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Abstract

Vegetation Gross Primary Productivity (GPP) is the single largest carbon flux of the terrestrial biosphere which, in turn, is

responsible for sequestering $25-30\%$ of anthropogenic carbon dioxide emissions. The ability to model GPP is therefore critical

for calculating carbon budgets as well as understanding climate feedbacks. Earth System Models (ESMs) have the capability to

simulate GPP but vary greatly in their individual estimates, resulting in large uncertainties. We describe a Machine Learning

(ML) approach to investigate two key factors responsible for differences in simulated GPP quantities from ESMs: the relative

importance of different atmospheric drivers and differences in the representation of land surface processes. We describe the

different steps in the development of our interpretable Machine Learning (ML) framework including the choice of algorithms,

parameter tuning, training and evaluation. Our results show that ESMs largely agree on the physical climate drivers responsible

for GPP as seen in the literature, for instance drought variables in the Mediterranean region or radiation and temperature in the

Arctic region. However differences do exist since models don’t necessarily agree on which individual variable is most relevant

for GPP. We also explore a distance measure to attribute GPP differences to climate influences versus process differences and

provide examples for where our methods work (South Asia, Mediterranean)and where they are inconclusive (Eastern North

America).
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Abstract13

Vegetation Gross Primary Productivity (GPP) is the single largest carbon flux of the14

terrestrial biosphere which, in turn, is responsible for sequestering 25−30% of anthro-15

pogenic carbon dioxide emissions. The ability to model GPP is therefore critical for cal-16

culating carbon budgets as well as understanding climate feedbacks. Earth System Mod-17

els (ESMs) have the capability to simulate GPP but vary greatly in their individual es-18

timates, resulting in large uncertainties. We describe a Machine Learning (ML) approach19

to investigate two key factors responsible for differences in simulated GPP quantities from20

ESMs: the relative importance of different atmospheric drivers and differences in the rep-21

resentation of land surface processes. We describe the different steps in the development22

of our interpretable Machine Learning (ML) framework including the choice of algorithms,23

parameter tuning, training and evaluation. Our results show that ESMs largely agree24

on the physical climate drivers responsible for GPP as seen in the literature, for instance25

drought variables in the Mediterranean region or radiation and temperature in the Arc-26

tic region. However differences do exist since models don’t necessarily agree on which27

individual variable is most relevant for GPP. We also explore a distance measure to at-28

tribute GPP differences to climate influences versus process differences and provide ex-29

amples for where our methods work (South Asia, Mediterranean)and where they are in-30

conclusive (Eastern North America).31

Plain Language Summary32

Gross Primary Productivity (GPP) is the rate at which plants remove carbon diox-33

ide from the atmosphere during photosynthesis. Carbon dioxide is a greenhouse gas and34

excess in the atmosphere causes global warming and climate change. Changes in the amounts35

of atmospheric carbon dioxide will impact the entire Earth System. We therefore need36

the ability to accurately calculate GPP, especially for different possible carbon usage path-37

ways in the future. Earth System Models or ESMs allow us to simulate various processes38

happening in the earth’s atmosphere and biosphere including photosynthesis and can help39

us estimate GPP changes for such different pathways. However, ESMs can vary signif-40

icantly in their simulated GPP estimates making it difficult to have confidence in using41

these estimates. We describe a Machine Learning (ML) framework to better understand42

where ESMs differ in calculating GPP so that we can address knowledge gaps in mod-43

els. This approach allows us to understand the processes involved without having to run44

computationally expensive simulations. With improved models, we can also improve our45

ability to predict climate change outcomes for the future.46

————————————————————————47

1 Introduction48

Terrestrial Gross Primary Production (GPP) is the flux of carbon into the land sur-49

face driven by photosynthesis.50

It is estimated that terrestrial GPP is in the order of ∼ 132PgC and it is the sin-51

gle largest annual flux of the global carbon cycle. It plays a key role in determining at-52

mospheric carbon dioxide, since approximately a quarter to a third of anthropogenic emis-53

sions are sequestered by the land surface (on Climate Change, 2023; Schimel et al., 2001;54

Schwalm et al., 2020). GPP is influenced by natural climate variability as well as anthro-55

pogenic factors associated with global warming (Santini et al., 2014; Zampieri et al., 2021).56

Our ability to estimate GPP, its spatio-temporal patterns and the factors influencing GPP57

is therefore essential to understanding and forecasting global carbon budgets with greater58

reliability. GPP is not a directly measurable quantity at spatial scales of interest for car-59

bon budget calculations (global or regional), so we rely on indirect measurements with60

inevitable assumptions, for example about the partitioning of fluxes at eddy covariance61
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sites (Jung et al., 2019) or from satellite observations of quantities such as Solar Induced62

Fluorescense (SIF) (Sun et al., 2017; Y. Zhang et al., 2018), which are not direct mea-63

sures of the carbon flux.64

Earth System Models (ESMs) provide the capability to simulate GPP by modelling65

the various interactions between the atmosphere and biosphere including under differ-66

ent climate change scenarios in the future (Fisher et al., 2018; Levis, 2010). However,67

there is not only a large spread in GPP estimates from different ESMs but there are also68

large uncertainties in observational products that could be used to evaluate these esti-69

mates (Z. Wu et al., 2017; Anav et al., 2015). Therefore, there is a real need for eval-70

uation methods that will help us understand better the possible reasons for such a large71

spread in GPP simulations, both in terms of the influence of atmospheric variables driv-72

ing GPP as well as in the representation of the processes involved in simulating GPP.73

Identifying these differences can further help us address key gaps in modeling the ter-74

restrial carbon cycle and will make for more reliable simulations from ESMs.75

Machine Learning (ML) approaches have recently been used extensively in the study76

as well as generation of more accurate GPP data sets. Examples are seen work done in77

simulating GPP using observations of meteorological data or satellite data (Z. Zhang et78

al., 2021; Sarkar et al., 2022), upscaling GPP estimates from eddy covariance sites (Yu79

et al., 2021), to constrain uncertainty in GPP projections from models (Schlund et al.,80

2020) and for evaluating GPP representation in models (Z. Zhang et al., 2021; Dunkl et81

al., 2023). Our goal in this study is to use interpretable Machine Learning approaches82

(Molnar, 2020; Doshi-Velez & Kim, 2017) to better understand the sources of differences83

in GPP estimates between ESMs. Such an ML based evaluation framework can serve84

as a basis for process based improvements to ESMs, complementary to existing strate-85

gies, and can help reduce process uncertainty in modelled GPP estimates leading to more86

reliable simulations.87

In previous studies, differences in GPP estimates from ESMs have been attributed88

to differences in the simulations of climate projections, modeling of complex terrestrial89

processes such as dynamic vegetation modeling, as well as atmospheric CO2 concentra-90

tions for given emission scenarios (Nishina et al., 2015; Schwalm et al., 2020; Fisher &91

Koven, 2020; Kim et al., 2018; Koch et al., 2021). In this work, we focus on two key at-92

tributes responsible for variability in GPP across ESMs - (a) the differences in climate93

simulations or input atmospheric forcing influencing GPP in individual models and (b)94

differences arising from vegetation process representation in these models. While we ac-95

knowledge that GPP is dependent on several land and atmospheric variables, in keep-96

ing with other similar studies such as Churkina and Running (1998); Schwalm et al. (2020);97

Anav et al. (2015), we evaluate the influence of three atmospheric variables as primary98

determinants of photosynthesis – precipitation, air temperature and downwelling short-99

wave radiation.100

Our framework uses simulations from the CMIP pre-industrial Control (pi-Control)101

experiments that simulate climate before industrialization and the addition of anthro-102

pogenic CO2 to the atmosphere. These simulations do not have the effects of elevated103

CO2 that could lead to vegetation feedbacks or of any warming signal due to climate change.104

This allows us to better isolate the direct influence of the input climate variables on GPP105

without these factors. ESM simulations from pi-Control runs are also run for longer time106

periods, typically a few hundred years as opposed to a few decades from the historical107

experiment simulations and so this gives us a larger data set to learn from.108

The methods used in this framework are based on Information Theory and Machine109

Learning, and compare the differences in input atmospheric forcings and vegetation pro-110

cess modeling associated with simulating GPP, across different ESMs from the Sixth Phase111

of the Coupled Model Intercomparison Project (CMIP6) (Eyring et al., 2016). These meth-112

ods are directed towards formulating informed hypotheses for investigating the under-113
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lying factors influencing GPP estimates from ESMs. Specifically, the methods described114

target the following questions:115

1. How do CMIP6 models differ in the input atmospheric forcings they consider most116

relevant for GPP? This will help us understand potential differences in how cli-117

mate variables may influence GPP across models.118

2. Can we compare differences in input forcings across ESMs with their process based119

differences? This will guide us towards attributing differences in GPP to the ap-120

propriate underlying factors.121

We address the above questions by building ML based emulators of CMIP6 mod-122

els that estimate GPP with input climate data. We query these emulators using robust123

Feature Selection methods to determine the relevance of individual atmospheric variables124

with respect to GPP. We also compare the differences in input forcing vs GPP by us-125

ing a distance metric called the Jensen-Shannon distance measure. This is a novel ap-126

proach that allows a comparison of two different attributory factors responsible for GPP127

and to the best of our knowledge is not previously seen in the literature.128

We find that while the CMIP6 models considered largely agree on the variables con-129

sidered relevant for GPP, there are regions of uncertainty such as the tropics. We are130

also able to show that models with similar input forcings do not always show similar es-131

timates in GPP, indicating differences in process representation possibly due to param-132

eterization. The remainder of the paper is organized as follows – Section 2 describes the133

ML framework including the parameter tuning process and algorithmic description of134

the learning and Feature Selection approaches. In Section 3, we discuss results where the135

ML framework identifies differences in climate variables influencing GPP across ESMs.136

In Section 4, we discuss the interpretability of the ML framework described, how this137

framework can be used for evaluation and some of the challenges involved. Finally we138

present our conclusions and planned future work using for this framework in 5.139

2 Data and Methods140

2.1 Data and Pre-processing141

Our experimental experimental input data consists of five ESMs (UKESM1-0-LL,142

IPSl-CM6A-LR, CanESM5, CNRM-ESM2-1 and GISS-E2-1-G) from the CMIP6 project,143

all with different vegetation and land surface models as shown in Table2.1. The crite-144

ria applied for selection was to pick a small set of models with diversity in their vege-145

tation modeling schemes, permitting exploration of various aspects of GPP simulation146

through our ML framework.147

Seasonal means were calculated from monthly means of the data for two seasons,148

the boreal summer season of June-July-August (JJA) and austral summer season of December-149

January-February (DJF). All data considered is from the pre-industrial control (pi-Control)150

experiments which do not have an anthropogenic warming signal and for which a few151

hundred years of data are available from every model. Analysis is done for regions de-152

fined in the Intergovernmental Panel on Climate Change’s Sixth Assessment Report (IPCC153

AR6), (Gutiérrez et al., 2021). Data was downloaded and pre-processed from the Earth154

System Grid Federation servers (Cinquini et al., 2014) using the open source evaluation155

tool, ESMValTool (Righi et al., 2020). We removed all non-land grid cells of a model in156

a selected region to focus on terrestrial GPP and then sampled data uniformly across157

time and space. Every grid cell and every time instance constitutes a sample data point158

and for each data point, we have one value each for the three atmospheric variables as159

well as for GPP. We then use this pre-processed data for further analysis. A pictorial160

description of our ML framework is shown in Figure 1.161

–4–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Earth System Model Land Surface Model Reference Dynamic
Vegetation

UKESM1-0-LL Joint UK Land Environ-
ment Simulator (JULES)

(Sellar et al., 2019;
Clark et al., 2011)

Yes

IPSL-CM6A-LR Organising Carbon
and Hydrology In Dy-
namic Ecosystems (OR-
CHIDEE)

(Boucher et al., 2020;
Krinner et al., 2005)

No

CanESM5 The Canadian Land Sur-
face Scheme (CLASS)

(Swart et al., 2019;
Verseghy, 2012)

No

CNRM-ESM2-1 Interaction Soil-
Biosphere-Atmosphere
(ISBA)

(Séférian et al., 2019;
Delire et al., 2020)

No

GISS-E2-1-G ENT Terrestrial Bio-
sphere Model

(Kelley et al., 2020;
Kiang, 2012)

No

Table 1. The CMIP6 models evaluated with our framework and their corresponding vegeta-

tion models. Data on dynamicity of vegetation obtained from the Earth System Documentation

Project (Greenslade et al., 2014) and (Zarakas et al., 2020)

.

