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Abstract

Characterizing climate change impacts on water resources typically relies on Global Climate Model (GCM) outputs that are

bias-corrected using observational datasets. In this process, two pivotal decisions are (i) the Bias Correction Method (BCM)

and (ii) how to handle the historically observed time series, which can be used as a continuous whole (i.e., without dividing it

into sub-periods), or partitioned into monthly, seasonal (e.g., three months), or any other temporal stratification (TS). Here,

we examine how the interplay between the choice of BCM, TS, and the raw GCM seasonality may affect historical portrayals

and projected changes. To this end, we use outputs from 29 GCMs belonging to the CMIP6 under the Shared Socioeconomic

Pathway 5–8.5 scenario, using seven BCMs and three TSs (entire period, seasonal, and monthly). The results show that the

effectiveness of BCMs in removing biases can vary depending on the TS and climate indices analyzed. Further, the choice of

BCM and TS may yield different projected change signals and seasonality (especially for precipitation), even for climate models

with low bias and a reasonable representation of precipitation seasonality during a reference period. Because some BCMs may

be computationally expensive, we recommend using the linear scaling method as a diagnostics tool to assess how the choice

of TS may affect the projected precipitation seasonality of a specific GCM. More generally, the results presented here unveil

trade-offs in the way BCMs are applied, regardless of the climate regime, urging the hydroclimate community for a careful

implementation of these techniques.
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Abstract16

Characterizing climate change impacts on water resources typically relies on Global Cli-17

mate Model (GCM) outputs that are bias-corrected using observational datasets. In this18

process, two pivotal decisions are (i) the Bias Correction Method (BCM) and (ii) how19

to handle the historically observed time series, which can be used as a continuous whole20

(i.e., without dividing it into sub-periods), or partitioned into monthly, seasonal (e.g.,21

three months), or any other temporal stratification (TS). Here, we examine how the in-22

terplay between the choice of BCM, TS, and the raw GCM seasonality may affect his-23

torical portrayals and projected changes. To this end, we use outputs from 29 GCMs be-24

longing to the CMIP6 under the Shared Socioeconomic Pathway 5–8.5 scenario, using25

seven BCMs and three TSs (entire period, seasonal, and monthly). The results show that26

the effectiveness of BCMs in removing biases can vary depending on the TS and climate27

indices analyzed. Further, the choice of BCM and TS may yield different projected change28

signals and seasonality (especially for precipitation), even for climate models with low29

bias and a reasonable representation of precipitation seasonality during a reference pe-30

riod. Because some BCMs may be computationally expensive, we recommend using the31

linear scaling method as a diagnostics tool to assess how the choice of TS may affect the32

projected precipitation seasonality of a specific GCM. More generally, the results pre-33

sented here unveil trade-offs in the way BCMs are applied, regardless of the climate regime,34

urging the hydroclimate community for a careful implementation of these techniques.35

Plain Language Summary36

Global Climate Models (GCMs) are useful tools to characterize the historical and37

future evolution of the Earth’s climate and its impacts on water resources. Because these38

models contain errors and their horizontal resolution is too coarse for local impact as-39

sessments, spatial downscaling and bias correction are required steps. In particular, bias40

correction methods can be trained and applied using all the available historical data or41

by splitting the time series (e.g., by season or months). Since there is no guideline on42

selecting a temporal stratification, we analyze bias-corrected GCM outputs obtained with43

three types of strategy (entire period, seasons, and months) and seven bias-correction44

techniques over continental Chile. We show that the choice of bias correction method45

and the temporal stratification applied can modify the projected precipitation signal and46

seasonality. We also propose a simple statistical technique to identify if, for a given cli-47

mate model, the temporal stratification may be a relevant decision for climate impact48

assessments.49

1 Introduction50

Understanding and quantifying climate change impacts is crucial for long-term wa-51

ter resources planning and management. Such characterization typically involves hydro-52

logic model simulations forced by an ensemble of scenario-driven meteorological time se-53

ries obtained from Statistically Downscaled Bias-Corrected (SDBC) Global Climate Model54

(GCM) outputs (e.g., Addor et al., 2014; Hattermann et al., 2018; Her et al., 2019; Chen55

et al., 2021; Hanus et al., 2021; Vicuña et al., 2021). This approach usually requires the56

choice of emission scenario (e.g., Vano et al., 2015; Chegwidden et al., 2019), the choice57

of GCM (e.g., Hakala et al., 2018; Di Virgilio et al., 2022), the selection of Bias Correc-58

tion Method (BCM) (e.g., Werner & Cannon, 2016; Gutiérrez et al., 2019; Hess et al.,59

2023), and the choice of observational (or reference) dataset (e.g., Wootten et al., 2021;60

Rastogi et al., 2022).61

Among the above decisions, the selection and configuration of BCMs is a critical62

step given the risk of introducing artificial perturbations in GCM outputs (Hagemann63

et al., 2011; Maurer & Pierce, 2014; Wootten et al., 2021), generating a mismatch be-64

tween simulated (i.e., obtained from bias-corrected GCMs) and observed (i.e., obtained65
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from a reference dataset) annual cycles of climate variables (e.g., precipitation; Teutschbein66

& Seibert, 2010; Alder & Hostetler, 2019; Chen et al., 2021), with potential effects on67

projected climate change impacts and subsequent interpretations and adaptation strate-68

gies. A somewhat overlooked step is the strategy for handling the time series when ap-69

plying BCMs, hereafter referred to as temporal stratification (TS). For example, the bias70

correction of simulated daily time series can be performed using all the historical period71

(i.e., a single application of the BCM; e.g., Ghimire et al., 2019) or sub-periods of the72

historical time series, such as seasons (e.g., four applications of the BCM; e.g., Ruffault73

et al., 2014; Teng et al., 2015), months (i.e., twelve applications of the BCM; e.g., Pierce74

et al., 2015; Switanek et al., 2017; Matiu & Hanzer, 2022; Wu et al., 2022; J. Guo et al.,75

2023), or any other temporal window (e.g., Haerter et al., 2011; Reiter et al., 2018).76

Despite the large body of work exploring modeling decisions at the top of the ‘cas-77

cade of uncertainty’ (Wilby & Dessai, 2010), climate impact studies have typically re-78

lied on subjectively selected TSs. For example, Teng et al. (2015) compared four BCMs79

(applied with a seasonal TS) for hydrological projections in southeastern Australia, con-80

cluding that the hydrological model amplifies biases in precipitation after applying the81

BCMs, and that the large spread in the projected signal of changes in precipitation ex-82

tremes yields different impacts on runoff. Hakala et al. (2018) applied the quantile map-83

ping (QM) method (using a seasonal TS) to assess whether a hydrological model, forced84

by SDBC GCMs, can replicate the hydrological climatology observed during a histor-85

ical reference period, obtaining that, even after bias correction, biases in precipitation86

and streamflow seasonality persist. To analyze the effects of different observational datasets87

and BCMs on climate projections, Wootten et al. (2021) used three observational datasets88

to apply two BCMs: (i) the ‘Delta’ approach with a 3-month moving window, and (ii)89

the quantile delta mapping (QDM) method over four periods consisting of three non-90

overlapping months. They concluded that the selection of BCMs and observational datasets91

have different impacts on historical and projected time series for different variables, al-92

though they did not isolate the effect of the TS.93

Other studies have focused on the ability of different BCMs to reproduce histor-94

ically observed climate indices (e.g., Gutmann et al., 2014; François et al., 2020; Xavier95

et al., 2022), or the effects on climate projections (e.g., Maurer & Pierce, 2014; Melsen96

et al., 2018), without emphasizing the role of the TS and the evaluation timescale. More97

recently, Vogel et al. (2023) proposed a framework to evaluate downscaling and BCMs98

for climate change studies and demonstrated it over Australia using four GCMs, three99

BCMs and two downscaling methods, considering different TS (monthly, 3-month, and100

multi-time scales) for the BCMs. They suggested that the TS may influence the anal-101

ysis (after bias correction) and should be adequately chosen after a careful bias assess-102

ment.103

Although the preceding studies have covered domains with specific climate types,104

the trade-offs in selecting TS, BCMs, and GCMs for estimating historical biases (after105

applying BCMs) and projections across contrasting climates remain unclear. Hence, this106

paper seeks to disentangle the relative contribution of these decisions (especially TS) to107

the spread of bias-corrected time series at the annual, seasonal, and monthly timescales108

during historical and future periods rather than finding the ‘best’ configuration for the109

assessment of climate change impacts. Specifically, we address the following research ques-110

tions:111

1. To what extent does the choice of bias correction method and temporal stratifi-112

cation alter historical GCM simulations across different climate regions?113

2. What are the effects of bias correction methods and temporal stratification on the114

projected signal and seasonality of different climate variables?115

–3–
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3. Are there any connections between the effects of TS (on historical biases and pro-116

jections) and the capability of raw GCM output to replicate historically observed117

climatology?118

To seek answers, we evaluate the performance of 29 SDBC GCMs from the sixth phase119

of the Coupled Models Intercomparison Project (CMIP6; O’Neill et al., 2016) over dif-120

ferent climate groups in continental Chile. We use seven methods (three univariate and121

four multivariate) to correct biases in precipitation and maximum and minimum tem-122

perature. All BCMs are applied at three different TSs: (i) using the entire period (i.e.,123

all daily data simultaneously used for one application of the BCM), (ii) seasonally (i.e.,124

four applications of the BCM using four seasonally stratified time series), and (iii) monthly125

