than that of the 370 

STL model, showing an improvement of approximately 18%. The results for evapotranspiration 371 

prediction, as displayed in Figure 3(b), follow a similar pattern with the RMSE, Correlation, and 372 

NSE of the MTL model being -0.04 (mm/day), 0.96, and 0.92, respectively. These values are 373 

equivalent to those of the STL model. 374 

Previous studies calibrating physics-based hydrological models with multiple 375 

hydrological output variables (Dembélé, Ceperley, et al., 2020; Dembélé, Hrachowitz, et al., 376 

2020; Tong et al., 2021) found that while using multiple outputs enhanced the simulation 377 
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accuracy for variables other than streamflow, the accuracy of the streamflow simulation itself 378 

decreased. In contrast, our research highlighted that, when looking at the collective performance 379 

across all basins, a deep-learning-based MTL model that not only slightly improved the 380 

prediction performance of streamflow but also maintained the accuracy for evapotranspiration 381 

prediction. Significantly, MTL models could simply consider multiple process and 382 

simultaneously output multiple variables. Hence, in scenarios where various processes should be 383 

considered, it was more reasonable to construct an MTL model rather than using multiple STL 384 

models that only modeled one hydrological output variable at a time. 385 

(a) 386 

 387 

(b) 388 

 389 
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Figure 3. Statistical indicators of the streamflow and evapotranspiration prediction results of 390 

each STL model during the testing period and the MTL model under the λ=1/3 scheme, which 391 

include Bias, RMSE, Corr, and NSE. 392 

Figure 4 contrasts the performance of STL and MTL models for streamflow and 393 

evapotranspiration prediction across various basins. The NSE values for the STL and MTL 394 

models vary significantly among different basins. As illustrated in Figure 4(a), the integration of 395 

evapotranspiration into the MTL model doesn’t invariably enhance streamflow prediction for all 396 

basins. About half of the basins (280) display superior streamflow predictions with the STL 397 

model, while the other 311 basins demonstrate improved predictions with the MTL model. Most 398 

basins are situated near the 1:1 line of equality, suggesting that the added dimension of 399 

evapotranspiration often led to subtle variations in prediction results in most basins. Figure 4(b) 400 

reveals that evapotranspiration prediction shows analogous patterns with minor differences 401 

between the STL and MTL models across most basins. Some basins demonstrate superior 402 

predictions with the MTL model, while others with the STL model. 403 

In some basins, particularly displayed in the top left corner of Figure 4(a), shown in the 404 

circle with label “Max diff”, the differences in NSE for streamflow prediction are strikingly 405 

large. The MTL model exhibits a considerably higher NSE value for streamflow prediction of 406 

0.68 compared to the STL model's 0.03. However, the STL model performs more effectively in 407 

forecasting evapotranspiration in this basin, shown in Figure 4(b) with a circle label, with NSE 408 

values for STL and MTL models being 0.76 and 0.72, respectively. 409 

Figure 4(c) and (d) feature a comparison between the streamflow and evapotranspiration 410 

prediction results of STL and MTL models, along with the observational data, in the basin where 411 

streamflow prediction saw the most significant improvement. The MTL model's streamflow 412 

prediction accurately sidesteps unrealistic high flow rates that don't align with observations, 413 

thereby enhancing the predictive performance. In terms of evapotranspiration prediction values, 414 

the MTL model is slightly lower than the STL model and exhibits limited consistency with the 415 

observation values. 416 

These results suggested a competitive relationship among various output variables in 417 

MTL, where improving the prediction performance of one variable might lead to a decline in the 418 

performance for another. This phenomenon tied back to the concept of attaining a Pareto frontier 419 

in multi-objective optimization. Hydrological variables should ideally adhere to a single physical 420 
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law, regardless of apparent competitive relationships between multiple objectives, such as flood 421 

control and power generation in reservoir operations. This competitive relationship indicated the 422 

presence of latent variables influencing the formation processes of evapotranspiration and 423 

streamflow that the current input failed to capture. Therefore, reaching the Pareto frontier of the 424 

MTL process became crucial (Sener & Koltun, 2018). 425 

(a)                                                                                         (b) 426 