Figure 1. A description of the Machine Learning framework for evaluating GPP in CMIP6

models: Data from atmospheric variables and GPP for a given region, season and ESM is used

to train an ensemble learner which serves as the ML emulator. The ML emulator is then queried

using two different Feature Ranking algorithms (RFE or Recursive feature Elimination and PI

or Permutation Importance) to find the most relevant features or atmospheric variables for GPP

in that region. Data from pairs of ESMs is also used to calculate the Jensen-Shannon Distance

(JSD) metric to compare distances measured in the input variable space with distances measured

in the GPP distributions across regions.
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2.2 ML Emulators with Ensemble Learning162

Our requirement for an ML based emulator was one that would effectively model163

the relationship between input atmospheric forcing variables (and any other similar GPP164

influencing variables to be included as needed) and GPP; and one that would allow us165

to interpret or make inferences on the modeled relationships to answer questions on the166

relative importance or sensitivity to the climate variables. An additional goal was to de-167

velop a flexible framework that could be applied to observed data to better facilitate model168

evaluation. For this reason, we designed the core of the emulator to be a multivariate169

regression model and one that can be interpreted or queried on the decisions made for170

regression. In this, the climate forcing variables are the input features or predictors and171

GPP is the predictand. The ML emulator is trained for every region, season and ESM172

in our experimental setup. We use a regression model with Boosting called Adaptive Boost-173

ing or AdaBoost (Mendes-Moreira et al., 2012; Schapire, 2013) for our framework. Boost-174

ing is a well established ML approach that works towards developing a highly accurate175

prediction rule by repeatedly combining several weaker predictors or learners (Drucker,176

1997) which in this case would be regressors. In Boosting, the first weak predictor is trained177

with a subset of samples uniformly sampled from the training data set with replacement178

permitted, meaning a training sample can be used again to build a different predictor.179

Once a predictor is built, all the training samples are passed through the predictor and180

the samples with the largest prediction errors are identified. The sampling probabilities181

of the samples with the most error are adjusted so that they are more likely to get picked182

as training samples for the next weak learner to be built. As this process repeats, harder183

to learn patterns get picked more often to build subsequent predictors. This means that184

some predictors will do better than others in a given subspace of the input feature space.185

The predictors are further assigned weights of the form, β̄ = L̄
1−L̄

where L̄ is a calcu-186

lated loss function. Cumulative predictions are calculated as a weighted median of all187

the predictors. The algorithm terminates when the average loss across all weak learn-188

ers is below a certain threshold. The weak learners or regressors in this boosting algo-189

rithm can be any one of a wide array of regression methods. We calculated the Root Mean190

Square Error scores on held out test data sets and determined that the Decision Tree191

algorithm described in Breiman et al. (1984); Quinlan (1986); Breiman (1996) was best192

suited for our task after experimenting with different ML regression algorithms such as193

Linear Regression (James et al., 2021) and Support Vector Machines (Smola & Schölkopf,194

2004). We therefore use an Ensemble Tree Learner with Boosting for our ML emulators.195

As shown in Fig 1, CMIP6 data in the form of gridded data sets was used to train196

the ML emulators by treating each grid cell at every time step as an individual sample197

for learning. However, ESMs differ in grid resolution and in the length or number of years198

of the pi-Control experiment runs. So, for a given region, the number of training sam-199

ples can be different across ESMs. In order to avoid biases resulting from differences in200

the number of samples, we randomly sampled a minimal sample set from every model201

such that the number of samples to train an emulator is the same across all ESMs. This202

sample set is then used to tune the parameters and build the Decision Trees in the ML203

emulator.204

2.3 Parameter Tuning205

In applied Machine Learning, parameter tuning is considered an important step206

in developing ML models that best capture patterns in the training data without over-207

fitting (Yang & Shami, 2020). Overfitting occurs when we train the ML model to fit the208

training data too well which could result in a loss of generality. In other words, the ML209

model performs exceedingly well on the data it is trained with but fails to perform well210

on a new test set of samples even if from the same or similar distribution. We employ211

the Adaboost algorithm with an ensemble of Decision Tree regressors from the open source212

Python Scikit-learn package (Pedregosa et al., 2011) to build our ML emulators. A built213
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in mechanism for pruning the ensemble learner exists for removing learners in a way that214

diversity is maximized. This essentially means that learners are selected such that a wide215

range of associations or rules are learnt and duplication of rules learnt is minimized by216

pruning. This helps to avoid overfitting by balancing the need to add more rules in the217

predictor with the ability to generalize well. In our experiments we tune for the depth218

parameter in the Decision Tree for optimal performance of the emulator, determined as219

the best fit to the data as evaluated by the Root Mean Squared Error (RMSE) in the220

predictions. The depth of the Decision Tree is the number of levels at which decision nodes221

are split in the tree. For example, a decision could be tas > 20 which would split train-222

ing samples into those where the surface temperature is greater than 20◦C (condition223

is true) and those where the temperature is less than 20◦C (condition is false) and so224

on. For every region-season-ESM combination, we split the samples available into a train-225

ing set and a held out test set. The ML emulator (AdaBoost with Decision Tree regres-226

sor) is learnt using the training samples and tested on the held out samples. RMSE scores227

are calculated for both training and held out test sets. For a given value of the depth228

parameter, this process is repeated by splitting the data n times and the average train-229

ing and test RMSE scores over the n splits is calculated. This is how n-fold cross-validation230

(where n=6 in this case) is performed. The depth parameter that has the lowest RMSE231

score on the held out test data, with cross–validation is then chosen as the most opti-232

mal parameter for the task and a final ML emulator is built using that depth parame-233

ter and all the samples available for that region. This builds robustness against overfit-234

ting, and sampling multiple times during cross validation further makes the model more235

reliable ensuring that the final emulator has seen a good representation of the available236

data. ML emulator estimates of GPP for a selection of regions are shown as an illustra-237

tion of the results from this process in Supplementary Figure S1.238

2.4 Feature Selection Methods239

After the ML emulators were constructed to specification and sufficiently satisfied240

requirements, meaning the final emulator had the lowest possible RMSE scores for held241

out test data in cross validation experiments as described, we focused on querying or in-242

terpreting these emulators to better understand the relationship between the different243

input climate variables and GPP. Feature Selection or Feature Importance Ranking is244

the process of selecting or ranking features (input variables or predictors) that are most245

relevant to the predictand as evaluated by some chosen measurement or metric (Kumar246

& Minz, 2014; Guyon & Elisseeff, 2003). It is a process that is often used to prune the247

number of input features required for accurate predictions but in our case, with just three248

features, we use feature ranks to find the input atmospheric forcing variable(s) that the249

ML emulators find most important for GPP. Two different feature selection methods were250

applied to the ML emulators - (a) Recursive Feature Elimination (RFE) and (b) Per-251

mutation Importance (PI). The two methods use slightly different criteria to evaluate252

feature importances as described below but both provide useful information regarding253

the relative importance of a climate variable for GPP and are complementary. In the Re-254

cursive Feature Elimination algorithm, the input features are recursively removed one255

at a time to find the feature that has the most influence on the predictand (Guyon et256

al., 2002). For our experiments, we used the RMSE values to quantify the influence of257

an input climate variable on GPP. So, if the RFE method determines precipitation to258

be the most important feature for GPP, this effectively means that removing precipita-259

tion from the set of input features would have the most impact on the emulator’s abil-260

ity to predict GPP well i.e increase the RMSE by the most compared to other variables.261

In the Permutation Importance method, the decrease in model score when an individ-262

ual feature is randomly shuffled or permutated is the measure of how important that fea-263

ture is to the emulator (Breiman, 2001). The model score here is the Regression coef-264

ficient of determination (R2) and is a measure of how well the ML emulator fits the data.265

Thus, the PI method works well once a reliable ML emulator is developed and is a mea-266
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sure of sensitivity of GPP to an input variable given such an emulator. As in the case267

of developing the ML emulator, we performed 6-fold cross-validation for the feature se-268

lection process as well. We did this by devising a simple voting scheme with small dif-269

ferences based on the Feature Selection approach. In the case of the RFE method, we270

assigned a single vote to the feature(s) that was ranked highest in terms of influencing271

the prediction with the RMSE score. We then averaged the votes across all the input272

features to determine the actual ranks of these features. In the PI method, we calculated273

the contribution of each feature to the R2 score (permutation importances) and granted274

a vote to an input feature if it contributed to more than half of the score, which is the275

fit of the model. As in the RFE method, the votes were once again averaged across the276

cross-validation subsets. This scheme allowed us to account for collinearity or multiple277

variables equally influencing GPP especially as these are physical climate variables which278

are very closely related to each other.279

2.5 Distance measure for climate and GPP distribution comparisons280

While the ML emulators and Feature Selection are used to understand differences281

in models, we also calculate using a relative measure, how close or similar models are in282

the input forcing space vs. how similar they are in their simulated GPP distributions.283

Essentially we evaluate whether models that are similar in input atmospheric forcing sim-284

ulated by the ESMs are also similar in their GPP simulations. If we consider that ev-285

ery data sample is represented as an instance in a 3-Dimensional input climate param-286

eter space, where each dimension corresponds to a climate feature, then for a given region-287

season-ESM, we have a distribution of these 3-Dimensional data points. A distance met-288

ric is applied to quantify how close climate distributions from two different ESMs are289

for a given region and season. The same distance metric is now used to measure simi-290

larity between the GPP distributions of models in the 1-Dimensional space of GPP val-291

ues. The distance metric we use is the Jensen-Shannon distance, which is calculated as292

the square root of the Jensen-Shannon divergence between two distributions (Lin, 1991).293

This is a symmetric and smoothed version of the more commonly used Kullback-Divergence294

measure. This measure has been widely used in applications such as evaluating gener-295

ative adversarial networks by measuring differences in distributions (Goodfellow et al.,296