(i.e., twelve applications of the BCM for twelve monthly stratified time series).126

2 Study area and datasets127

2.1 Study area128

Our study domain is continental Chile, which is suitable for a comprehensive as-129

sessment of the TS-BCM-GCM interplay in very different climate types. Figure 1 shows130

the spatial distribution of mean annual precipitation, mean annual temperature, and three131

climate indices. The snowfall fraction SF = Sn/P (Figure 1d) is the fraction of mean132

annual precipitation (P , Figure 1b) falling as snow (Sn). The aridity index (Figure 1e)133

is the ratio between mean annual potential evapotranspiration (PET ) and mean annual134

precipitation. Finally, the precipitation seasonality (p-seasonality, Figure 1f) indicates135

whether most precipitation falls during winter (negative values) or summer (positive val-136

ues). In this paper, we use the season names within the context of the Southern Hemi-137

sphere (i.e., winter refers to months JJA, while summer to DJF).138

In the northern area (17°S-25°S), two main climate zones can be identified: (i) the139

super-arid coastal area, with very low annual precipitation amounts (<50 mm/yr), and140

(ii) the Altiplano region, with lower temperatures due to increasing altitude and larger141

annual precipitation (∼200 mm/yr). The mean annual precipitation increases towards142

the south, although the Andes Cordillera generates a west-east gradient, with larger pre-143

cipitation amounts and lower temperatures on the western slopes of the Andes Cordillera144

compared to the valleys. Moving south from ∼37°S, the altitude of Andean mountains145

progressively decreases, as well as the contribution of snowmelt to runoff, whereas pre-146

cipitation increases. South from 45°S, a west-to-east precipitation gradient produces high147

precipitation amounts on the coast (>2500 mm/yr), whereas a dry climate develops in148

Patagonia a few kilometers to the east, with decreasing precipitation amounts. In sum-149

mary: (i) most snowfall occurs in the Andes Cordillera, though snowfall events can also150

occur in the valleys of Austral Chile (<45°S); (ii) the hydroclimate is water-limited (PET/P >151

1) in approximately half of the Chilean territory, especially from ∼35°S to the north, whereas152

the hydroclimate of the south is energy limited (PET/P < 1); and (iii) most precipi-153

tation in Chile falls during the winter (red color in panel f), being the Altiplano (north-154

ern Chile) and Patagonia (∼50-55°S) two notable exceptions. For a more comprehen-155

sive review of the climate and weather of Chile, readers are referred to Aceituno et al.156

(2021) and Vásquez et al. (2021).157

2.2 Datasets158

We use the gridded meteorological product CR2MET v2.5 (Boisier et al., 2018; DGA,159

2022) as the observational baseline (hereafter reference dataset). CR2MET precipita-160

tion estimates (pr) are obtained through a combination of (i) logistic regression mod-161

els and (ii) multiple linear regression models that use ERA5 reanalysis outputs (Hersbach162

et al., 2020) and geomorphological attributes as predictors and daily precipitation from163

meteorological stations as predictands. For daily extreme temperatures (tmax and tmin),164
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Figure 1. Main physiographic and climate attributes of continental Chile for the period

1980-2014 (34 water years): (a) elevation, (b) mean annual precipitation, (c) mean annual tem-

perature, (d) snowfall fraction, (e) aridity index, and (f) p-seasonality.

land surface temperature from MODIS AQUA and TERRA (Wan, 2014) are also included165

as predictors. All variables (pr, tmax, and tmin) are available at a daily time step for166

the period January/1979-March/2020, covering continental Chile at a horizontal reso-167

lution of 0.05° x 0.05°. The mean daily temperature is computed as the average between168

tmax and tmin. It should be noted that CR2MET is, arguably, the most accurate me-169

teorological dataset for continental Chile since its development incorporated local me-170

teorological stations.171

We use outputs from 29 GCMs from the CMIP6 (O’Neill et al., 2016), based on172

the data availability for pr, tmax and tmin during the historical and projected periods,173

and the SSP5-8.5 scenario for being the worst in terms of greenhouse emissions and the174

‘business as usual’ development case. The name and horizontal resolution of each GCM175

are included in Table A1.176

3 Methodology177

Figure 2 shows the main steps of our approach. First, we delineate climate zones178

across Chile using cluster analysis (step 1), with the aim to examine possible relation-179

ships between climate types and the BCM-TS-GCM interplay. Step 2 considers differ-180

ent strategies for correcting biases in GCM outputs (i.e., seven bias-correction methods181

are applied using three different stratification periods). In step 3, we compute several182

climate indices derived from precipitation and temperature at different time scales (e.g.,183

annual, seasonal, and monthly mean values), for a historical and a future period. Finally,184

we conduct an Analysis of Variance (ANOVA) to quantify the relative contribution of185

different decisions to the spread of historical estimates. More details can be found in the186

following sections.187
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Figure 2. Diagram of the methodology used in this study

–6–



manuscript submitted to Earth’s Future

3.1 Climate clustering188

We perform a Bayesian clustering to identify climate zones across Chile. To this189

end, we use the aridity index (PET/P ), the p-seasonality, and the fraction of precipi-190

tation falling as snow as explanatory variables, since they reflect observed hydrological191

behaviors (Knoben et al., 2018). PET is computed using the Oudin et al. (2005) for-192

mula - available in the R Package airGR (Coron et al., 2017) - which requires air tem-193

perature (provided at daily time steps here) and latitude as inputs. To estimate Sn, we194

consider that snowfall occurs when the mean daily temperature is below 2°C (Jennings195

et al., 2018; Han et al., 2019; Sepúlveda et al., 2022), and p-seasonality is computed with196

the formula proposed by Woods (2009).197

Prior climate groups are defined with the Autoclass-C software (Cheeseman et al., 1988,198

1996), which has been previously used in hydrological applications (e.g., Sawicz et al.,199

2011). We subsequently refined the clustering results through visual inspection, group-200

ing small clusters based on spatial proximity and climate similarity.201

3.2 Raw GCM performance202

We use the Taylor Skill Score (TSS; Taylor, 2001) to evaluate the role of the raw203

GCM performance and its interplay with BCM and TS for SDBC-biases and projections204

at different time scales. The TSS is computed at the grid cell level (0.05° x 0.05°) for the205

period 1980-2014, contrasting downscaled GCM outputs against the reference dataset,206

as is commonly done for local climate impact assessments (e.g., Lafon et al., 2013). In207

this study, TSS is computed for precipitation, as shown in Eq. 1.208

TSS =
4(1 +R)(

σ̂ + 1
σ̂

)2
(1 +Ro)

(1)209

where R is the Pearson correlation coefficient between the raw GCM and the reference210

mean seasonality, and σ̂ = σGCM/σREF is the ratio between the standard deviation211

of raw monthly values (σGCM ) and the reference (σREF ). R, and σ̂ are computed us-212

ing simulated and observed mean monthly values of each variable (i.e., 12 values of GCMs213

vs. 12 reference values). Ro is the maximum achievable Pearson correlation coefficient214

for a specific GCM, which is assumed to be Ro
∼= 1 to simplify the analysis. When R →215

Ro and σ̂ → 1, the TSS → 1. Alternatively, TSS → 0 when R decreases or σ̂ ap-216

proaches zero or infinity. Hence, TSS ranges between 0 and 1. Further, we compute the217

TSS for each climate group, estimating the mean group climatology through spatial av-218

erages.219

3.3 Bias correction of GCMs220

3.3.1 Bias correction methods221

We downscale the raw GCM outputs to the CR2MET grid using inverse distance222

weighting, considering the four closest GCM grid cells. We use seven bias correction meth-223

ods, including three univariate and four multivariate techniques, listed in Table 1 and224

briefly reviewed here. The quantile delta mapping (QDM) preserves the projected change225

for each quantile while correcting the bias. Empirical cumulative density functions are226

estimated for the historical reference (Fh,ref ), the raw historical GCM (Fh,GCM ), and227

the raw projected GCM (Fp,GCM ) to relate (X) with the cumulative probability (τ). For228

a specific value during the historical period Xh,GCM , the correction (for pr) is given by229

X
′

h,GCM = F−1
h,ref (Fh,GCM (Xh,GCM )), while for a projected raw GCM value Xp,GCM ,230

the corrected value is X
′

p,GCM = ∆·F−1
h,GCM (Fp,GCM (Xp,GCM )), where ∆ is computed231

as ∆ = Xp,GCM/F−1
h,GCM (Fp,GCM (Xp,GCM )) for precipitation.232

The asynchronous regression (AR) relies on a piecewise linear regression calibrated with233

sorted raw GCM and reference data during a historical period (i.e., Fh,ref is a function234

of Fh,GCM ). Although a simple linear regression could be used, the error in the tails of235

–7–
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the regression can be large and, therefore, the data is split by including different knots236