 427 

(c) 428 

 429 

(d) 430 

 431 
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Figure 4. Streamflow and evapotranspiration predictions of STL and MTL models. During the 432 

test period in all basins and the time series data for streamflow and evapotranspiration 433 

predictions and observations of the STL and MTL models in the basin exhibiting the most 434 

considerable improvement in streamflow prediction. The 1:1 line is represented as a black 435 

dashed line in both (a) and (b), where points above the line denote a higher NSE using the MTL 436 

model compared to the STL model. In (c) and (d), the evapotranspiration observational data is 437 

showcased as a scatterplot, with observations gathered at eight-day intervals, while the 438 

streamflow observational data and predicted values for streamflow and evapotranspiration 439 

variables are provided daily. 440 

In conclusion, the prediction performance of MTL and STL models was generally 441 

comparable. In most instances, the prediction of each variable was either nearly equal to or 442 

slightly superior to that of the STL models. Under certain loss weight configurations, the MTL 443 

model might exhibit marginally superior performance. Furthermore, instead of training and 444 

deploying multiple STL models, it was more efficient to select a unified loss weight and utilize a 445 

single MTL model to simulate the multi-variate hydrological process and predict multiple 446 

outputs concurrently. 447 

3.2 Temporal and spatial generalization of MTL and STL models 448 

We extended the comparison of STL and MTL models to examine how temporal 449 

generalizability evolved with an increased number of trained basins and assessed spatial 450 

generalizability through a PUB test. Figure 5 depicts the scaling curves of both models. Due to 451 

the spatial extrapolation, blue lines in Figures 5 generally display lower NSE values than red 452 

lines. 453 

(a) streamflow                                                (b) evapotranspiration 454 

 455 

Figure 5. Scaling curves for MTL and STL models. The STL models are indicated by dash lines, 456 

while the MTL models are represented by solid lines. Temporal testing results are represented by 457 
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red lines and spatial testing results are shown in blue lines. Figures (a) show the predictions of 458 

streamflow, while Figure(b) outline the predictions of evapotranspiration. The y-axis signifies 459 

the median NSE, reflecting the mean value of median NSEs across all folds in a particular 460 

setting. The x-axis represents the percentage of basins used for model training in each setting. 461 

We established 11 scenarios for training, which encompass 5%, 10%, 20%, 25%, 33%, 50%, 462 

66%, 75%, 80%, 90% and 95% of the basins. 463 

A consistent trend observed across all subplots was the enhancement in median NSE 464 

value with the rising percentage of basins utilized for training, visible in both temporal and 465 

spatial generalization tests. This pattern indicated that an augmented dataset enhanced the 466 

generalization prowess of DL models in hydrological contexts. Fang et al. (2022) linked this 467 

phenomenon to a data synergy effect, suggesting that accumulating and training more 468 

heterogeneous data enabled DL models to generate better predictions. Our spatial generalization 469 

test affirmed this, highlighting that even in a PUB scenario, the diversity of basins could enhance 470 

the prediction accuracy for all hydrological outputs. 471 

Moreover, it became evident that spatial generalizability appeared to improve more 472 

markedly than temporal generalizability. For example, considering streamflow (Q) in Figure 473 

5(a), the median NSE values ranged from approximately 0.58 to 0.70 as the basin training 474 

percentage progressed from 5% to 95%. In contrast, in PUB contexts, this range expanded from 475 

about 0.30 to roughly 0.60, reflecting an enhancement of almost 100%. Similar trends are 476 

evident for evapotranspiration (ET) predictions. These observations suggested that 477 

heterogeneous data provides more substantial benefits for PUB, whereas local data is generally 478 

sufficient for local predictions. 479 

In comparison to STL models, MTL models exhibited varying performances in temporal 480 

and spatial generalization tests, predominantly in three distinct patterns. In one scenario, for both 481 

streamflow and evapotranspiration, MTL models marginally underperformed. For example, a 2-482 

fold cross-validation (equivalent to training with 50% of the basins) assessing the PUB 483 

performance of STL and MTL could prematurely suggest that MTL has weaker spatial 484 

generalization capabilities than STL. In another scenario, a trade-off between streamflow and 485 

evapotranspiration resulted in MTL outperforming STL for one variable while underperforming 486 

for the other, as observed in the 80% training data scenario. Yet, there were instances where 487 

MTL models showcased superior prediction, such as when 33% of basins were used for training, 488 

outperforming in both variable predictions. Considering we only chose one ratio for MTL’s 489 
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different task loss weight, there should be some randomness in the results, but after comparing 490 