2020), text classification with high dimensional feature sets (Dhillon et al., 2003) and297

in bioinformatics for mutation detection (Gültas et al., 2014). The Jensen Shannon Di-298

vergence itself is defined as :299

JSD(P∥Q) =
1

2
D(P∥M) +

1

2
D(Q∥M),M =

1

2
(P +Q), (1)

where D(P ||Q) is the Kullback-Divergence (Csiszár, 1975) between two distributions P300

and Q. When a base-2 logarithm is used, the Jensen-Shannon divergence has an upper301

bound of 1 i.e, 0 ≤ JSD(P∥Q) ≤ 1. The existence of upper and lower bounds and302

the fact that distances are symmetric, are important properties we take advantage of when303

comparing ESMs. We refer to JSD as the Jensen-Shannon Distance instead of divergence304

as they both hold the same meaning for our analysis. Using the JSD, we compare how305

much ESMs differ in their input forcing vs in the simulated GPP for a region and sea-306

son. A JSD of 0 implies the distributions are identical and as the JSD increases going307

towards 1, it implies that distributions get more dissimilar. While it is not possible to308

directly compare distance values between pairs of ESMs across two different distribu-309

tion spaces (as in the 3-D climate space and the 1-D GPP space), we can compare how310

ESM-pair distances are ordered in both distribution spaces. That is we can see how dis-311

tances between pairs of models compare in the two different spaces. We further apply312

a simple scaling by a factor of the shortest distance among all pairs of models in the in-313
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Figure 2. An illustration of how the Jensen Shannon distance metric is used to understand

differences in input space (atmospheric forcings) and GPP space. In subplot (a) of the figure, we

can make the inference that similarities in input forcing are consistent with similarities in GPP

. Where that does not hold, we can start to explore the possibility that there might be larger

differences in process representation or parameterization between pairs of ESMs which results in

this difference in GPP as seen in subplots (b) and (c) and in the case of model pair A-B in (d).

Thus the JSD scaled in this manner gives us a way to actually compare the differences in input

forcings of ESMs relative to their simulated GPP.

put space so we can effectively make inferences about whether relative orderings in in-314

put climate variable space are reflected in the GPP space as well.315

We illustrate analysis based on the JSD in Figure 2 with four different possible use316

cases and how inferences can be made from them. Each sub figure shows the actual JSD317

in input (on the x-axis) and GPP (y-axis) space between three hypothetical models - A,318

B and C. The distances are then scaled by dividing all the distances in input space by319

the smallest such distance among all pairs of models. The distance in GPP space between320

that same pair of models is then used to scale all model pair distances in GPP space.321

This scaling allows us to effectively compare distances in input space vs GPP space. In322

subplot (a), we see that the relative ordering of distances between pairs of models is the323

same on both axes, the model pair A-B has the smallest distance in input space as well324

as GPP space while the model pair C-A has the largest distance in both these spaces.325

This provides some evidence that similarities or differences between pairs of models in326

the atmospheric forcing is also reflected in their GPP simulations. In (b), the distances327

in the atmospheric forcing are the same for all pairs of models but that’s not the case328

in their GPP simulations where the distance between C-A is larger than the other pairs329

indicating possible differences in process representation across the models. In (c), the330

model pairs show larger differences in their input forcing but not in the simulated GPP331

space, indicating that despite having different climate, the models end up simulating very332

similar GPP values potentially differing in the processes involved in calculating GPP from333

these climate variables. Finally, in (d) we see another example for where proximity in334

input forcing does not translate to similar GPP simulations. In model pair A-B, differ-335

ences lie more in simulated GPP than in the atmospheric forcing while the opposite is336
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the case for model pairs C-A and B-C. We can thus use this analysis to attribute rea-337

sons for differences in GPP simulations between pairs of models.338

The JSD measure was also used to determine how well the ML emulators estimate339

GPP by comparing the emulator estimated values with ESM simulations and we found340

that these distances tended to zero (results not shown). This further gives us confidence341

in our deployment of these ML emulators.342

The ML emulators with Feature Selection, Jensen-Shannon Distance metric com-343

parisons and more traditional analysis involving univariate statistics are all combined344

in our analysis of differences across ESMs in how they simulate GPP. Results from the345

analysis and a discussion on where the ML methods work well and where they don’t is346

discussed in the next sections.347

3 Results348

In this section, we look at two key sets of results coming from the ML framework349

proposed in section 2.4. We first look at regional feature importances, that is, what the350

ML emulators determine to be the most relevant climate variable for GPP in a given re-351

gion. We discuss results for regions in the JJA and DJF seasons as seen in Figures 3 and352

4 but also provide results from the annual mean analysis for a more general overview in353

Supplementary Figure S2. We study the differences and similarities in GPP represen-354

tation across pi-Control simulations in ESMs but due to the lack of observational datasets355

for this period, we use the literature on historical observations to guide our evaluation.356

Our second set of results is from the comparison of relative distances between ESMs357

in the input climate space vs the GPP distribution space as described in Subsection 2.5358

and shown in Figure 5. In our current analysis, we provide examples for how the JSD359

based comparisons can be useful as a tool to identify potential sources of differences in360

ESMs but leave more detailed region by region analysis for future work.361

3.1 Model differences in relevant climate variables for GPP362

Figures 3 and 4 show the most relevant climate variables for predicting GPP from363

two feature selection methods – Recursive Feature Elimination (RFE) and Permutation364

Importance (PI) in the first and second columns respectively. The RFE method’s selec-365

tion of best feature is considered the most relevant variable for GPP by the ML emu-366

lator and means that this variable is primarily responsible for estimating GPP. The PI367

method’s selection on the other hand is more a measure of GPP’s sensitivity to climate368

variables given the ML emulator. The most important climate variable could also be the369

variable GPP is most sensitive to, as in both methods could agree on the choice of cli-370

mate variable(s) but differences are possible since the metrics involved are slightly dif-371

ferent (low error vs best fit ). ESM differences in the top features from the methods are372

considered an appropriate potential starting point for investigating divergence in GPP373

estimates from ESMs. We refer to the regions by their acronyms as defined in Iturbide374

et al. (2022) and are shown in Supplementary Figure S3 for reference.375

Overall, all ESMs considered agree that temperature followed by precipitation are376

key variables for GPP for most of Europe, N.America and Asia. Over Africa and S.America,377

there is less of a consensus across ESMs and methods in accordance with previous anal-378

ysis (Churkina & Running, 1998). Temperature is considered the most important vari-379

able for GPP in the Russian-Arctic (RAR) and Northern Europe (NEU) regions in JJA380

for most ESMs. Conditions of almost constant sunlight and water availability make tem-381

perature the key driver for GPP here. The northern N.American regions are a combi-382

nation of arctic tundra and boreal forests and similarly show temperature as the main383
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Figure 3. JJA feature importance from two methods - Recursive Feature elimination and

Permutation Invariance for the IPCC regions defined in Iturbide et al. (2022).–11–
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Figure 4. DJF feature importance from two methods - Recursive Feature elimination and

Permutation Invariance for IPCC regions defined in Iturbide et al. (2022)–12–
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driving factor except for Northwestern North America (NWN) in CNRM-ESM2-1 where384

precipitation is determined as the key driver.385

Boreal forest regions such as Eastern Europe (EEU), Western and Eastern Siberia386

(WSB, ESB) and the Russian Far East (RFE) show more divergence across ESMs with387

GPP being more dependent in both RFE and PI methods on temperature or radiation388

or both but in some instances (ESB for GISS-E2-1-G) on precipitation. In the central389

and eastern continental United States (CNA, ENA), UKESM1-0-LL and CNRM-ESM2-390

1 models consider precipitation to be most relevant for GPP while all other models find391

temperature more relevant. The variability in GPP is also dominated by a combination392

of these two variables as seen in the PI method. In the western north American region393

(WNA), radiation is seen as driving GPP except in CanESM5 (temperature) and CNRM-394

ESM2-1 (precipitation). In fact, precipitation seems to be most relevant for GPP in al-395

most all N.American regions in the CNRM-ESM2-1 model and this can be considered396

as an indication that either the availability or the parameterization of this variable is im-397

portant for GPP in this model more so than in others.398

All ESMs in our study agree precipitation and temperature play a more important399

role than radiation in the Mediterranean region (MED), where radiation is largely avail-400

able and a lack of rainfall or very high temperature is likely to influence vegetation more401

(Gea-Izquierdo et al., 2015). The CNRM1-ESM2-1 and IPSL-CM6A-LR are the two mod-402

els that rank precipitation higher than temperature as an important feature. For the re-403

gion covering the Indian subcontinent (SAS), precipitation is considered most important404

in the UKESM1-0-LL and CanESM5 models, consistent with previous studies (Varghese405

& Behera, 2019; Verma et al., 2022) while all three other models favor temperature as406

the key factor. In East Asia (EAS) temperature is considered the most important driver407

for GPP followed by precipitation and radiation in some regions (Yao et al., 2018; Bo408

et al., 2022) and all models except UKESM1-0-LL (precipitation) are in agreement.409

In the DJF season, all models except CanESM5 consider precipitation most rel-410

evant for GPP in South East South America (SES) and all models agree that temper-411

ature is most relevant for Eastern Australia (EAU). We find the largest source of dis-412

agreement with regards to GPP drivers (looking at both DJF and JJA seasons) in re-413

gions where there is a significant presence of tropical forests such as Northern South Amer-414

ica (NSA), Central-Africa (CAF), South-East Asia (SEA) and Northern Australia (NAU).415

We note radiation plays a role in some regions, possibly due to the lack of sufficient ra-416

diative energy available due to cloud cover which makes it hard to distinguish the rel-417

ative importance between features. However almost all ESMs over a majority of these418

regions reference temperature and precipitation as key variables and from observational419

records we know that the two variables are strongly correlated in these regions (Nzabarinda420

et al., 2021; F. Zhang et al., 2022; Kanniah et al., 2011). Although precipitation appears421

most frequently as as the most important variable in determining GPP, especially us-422

ing the RFE method of feature selection, in more than one instance all three features423

are considered relevant. This is consistent with results from previous studies using ob-424

servations and non-ML approaches applied to finding GPP drivers (Churkina & Run-425

ning, 1998; Kanniah et al., 2013; D. Wu et al., 2014). Another area where models lack426

consensus over the drivers is Southern Africa (ESAF and WSAF) for the DJF season.427

In reality, these areas are dominated by savannah, and are likely water limited but this428

is seen only in the UKESM1-0-LL model. Water limitaion effects on GPP in ESMs is429

typically modelled quite crudely, with uncertain parameterization (Harper et al., 2020)430

, and this is likely a significant source of disparity between the models.431

3.2 Comparing differences in climate forcing vs GPP in model pairs432

We compare ESM differences in the input feature space with their GPP distribu-433

tions with the approach described in 2.5. In Figure 5 we show the comparative distances434
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as a scatter plot to illustrate how we can potentially develop our hypotheses for quan-435

tifying and thus attributing differences in GPP to differences in climate forcing or pro-436

cess representation.437

From the scatter plots in 5, we see differences across regions in how the pairwise438

model distances relate. If distances in input climate space between pairs of models trans-439

lated to similar distances in GPP distributions, we would see the data points scattered440

along the diagonal unit slope line as seen in the NSA region. However this is not always441

the case, and we see more of a spread along the input space or x-axis (MED, RAR and442

somewhat also in SAS) where the plot indicates a spread in climate not quite seen in the443

simulated GPP and where relative differences in GPP are smaller than in input forcing444