(up to six) to reduce errors in low and high values. To bias-correct projected values, the237

calibrated piecewise linear regression is applied. The quantile regressions neural network238

(QRNN) uses neural networks to bias correct the sorted data (i.e., quantiles) from sim-239

ulations and the reference. QRNN is a flexible model since it does not assume a specific240

relationship between the raw GCM and the reference data.241

The rank resampling for distributions and dependences (R2D2) corrects the covariance242

among sites and/or variables through four steps: (i) the univariate bias correction of each243

variable/site separately, (ii) the selection of one variable/site and the computation of the244

ranking for all variables/sites, (iii) for a specific date, select the same ranking in the ref-245

erence period for the dimension selected, and (iv) the shuffling of the other variables/sites246

to maintain rank structure.247

The ‘multivariate bias correction’ family (MBC) includes three different methods using248

the Pearson correlation coefficient (MBCp), the Spearman rank correlation coefficient249

(MBCr), and an N-dimensional probability density function (MBCn) to transform the250

raw correlated GCM data (i.e., the intervariable dependence structure) through consec-251

utive iterations. For MBCp and MBCr, the transformation relies on the Cholesky ma-252

trix decomposition and the correction of the covariance matrix. Conversely, MBCn re-253

lies on an orthogonal rotation, the application of QDM to these orthogonal variables, and,254

finally, the application of an inverse matrix (the one used to compute the orthogonal vari-255

ables) to obtain the resulting data. The reader is referred to the studies listed in Table256

1 for more details on the methods.257

Table 1. Methods considered in this study to bias-correct GCMs outputs (pr, tmax, and

tmin).

Acronym Name Type Reference

QDM Quantile Delta Mapping

Univariate

Cannon et al. (2015)

AR Asynchronous Regression
Dettinger et al. (2004);
Stoner et al. (2013)

QRNN Quantile Regression Neural Network Cannon (2011)

R2D2 Rank Resampling for Distributions and Dependences

Multivariate

Vrac and Thao (2020)
MBCp Multivariate Bias Correction method - Pearson

Cannon (2016)
MBCr Multivariate Bias Correction method - Rank
MBCn Multivariate Bias Correction method – QDM Cannon (2018)

We stress that it is not our aim to perform detailed comparisons among different258

bias correction techniques but to quantify the impact of this and other methodological259

choices on historical biases and projected changes in climate indices. All bias correction260

methods were applied using the statistical software ‘R’ (http://www.r-project.org/). The261

QDM, MBCp, MBCr, MBCn, and R2D2 methods were applied using the library ‘MBC’262

(Cannon, 2018). QRNN was implemented using the ‘qrnn’ library (also available in R),263

while the AR method was implemented following Stoner et al. (2013). To reduce the com-264

putational effort, we randomly select 100 grid cells within each climate group, and all265

subsequent analyses are conducted at these grid cells (100 ·Nclusters).266

3.3.2 Choice of the temporal stratification267

Bias correction methods can be applied using different stratification strategies. For268

example, a BCM can be applied at daily time steps using all the data in the historical269

period (usually 30 years), which means that all ∼10,950 days (∼365 days · 30 years) are270

simultaneously bias-corrected. For a seasonal TS, BCMs are applied four times, each one271

considering ∼2730 days (∼91 days · 30 years), whereas for a monthly TS, the BCM is272

applied 12 times considering ∼900 days (∼30 days · 30 years). Note that other tempo-273
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ral stratifications could be considered. Here, we applied BCMs to daily time series of pr,274

tmax, and tmin (e.g., Rastogi et al., 2022) using the entire time series in the historical275

period (1980-2014), and stratifying the data seasonally and monthly, since these TSs are276

typically considered for climate change impact assessments. For all combinations of BCM277

and TS, we obtained daily time series from 1980 to 2100.278

3.4 Climate indices279

We consider several climate indices that are relevant to reproduce historically ob-280

served hydrological responses (e.g., Gutmann et al., 2014), including (i) mean annual,281

seasonal, and monthly total precipitation, (ii) highest 1% daily precipitation, (iii), wet-282

day fraction, (iv) wet and dry-spell lengths, (v) fraction of precipitation falling as snow,283

and (vi) annual, seasonal and monthly averages of mean daily temperature and diurnal284

temperature ranges. To estimate the mean annual snowfall, we add all precipitation amounts285

for days with a mean daily temperature below 2°C. Wet-spell and dry-spell lengths (mean286

consecutive rainy and non-rainy days, respectively), as well as the wet-day fraction (mean287

fraction of rainy days) are computed as in Gutmann et al. (2014), considering 0.1 mm/d288

as a threshold. To examine the capability of BCMs to replicate historically observed cli-289

mate indices, we computed the difference between SDBC-GCM outputs and the refer-290

ence dataset during the historical period 1980-2014 as a percent bias (hereafter referred291

to as biases). Additionally, we analyze the effects of BCMs on climate projections by com-292

puting the relative change for the period 2065-2099 with respect to the historical period293

(1980-2014).294

3.5 Analysis of Variance295

To evaluate the relative contribution of the BCM and TS decisions to the spread296

of SDBC-biases we perform, for each combination of GCM and grid cell, an analysis of297

variance (ANOVA). In this case, the ANOVA is simplified as:298

TV = BCM +AP +Residual (2)299

where TV stands for the total variance of SDBC-biases, and the residual term is the vari-300

ance not explained by the BCM nor the TS for a specific GCM-grid cell combination.301

If the choice of TS had no impact on the biases in climate indices. In that case, the ap-302

plication of Supposey BCM should be able to reduce biases at all temporal scales (e.g.,303

annual, seasonal, or monthly), regardless of the GCM considered. To summarize the in-304

formation at the grid cell level, we compute the average of BCM/TV , TS/TV , and Residual/TV305

fractions across GCMs, whereas for the climate groups, we compute the mean relative306

contribution (estimated by BCM/TV , TS/TV and Residual/TV ) of TS and BCM to307

the spread as the average of fractions across the grid cells within that group.308

4 Results309

We show the climate clustering results, the historical biases after applying the BCMs,310

and the relative contributions of different methodological choices to historical biases of311

climate indices at the annual and seasonal scales. Further, we include the TSS perfor-312

mance to examine connections between the raw seasonality of the GCMs and the selec-313

tion of BCM and TS. For simplicity, we only show the results for precipitation, and the314

remaining variables can be found in the Supporting Information.315

4.1 Clustering316

The Bayesian clustering and subsequent spatial aggregation through visual inspec-317

tion provided ten climate groups for continental Chile (Figure 3). In general, the clus-318

ters follow two main climate patterns in Chile: (i) a latitudinal precipitation gradient,319
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from very arid (north) to humid (south), and (ii) a west-east gradient from the coast to320

the Andes Cordillera. Although northern Chile encloses groups 1, 2, and 3, clusters 2321

and 3 are located in the Altiplano region, where larger precipitation and lower temper-322

atures are observed. Groups 5, 6, and 8 span the coast and valley, whereas groups 4 and323

7 are located in the Andes. Finally, groups 9 (the rainiest group) and 10 are in south-324

ern Chile, characterized by large precipitation amounts in the Andes Cordillera and the325

coast, with decreasing precipitation and temperature towards the east (Patagonia).326
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Figure 3. (a) Spatial distribution of climate clusters in continental Chile based on snowfall

fraction, aridity index, and p-seasonality. The following attributes are ordered by the median

of each group: (b) elevation, (c) precipitation, (d) temperature, (e) snowfall fraction, (f) aridity

index, and (g) p-seasonality. All climate indices were computed for the period 1980-2014. Notice

that the boxplots in panels b-g are sorted according to the median value, and the group’s order

on the x-axis differs among variables.

4.2 Performance metrics after bias correction327

Figure 4 shows precipitation biases (after bias correction) in three different climate328

groups (the other variables and climate groups can be found in the Supporting Informa-329

tion). The results show that, regardless of the combination of GCM, BCM, TS and grid330

cell, biases in annual amounts are close to zero (Figure 4a). When the BCM is applied331
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using all the data in the historical period(Figure 4b, left), biases in monthly precipita-332

tion amounts can be large, although the magnitude varies among climate groups. In cli-333

mate group 2 (Altiplano region), precipitation occurs mostly during the summer (DJF);334

in this season, the median bias associated with January precipitation is relatively lower335

- though still considerable (>20%) - compared to the remaining months. In group 6, most336

precipitation occurs during the winter (JJA), and biases can be found in any month. In337

group 10, precipitation falls uniformly throughout the year, with slightly larger amounts338

and larger biases during the summer (DJF). When the BCM is applied seasonally (4b,339

center), monthly precipitation biases persist. However, these are generally lower com-340

pared to the case when the bias correction is applied using the entire dataset, especially341

in climate group 10. As expected, biases are nearly removed with a monthly TS (Fig-342

ure 4b, right), regardless of the GCM, bias correction method, grid cell, or climate group.343
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Figure 4. Historical biases in precipitation at the (a) annual and (b) seasonal time scales in

three climate groups (rows) after applying the BCMs. The columns in panel b) show results for

the three TSs used to apply the BCMs. Each boxplot comprises results from the 100 grid cells

within a specific climate group, 29 GCMs, and seven BCMs. The different seasons are highlighted

through grey-white areas.