MTL with STL in these different scenarios, it could be inferred that MTL model won’t be worse 491 

in both temporal and spatial generalization than multiple STL models. 492 

3.3 Reliability assessment via analysis of internal states in MTL and STL models 493 

The cell state of the LSTM model serves as a vital tool for retaining and transmitting 494 

information throughout time series, encapsulating the long-term dependencies observed in 495 

sequences. This characteristic facilitates a deeper understanding of the learning process in 496 

hydrological phenomena (Lees et al., 2022). Before diving into the probe analysis, it's helpful to 497 

examine the direct correlation of the internal states with outputs. Figure 6 offers an illustrative 498 

representation of the correlation coefficients between the hidden layer cell states of the LSTM in 499 

the MTL model compared to two STL models, set against observed evapotranspiration data. The 500 

LSTM hidden layer comprises 256 cell state units, across 591 basins. 501 

The most prominent correlation between the LSTM cell state and evapotranspiration is 502 

observed in the STL model for evapotranspiration (STL-ET), followed closely by the MTL 503 

model. Conversely, the STL model for streamflow (STL-Q), which excludes evapotranspiration 504 

from its output, exhibits the least correlation. Figure 6(a) indicates that many basins, especially 505 

around cell numbers 0, 50, and 100, have correlation coefficients approaching 1 or -1. 506 

Meanwhile, Figure 6(b) suggests that the MTL model's LSTM cell state maintains a strong 507 

correlation with evapotranspiration, albeit marginally weaker than the STL-ET model. This 508 

difference can be attributed to the shared layer structure of the MTL model compared to the 509 

specialized nature of the STL-ET model. Figure 6(c) emphasizes the subdued correlation 510 

between the STL-Q model's LSTM cell state and evapotranspiration. However, specific cells, 511 

such as those between 128 to 132, display discernible correlation patterns. 512 

We also calculated the maximum absolute value of correlation between cell state and 513 

observation data of evapotranspiration and get the median value of the maximum values for all 514 

basins (median-max-corr). It showed that the values of STL-ET, MTL and STL-Q models are 515 

0.93, 0.93 and 0.85, respectively. Corresponding analyses for the relationship between LSTM 516 

cell states and streamflow are presented in Figure S2 in Supporting Information, where the 517 

median-max-corr values for streamflow in STL-ET, MTL, and STL-Q models are 0.50, 0.71, and 518 

0.71, respectively. 519 
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The shared-layer LSTM in the MTL model adeptly captured the intricacies of both 520 

streamflow and evapotranspiration. Although its correlations with individual variables might not 521 

match those of specialized STL models, its multi-variable proficiency was commendable. STL 522 

models inherently focus on singular variables, but due to the interrelated nature of hydrological 523 

components, they might inadvertently capture patterns from non-target variables. In contrast, an 524 

MTL model, trained on multiple variables, offered a well-rounded correlation pattern with each. 525 

Simply put, while individual models might discern patterns of related variables due to inherent 526 

hydrological links, models tailored for multi-variable predictions better comprehend the complex 527 

interrelationships, even if their correlations appear slightly less intense than singular-focused 528 

models. 529 

(a) STL-ET                                                            (b) MTL 530 

 531 

(c) STL-Q 532 

 533 

Figure 6. Correlations between the trained LSTM’s cell states during the testing period and 534 

evapotranspiration in different models for each basin. Panels (a), (b), and (c) correspond to the 535 
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STL-ET, MTL, and STL-Q models, respectively. Basins on the y-axis are identified by their 8-536 

digit ID from the CAMELS dataset, where notation such as "1e7" represents "10
7
", and "0.2" 537 

corresponds to "02000000". The x-axis cell labels represent the index of the cell unit within the 538 

LSTM's cell state. 539 

(a) Corr of evapotranspiration probe’s prediction 540 

 541 

(b) Corr of streamflow probe’s prediction 542 

 543 

(c) Corr of surface soil moisture probe’s prediction 544 

 545 
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Figure 7. A comparison of the correlation coefficients of (a) evapotranspiration (ET), (b) 546 

streamflow (Q), and (c) surface soil moisture (SSM) probes across different models. The blue, 547 

orange, and green bars respectively represent STL-Q, MTL, and STL-ET models. Given that the 548 

correlation serves as a performance indicator, it assumes only positive values, unlike the 549 

correlation between cell states and target variables, which can take negative values. 550 