. In other regions (SEA) however almost all pairs are above the unit slope line, which445

means that distances are larger in the GPP space.446

We can use information from where there is a spread to investigate the likely causes447

underlying GPP divergence across models. In at least two regions (RAR and SAS), we448

notice that relative model distances with UKESM1-0-LL are greater in the y-axis even449

though such distances in the input space lie more or less in the middle range. This is an450

indication that the GPP simulated by UKESM1-0-LL is most different compared to other451

models even though not largely different in climate. In the SAS region for instance, the452

IPSL-CM6A-LR and UKESM1-0-LL models are closest in input space relative to other453

model pairs (seen as black colored letter I ), and the CanESM5 model is identically dis-454

tanced from both these models in the input space (seen as black and blue letters Ca ).455

However, we see that in GPP space the UKESM1-0-LL distance with CanESM5 is more456

than the distance between CanESM5 and IPSL-CM6A-LR. Therefore one hypothesis worth457

investigating for this region is whether GPP process representation in IPSL-CM6A-LR458

and CanESM5 is similar in parameterization and different from UKESM1-0-LL. We would459

also include information from our feature importance results in 3 where we see that the460

two models differ in the variable considered most relevant for GPP (this is precipitation461

for UKESM1-0-LL, CanESM5 and temperature for IPSL-CM6A-LR). We argue that this462

type of analysis would be difficult to apply if we only consider univariate statistics as we463

show with examples in Supplementary Figure S4.464

As a counter example, the ENA and to some extent the WSAF regions are exam-465

ples of where it is not so clear how much of the difference in GPP to attribute to the in-466

fluence of atmospheric forcing vs process representation from the scatter plot in Figure467

5 due to close clustering in the relative distances.468

4 Discussion469

4.1 Choice of ML Approach for Evaluation470

GPP is the largest individual carbon flux in the Earth System and changes to it471

have implications for the atmospheric carbon dioxide concentration, net carbon balance472

of the land surface and climate feedbacks (Friedlingstein et al., 2014). Interannual vari-473

ability in GPP is influenced by changes in climate especially in hotspot regions such as474

tropical forests (O’Sullivan et al., 2020; Jung et al., 2011). Earth System Models pro-475

vide the capability to simulate the Earth System’s biogeochemical interactions and car-476

bon cycle but global GPP estimates from ESMs vary greatly. For instance, in the five477

CMIP6 ESMs in our study, we found the global mean annual GPP to be in the range478

of 82-115 PgC year−1 for the pre-industrial period. The need to evaluate the carbon cy-479

cle in ESMs is thus critical for both better process representation and for modeling in-480

teractions with other components of the Earth System such as the atmosphere (Spafford481

& MacDougall, 2021; Reichler & Kim, 2008). Advances in Machine Learning and AI pro-482

vides the algorithms that can help to facilitate evaluation of these complex interactions483

and uncover process based differences across ESMs (Huntingford et al., 2019). Our ap-484
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Figure 5. A comparison of relative distances in climate forcing and in GPP from different

climate models is shown. Every model is referenced by both a color and an alphabet, the color

and alphabet pairing tells us which pair of models are represented. Since the JSD is symmetric,

there is only one colored symbol to show the distance between every pair of models. For this

reason, there is no letter seen for the first model in the list, UKESM1-0-LL but its color (black)

and letters for other models show the distance between UKESM1-0-LL and other models. For

each region, the actual JSD values are scaled by factor that is the smallest distance in the input

space across all pairs of models as seen in the x-axis and by the distance measure for that same

pair in the GPP space as seen in the y-axis. This scaling follows from the description in Section 2

and Figure 2.
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proach has been to start with the simplest ML models suited for our purpose. For this485

study, we build ML emulators with three input climate features to estimate GPP and486

for that emulator to be interpretable, which we demonstrate with our Feature Selection487

algorithms. Therefore, our ML emulators are not black boxes but can be interpreted in488

the context of physical and biogeochemical Earth System processes. We evaluated a choice489

of regression schemes before determining that Decision Trees best suited our task and490

further added better generalization capabilities with Boosting in the form of an Ensem-491

ble Learner with Adaboost. Such an emulator was capable of readily providing expla-492

nations on the modeled interactions between the atmospheric variables and GPP. At the493

same time, our framework is flexible enough for this emulator to be replaced with more494

complex ML algorithms such as Deep Architectures (LeCun et al., 2015) as we expand495

our suite of interacting variables for more nuanced evaluation of the carbon cycle. We496

further built robustness into our methods through rigorous cross validation and through497

the approaches outlined in Section 2.3 and demonstrate a reliable and adaptable frame-498

work that is also interpretable. With this framework, we were able to show regional sim-499

ilarities and differences in ESMs in the influence of key climate variables for GPP. Our500

emulator has the capability to capture non-linear relationships between the climate vari-501

ables and GPP which can help to address limitations or complement more traditional502

approaches using correlations or calculated indices seen in the literature (O’Sullivan et503

al., 2020; Seddon et al., 2016).504

The second component of our framework is a way to compare differences in climate505

variables influencing GPP with differences in processes estimating GPP in ESMs and506

we choose an algorithm based on the Jensen Shannon distance that is robust against small507

variations in distributions, allows a comparison of the joint input space with three vari-508

ables and has bounds [0,1] to enable relative placement of distances. Also where a statis-509

tic such as a mean could be close for two different distributions, such as unimodal vs bi-510

modal, the JSD will capture a difference in parameterization resulting in quite different511

distributions with similar means. Finally, our method enables a more flexible and less512

expensive way to perform this comparison where previously modeling experiments had513

to be conducted for similar analysis (Hardouin et al., 2022).514

4.2 Application of ML framework for GPP Evaluation515

The ML framework described in this paper can be used to identify areas of differ-516

ences in GPP modeling in ESMs. For instance, from Figure 4 and Figure 3, we see that517

while models have overall agreement on what variables are important for certain regions518

(temperature and precipitation for the Mediterranean, South Asia, Eastern and Central519

North America; temperature and radiation in the tundra and boreal forest regions) dif-520

ferences exist in the which individual climate variable matters for a given ESM. Further521

the comparison using JSD gives us a starting point for whether these differences are more522

in the state of the climate influencing GPP or in the processing of these variables such523

as through parameterizations. This ML framework can serve as a guide to investigate524

probable reasons why differences in GPP modeling exist in ESMs in a computationally525

less expensive manner to actually running model simulations.526

4.3 Limitations and Challenges527

In our current study, we sample data uniformly from the spatio-temporal domain528

which does not capture sub-regional and sub-seasonal variability and trends. This lim-529

itation is mainly driven by the lack of availability of GPP data from CMIP6 ESMs at530

higher temporal resolutions for the pi-Control experiment. However, this is more a fea-531

ture of the data used and our framework will allow us to experiment with different res-532

olutions in data when available. The JSD approach provides a relatively inexpensive method,533

without actually having to run model simulations, to compare differences across mod-534

els in GPP vs climate variables but in some regions such as Eastern North America (ENA)535
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seen in Figure 5, it is harder to infer where the differences lie. Along with future work536

to develop this analysis, we also suggest that individual components of the ML frame-537

work as well as more traditionally considered descriptive statistics such as means and538

variability should all be used in a complementary fashion in the evaluation process so539

we can take insights from different modes of analysis. Finally, the three predictor vari-540

ables were chosen because of their importance in determining the supply of water (pre-541

cipitation), its loss through evapotranspiration (temperature) and the available energy542

for photosynthesis (shortwave radiation). We recognize the need to include a broader suite543

of variables for a more holistic evaluation of the carbon cycle which is possible to do with544

our framework.545

5 Conclusions546

This study demonstrates the potential of using interpretable ML approaches to in-547

vestigate differences in GPP modeling across a selection of CMIP6 models and over land548

regions defined in the IPCC’s Sixth Assessment Report and two seasons. In conclusion:549

1. The relative importance of key climate drivers for GPP was identified across dif-550

ferent regions and ESMs using Feature Selection Methods with interpretable ML551

emulators. We illustrate this with examples such as the Mediterranean region where552

all models agree that drought variables such as temperature or precipitation in-553

fluence GPP more than radiation but models differ in which of the two variables554

is most relevant.555

2. With a comparative distance metric based on the Jensen Shannon Distance, we556

are able to show that proximity or distance in climate between any two models557

does not necessarily translate to a similar proximity or distance in their estimated558

GPP distributions with the Russian Arctic (RAR) and Mediterranean regions (MED)559

as two such examples. We take this as evidence that process based differences ex-560

ist across models and are at least partly responsible for differences in GPP esti-561

mates from ESMs.562

3. Where the JSD method suggests divergence in GPP potentially due to process mod-563

eling, for instance in South Asia (SAS) between the UKESM1-0-LL, IPSL-CM6A-564

LR and CanESM5 models, the Feature Selection process can offer an explanation.565

In this case the UKESM1-0-LL and IPSL-CM6A-LR models differ in the key cli-566

mate variable for GPP but the UKESM1-0-LL and CanESM5 models don’t and567

a possible reason for this can be differences in parameterization or characteristics568

of this variable not considered in the input features.569

4. There are some regions where models do not show a clear consensus on what cli-570

mate variables matter the most or identify all three variables as equally impor-571

tant such as the tropics. Similarly our distance metric based comparison also presents572

cases where a direct inference on attributing GPP differences cannot be made, such573

as the Eastern North American (ENA) region. We identify these as regions of un-574

certainty to address in future work.575

Data from the pre-industrial Control experiments served as a baseline for the develop-576

ment of this evaluation framework. In future work, additional climate drivers and char-577

acteristics such as sub-monthly variability will also be incorporated as possible causes578

for variations in GPP estimates from ESMs and analysis will be conducted with data579

from historical experiments and observations towards the goal of improving vegetation580

modeling in Earth System Models.581

6 Open Research582

Data from CMIP6 climate models is available for download on Earth System Grid583

Federation nodes and were downloaded and preprocessed using the open source software584
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ESMValTool v2.8.0 (doi:10.5281/zenodo.3401363) and ESMValCore v2.8.0 (doi:10.5281/zenodo.3387139).585

Code used to produce the results in this paper is available under the CC-BY license at586

the Github respository (https://github.com/rswamina/gpp-ml-eval-1-publish) which is587

currently private but will be made public once the manuscript has been accepted for pub-588

lication.589
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Zarakas, C. M., Swann, A. L., Laguë, M. M., Armour, K. C., & Randerson, J. T.852

(2020). Plant physiology increases the magnitude and spread of the transient853

climate response to co2 in cmip6 earth system models. Journal of Climate,854

33 (19), 8561–8578. doi: 10.1175/JCLI-D-20-0078.1855

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Zhang, F., Lu, X., Huang, Q., & Jiang, F. (2022). Impact of different era reanaly-856

sis data on gpp simulation. Ecological Informatics, 68 , 101520. doi: 10.1016/857

j.ecoinf.2021.101520858

Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S., & Gentine, P. (2018).859