Figure 5 displays the relative contributions of the BCM, TS, and residuals for mean344

annual, seasonal (summer and winter), and monthly (January and July) precipitation345

biases averaged across 1,000 grid cells in continental Chile. We show two seasons and346

months to examine possible differences between the dry and wet seasons. Additionally,347

the results from different GCMs are stratified according to their historical raw perfor-348

mance, measured by the Taylor Skill Score. As in Figure 4, the ANOVA analysis for his-349

torical biases shows differences among temporal stratifications, especially when compared350

to annual biases (Figure 5a). Because the relative contributions of BCM and TS to pre-351

cipitation biases do not greatly differ among climate groups, we show results at the na-352

tional scale. The choice of BCM explains most of the variance for the mean annual pre-353

cipitation bias, whereas the choice of TS explains almost all the variance for mean sea-354

sonal and monthly precipitation biases. It is worth noting that the biases at the annual355

scale are, in general, very low (Figure 4, <1%), and that the relative importance of the356

choice of TS for seasonal and monthly biases does not decrease for GCMs with high TSS357

values. The latter result is counterintuitive since one might expect that GCMs with good358

raw precipitation seasonality will be effectively bias-corrected, regardless of the TS se-359

lected. For variables related to quantiles (highest 1% daily precipitation, dry and wet-360
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spell lengths, and wet-day fraction), the relative importance of BCMs increases for GCMs361

with higher TSS, being BCM the most important decision, even at seasonally and monthly362

time scales (Figure S1).363
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Figure 5. Relative importance (as a fraction averaged from all grid cells and GCMs for

continental Chile) of the bias correction method and the temporal stratification to explain the

precipitation biases at the annual, seasonal (DJF and JJA), and monthly (January and July)

time scales during the historical period (1980-2014), for different levels of historical GCM perfor-

mance (x-axis). Biases are computed after applying BCMs.

4.3 Projected changes364

We now analyze the interplay between the choice of TS, the raw GCM precipita-365

tion seasonality, and its effects on projected changes in precipitation for the period 2065-366

2099 (with respect to 1980-2014) at different time scales. Figure 6 displays projected changes367

in mean annual, seasonal, and monthly precipitation for one grid cell located in central368

Chile (red dot in map) and one GCM (INM-CM4-8) with a high R value. For this GCM369

and grid cell, TSS = 0.76 during the period 1980-2014, with a Pearson correlation co-370

efficient between mean monthly raw GCM and reference amounts of 0.98, and a 41% un-371

derestimation of the standard deviation. The high value of R indicates a good season-372

ality of raw GCM outputs. Figure 6 shows that different BCMs yield a high dispersion373

in projected changes of mean annual precipitation (different lines), with little influence374

on the selected TS (x-axis of each subplot). Additionally, all BCMs alter the raw GCM375

projection. For example, if all BCMs are applied using the entire dataset, projected changes376

in summer precipitation range between -8% to 5%, whereas the raw projection is close377

to -30%. The application of MBCn using the entire period yields a positive projected378

change in the mean summer precipitation, while a seasonal and monthly application of379

the same BCM projects a decrease in summer precipitation. The results for individual380

months (January and July) reveal more dispersion and interaction among BCMs and the381

choice of TS. For example, applying the BCM with the entire time series results in pos-382

itive and negative projections of mean July precipitation (the rainiest month for this grid383

cell). Similarly, different TSs can also provide different projected signals.384

Figure 6 reveals that the choice of TS affects the signal of projected changes in sum-385

mer precipitation (e.g., for the MBCn method) and, in particular, in January and July386

precipitation amounts. The TS can be considered relevant for a specific grid cell if it is387

able to switch the projected signal of a variable for a particular GCM-BCM combina-388

tion. This is, for example, the case of mean July precipitation (Figure 6), for which the389
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Figure 6. Projected change in annual, seasonal (summer and winter), and monthly (January

and July) precipitation for different temporal stratifications (x-axis) and bias correction methods

(lines). All combinations of TS and BCM decisions, along with projected changes from the raw

(biased) GCMs, are displayed. The results are valid only for the grid cell shown and the GCM

INM-CM4-8. The metrics (e.g., TSS) were computed using the raw (biased) GCM data for the

period 1980-2014.

signal of projected changes is different among TSs for the MBCn, MBCr, and R2D2 meth-390

ods.391

Figure 7 shows, for all the grid cells analyzed, the fraction of ‘well-behaved’ GCMs392

(i.e., with TSS ≥ 0.7; e.g., Kwon et al., 2019) for which the selection of TS leads to393

different signs in projected precipitation changes. Note that the number of GCMs that394

meet the performance requirement - obtained by spatially averaging the number of GCMs395

with TSS ≥ 0.7 at each latitudinal band - varies along the domain. In general, the choice396

of TS does not alter the signal of projected changes in mean annual precipitation, although397

a few GCMs are affected by this decision in some areas (e.g., northern Chile). Never-398

theless, the effects of TS are more evident in seasonal projections (Figure 7b and 7c).399

During the summer, >50% of the number of GCMs are affected by the TS in Central400

Chile (dry season). During winter, the Altiplano region and part of southern Chile are401

largely influenced by the choice of TS. It should be noted, however, that the summer sea-402

son in Central Chile and the winter season in the Altiplano region are dry seasons. There-403

fore, while the signal of projected changes may vary for different TSs, the precipitation404

amounts involved are small. For mean monthly January and July precipitation, the choice405

of TS is even more relevant. Indeed, nearly all GCMs are affected by the TS along the406

coast of northern Chile, while ∼50% of the GCMs yield different signals in projected changes407

for different TSs in Central Chile. The case of July is more interesting since it is the raini-408

est month in most of continental Chile. In July, ∼50% of the GCMs are affected by the409

TS along the Central Chilean Andes (western border), impacting the accumulation of410

snow and, therefore, meltwater volume and timing estimates for the spring and summer411

seasons. In southern Chile, one can find grid cells where GCMs are affected by the TS412

decision, though that fraction is lower compared to the Central Chilean Andes.413
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Figure 7. Fraction of GCMs with acceptable performance (i.e., with TSS ≥ 0.7) for which the
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Figure 8a compares the raw GCM output (obtained from the GCM ACCESS-CM2)414

and the reference precipitation seasonality over a historical period at one grid cell located415

in central-southern Chile (red dot on the map). For this GCM-grid cell combination, TSS =416

0.96, R = 0.94 and σ̂ = 1.08. Note that the GCM simulates the maximum monthly417

precipitation in July instead of June (when the maximum occurs according to the ref-418

erence). Figure 8b displays, for the same GCM-grid cell, the projected precipitation sea-419

sonality for each BCM-TS combination (thin lighter lines). The results show that ap-420

plying a BCM using the entire period (green lines) provides the same seasonality as the421

raw GCM; however, seasonal and monthly TSs distort the raw projected seasonality. Fur-422

ther, when BCMs are applied using a monthly TS (black/gray lines), the projected month423

of maximum precipitation is June, whereas for seasonal and entire period such month424

is July. Additionally, seasonal and monthly TSs yield higher precipitation fractions (com-425

pared to the raw GCM) during April and May, and smaller values during September and426

October. Such differences in projected precipitation seasonality may affect any subse-427

quent analyses of simulated hydrological fluxes and states.428

To examine the extent to which projected precipitation seasonality is affected by429

the temporal stratification, we focus on the projected maximum mean monthly precip-430

itation. Hence, we contrast, for each GCM-grid cell combination, three curves obtained431

with the three temporal stratifications (each obtained by averaging the projections among432

BCMs for each GCM). We consider that the TS affects the projected seasonality if the433

month where the maximum mean monthly precipitation amount occurs differs. Conversely,434

if such a month is the same for the three TSs, we consider that this decision does not435

impact the seasonality. Figure 8c displays the fraction of the number of GCMs with TSS ≥436

0.7 for which the TS impacts the projected precipitation seasonality. Interestingly, the437

number is relatively high (>40%) for most of continental Chile. The fraction of GCMs438

affected by the TS decision is even higher in northern Chile, the Central Chilean Andes,439

and the Southernmost part of Chile, where more than 60% of GCMs are affected.440

5 Discussion441

The results presented here highlight the relevance of the temporal stratification used442

when applying bias correction techniques, which affects (i) SDBC-biases in seasonal and443

monthly precipitation amounts over a historical period, and (ii) the signal of projected444

changes and the seasonality of projections.445

5.1 Temporal stratification as a source of uncertainty446

Our results show that the temporal stratification can largely affect precipitation447

biases during a historical period, as well as the signal and seasonality of projected changes.448