Figures 7(a) and 7(b) illustrate histograms of prediction correlation coefficients for 551 

evapotranspiration and streamflow probes, respectively, across three DL models: STL-Q, MTL, 552 

and STL-ET. The median value of 591 basins for the evapotranspiration probe are approximately 553 

0.93, 0.95, and 0.96 for STL-Q, MTL, and STL-ET models, respectively. For the streamflow 554 

probe, these values are approximately 0.79, 0.76, and 0.62 across the respective models. 555 

Evidently, from the perspective of probe prediction, the LSTM cell state of the STL-ET/STL-Q 556 

model exhibits the strongest correlation with evapotranspiration/streamflow, followed by the 557 

MTL model. In contrast, the LSTM cell state of the STL-Q/STL-ET model shows the weakest 558 

correlation with evapotranspiration/streamflow. 559 

The use of cell states to predict a non-target variable was significantly less effective. 560 

While Lees et al. (2022) referred to the performance as “Hydrological Concept Formation” of 561 

DL models and deemed it acceptable, in the absence of constraints imposed by multiple outputs, 562 

the probe’s performance of the STL model might not match that of the MTL model. One 563 

interesting phenomenon was that the highest correlation did not originate from the MTL model. 564 

A linear probe finding the correlation between all cell states and the probe's target variable did 565 

not equate to the highest correlation from one cell state. 566 

Figure 7(c) illustrates the correlation coefficients between the predicted and observed 567 

values obtained from the surface soil moisture probe. The MTL model achieves the highest 568 

correlation coefficient for probe prediction results, with a median value for all basins 569 

approximating 0.90. In contrast, the STL-Q and STL-ET models yield correlation coefficients of 570 

approximately 0.89 and 0.88, respectively. This suggested that the shared LSTM layer in the 571 

MTL model, by factoring in input-output correlations for multiple variables, could effectively 572 

learn hydrological processes relevant to non-target variables. Combining all these results, we 573 

proposed that this layer should not simply be considered a trade-off mechanism for multiple 574 

variables. Instead, the learned correlations were more closely aligned with hydrological 575 

processes, thereby enhancing the reliability of the MTL model. 576 
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Sections 3.1 and 3.2 highlighted that the MTL model, when predicting multiple variables, 577 

was not inferior to the two STL models with large datasets. In fact, it might slightly surpass them 578 

under specific loss weight ratios. Moreover, the MTL model can output multiple variables 579 

concurrently, whereas multiple models would need to be constructed for STL. The results from 580 

Figures 6 and 7 indicated that while the shared-layer LSTM in the MTL model effectively 581 

learned patterns from multiple variables, its individual correlation with each variable might not 582 

be as strong as the dedicated focus each STL model has on its specific target variable. From 583 

these findings, we inferred that the shared LSTM layer in the MTL model exceled at discerning 584 

input-output relationships across multiple variables and delving into variable-specific input-585 

output correlations. This strengthened the reliability of the correlation rules, a phenomenon we 586 

termed the 'variable synergy effect' within the MTL model framework. 587 

4 Discussion 588 

The "variable synergy" effect, inherent to the MTL model, goes beyond just predicting 589 

multiple targets within a single framework. Generally, MTL models show generalization 590 

capabilities comparable to those achieved by using multiple STL models. The combined layers in 591 

the multi-task neural network often yield a more reliable internal representation compared to the 592 

STL models. The implications of this synergy effect could be interpreted in some way and found 593 

resemblance with the principle of multi-objective optimization (MOP). Such an effect also held 594 

the promise to advance hydrological modeling. We would further explore potential 595 

improvements from MTL models and address the limitations of this study in the subsequent 596 

section. 597 

4.1 Trade-off or synergy with multiple outputs in MTL 598 

Both STL and MTL models employ deep learning as a universal approximator to capture 599 

the intricate, high-dimensional relationships between inputs and outputs. However, MTL 600 

distinguishes itself by utilizing the relationships between multiple outputs. Through assimilating 601 

loss from these interrelated outputs and updating the shared layers of the neural network, MTL 602 

can aggregate and leverage shared information across tasks. Then, the internal states of an MTL 603 

neural network show a stronger correlation with third-party water balance components, 604 
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indicating a more comprehensive representation of basin hydrological processes compared to 605 

STL models. 606 

In certain MTL studies, the input data itself (Le et al., 2018) or specific noise within the 607 

input data (Pironkov et al., 2017) can serve as auxiliary tasks, effectively acting as regularization 608 

methods. These can improve the generalization performance of the main target prediction. 609 