A global spatially contiguous solar-induced fluorescence (csif) dataset us-860

ing neural networks. Biogeosciences, 15 (19), 5779–5800. doi: 10.5194/861

bg-15-5779-2018862

Zhang, Z., Xin, Q., & Li, W. (2021). Machine learning-based modeling of vegetation863

leaf area index and gross primary productivity across north america and com-864

parison with a process-based model. Journal of Advances in Modeling Earth865

Systems, 13 (10), e2021MS002802. doi: 10.1029/2021MS002802866

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Evaluating Vegetation Modeling in Earth System1

Models with Machine Learning Approaches2

Ranjini Swaminathan1,2, Tristan Quaife1,2and Richard Allan1,2
3

1University of Reading4
2National Centre for Earth Observation5

Key Points:6

• A Machine Learning framework to advance our understanding of the terrestrial7

carbon cycle in Earth System Models or ESMs is proposed8

• Differences in the relative importance of atmospheric drivers of gross primary pro-9

ductivity highlights differences across models10

• A method to attribute differences in productivity estimates from ESMs due to pro-11

cess representation versus atmospheric forcing is demonstrated12

Corresponding author: Ranjini Swaminathan, r.swaminathan@reading.ac.uk

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract13

Vegetation Gross Primary Productivity (GPP) is the single largest carbon flux of the14

terrestrial biosphere which, in turn, is responsible for sequestering 25−30% of anthro-15

pogenic carbon dioxide emissions. The ability to model GPP is therefore critical for cal-16

culating carbon budgets as well as understanding climate feedbacks. Earth System Mod-17

els (ESMs) have the capability to simulate GPP but vary greatly in their individual es-18

timates, resulting in large uncertainties. We describe a Machine Learning (ML) approach19

to investigate two key factors responsible for differences in simulated GPP quantities from20

ESMs: the relative importance of different atmospheric drivers and differences in the rep-21

resentation of land surface processes. We describe the different steps in the development22

of our interpretable Machine Learning (ML) framework including the choice of algorithms,23

parameter tuning, training and evaluation. Our results show that ESMs largely agree24

on the physical climate drivers responsible for GPP as seen in the literature, for instance25

drought variables in the Mediterranean region or radiation and temperature in the Arc-26

tic region. However differences do exist since models don’t necessarily agree on which27

individual variable is most relevant for GPP. We also explore a distance measure to at-28

tribute GPP differences to climate influences versus process differences and provide ex-29

amples for where our methods work (South Asia, Mediterranean)and where they are in-30

conclusive (Eastern North America).31

Plain Language Summary32

Gross Primary Productivity (GPP) is the rate at which plants remove carbon diox-33

ide from the atmosphere during photosynthesis. Carbon dioxide is a greenhouse gas and34

excess in the atmosphere causes global warming and climate change. Changes in the amounts35

of atmospheric carbon dioxide will impact the entire Earth System. We therefore need36

the ability to accurately calculate GPP, especially for different possible carbon usage path-37

ways in the future. Earth System Models or ESMs allow us to simulate various processes38

happening in the earth’s atmosphere and biosphere including photosynthesis and can help39

us estimate GPP changes for such different pathways. However, ESMs can vary signif-40

icantly in their simulated GPP estimates making it difficult to have confidence in using41

these estimates. We describe a Machine Learning (ML) framework to better understand42

where ESMs differ in calculating GPP so that we can address knowledge gaps in mod-43

els. This approach allows us to understand the processes involved without having to run44

computationally expensive simulations. With improved models, we can also improve our45

ability to predict climate change outcomes for the future.46

————————————————————————47

1 Introduction48

Terrestrial Gross Primary Production (GPP) is the flux of carbon into the land sur-49

face driven by photosynthesis.50

It is estimated that terrestrial GPP is in the order of ∼ 132PgC and it is the sin-51

gle largest annual flux of the global carbon cycle. It plays a key role in determining at-52

mospheric carbon dioxide, since approximately a quarter to a third of anthropogenic emis-53

sions are sequestered by the land surface (on Climate Change, 2023; Schimel et al., 2001;54

Schwalm et al., 2020). GPP is influenced by natural climate variability as well as anthro-55

pogenic factors associated with global warming (Santini et al., 2014; Zampieri et al., 2021).56

Our ability to estimate GPP, its spatio-temporal patterns and the factors influencing GPP57

is therefore essential to understanding and forecasting global carbon budgets with greater58

reliability. GPP is not a directly measurable quantity at spatial scales of interest for car-59

bon budget calculations (global or regional), so we rely on indirect measurements with60

inevitable assumptions, for example about the partitioning of fluxes at eddy covariance61
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sites (Jung et al., 2019) or from satellite observations of quantities such as Solar Induced62

Fluorescense (SIF) (Sun et al., 2017; Y. Zhang et al., 2018), which are not direct mea-63

sures of the carbon flux.64

Earth System Models (ESMs) provide the capability to simulate GPP by modelling65

the various interactions between the atmosphere and biosphere including under differ-66

ent climate change scenarios in the future (Fisher et al., 2018; Levis, 2010). However,67

there is not only a large spread in GPP estimates from different ESMs but there are also68

large uncertainties in observational products that could be used to evaluate these esti-69

mates (Z. Wu et al., 2017; Anav et al., 2015). Therefore, there is a real need for eval-70

uation methods that will help us understand better the possible reasons for such a large71

spread in GPP simulations, both in terms of the influence of atmospheric variables driv-72

ing GPP as well as in the representation of the processes involved in simulating GPP.73

Identifying these differences can further help us address key gaps in modeling the ter-74

restrial carbon cycle and will make for more reliable simulations from ESMs.75

Machine Learning (ML) approaches have recently been used extensively in the study76

as well as generation of more accurate GPP data sets. Examples are seen work done in77

simulating GPP using observations of meteorological data or satellite data (Z. Zhang et78

al., 2021; Sarkar et al., 2022), upscaling GPP estimates from eddy covariance sites (Yu79

et al., 2021), to constrain uncertainty in GPP projections from models (Schlund et al.,80

2020) and for evaluating GPP representation in models (Z. Zhang et al., 2021; Dunkl et81

al., 2023). Our goal in this study is to use interpretable Machine Learning approaches82

(Molnar, 2020; Doshi-Velez & Kim, 2017) to better understand the sources of differences83

in GPP estimates between ESMs. Such an ML based evaluation framework can serve84

as a basis for process based improvements to ESMs, complementary to existing strate-85

gies, and can help reduce process uncertainty in modelled GPP estimates leading to more86

reliable simulations.87

In previous studies, differences in GPP estimates from ESMs have been attributed88

to differences in the simulations of climate projections, modeling of complex terrestrial89

processes such as dynamic vegetation modeling, as well as atmospheric CO2 concentra-90

tions for given emission scenarios (Nishina et al., 2015; Schwalm et al., 2020; Fisher &91

Koven, 2020; Kim et al., 2018; Koch et al., 2021). In this work, we focus on two key at-92

tributes responsible for variability in GPP across ESMs - (a) the differences in climate93

simulations or input atmospheric forcing influencing GPP in individual models and (b)94

differences arising from vegetation process representation in these models. While we ac-95

knowledge that GPP is dependent on several land and atmospheric variables, in keep-96

ing with other similar studies such as Churkina and Running (1998); Schwalm et al. (2020);97

Anav et al. (2015), we evaluate the influence of three atmospheric variables as primary98

determinants of photosynthesis – precipitation, air temperature and downwelling short-99

wave radiation.100

Our framework uses simulations from the CMIP pre-industrial Control (pi-Control)101

experiments that simulate climate before industrialization and the addition of anthro-102

pogenic CO2 to the atmosphere. These simulations do not have the effects of elevated103

CO2 that could lead to vegetation feedbacks or of any warming signal due to climate change.104

This allows us to better isolate the direct influence of the input climate variables on GPP105

without these factors. ESM simulations from pi-Control runs are also run for longer time106

periods, typically a few hundred years as opposed to a few decades from the historical107

experiment simulations and so this gives us a larger data set to learn from.108

The methods used in this framework are based on Information Theory and Machine109

Learning, and compare the differences in input atmospheric forcings and vegetation pro-110

cess modeling associated with simulating GPP, across different ESMs from the Sixth Phase111

of the Coupled Model Intercomparison Project (CMIP6) (Eyring et al., 2016). These meth-112

ods are directed towards formulating informed hypotheses for investigating the under-113
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lying factors influencing GPP estimates from ESMs. Specifically, the methods described114

target the following questions:115

1. How do CMIP6 models differ in the input atmospheric forcings they consider most116

relevant for GPP? This will help us understand potential differences in how cli-117

mate variables may influence GPP across models.118

2. Can we compare differences in input forcings across ESMs with their process based119

differences? This will guide us towards attributing differences in GPP to the ap-120

propriate underlying factors.121

We address the above questions by building ML based emulators of CMIP6 mod-122

els that estimate GPP with input climate data. We query these emulators using robust123

Feature Selection methods to determine the relevance of individual atmospheric variables124

with respect to GPP. We also compare the differences in input forcing vs GPP by us-125

ing a distance metric called the Jensen-Shannon distance measure. This is a novel ap-126

proach that allows a comparison of two different attributory factors responsible for GPP127

and to the best of our knowledge is not previously seen in the literature.128

We find that while the CMIP6 models considered largely agree on the variables con-129

sidered relevant for GPP, there are regions of uncertainty such as the tropics. We are130

also able to show that models with similar input forcings do not always show similar es-131

timates in GPP, indicating differences in process representation possibly due to param-132

eterization. The remainder of the paper is organized as follows – Section 2 describes the133

ML framework including the parameter tuning process and algorithmic description of134

the learning and Feature Selection approaches. In Section 3, we discuss results where the135

ML framework identifies differences in climate variables influencing GPP across ESMs.136

In Section 4, we discuss the interpretability of the ML framework described, how this137

framework can be used for evaluation and some of the challenges involved. Finally we138

present our conclusions and planned future work using for this framework in 5.139

2 Data and Methods140

2.1 Data and Pre-processing141

Our experimental experimental input data consists of five ESMs (UKESM1-0-LL,142

IPSl-CM6A-LR, CanESM5, CNRM-ESM2-1 and GISS-E2-1-G) from the CMIP6 project,143

all with different vegetation and land surface models as shown in Table2.1. The crite-144

ria applied for selection was to pick a small set of models with diversity in their vege-145

tation modeling schemes, permitting exploration of various aspects of GPP simulation146

through our ML framework.147

Seasonal means were calculated from monthly means of the data for two seasons,148

the boreal summer season of June-July-August (JJA) and austral summer season of December-149

January-February (DJF). All data considered is from the pre-industrial control (pi-Control)150

experiments which do not have an anthropogenic warming signal and for which a few151

hundred years of data are available from every model. Analysis is done for regions de-152

fined in the Intergovernmental Panel on Climate Change’s Sixth Assessment Report (IPCC153

AR6), (Gutiérrez et al., 2021). Data was downloaded and pre-processed from the Earth154

System Grid Federation servers (Cinquini et al., 2014) using the open source evaluation155

tool, ESMValTool (Righi et al., 2020). We removed all non-land grid cells of a model in156

a selected region to focus on terrestrial GPP and then sampled data uniformly across157

time and space. Every grid cell and every time instance constitutes a sample data point158

and for each data point, we have one value each for the three atmospheric variables as159

well as for GPP. We then use this pre-processed data for further analysis. A pictorial160

description of our ML framework is shown in Figure 1.161
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Earth System Model Land Surface Model Reference Dynamic
Vegetation

UKESM1-0-LL Joint UK Land Environ-
ment Simulator (JULES)

(Sellar et al., 2019;
Clark et al., 2011)

Yes

IPSL-CM6A-LR Organising Carbon
and Hydrology In Dy-
namic Ecosystems (OR-
CHIDEE)

(Boucher et al., 2020;
Krinner et al., 2005)

No

CanESM5 The Canadian Land Sur-
face Scheme (CLASS)

(Swart et al., 2019;
Verseghy, 2012)

No

CNRM-ESM2-1 Interaction Soil-
Biosphere-Atmosphere
(ISBA)

(Séférian et al., 2019;
Delire et al., 2020)

No

GISS-E2-1-G ENT Terrestrial Bio-
sphere Model

(Kelley et al., 2020;
Kiang, 2012)

No

Table 1. The CMIP6 models evaluated with our framework and their corresponding vegeta-

tion models. Data on dynamicity of vegetation obtained from the Earth System Documentation

Project (Greenslade et al., 2014) and (Zarakas et al., 2020)

.