However, this methodological choice has been rarely explored in climate change impact449

assessments, and the lack of guidance has motivated the use of more than one TS in some450

studies (e.g., Wootten et al., 2021). Further, model errors may not necessarily be removed451

in the process. For example, Hakala et al. (2018) obtained that biases in precipitation452

and streamflow seasonality remained after applying BCMs. Here, we found that only a453

monthly application of the BCM can replicate the reference precipitation seasonality, even454

for GCMs with a good raw representation of annual cycles.455

5.2 Projected seasonality456

Our study reveals that one of the main effects of selecting different TSs is the pos-457

sibility to distort the precipitation seasonality projected by raw GCM outputs. In hy-458

drologic impact assessments, this artifact may propagate into the timing of simulated459

variables like snow accumulation and melting, energy fluxes, and streamflow (Meyer et460

al., 2019). Our results show that when the raw GCM seasonality has timing errors (com-461
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Figure 8. Influence of the temporal stratification used to apply bias correction methods on

the projected precipitation seasonality. (a) Dimensionless historical seasonality for one grid cell

(red dot on the map) and one GCM (ACCESS-CM2). Note that the sum of monthly fractions

is equal to 1. (b) Projected raw (circles) and bias-corrected (colored lines) GCM precipitation

seasonality. Lighter and thinner lines represent different BCMs, whereas thick lines represent the

average across BCMs. (c) Fraction of the total number GCMs with TSS ≥ 0.7, for which the

temporal stratification yields different projected seasonality, measured as different months for

maximum mean monthly precipitation for the 2065-2099 period. In c), the average number of

GCMs meeting the TSS criterion is computed for latitudinal bands.
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pared to the reference), a pronounced shift in the projected seasonality can be obtained462

after applying BCMs (compared to the case without bias correction). However, when463

the raw GCM replicates the historically observed precipitation seasonality reasonably464

well, one might expect that different TSs yield the same projected seasonality. To test465

this hypothesis, we compare the precipitation seasonality projected with three TSs (bot-466

tom panels) by two GCMs (CanESM5 and NorESM2-MM, Figure 9) that replicate an-467

nual cycles (i.e., high Pearson correlation coefficients, with GCM and reference maximum468

mean monthly precipitation being the same, top panels). For GCM CanESM5 (Figure469

9a), the choice of TS has little effect on the projected precipitation seasonality. Conversely,470

the temporal stratification affects the seasonality projected by NorESM2 (Figure 9b).471

For example, if the BCM is applied seasonally and monthly, the months of maximum mean472

monthly precipitation are May and August, respectively. Interestingly, TSS = 0.951 for473

this GCM, which is higher than the value obtained for CanESM5 (0.694), and both GCMs474

have similar Pearson correlation coefficients. These results emphasize that even GCMs475

with a good raw representation of historical seasonality can be affected by the tempo-476

ral stratification used to apply BCMs.477
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Figure 9. Impact of the temporal stratification used in bias correction for two GCMs. The

results presented here are spatially averaged values of the grid cells contained in climate group 6

(highlighted in red on the map). Top row: comparison of the raw GCMs and the reference for the

period 1980-2014. Bottom row: projected precipitation seasonality in terms of fraction of mean

annual precipitation (average from the seven BCMs).

5.3 A priori evaluation of the TS impact on projected precipitation sea-478

sonality479

Understanding the potential effects of the TS on the projected signal and season-480

ality of precipitation from a specific GCM could be helpful for a more detailed assess-481
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ment of climate change and/or hydrological changes. Here, we propose using the linear482

scaling method (LSM) (Widmann et al., 2003; Maraun, 2016) - due to its low compu-483

tational cost and simplicity (Lafon et al., 2013; Chaubey & Mall, 2023) -, as a quick di-484

agnostics tool to inform if the TS may be an influential decision (an example of an LSM485

application is provided in Appendix B). The LSM removes the bias from the raw GCM486

time series (fbias) through a multiplicative factor for the case of precipitation and an ad-487

ditive term for temperature, using an observational dataset as a reference. For exam-488

ple, if the reference and raw GCM mean annual precipitation amounts are 500 mm/year489

and 650 mm/year, respectively, a factor fbias = 500/650 = 0.77 is applied to the raw490

GCM time series to remove the bias. Accordingly, seasonal or monthly applications of491

LSM require more scaling factors (Maraun et al., 2010). Hence, the raw GCM projected492

change (f∆) is preserved (at the TS time scale), since the scaling factors are typically493

considered to be time-invariant. Additionally, the influence of the temporal stratifica-494

tion and the reference dataset (in case there is more than one available) can be isolated495

for a specific grid cell-GCM combination.496

Figure 10a illustrates the application of the linear scaling method (dashed lines)497

to the GFDL-CM4 GCM in one grid cell (red dot in map), using the entire period and498

stratifying the data seasonally and monthly. For this GCM-grid cell combination, TSS =499

0.72 and R = 0.7, and different TSs yield different projected precipitation seasonali-500

ties when applying the LSM. Figure 10a shows that the precipitation factors obtained501

with LSM agree with the averages obtained from all (seven) bias correction methods (solid502

lines).503

Finally, we examine the capability of the LSM to identify the precipitation season-504

ality projected with different TSs correctly. To this end we obtain, for each grid cell-GCM-505

TS combination, the precipitation seasonalities from (i) the average between the seven506

BCMs, and (ii) the application of the LSM. If the months of the projected maximum pre-507

cipitation agree, we consider that the LSM correctly identifies the seasonality, and if this508

occurs for the three TSs, we consider that the LSM successfully identifies the projected509

bias-corrected seasonality for that specific grid cell-GCM combination. Figure 10a illus-510

trates a successful case since, for each TS, the month of maximum precipitation is the511

same for the average among seven BCMs and from the LSM. Then we compute, for the512

1,000 grid cells analyzed here, the fraction of GCMs for which the LSM successfully iden-513

tifies the projected seasonality (accuracy, Figure 10b). The results show that, in almost514

all the grid cells, the LSM successfully identifies the projected seasonality of ∼70% of515

the GCMs, whereas for most grid cells (> 85%), the LSM successfully projects the sea-516

sonality for more than 85% of the GCMs.517

5.4 Limitations and future work518

In this study, we selected the SSP5-8.5 scenario and 29 GCMs, although other fu-519

ture scenarios and/or a subset of GCMs could be considered to assess the effects on his-520

torical biases (after bias correction) and/or future projections. We did not focus on per-521

formance metrics for specific GCMs because evaluating the adequacy of particular bias522

correction methods is out of the scope of this work; instead, we focus on how these tech-523

niques are traditionally applied. Although we selected univariate and multivariate BCMs524

(e.g., Q. Guo et al., 2020), quantile-based, neural networks, and linear regressions, dif-525

ferent approaches could be considered.526

Additionally, we did not conduct any hydrological modeling. Instead, we focused527

on the repercussions of some decisions on the historical biases and the projected season-528

ality of climate variables required to run hydrological and land surface models. However,529

previous work has shown that hydrological models tend to amplify biases in the forcings530

(Teng et al., 2015). We emphasize that any assessment of climate change impacts should531

ensure that the climatological annual cycles of hydrological simulations forced with (i)532
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Figure 10. Linear scaling method used as a proxy to estimate the projected precipitation

seasonality. (a) Example of projected precipitation seasonalities for one grid cell and one GCM,

obtained from applying the LSM and the seven BCMs tested. The metrics summarize the raw

(biased) GCM performance for the historical period (1980-2014). (b) LSM accuracy (as a fraction

of the total number of GCMs) for all grid cells.
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reference data sets and (ii) bias-corrected time series from GCMs/RCMs are similar (Hakala533

et al., 2018). Hence, verifying the reference and bias-corrected GCM forcing data dur-534

ing a historical period arises as a crucial step (Chen et al., 2013; Clark et al., 2016; Men-535

doza et al., 2016; Melsen et al., 2019). Future work could consider the impacts of SDBC536

historical biases and differences in projected seasonality on different aspects of the hy-537

drograph (e.g., mean values, extremes, timing, etc.) and signatures formulated from other538

variables than streamflow (e.g., SWE, soil moisture; McMillan et al., 2022; Araki et al.,539

2022).540

6 Conclusions541

In this paper, we examined how methodological choices involved in GCM bias cor-542

rection affect historical and future climate portrayals. To this end, we used seven bias543

correction methods, 29 CMIP6 GCMs, and three temporal stratifications. All the con-544

figurations were applied to daily time series of precipitation and maximum and minimum545

daily temperature derived from the CR2MET gridded observational product, available546

for continental Chile. Our main findings are as follows:547

1. A monthly application of bias correction methods is required to replicate the ref-548

erence precipitation seasonality, even for GCMs with good raw seasonality.549

2. The temporal stratification is the most relevant decision to quantify seasonal and550

monthly precipitation biases.551

3. Different temporal stratifications may yield different projected signals and season-552

ality, even for GCMs with good raw seasonality.553

4. The linear scaling method can be used to estimate the projected seasonality of GCMs554

and, therefore, to identify the climate models for which the choice of temporal strat-555

ification may be critical, before applying more sophisticated and computationally556

expensive bias correction methods.557

Appendix A Selected GCMs558

Table A1 shows the GCMs included in this study.559

Appendix B Scaling factor example560

We illustrate the effects of the temporal stratification by applying the linear scal-561

ing method (LSM) (Maraun et al., 2010) for one grid cell-GCM combination. Figure B1a562

shows monthly precipitation averages from raw GCM outputs, whereas Figure B1b-d shows563

the bias-corrected GCM values for three different temporal stratifications. Monthly val-564

ues were obtained from the daily corrected time series.565

Note that when the entire period is used to bias-correct the GCM, only one factor is ap-566

plied. In the grid cell analyzed, the reference annual precipitation is 4371 mm, which is567

below the historical raw GCM amount for the same period (5020 mm). Hence, the raw568