Hence, in MTL modeling, the inclusion of other tasks can be seen as a regularization method that 610 

reduces overfitting. 611 

According to results in Figure 4 in section 3.1, we could find that in MTL modeling, the 612 

notion of trade-offs is salient; bolstered prediction performance for one variable might entail 613 

minor setbacks for another. This dynamic resembles the trade-offs seen in MOP, typical of 614 

reservoir operations. MTL inherently involves an MOP process, and the strategy employed in 615 

this study for MOP involves using weights to convert multi-target objectives into single-target 616 

objectives. A more nuanced or flexible approach could involve strategies like NSGA-II to create 617 

a Pareto front, providing a clear visualization of the competitive relationship between different 618 

targets. Yet, for about 10
5
 parameters, traditional evolutionary algorithms fall short. This 619 

indicates a prospect for investigating MOP-adapted stochastic gradient descent algorithms in 620 

upcoming studies. 621 

Interestingly, evapotranspiration (ET) and streamflow (Q) are not as conflicting as water 622 

supply and flood control in reservoir operations (Castelletti et al., 2013). This insight offers deep 623 

learning researchers a unique lens. They might probe deeper, analyzing and gleaning input data 624 

for latent variables from extant hydrological process insights. Gathering these resources could 625 

enable a Pareto improvement for the multi-variable learning process, potentially enhancing 626 

overall model performance. 627 

4.2 Potential and limitations of MTL models 628 

MTL models prove advantageous in modeling variables that incur significant 629 

observational costs, especially when paired with more affordably observed variables within one 630 

model. For instance, Surface Soil Moisture (SSM) typically has a shorter observation period 631 

compared to streamflow, which prompts the exploration of integrating the longer streamflow 632 

data into the multi-task learning model to enhance data effectiveness. This approach explores the 633 
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leverage of long-term data to forecast short-term data within the MTL paradigm, termed as 634 

"data-augmentation with variable synergy". Evapotranspiration was not included in this 635 

exploration because, based on our preliminary analysis, its predictive performance was already 636 

outstanding, leaving minimal room for enhancement through this technique. 637 

Initially, we pretrained the MTL model using only the streamflow data from 2005-04-01 638 

to 2015-03-31, a period without any SSM data records. This treated the MTL model as an STL 639 

model. To ensure the model focused solely on the streamflow, the non-shared fully connected 640 

layer dedicated to the SSM task was intentionally ignored, and its associated loss weight was set 641 

to zero. Subsequently, the MTL model underwent further training using both streamflow and 642 

SSM data from 2015-04-01 to 2020-09-30. We termed model with this training strategy as 643 

MTL_Pretrained, as depicted in Figure 8. It was then compared to a standard MTL model, which 644 

was trained on both streamflow and SSM data over the same period without any pretraining, as 645 

well as the STL model for SSM. The outcomes of these comparisons are presented in Figure 8. 646 

As Figure 8a illustrates, modeling SSM over short durations with limited datasets poses 647 

challenges. However, using an MTL modeling framework can significantly improve the 648 

prediction of SSM, utilizing the synergy effect from streamflow and SSM. Through pretraining, 649 

the LSTM weights and bias are first calibrated guided by streamflow data, circumventing the 650 

commencement from entirely random states. This pretrained model, when retrained, could lead 651 

to slightly better prediction performance. Therefore, even if there is no observation for the data-652 

scarce variable, it is recommended to use a trained model for another data-rich variable as the 653 

pretrained model, rather than random initialization of bias and weights. Figure 8b confirms that 654 

the pretrained MTL model outperforms in the majority of basins.  655 

  656 
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(a)                                                                         (b) 657 

  658 

Figure 8. Demonstrating the augment effect for the data-scarce variable from the data-rich 659 

variable within the MTL modeling framework. Figure 8a is the empirical cumulative density 660 

function plot for three models: an STL of SSM (STL), an MTL for SSM and Q (MTL) and the 661 