Figure 1. A description of the Machine Learning framework for evaluating GPP in CMIP6

models: Data from atmospheric variables and GPP for a given region, season and ESM is used

to train an ensemble learner which serves as the ML emulator. The ML emulator is then queried

using two different Feature Ranking algorithms (RFE or Recursive feature Elimination and PI

or Permutation Importance) to find the most relevant features or atmospheric variables for GPP

in that region. Data from pairs of ESMs is also used to calculate the Jensen-Shannon Distance

(JSD) metric to compare distances measured in the input variable space with distances measured

in the GPP distributions across regions.
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2.2 ML Emulators with Ensemble Learning162

Our requirement for an ML based emulator was one that would effectively model163

the relationship between input atmospheric forcing variables (and any other similar GPP164

influencing variables to be included as needed) and GPP; and one that would allow us165

to interpret or make inferences on the modeled relationships to answer questions on the166

relative importance or sensitivity to the climate variables. An additional goal was to de-167

velop a flexible framework that could be applied to observed data to better facilitate model168

evaluation. For this reason, we designed the core of the emulator to be a multivariate169

regression model and one that can be interpreted or queried on the decisions made for170

regression. In this, the climate forcing variables are the input features or predictors and171

GPP is the predictand. The ML emulator is trained for every region, season and ESM172

in our experimental setup. We use a regression model with Boosting called Adaptive Boost-173

ing or AdaBoost (Mendes-Moreira et al., 2012; Schapire, 2013) for our framework. Boost-174

ing is a well established ML approach that works towards developing a highly accurate175

prediction rule by repeatedly combining several weaker predictors or learners (Drucker,176

1997) which in this case would be regressors. In Boosting, the first weak predictor is trained177

with a subset of samples uniformly sampled from the training data set with replacement178

permitted, meaning a training sample can be used again to build a different predictor.179

Once a predictor is built, all the training samples are passed through the predictor and180

the samples with the largest prediction errors are identified. The sampling probabilities181

of the samples with the most error are adjusted so that they are more likely to get picked182

as training samples for the next weak learner to be built. As this process repeats, harder183

to learn patterns get picked more often to build subsequent predictors. This means that184

some predictors will do better than others in a given subspace of the input feature space.185

The predictors are further assigned weights of the form, β̄ = L̄
1−L̄

where L̄ is a calcu-186

lated loss function. Cumulative predictions are calculated as a weighted median of all187

the predictors. The algorithm terminates when the average loss across all weak learn-188

ers is below a certain threshold. The weak learners or regressors in this boosting algo-189

rithm can be any one of a wide array of regression methods. We calculated the Root Mean190

Square Error scores on held out test data sets and determined that the Decision Tree191

algorithm described in Breiman et al. (1984); Quinlan (1986); Breiman (1996) was best192

suited for our task after experimenting with different ML regression algorithms such as193

Linear Regression (James et al., 2021) and Support Vector Machines (Smola & Schölkopf,194

2004). We therefore use an Ensemble Tree Learner with Boosting for our ML emulators.195

As shown in Fig 1, CMIP6 data in the form of gridded data sets was used to train196

the ML emulators by treating each grid cell at every time step as an individual sample197

for learning. However, ESMs differ in grid resolution and in the length or number of years198

of the pi-Control experiment runs. So, for a given region, the number of training sam-199

ples can be different across ESMs. In order to avoid biases resulting from differences in200

the number of samples, we randomly sampled a minimal sample set from every model201

such that the number of samples to train an emulator is the same across all ESMs. This202

sample set is then used to tune the parameters and build the Decision Trees in the ML203

emulator.204

2.3 Parameter Tuning205

In applied Machine Learning, parameter tuning is considered an important step206

in developing ML models that best capture patterns in the training data without over-207

fitting (Yang & Shami, 2020). Overfitting occurs when we train the ML model to fit the208

training data too well which could result in a loss of generality. In other words, the ML209

model performs exceedingly well on the data it is trained with but fails to perform well210

on a new test set of samples even if from the same or similar distribution. We employ211

the Adaboost algorithm with an ensemble of Decision Tree regressors from the open source212

Python Scikit-learn package (Pedregosa et al., 2011) to build our ML emulators. A built213
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in mechanism for pruning the ensemble learner exists for removing learners in a way that214

diversity is maximized. This essentially means that learners are selected such that a wide215

range of associations or rules are learnt and duplication of rules learnt is minimized by216

pruning. This helps to avoid overfitting by balancing the need to add more rules in the217

predictor with the ability to generalize well. In our experiments we tune for the depth218

parameter in the Decision Tree for optimal performance of the emulator, determined as219

the best fit to the data as evaluated by the Root Mean Squared Error (RMSE) in the220

predictions. The depth of the Decision Tree is the number of levels at which decision nodes221

are split in the tree. For example, a decision could be tas > 20 which would split train-222

ing samples into those where the surface temperature is greater than 20◦C (condition223

is true) and those where the temperature is less than 20◦C (condition is false) and so224

on. For every region-season-ESM combination, we split the samples available into a train-225

ing set and a held out test set. The ML emulator (AdaBoost with Decision Tree regres-226

sor) is learnt using the training samples and tested on the held out samples. RMSE scores227

are calculated for both training and held out test sets. For a given value of the depth228

parameter, this process is repeated by splitting the data n times and the average train-229

ing and test RMSE scores over the n splits is calculated. This is how n-fold cross-validation230

(where n=6 in this case) is performed. The depth parameter that has the lowest RMSE231

score on the held out test data, with cross–validation is then chosen as the most opti-232

mal parameter for the task and a final ML emulator is built using that depth parame-233

ter and all the samples available for that region. This builds robustness against overfit-234

ting, and sampling multiple times during cross validation further makes the model more235

reliable ensuring that the final emulator has seen a good representation of the available236

data. ML emulator estimates of GPP for a selection of regions are shown as an illustra-237

tion of the results from this process in Supplementary Figure S1.238

2.4 Feature Selection Methods239

After the ML emulators were constructed to specification and sufficiently satisfied240

requirements, meaning the final emulator had the lowest possible RMSE scores for held241

out test data in cross validation experiments as described, we focused on querying or in-242

terpreting these emulators to better understand the relationship between the different243

input climate variables and GPP. Feature Selection or Feature Importance Ranking is244

the process of selecting or ranking features (input variables or predictors) that are most245

relevant to the predictand as evaluated by some chosen measurement or metric (Kumar246

& Minz, 2014; Guyon & Elisseeff, 2003). It is a process that is often used to prune the247

number of input features required for accurate predictions but in our case, with just three248

features, we use feature ranks to find the input atmospheric forcing variable(s) that the249

ML emulators find most important for GPP. Two different feature selection methods were250

applied to the ML emulators - (a) Recursive Feature Elimination (RFE) and (b) Per-251

mutation Importance (PI). The two methods use slightly different criteria to evaluate252

feature importances as described below but both provide useful information regarding253

the relative importance of a climate variable for GPP and are complementary. In the Re-254

cursive Feature Elimination algorithm, the input features are recursively removed one255

at a time to find the feature that has the most influence on the predictand (Guyon et256

al., 2002). For our experiments, we used the RMSE values to quantify the influence of257

an input climate variable on GPP. So, if the RFE method determines precipitation to258

be the most important feature for GPP, this effectively means that removing precipita-259

tion from the set of input features would have the most impact on the emulator’s abil-260

ity to predict GPP well i.e increase the RMSE by the most compared to other variables.261

In the Permutation Importance method, the decrease in model score when an individ-262

ual feature is randomly shuffled or permutated is the measure of how important that fea-263

ture is to the emulator (Breiman, 2001). The model score here is the Regression coef-264

ficient of determination (R2) and is a measure of how well the ML emulator fits the data.265

Thus, the PI method works well once a reliable ML emulator is developed and is a mea-266
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sure of sensitivity of GPP to an input variable given such an emulator. As in the case267

of developing the ML emulator, we performed 6-fold cross-validation for the feature se-268

lection process as well. We did this by devising a simple voting scheme with small dif-269

ferences based on the Feature Selection approach. In the case of the RFE method, we270

assigned a single vote to the feature(s) that was ranked highest in terms of influencing271

the prediction with the RMSE score. We then averaged the votes across all the input272

features to determine the actual ranks of these features. In the PI method, we calculated273

the contribution of each feature to the R2 score (permutation importances) and granted274

a vote to an input feature if it contributed to more than half of the score, which is the275

fit of the model. As in the RFE method, the votes were once again averaged across the276

cross-validation subsets. This scheme allowed us to account for collinearity or multiple277

variables equally influencing GPP especially as these are physical climate variables which278

are very closely related to each other.279

2.5 Distance measure for climate and GPP distribution comparisons280

While the ML emulators and Feature Selection are used to understand differences281

in models, we also calculate using a relative measure, how close or similar models are in282

the input forcing space vs. how similar they are in their simulated GPP distributions.283

Essentially we evaluate whether models that are similar in input atmospheric forcing sim-284

ulated by the ESMs are also similar in their GPP simulations. If we consider that ev-285

ery data sample is represented as an instance in a 3-Dimensional input climate param-286

eter space, where each dimension corresponds to a climate feature, then for a given region-287

season-ESM, we have a distribution of these 3-Dimensional data points. A distance met-288

ric is applied to quantify how close climate distributions from two different ESMs are289

for a given region and season. The same distance metric is now used to measure simi-290

larity between the GPP distributions of models in the 1-Dimensional space of GPP val-291

ues. The distance metric we use is the Jensen-Shannon distance, which is calculated as292

the square root of the Jensen-Shannon divergence between two distributions (Lin, 1991).293

This is a symmetric and smoothed version of the more commonly used Kullback-Divergence294

measure. This measure has been widely used in applications such as evaluating gener-295

ative adversarial networks by measuring differences in distributions (Goodfellow et al.,296