GCM precipitation time series is multiplied by the factor f = 4731/5020 = 0.87, which569

removes the annual SDBC bias; nevertheless, monthly SDBC-biases persist (see differ-570

ences between black and blue lines in Figure B1b). When the LSM is applied season-571

ally, four factors are used to multiply the raw GCM time series. For example, daily val-572

ues from March, April, and May are bias-corrected by the seasonal factor obtained from573

the reference (1134 mm/season) and the raw GCM (1498 mm/season) precipitation amounts.574

In this case, the factor used to bias-correct daily precipitation from March, April, and575

May is fMAM = 1134/1498 = 0.76. Similarly, if the LSM is applied monthly, daily576

precipitation amounts from March are bias-corrected using the reference (374 mm/month)577

and raw GCM (498 mm/month), which yields a factor f = 374/498 = 0.75. For the578

monthly TS, the black and blue lines are the same. Note that the projected maximum579
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Figure B1. Illustration of the linear scaling method, applied to one grid cell-GCM combina-

tion, and its effects on the SDBC-biases and projections. (a) Reference (observational) and raw

GCM seasonality during the period 1980-2014 (black and blue lines). The projected raw sea-

sonality is also shown in red (2065-2099). (b), (c) and (d) show the bias-corrected precipitation

amounts using the entire period, seasons, and months, respectively, for temporal stratification.

The reference value is shown in all panels for completeness, and the shaded areas represent the

temporal stratification.

monthly precipitation is October for the three TS, which is the same as the raw GCM580

projection. However, the projected minimum monthly precipitation is September, March,581

and March for the entire period, season, and monthly application of the LSM, respec-582

tively.583

Open Research Section584

The CR2MET dataset (Boisier et al., 2018) is available at https://www.cr2.cl/datos-585

productos-grillados/. The GCMs data was downloaded from the Earth System Grid Fed-586

eration (https://esgf-node.llnl.gov/search/cmip6/). All the data used in this study is avail-587

able at https://bhuch.myqnapcloud.com/share.cgi?ssid=43cb3da649cd41ca9bfc42150a855e89.588
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Abstract16

Characterizing climate change impacts on water resources typically relies on Global Cli-17

mate Model (GCM) outputs that are bias-corrected using observational datasets. In this18

process, two pivotal decisions are (i) the Bias Correction Method (BCM) and (ii) how19

to handle the historically observed time series, which can be used as a continuous whole20

(i.e., without dividing it into sub-periods), or partitioned into monthly, seasonal (e.g.,21

three months), or any other temporal stratification (TS). Here, we examine how the in-22

terplay between the choice of BCM, TS, and the raw GCM seasonality may affect his-23

torical portrayals and projected changes. To this end, we use outputs from 29 GCMs be-24

longing to the CMIP6 under the Shared Socioeconomic Pathway 5–8.5 scenario, using25

seven BCMs and three TSs (entire period, seasonal, and monthly). The results show that26

the effectiveness of BCMs in removing biases can vary depending on the TS and climate27

indices analyzed. Further, the choice of BCM and TS may yield different projected change28

signals and seasonality (especially for precipitation), even for climate models with low29

bias and a reasonable representation of precipitation seasonality during a reference pe-30

riod. Because some BCMs may be computationally expensive, we recommend using the31

linear scaling method as a diagnostics tool to assess how the choice of TS may affect the32

projected precipitation seasonality of a specific GCM. More generally, the results pre-33

sented here unveil trade-offs in the way BCMs are applied, regardless of the climate regime,34

urging the hydroclimate community for a careful implementation of these techniques.35

Plain Language Summary36

Global Climate Models (GCMs) are useful tools to characterize the historical and37

future evolution of the Earth’s climate and its impacts on water resources. Because these38

models contain errors and their horizontal resolution is too coarse for local impact as-39

sessments, spatial downscaling and bias correction are required steps. In particular, bias40

correction methods can be trained and applied using all the available historical data or41

by splitting the time series (e.g., by season or months). Since there is no guideline on42

selecting a temporal stratification, we analyze bias-corrected GCM outputs obtained with43

three types of strategy (entire period, seasons, and months) and seven bias-correction44

techniques over continental Chile. We show that the choice of bias correction method45

and the temporal stratification applied can modify the projected precipitation signal and46

seasonality. We also propose a simple statistical technique to identify if, for a given cli-47

mate model, the temporal stratification may be a relevant decision for climate impact48

assessments.49

1 Introduction50

Understanding and quantifying climate change impacts is crucial for long-term wa-51

ter resources planning and management. Such characterization typically involves hydro-52

logic model simulations forced by an ensemble of scenario-driven meteorological time se-53

ries obtained from Statistically Downscaled Bias-Corrected (SDBC) Global Climate Model54

(GCM) outputs (e.g., Addor et al., 2014; Hattermann et al., 2018; Her et al., 2019; Chen55

et al., 2021; Hanus et al., 2021; Vicuña et al., 2021). This approach usually requires the56

choice of emission scenario (e.g., Vano et al., 2015; Chegwidden et al., 2019), the choice57

of GCM (e.g., Hakala et al., 2018; Di Virgilio et al., 2022), the selection of Bias Correc-58

tion Method (BCM) (e.g., Werner & Cannon, 2016; Gutiérrez et al., 2019; Hess et al.,59

2023), and the choice of observational (or reference) dataset (e.g., Wootten et al., 2021;60

Rastogi et al., 2022).61

Among the above decisions, the selection and configuration of BCMs is a critical62

step given the risk of introducing artificial perturbations in GCM outputs (Hagemann63

et al., 2011; Maurer & Pierce, 2014; Wootten et al., 2021), generating a mismatch be-64

tween simulated (i.e., obtained from bias-corrected GCMs) and observed (i.e., obtained65
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from a reference dataset) annual cycles of climate variables (e.g., precipitation; Teutschbein66

& Seibert, 2010; Alder & Hostetler, 2019; Chen et al., 2021), with potential effects on67

projected climate change impacts and subsequent interpretations and adaptation strate-68

gies. A somewhat overlooked step is the strategy for handling the time series when ap-69

plying BCMs, hereafter referred to as temporal stratification (TS). For example, the bias70

correction of simulated daily time series can be performed using all the historical period71

(i.e., a single application of the BCM; e.g., Ghimire et al., 2019) or sub-periods of the72

historical time series, such as seasons (e.g., four applications of the BCM; e.g., Ruffault73

et al., 2014; Teng et al., 2015), months (i.e., twelve applications of the BCM; e.g., Pierce74

et al., 2015; Switanek et al., 2017; Matiu & Hanzer, 2022; Wu et al., 2022; J. Guo et al.,75

2023), or any other temporal window (e.g., Haerter et al., 2011; Reiter et al., 2018).76

Despite the large body of work exploring modeling decisions at the top of the ‘cas-77

cade of uncertainty’ (Wilby & Dessai, 2010), climate impact studies have typically re-78

lied on subjectively selected TSs. For example, Teng et al. (2015) compared four BCMs79

(applied with a seasonal TS) for hydrological projections in southeastern Australia, con-80

cluding that the hydrological model amplifies biases in precipitation after applying the81

BCMs, and that the large spread in the projected signal of changes in precipitation ex-82

tremes yields different impacts on runoff. Hakala et al. (2018) applied the quantile map-83

ping (QM) method (using a seasonal TS) to assess whether a hydrological model, forced84

by SDBC GCMs, can replicate the hydrological climatology observed during a histor-85

ical reference period, obtaining that, even after bias correction, biases in precipitation86

and streamflow seasonality persist. To analyze the effects of different observational datasets87

and BCMs on climate projections, Wootten et al. (2021) used three observational datasets88

to apply two BCMs: (i) the ‘Delta’ approach with a 3-month moving window, and (ii)89

the quantile delta mapping (QDM) method over four periods consisting of three non-90

overlapping months. They concluded that the selection of BCMs and observational datasets91

have different impacts on historical and projected time series for different variables, al-92

though they did not isolate the effect of the TS.93

Other studies have focused on the ability of different BCMs to reproduce histor-94

ically observed climate indices (e.g., Gutmann et al., 2014; François et al., 2020; Xavier95

et al., 2022), or the effects on climate projections (e.g., Maurer & Pierce, 2014; Melsen96

et al., 2018), without emphasizing the role of the TS and the evaluation timescale. More97

recently, Vogel et al. (2023) proposed a framework to evaluate downscaling and BCMs98

for climate change studies and demonstrated it over Australia using four GCMs, three99