MTL_Pretrained model. Figure 8b demonstrates the comparison of NSEs between the STL 662 

model and the MTL_Pretrained model. The black line represents a 1:1 line. Points above this line 663 

indicate that the MTL_Pretrained NSE is superior. 664 

This study proposes an empirical rule that an increased number of observed variables can 665 

potentially enhance the prediction of less-observed variables within an MTL model. This finding 666 

is particularly beneficial for predicting hydrological variables with fewer observations, such as 667 

groundwater streamflow. Under this circumstance, for the high-cost observations, we could use 668 

more weak-labeled data such as crowdsource data, they can be involved in the multi-task 669 

modeling framework and provide more information to calibrate the model, which is very difficult 670 

in traditional modeling methods. 671 

Although multiple output variables can bring about predictive refinements, realizing 672 

substantial advancements without additional input remains a challenge. Sadler et al. (2022) 673 

suggested that optimizing the loss weight for each variable on a basin-specific basis could further 674 

improve the prediction within the MTL model framework, but the observed improvements were 675 

still not significant. This limitation stems from reaching a local optimal point in the feasible 676 

region of the high-dimensional parameter space without additional information. Since the 677 

predictions did not improve considerably, the impact on the long-term water balance was minor, 678 

even though more water balance components were included in the outputs. 679 

In hydrological deep learning models, it becomes pivotal to integrate deeper insights into 680 

the rainfall-runoff dynamics, like pre-event soil moisture. By integrating this additional 681 
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information, we can gain a more comprehensive understanding of hydrological processes, which 682 

can, in turn, improve the accuracy of predictions. 683 

5 Conclusions 684 

This paper explored the role of multi-task deep learning in hydrological modeling across 685 

591 catchments in the CAMELS dataset, using remote sensing observations of actual 686 

evapotranspiration and ground-based streamflow data. An MTL model, rooted in the LSTM 687 

neural network architecture, was developed. We evaluated each variable's predictive 688 

performance of the MTL model by contrasting it with those of two STL models in terms of both 689 

temporal and spatial generalizability. The correlation coefficients between the LSTM cell states 690 

of each model and their corresponding output variables were further investigated. Then a surface 691 

soil moisture probe, which enabled an examination of the neural network's ability to extract 692 

internal representations for the hydrological process was also constructed. 693 

Our findings demonstrate that the MTL model, designed for simultaneous predictions of 694 

multiple outputs, consistently matched the performance metrics of its STL counterparts. In 695 

contrast, STL models are restricted to predicting a single output variable, limiting their ability to 696 

capture associations between hydrologic variables. Moreover, in both temporal and spatial 697 

generalization contexts, the MTL model exhibited performance comparable with STL models, 698 

regardless of the dataset size.  This highlights the robustness of MTL within hydrological 699 

modeling frameworks. underscoring the resilience of multi-task learning in hydrological 700 

modeling. As a result, the MTL model emerges as a promising deep learning instrument for 701 

further hydrological process exploration, and may soon become the preferred approach in 702 

hydrological modeling over STL. 703 

Regarding model reliability, the MTL model mines the relevance of multiple variables 704 

without a marked bias towards any single target, unlike the STL model. Though the MTL's 705 

shared-layer LSTM might have a marginally reduced correlation for individual variables 706 

compared to STL models, it still upholds a reasonable correlation with observations for various 707 

variables. On the other hand, the STL model's correlation with non-target variable observations 708 

is notably weaker. Additionally, the LSTM cell states of the MTL model align more closely with 709 

hydrological processes than those of the STL models. A probe designed for SSM using LSTM 710 

cell states—excluded from all model training—highlighted a superior prediction correlation in 711 
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the MTL model. This suggests that MTL models better bridge inputs with multiple outputs, 712 

while STL models concentrate mainly on specific target variables. 713 

The MTL model also showcased its potential as a regular deep learning method, 714 

especially when faced with limited data observations for certain variables. Its adaptability is 715 

particularly beneficial for bridging data gaps. Nevertheless, a deeper exploration into the 716 

connection between MTL and multi-objective optimization is required. Leveraging gradient-717 

based multi-objective optimization methods to identify the Pareto frontier could push the 718 

frontiers of MTL in hydrological modeling. Another critical challenge for deep learning in 719 

hydrology remains the need for comprehensive data. It's crucial to understand that hydrological 720 

processes extend beyond just meteorological influences. Incorporating a wider range of ground-721 

based hydrological time-series data, including pre-event soil moisture, can refine our 722 

understanding of hydrological patterns, driving more precise predictions. In summary, the future 723 

of hydrological modeling will benefit from blending deep learning with multi-objective 724 

optimization techniques, leveraging vast and diverse datasets for richer insights. 725 
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