2020), text classification with high dimensional feature sets (Dhillon et al., 2003) and297

in bioinformatics for mutation detection (Gültas et al., 2014). The Jensen Shannon Di-298

vergence itself is defined as :299

JSD(P∥Q) =
1

2
D(P∥M) +

1

2
D(Q∥M),M =

1

2
(P +Q), (1)

where D(P ||Q) is the Kullback-Divergence (Csiszár, 1975) between two distributions P300

and Q. When a base-2 logarithm is used, the Jensen-Shannon divergence has an upper301

bound of 1 i.e, 0 ≤ JSD(P∥Q) ≤ 1. The existence of upper and lower bounds and302

the fact that distances are symmetric, are important properties we take advantage of when303

comparing ESMs. We refer to JSD as the Jensen-Shannon Distance instead of divergence304

as they both hold the same meaning for our analysis. Using the JSD, we compare how305

much ESMs differ in their input forcing vs in the simulated GPP for a region and sea-306

son. A JSD of 0 implies the distributions are identical and as the JSD increases going307

towards 1, it implies that distributions get more dissimilar. While it is not possible to308

directly compare distance values between pairs of ESMs across two different distribu-309

tion spaces (as in the 3-D climate space and the 1-D GPP space), we can compare how310

ESM-pair distances are ordered in both distribution spaces. That is we can see how dis-311

tances between pairs of models compare in the two different spaces. We further apply312

a simple scaling by a factor of the shortest distance among all pairs of models in the in-313
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Figure 2. An illustration of how the Jensen Shannon distance metric is used to understand

differences in input space (atmospheric forcings) and GPP space. In subplot (a) of the figure, we

can make the inference that similarities in input forcing are consistent with similarities in GPP

. Where that does not hold, we can start to explore the possibility that there might be larger

differences in process representation or parameterization between pairs of ESMs which results in

this difference in GPP as seen in subplots (b) and (c) and in the case of model pair A-B in (d).

Thus the JSD scaled in this manner gives us a way to actually compare the differences in input

forcings of ESMs relative to their simulated GPP.

put space so we can effectively make inferences about whether relative orderings in in-314

put climate variable space are reflected in the GPP space as well.315

We illustrate analysis based on the JSD in Figure 2 with four different possible use316

cases and how inferences can be made from them. Each sub figure shows the actual JSD317

in input (on the x-axis) and GPP (y-axis) space between three hypothetical models - A,318

B and C. The distances are then scaled by dividing all the distances in input space by319

the smallest such distance among all pairs of models. The distance in GPP space between320

that same pair of models is then used to scale all model pair distances in GPP space.321

This scaling allows us to effectively compare distances in input space vs GPP space. In322

subplot (a), we see that the relative ordering of distances between pairs of models is the323

same on both axes, the model pair A-B has the smallest distance in input space as well324

as GPP space while the model pair C-A has the largest distance in both these spaces.325

This provides some evidence that similarities or differences between pairs of models in326

the atmospheric forcing is also reflected in their GPP simulations. In (b), the distances327

in the atmospheric forcing are the same for all pairs of models but that’s not the case328

in their GPP simulations where the distance between C-A is larger than the other pairs329

indicating possible differences in process representation across the models. In (c), the330

model pairs show larger differences in their input forcing but not in the simulated GPP331

space, indicating that despite having different climate, the models end up simulating very332

similar GPP values potentially differing in the processes involved in calculating GPP from333

these climate variables. Finally, in (d) we see another example for where proximity in334

input forcing does not translate to similar GPP simulations. In model pair A-B, differ-335

ences lie more in simulated GPP than in the atmospheric forcing while the opposite is336
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the case for model pairs C-A and B-C. We can thus use this analysis to attribute rea-337

sons for differences in GPP simulations between pairs of models.338

The JSD measure was also used to determine how well the ML emulators estimate339

GPP by comparing the emulator estimated values with ESM simulations and we found340

that these distances tended to zero (results not shown). This further gives us confidence341

in our deployment of these ML emulators.342

The ML emulators with Feature Selection, Jensen-Shannon Distance metric com-343

parisons and more traditional analysis involving univariate statistics are all combined344

in our analysis of differences across ESMs in how they simulate GPP. Results from the345

analysis and a discussion on where the ML methods work well and where they don’t is346

discussed in the next sections.347

3 Results348

In this section, we look at two key sets of results coming from the ML framework349

proposed in section 2.4. We first look at regional feature importances, that is, what the350

ML emulators determine to be the most relevant climate variable for GPP in a given re-351

gion. We discuss results for regions in the JJA and DJF seasons as seen in Figures 3 and352

4 but also provide results from the annual mean analysis for a more general overview in353

Supplementary Figure S2. We study the differences and similarities in GPP represen-354

tation across pi-Control simulations in ESMs but due to the lack of observational datasets355

for this period, we use the literature on historical observations to guide our evaluation.356

Our second set of results is from the comparison of relative distances between ESMs357

in the input climate space vs the GPP distribution space as described in Subsection 2.5358

and shown in Figure 5. In our current analysis, we provide examples for how the JSD359

based comparisons can be useful as a tool to identify potential sources of differences in360

ESMs but leave more detailed region by region analysis for future work.361

3.1 Model differences in relevant climate variables for GPP362

Figures 3 and 4 show the most relevant climate variables for predicting GPP from363

two feature selection methods – Recursive Feature Elimination (RFE) and Permutation364

Importance (PI) in the first and second columns respectively. The RFE method’s selec-365

tion of best feature is considered the most relevant variable for GPP by the ML emu-366

lator and means that this variable is primarily responsible for estimating GPP. The PI367

method’s selection on the other hand is more a measure of GPP’s sensitivity to climate368

variables given the ML emulator. The most important climate variable could also be the369

variable GPP is most sensitive to, as in both methods could agree on the choice of cli-370

mate variable(s) but differences are possible since the metrics involved are slightly dif-371

ferent (low error vs best fit ). ESM differences in the top features from the methods are372

considered an appropriate potential starting point for investigating divergence in GPP373

estimates from ESMs. We refer to the regions by their acronyms as defined in Iturbide374

et al. (2022) and are shown in Supplementary Figure S3 for reference.375

Overall, all ESMs considered agree that temperature followed by precipitation are376

key variables for GPP for most of Europe, N.America and Asia. Over Africa and S.America,377

there is less of a consensus across ESMs and methods in accordance with previous anal-378

ysis (Churkina & Running, 1998). Temperature is considered the most important vari-379

able for GPP in the Russian-Arctic (RAR) and Northern Europe (NEU) regions in JJA380

for most ESMs. Conditions of almost constant sunlight and water availability make tem-381

perature the key driver for GPP here. The northern N.American regions are a combi-382

nation of arctic tundra and boreal forests and similarly show temperature as the main383
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Figure 3. JJA feature importance from two methods - Recursive Feature elimination and

Permutation Invariance for the IPCC regions defined in Iturbide et al. (2022).–11–
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Figure 4. DJF feature importance from two methods - Recursive Feature elimination and

Permutation Invariance for IPCC regions defined in Iturbide et al. (2022)–12–
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driving factor except for Northwestern North America (NWN) in CNRM-ESM2-1 where384

precipitation is determined as the key driver.385

Boreal forest regions such as Eastern Europe (EEU), Western and Eastern Siberia386

(WSB, ESB) and the Russian Far East (RFE) show more divergence across ESMs with387

GPP being more dependent in both RFE and PI methods on temperature or radiation388

or both but in some instances (ESB for GISS-E2-1-G) on precipitation. In the central389

and eastern continental United States (CNA, ENA), UKESM1-0-LL and CNRM-ESM2-390

1 models consider precipitation to be most relevant for GPP while all other models find391

temperature more relevant. The variability in GPP is also dominated by a combination392

of these two variables as seen in the PI method. In the western north American region393

(WNA), radiation is seen as driving GPP except in CanESM5 (temperature) and CNRM-394

ESM2-1 (precipitation). In fact, precipitation seems to be most relevant for GPP in al-395

most all N.American regions in the CNRM-ESM2-1 model and this can be considered396

as an indication that either the availability or the parameterization of this variable is im-397

portant for GPP in this model more so than in others.398

All ESMs in our study agree precipitation and temperature play a more important399

role than radiation in the Mediterranean region (MED), where radiation is largely avail-400

able and a lack of rainfall or very high temperature is likely to influence vegetation more401

(Gea-Izquierdo et al., 2015). The CNRM1-ESM2-1 and IPSL-CM6A-LR are the two mod-402

els that rank precipitation higher than temperature as an important feature. For the re-403

gion covering the Indian subcontinent (SAS), precipitation is considered most important404

in the UKESM1-0-LL and CanESM5 models, consistent with previous studies (Varghese405

& Behera, 2019; Verma et al., 2022) while all three other models favor temperature as406

the key factor. In East Asia (EAS) temperature is considered the most important driver407

for GPP followed by precipitation and radiation in some regions (Yao et al., 2018; Bo408

et al., 2022) and all models except UKESM1-0-LL (precipitation) are in agreement.409

In the DJF season, all models except CanESM5 consider precipitation most rel-410

evant for GPP in South East South America (SES) and all models agree that temper-411

ature is most relevant for Eastern Australia (EAU). We find the largest source of dis-412

agreement with regards to GPP drivers (looking at both DJF and JJA seasons) in re-413

gions where there is a significant presence of tropical forests such as Northern South Amer-414

ica (NSA), Central-Africa (CAF), South-East Asia (SEA) and Northern Australia (NAU).415

We note radiation plays a role in some regions, possibly due to the lack of sufficient ra-416

diative energy available due to cloud cover which makes it hard to distinguish the rel-417

ative importance between features. However almost all ESMs over a majority of these418

regions reference temperature and precipitation as key variables and from observational419

records we know that the two variables are strongly correlated in these regions (Nzabarinda420

et al., 2021; F. Zhang et al., 2022; Kanniah et al., 2011). Although precipitation appears421

most frequently as as the most important variable in determining GPP, especially us-422

ing the RFE method of feature selection, in more than one instance all three features423

are considered relevant. This is consistent with results from previous studies using ob-424

servations and non-ML approaches applied to finding GPP drivers (Churkina & Run-425

ning, 1998; Kanniah et al., 2013; D. Wu et al., 2014). Another area where models lack426

consensus over the drivers is Southern Africa (ESAF and WSAF) for the DJF season.427

In reality, these areas are dominated by savannah, and are likely water limited but this428

is seen only in the UKESM1-0-LL model. Water limitaion effects on GPP in ESMs is429

typically modelled quite crudely, with uncertain parameterization (Harper et al., 2020)430

, and this is likely a significant source of disparity between the models.431

3.2 Comparing differences in climate forcing vs GPP in model pairs432

We compare ESM differences in the input feature space with their GPP distribu-433

tions with the approach described in 2.5. In Figure 5 we show the comparative distances434
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as a scatter plot to illustrate how we can potentially develop our hypotheses for quan-435

tifying and thus attributing differences in GPP to differences in climate forcing or pro-436

cess representation.437

From the scatter plots in 5, we see differences across regions in how the pairwise438

model distances relate. If distances in input climate space between pairs of models trans-439

lated to similar distances in GPP distributions, we would see the data points scattered440

along the diagonal unit slope line as seen in the NSA region. However this is not always441

the case, and we see more of a spread along the input space or x-axis (MED, RAR and442

somewhat also in SAS) where the plot indicates a spread in climate not quite seen in the443

simulated GPP and where relative differences in GPP are smaller than in input forcing444