BCMs and two downscaling methods, considering different TS (monthly, 3-month, and100

multi-time scales) for the BCMs. They suggested that the TS may influence the anal-101

ysis (after bias correction) and should be adequately chosen after a careful bias assess-102

ment.103

Although the preceding studies have covered domains with specific climate types,104

the trade-offs in selecting TS, BCMs, and GCMs for estimating historical biases (after105

applying BCMs) and projections across contrasting climates remain unclear. Hence, this106

paper seeks to disentangle the relative contribution of these decisions (especially TS) to107

the spread of bias-corrected time series at the annual, seasonal, and monthly timescales108

during historical and future periods rather than finding the ‘best’ configuration for the109

assessment of climate change impacts. Specifically, we address the following research ques-110

tions:111

1. To what extent does the choice of bias correction method and temporal stratifi-112

cation alter historical GCM simulations across different climate regions?113

2. What are the effects of bias correction methods and temporal stratification on the114

projected signal and seasonality of different climate variables?115
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3. Are there any connections between the effects of TS (on historical biases and pro-116

jections) and the capability of raw GCM output to replicate historically observed117

climatology?118

To seek answers, we evaluate the performance of 29 SDBC GCMs from the sixth phase119

of the Coupled Models Intercomparison Project (CMIP6; O’Neill et al., 2016) over dif-120

ferent climate groups in continental Chile. We use seven methods (three univariate and121

four multivariate) to correct biases in precipitation and maximum and minimum tem-122

perature. All BCMs are applied at three different TSs: (i) using the entire period (i.e.,123

all daily data simultaneously used for one application of the BCM), (ii) seasonally (i.e.,124

four applications of the BCM using four seasonally stratified time series), and (iii) monthly125

(i.e., twelve applications of the BCM for twelve monthly stratified time series).126

2 Study area and datasets127

2.1 Study area128

Our study domain is continental Chile, which is suitable for a comprehensive as-129

sessment of the TS-BCM-GCM interplay in very different climate types. Figure 1 shows130

the spatial distribution of mean annual precipitation, mean annual temperature, and three131

climate indices. The snowfall fraction SF = Sn/P (Figure 1d) is the fraction of mean132

annual precipitation (P , Figure 1b) falling as snow (Sn). The aridity index (Figure 1e)133

is the ratio between mean annual potential evapotranspiration (PET ) and mean annual134

precipitation. Finally, the precipitation seasonality (p-seasonality, Figure 1f) indicates135

whether most precipitation falls during winter (negative values) or summer (positive val-136

ues). In this paper, we use the season names within the context of the Southern Hemi-137

sphere (i.e., winter refers to months JJA, while summer to DJF).138

In the northern area (17°S-25°S), two main climate zones can be identified: (i) the139

super-arid coastal area, with very low annual precipitation amounts (<50 mm/yr), and140

(ii) the Altiplano region, with lower temperatures due to increasing altitude and larger141

annual precipitation (∼200 mm/yr). The mean annual precipitation increases towards142

the south, although the Andes Cordillera generates a west-east gradient, with larger pre-143

cipitation amounts and lower temperatures on the western slopes of the Andes Cordillera144

compared to the valleys. Moving south from ∼37°S, the altitude of Andean mountains145

progressively decreases, as well as the contribution of snowmelt to runoff, whereas pre-146

cipitation increases. South from 45°S, a west-to-east precipitation gradient produces high147

precipitation amounts on the coast (>2500 mm/yr), whereas a dry climate develops in148

Patagonia a few kilometers to the east, with decreasing precipitation amounts. In sum-149

mary: (i) most snowfall occurs in the Andes Cordillera, though snowfall events can also150

occur in the valleys of Austral Chile (<45°S); (ii) the hydroclimate is water-limited (PET/P >151

1) in approximately half of the Chilean territory, especially from ∼35°S to the north, whereas152

the hydroclimate of the south is energy limited (PET/P < 1); and (iii) most precipi-153

tation in Chile falls during the winter (red color in panel f), being the Altiplano (north-154

ern Chile) and Patagonia (∼50-55°S) two notable exceptions. For a more comprehen-155

sive review of the climate and weather of Chile, readers are referred to Aceituno et al.156

(2021) and Vásquez et al. (2021).157

2.2 Datasets158

We use the gridded meteorological product CR2MET v2.5 (Boisier et al., 2018; DGA,159

2022) as the observational baseline (hereafter reference dataset). CR2MET precipita-160

tion estimates (pr) are obtained through a combination of (i) logistic regression mod-161

els and (ii) multiple linear regression models that use ERA5 reanalysis outputs (Hersbach162

et al., 2020) and geomorphological attributes as predictors and daily precipitation from163

meteorological stations as predictands. For daily extreme temperatures (tmax and tmin),164
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Figure 1. Main physiographic and climate attributes of continental Chile for the period

1980-2014 (34 water years): (a) elevation, (b) mean annual precipitation, (c) mean annual tem-

perature, (d) snowfall fraction, (e) aridity index, and (f) p-seasonality.

land surface temperature from MODIS AQUA and TERRA (Wan, 2014) are also included165

as predictors. All variables (pr, tmax, and tmin) are available at a daily time step for166

the period January/1979-March/2020, covering continental Chile at a horizontal reso-167

lution of 0.05° x 0.05°. The mean daily temperature is computed as the average between168

tmax and tmin. It should be noted that CR2MET is, arguably, the most accurate me-169

teorological dataset for continental Chile since its development incorporated local me-170

teorological stations.171

We use outputs from 29 GCMs from the CMIP6 (O’Neill et al., 2016), based on172

the data availability for pr, tmax and tmin during the historical and projected periods,173

and the SSP5-8.5 scenario for being the worst in terms of greenhouse emissions and the174

‘business as usual’ development case. The name and horizontal resolution of each GCM175

are included in Table A1.176

3 Methodology177

Figure 2 shows the main steps of our approach. First, we delineate climate zones178

across Chile using cluster analysis (step 1), with the aim to examine possible relation-179

ships between climate types and the BCM-TS-GCM interplay. Step 2 considers differ-180

ent strategies for correcting biases in GCM outputs (i.e., seven bias-correction methods181

are applied using three different stratification periods). In step 3, we compute several182

climate indices derived from precipitation and temperature at different time scales (e.g.,183

annual, seasonal, and monthly mean values), for a historical and a future period. Finally,184

we conduct an Analysis of Variance (ANOVA) to quantify the relative contribution of185

different decisions to the spread of historical estimates. More details can be found in the186

following sections.187
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Figure 2. Diagram of the methodology used in this study
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3.1 Climate clustering188

We perform a Bayesian clustering to identify climate zones across Chile. To this189

end, we use the aridity index (PET/P ), the p-seasonality, and the fraction of precipi-190

tation falling as snow as explanatory variables, since they reflect observed hydrological191

behaviors (Knoben et al., 2018). PET is computed using the Oudin et al. (2005) for-192

mula - available in the R Package airGR (Coron et al., 2017) - which requires air tem-193

perature (provided at daily time steps here) and latitude as inputs. To estimate Sn, we194

consider that snowfall occurs when the mean daily temperature is below 2°C (Jennings195

et al., 2018; Han et al., 2019; Sepúlveda et al., 2022), and p-seasonality is computed with196

the formula proposed by Woods (2009).197

Prior climate groups are defined with the Autoclass-C software (Cheeseman et al., 1988,198

1996), which has been previously used in hydrological applications (e.g., Sawicz et al.,199

2011). We subsequently refined the clustering results through visual inspection, group-200

ing small clusters based on spatial proximity and climate similarity.201

3.2 Raw GCM performance202

We use the Taylor Skill Score (TSS; Taylor, 2001) to evaluate the role of the raw203

GCM performance and its interplay with BCM and TS for SDBC-biases and projections204

at different time scales. The TSS is computed at the grid cell level (0.05° x 0.05°) for the205

period 1980-2014, contrasting downscaled GCM outputs against the reference dataset,206

as is commonly done for local climate impact assessments (e.g., Lafon et al., 2013). In207

this study, TSS is computed for precipitation, as shown in Eq. 1.208

TSS =
4(1 +R)(

σ̂ + 1
σ̂

)2
(1 +Ro)

(1)209

where R is the Pearson correlation coefficient between the raw GCM and the reference210

mean seasonality, and σ̂ = σGCM/σREF is the ratio between the standard deviation211

of raw monthly values (σGCM ) and the reference (σREF ). R, and σ̂ are computed us-212

ing simulated and observed mean monthly values of each variable (i.e., 12 values of GCMs213

vs. 12 reference values). Ro is the maximum achievable Pearson correlation coefficient214

for a specific GCM, which is assumed to be Ro
∼= 1 to simplify the analysis. When R →215

Ro and σ̂ → 1, the TSS → 1. Alternatively, TSS → 0 when R decreases or σ̂ ap-216

proaches zero or infinity. Hence, TSS ranges between 0 and 1. Further, we compute the217

TSS for each climate group, estimating the mean group climatology through spatial av-218

erages.219

3.3 Bias correction of GCMs220

3.3.1 Bias correction methods221

We downscale the raw GCM outputs to the CR2MET grid using inverse distance222

weighting, considering the four closest GCM grid cells. We use seven bias correction meth-223

ods, including three univariate and four multivariate techniques, listed in Table 1 and224

briefly reviewed here. The quantile delta mapping (QDM) preserves the projected change225

for each quantile while correcting the bias. Empirical cumulative density functions are226

estimated for the historical reference (Fh,ref ), the raw historical GCM (Fh,GCM ), and227

the raw projected GCM (Fp,GCM ) to relate (X) with the cumulative probability (τ). For228

a specific value during the historical period Xh,GCM , the correction (for pr) is given by229