. In other regions (SEA) however almost all pairs are above the unit slope line, which445

means that distances are larger in the GPP space.446

We can use information from where there is a spread to investigate the likely causes447

underlying GPP divergence across models. In at least two regions (RAR and SAS), we448

notice that relative model distances with UKESM1-0-LL are greater in the y-axis even449

though such distances in the input space lie more or less in the middle range. This is an450

indication that the GPP simulated by UKESM1-0-LL is most different compared to other451

models even though not largely different in climate. In the SAS region for instance, the452

IPSL-CM6A-LR and UKESM1-0-LL models are closest in input space relative to other453

model pairs (seen as black colored letter I ), and the CanESM5 model is identically dis-454

tanced from both these models in the input space (seen as black and blue letters Ca ).455

However, we see that in GPP space the UKESM1-0-LL distance with CanESM5 is more456

than the distance between CanESM5 and IPSL-CM6A-LR. Therefore one hypothesis worth457

investigating for this region is whether GPP process representation in IPSL-CM6A-LR458

and CanESM5 is similar in parameterization and different from UKESM1-0-LL. We would459

also include information from our feature importance results in 3 where we see that the460

two models differ in the variable considered most relevant for GPP (this is precipitation461

for UKESM1-0-LL, CanESM5 and temperature for IPSL-CM6A-LR). We argue that this462

type of analysis would be difficult to apply if we only consider univariate statistics as we463

show with examples in Supplementary Figure S4.464

As a counter example, the ENA and to some extent the WSAF regions are exam-465

ples of where it is not so clear how much of the difference in GPP to attribute to the in-466

fluence of atmospheric forcing vs process representation from the scatter plot in Figure467

5 due to close clustering in the relative distances.468

4 Discussion469

4.1 Choice of ML Approach for Evaluation470

GPP is the largest individual carbon flux in the Earth System and changes to it471

have implications for the atmospheric carbon dioxide concentration, net carbon balance472

of the land surface and climate feedbacks (Friedlingstein et al., 2014). Interannual vari-473

ability in GPP is influenced by changes in climate especially in hotspot regions such as474

tropical forests (O’Sullivan et al., 2020; Jung et al., 2011). Earth System Models pro-475

vide the capability to simulate the Earth System’s biogeochemical interactions and car-476

bon cycle but global GPP estimates from ESMs vary greatly. For instance, in the five477

CMIP6 ESMs in our study, we found the global mean annual GPP to be in the range478

of 82-115 PgC year−1 for the pre-industrial period. The need to evaluate the carbon cy-479

cle in ESMs is thus critical for both better process representation and for modeling in-480

teractions with other components of the Earth System such as the atmosphere (Spafford481

& MacDougall, 2021; Reichler & Kim, 2008). Advances in Machine Learning and AI pro-482

vides the algorithms that can help to facilitate evaluation of these complex interactions483

and uncover process based differences across ESMs (Huntingford et al., 2019). Our ap-484
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Figure 5. A comparison of relative distances in climate forcing and in GPP from different

climate models is shown. Every model is referenced by both a color and an alphabet, the color

and alphabet pairing tells us which pair of models are represented. Since the JSD is symmetric,

there is only one colored symbol to show the distance between every pair of models. For this

reason, there is no letter seen for the first model in the list, UKESM1-0-LL but its color (black)

and letters for other models show the distance between UKESM1-0-LL and other models. For

each region, the actual JSD values are scaled by factor that is the smallest distance in the input

space across all pairs of models as seen in the x-axis and by the distance measure for that same

pair in the GPP space as seen in the y-axis. This scaling follows from the description in Section 2

and Figure 2.
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proach has been to start with the simplest ML models suited for our purpose. For this485

study, we build ML emulators with three input climate features to estimate GPP and486

for that emulator to be interpretable, which we demonstrate with our Feature Selection487

algorithms. Therefore, our ML emulators are not black boxes but can be interpreted in488

the context of physical and biogeochemical Earth System processes. We evaluated a choice489

of regression schemes before determining that Decision Trees best suited our task and490

further added better generalization capabilities with Boosting in the form of an Ensem-491

ble Learner with Adaboost. Such an emulator was capable of readily providing expla-492

nations on the modeled interactions between the atmospheric variables and GPP. At the493

same time, our framework is flexible enough for this emulator to be replaced with more494

complex ML algorithms such as Deep Architectures (LeCun et al., 2015) as we expand495

our suite of interacting variables for more nuanced evaluation of the carbon cycle. We496

further built robustness into our methods through rigorous cross validation and through497

the approaches outlined in Section 2.3 and demonstrate a reliable and adaptable frame-498

work that is also interpretable. With this framework, we were able to show regional sim-499

ilarities and differences in ESMs in the influence of key climate variables for GPP. Our500

emulator has the capability to capture non-linear relationships between the climate vari-501

ables and GPP which can help to address limitations or complement more traditional502

approaches using correlations or calculated indices seen in the literature (O’Sullivan et503

al., 2020; Seddon et al., 2016).504

The second component of our framework is a way to compare differences in climate505

variables influencing GPP with differences in processes estimating GPP in ESMs and506

we choose an algorithm based on the Jensen Shannon distance that is robust against small507

variations in distributions, allows a comparison of the joint input space with three vari-508

ables and has bounds [0,1] to enable relative placement of distances. Also where a statis-509

tic such as a mean could be close for two different distributions, such as unimodal vs bi-510

modal, the JSD will capture a difference in parameterization resulting in quite different511

distributions with similar means. Finally, our method enables a more flexible and less512

expensive way to perform this comparison where previously modeling experiments had513

to be conducted for similar analysis (Hardouin et al., 2022).514

4.2 Application of ML framework for GPP Evaluation515

The ML framework described in this paper can be used to identify areas of differ-516

ences in GPP modeling in ESMs. For instance, from Figure 4 and Figure 3, we see that517

while models have overall agreement on what variables are important for certain regions518

(temperature and precipitation for the Mediterranean, South Asia, Eastern and Central519

North America; temperature and radiation in the tundra and boreal forest regions) dif-520

ferences exist in the which individual climate variable matters for a given ESM. Further521

the comparison using JSD gives us a starting point for whether these differences are more522

in the state of the climate influencing GPP or in the processing of these variables such523

as through parameterizations. This ML framework can serve as a guide to investigate524

probable reasons why differences in GPP modeling exist in ESMs in a computationally525

less expensive manner to actually running model simulations.526

4.3 Limitations and Challenges527

In our current study, we sample data uniformly from the spatio-temporal domain528

which does not capture sub-regional and sub-seasonal variability and trends. This lim-529

itation is mainly driven by the lack of availability of GPP data from CMIP6 ESMs at530

higher temporal resolutions for the pi-Control experiment. However, this is more a fea-531

ture of the data used and our framework will allow us to experiment with different res-532

olutions in data when available. The JSD approach provides a relatively inexpensive method,533

without actually having to run model simulations, to compare differences across mod-534

els in GPP vs climate variables but in some regions such as Eastern North America (ENA)535
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seen in Figure 5, it is harder to infer where the differences lie. Along with future work536

to develop this analysis, we also suggest that individual components of the ML frame-537

work as well as more traditionally considered descriptive statistics such as means and538

variability should all be used in a complementary fashion in the evaluation process so539

we can take insights from different modes of analysis. Finally, the three predictor vari-540

ables were chosen because of their importance in determining the supply of water (pre-541

cipitation), its loss through evapotranspiration (temperature) and the available energy542

for photosynthesis (shortwave radiation). We recognize the need to include a broader suite543

of variables for a more holistic evaluation of the carbon cycle which is possible to do with544

our framework.545

5 Conclusions546

This study demonstrates the potential of using interpretable ML approaches to in-547

vestigate differences in GPP modeling across a selection of CMIP6 models and over land548

regions defined in the IPCC’s Sixth Assessment Report and two seasons. In conclusion:549

1. The relative importance of key climate drivers for GPP was identified across dif-550

ferent regions and ESMs using Feature Selection Methods with interpretable ML551

emulators. We illustrate this with examples such as the Mediterranean region where552

all models agree that drought variables such as temperature or precipitation in-553

fluence GPP more than radiation but models differ in which of the two variables554

is most relevant.555

2. With a comparative distance metric based on the Jensen Shannon Distance, we556

are able to show that proximity or distance in climate between any two models557

does not necessarily translate to a similar proximity or distance in their estimated558

GPP distributions with the Russian Arctic (RAR) and Mediterranean regions (MED)559

as two such examples. We take this as evidence that process based differences ex-560

ist across models and are at least partly responsible for differences in GPP esti-561

mates from ESMs.562

3. Where the JSD method suggests divergence in GPP potentially due to process mod-563

eling, for instance in South Asia (SAS) between the UKESM1-0-LL, IPSL-CM6A-564

LR and CanESM5 models, the Feature Selection process can offer an explanation.565

In this case the UKESM1-0-LL and IPSL-CM6A-LR models differ in the key cli-566

mate variable for GPP but the UKESM1-0-LL and CanESM5 models don’t and567

a possible reason for this can be differences in parameterization or characteristics568

of this variable not considered in the input features.569

4. There are some regions where models do not show a clear consensus on what cli-570

mate variables matter the most or identify all three variables as equally impor-571

tant such as the tropics. Similarly our distance metric based comparison also presents572

cases where a direct inference on attributing GPP differences cannot be made, such573

as the Eastern North American (ENA) region. We identify these as regions of un-574

certainty to address in future work.575

Data from the pre-industrial Control experiments served as a baseline for the develop-576

ment of this evaluation framework. In future work, additional climate drivers and char-577

acteristics such as sub-monthly variability will also be incorporated as possible causes578

for variations in GPP estimates from ESMs and analysis will be conducted with data579

from historical experiments and observations towards the goal of improving vegetation580

modeling in Earth System Models.581

6 Open Research582

Data from CMIP6 climate models is available for download on Earth System Grid583

Federation nodes and were downloaded and preprocessed using the open source software584
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ESMValTool v2.8.0 (doi:10.5281/zenodo.3401363) and ESMValCore v2.8.0 (doi:10.5281/zenodo.3387139).585

Code used to produce the results in this paper is available under the CC-BY license at586

the Github respository (https://github.com/rswamina/gpp-ml-eval-1-publish) which is587

currently private but will be made public once the manuscript has been accepted for pub-588

lication.589
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S1: Gross Primary Productivity values estimate by the ML emulator for a
selection of IPCC regions. Every column shows the difference between the ML
emulator output and the GPP simulated by a given ESM. The RMSE error is
shown at the top of each region alongwith the difference in area averaged mean
between the ML emulator estimates and the ESM sumlated values. All units
are in g/m2/month.
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S2: Annual feature importance from two methods - Recursive Feature elimina-
tion and Permutation Invariance for IPCC regions.
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S3: IPCC AR 6 reference regions and their acronyms.
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S4: A comparison of means and standard deviations of the climate variables
or input forcings considered important for GPP. Each row shows the mean and
standard deviation for a single variable with colored bars representing individual
models grouped by regions. Vertical lines overlayed on the colored bars shows
the standard deviation and the horizontal line shows the multimodel mean.
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