X
′

h,GCM = F−1
h,ref (Fh,GCM (Xh,GCM )), while for a projected raw GCM value Xp,GCM ,230

the corrected value is X
′

p,GCM = ∆·F−1
h,GCM (Fp,GCM (Xp,GCM )), where ∆ is computed231

as ∆ = Xp,GCM/F−1
h,GCM (Fp,GCM (Xp,GCM )) for precipitation.232

The asynchronous regression (AR) relies on a piecewise linear regression calibrated with233

sorted raw GCM and reference data during a historical period (i.e., Fh,ref is a function234

of Fh,GCM ). Although a simple linear regression could be used, the error in the tails of235
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the regression can be large and, therefore, the data is split by including different knots236

(up to six) to reduce errors in low and high values. To bias-correct projected values, the237

calibrated piecewise linear regression is applied. The quantile regressions neural network238

(QRNN) uses neural networks to bias correct the sorted data (i.e., quantiles) from sim-239

ulations and the reference. QRNN is a flexible model since it does not assume a specific240

relationship between the raw GCM and the reference data.241

The rank resampling for distributions and dependences (R2D2) corrects the covariance242

among sites and/or variables through four steps: (i) the univariate bias correction of each243

variable/site separately, (ii) the selection of one variable/site and the computation of the244

ranking for all variables/sites, (iii) for a specific date, select the same ranking in the ref-245

erence period for the dimension selected, and (iv) the shuffling of the other variables/sites246

to maintain rank structure.247

The ‘multivariate bias correction’ family (MBC) includes three different methods using248

the Pearson correlation coefficient (MBCp), the Spearman rank correlation coefficient249

(MBCr), and an N-dimensional probability density function (MBCn) to transform the250

raw correlated GCM data (i.e., the intervariable dependence structure) through consec-251

utive iterations. For MBCp and MBCr, the transformation relies on the Cholesky ma-252

trix decomposition and the correction of the covariance matrix. Conversely, MBCn re-253

lies on an orthogonal rotation, the application of QDM to these orthogonal variables, and,254

finally, the application of an inverse matrix (the one used to compute the orthogonal vari-255

ables) to obtain the resulting data. The reader is referred to the studies listed in Table256

1 for more details on the methods.257

Table 1. Methods considered in this study to bias-correct GCMs outputs (pr, tmax, and

tmin).

Acronym Name Type Reference

QDM Quantile Delta Mapping

Univariate

Cannon et al. (2015)

AR Asynchronous Regression
Dettinger et al. (2004);
Stoner et al. (2013)

QRNN Quantile Regression Neural Network Cannon (2011)

R2D2 Rank Resampling for Distributions and Dependences

Multivariate

Vrac and Thao (2020)
MBCp Multivariate Bias Correction method - Pearson

Cannon (2016)
MBCr Multivariate Bias Correction method - Rank
MBCn Multivariate Bias Correction method – QDM Cannon (2018)

We stress that it is not our aim to perform detailed comparisons among different258

bias correction techniques but to quantify the impact of this and other methodological259

choices on historical biases and projected changes in climate indices. All bias correction260

methods were applied using the statistical software ‘R’ (http://www.r-project.org/). The261

QDM, MBCp, MBCr, MBCn, and R2D2 methods were applied using the library ‘MBC’262

(Cannon, 2018). QRNN was implemented using the ‘qrnn’ library (also available in R),263

while the AR method was implemented following Stoner et al. (2013). To reduce the com-264

putational effort, we randomly select 100 grid cells within each climate group, and all265

subsequent analyses are conducted at these grid cells (100 ·Nclusters).266

3.3.2 Choice of the temporal stratification267

Bias correction methods can be applied using different stratification strategies. For268

example, a BCM can be applied at daily time steps using all the data in the historical269

period (usually 30 years), which means that all ∼10,950 days (∼365 days · 30 years) are270

simultaneously bias-corrected. For a seasonal TS, BCMs are applied four times, each one271

considering ∼2730 days (∼91 days · 30 years), whereas for a monthly TS, the BCM is272

applied 12 times considering ∼900 days (∼30 days · 30 years). Note that other tempo-273
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ral stratifications could be considered. Here, we applied BCMs to daily time series of pr,274

tmax, and tmin (e.g., Rastogi et al., 2022) using the entire time series in the historical275

period (1980-2014), and stratifying the data seasonally and monthly, since these TSs are276

typically considered for climate change impact assessments. For all combinations of BCM277

and TS, we obtained daily time series from 1980 to 2100.278

3.4 Climate indices279

We consider several climate indices that are relevant to reproduce historically ob-280

served hydrological responses (e.g., Gutmann et al., 2014), including (i) mean annual,281

seasonal, and monthly total precipitation, (ii) highest 1% daily precipitation, (iii), wet-282

day fraction, (iv) wet and dry-spell lengths, (v) fraction of precipitation falling as snow,283

and (vi) annual, seasonal and monthly averages of mean daily temperature and diurnal284

temperature ranges. To estimate the mean annual snowfall, we add all precipitation amounts285

for days with a mean daily temperature below 2°C. Wet-spell and dry-spell lengths (mean286

consecutive rainy and non-rainy days, respectively), as well as the wet-day fraction (mean287

fraction of rainy days) are computed as in Gutmann et al. (2014), considering 0.1 mm/d288

as a threshold. To examine the capability of BCMs to replicate historically observed cli-289

mate indices, we computed the difference between SDBC-GCM outputs and the refer-290

ence dataset during the historical period 1980-2014 as a percent bias (hereafter referred291

to as biases). Additionally, we analyze the effects of BCMs on climate projections by com-292

puting the relative change for the period 2065-2099 with respect to the historical period293

(1980-2014).294

3.5 Analysis of Variance295

To evaluate the relative contribution of the BCM and TS decisions to the spread296

of SDBC-biases we perform, for each combination of GCM and grid cell, an analysis of297

variance (ANOVA). In this case, the ANOVA is simplified as:298

TV = BCM +AP +Residual (2)299

where TV stands for the total variance of SDBC-biases, and the residual term is the vari-300

ance not explained by the BCM nor the TS for a specific GCM-grid cell combination.301

If the choice of TS had no impact on the biases in climate indices. In that case, the ap-302

plication of Supposey BCM should be able to reduce biases at all temporal scales (e.g.,303

annual, seasonal, or monthly), regardless of the GCM considered. To summarize the in-304

formation at the grid cell level, we compute the average of BCM/TV , TS/TV , and Residual/TV305

fractions across GCMs, whereas for the climate groups, we compute the mean relative306

contribution (estimated by BCM/TV , TS/TV and Residual/TV ) of TS and BCM to307

the spread as the average of fractions across the grid cells within that group.308

4 Results309

We show the climate clustering results, the historical biases after applying the BCMs,310

and the relative contributions of different methodological choices to historical biases of311

climate indices at the annual and seasonal scales. Further, we include the TSS perfor-312

mance to examine connections between the raw seasonality of the GCMs and the selec-313

tion of BCM and TS. For simplicity, we only show the results for precipitation, and the314

remaining variables can be found in the Supporting Information.315

4.1 Clustering316

The Bayesian clustering and subsequent spatial aggregation through visual inspec-317

tion provided ten climate groups for continental Chile (Figure 3). In general, the clus-318

ters follow two main climate patterns in Chile: (i) a latitudinal precipitation gradient,319
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from very arid (north) to humid (south), and (ii) a west-east gradient from the coast to320

the Andes Cordillera. Although northern Chile encloses groups 1, 2, and 3, clusters 2321

and 3 are located in the Altiplano region, where larger precipitation and lower temper-322

atures are observed. Groups 5, 6, and 8 span the coast and valley, whereas groups 4 and323

7 are located in the Andes. Finally, groups 9 (the rainiest group) and 10 are in south-324

ern Chile, characterized by large precipitation amounts in the Andes Cordillera and the325

coast, with decreasing precipitation and temperature towards the east (Patagonia).326
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Figure 3. (a) Spatial distribution of climate clusters in continental Chile based on snowfall

fraction, aridity index, and p-seasonality. The following attributes are ordered by the median

of each group: (b) elevation, (c) precipitation, (d) temperature, (e) snowfall fraction, (f) aridity

index, and (g) p-seasonality. All climate indices were computed for the period 1980-2014. Notice

that the boxplots in panels b-g are sorted according to the median value, and the group’s order

on the x-axis differs among variables.

4.2 Performance metrics after bias correction327

Figure 4 shows precipitation biases (after bias correction) in three different climate328

groups (the other variables and climate groups can be found in the Supporting Informa-329

tion). The results show that, regardless of the combination of GCM, BCM, TS and grid330

cell, biases in annual amounts are close to zero (Figure 4a). When the BCM is applied331
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using all the data in the historical period(Figure 4b, left), biases in monthly precipita-332

tion amounts can be large, although the magnitude varies among climate groups. In cli-333

mate group 2 (Altiplano region), precipitation occurs mostly during the summer (DJF);334

in this season, the median bias associated with January precipitation is relatively lower335

- though still considerable (>20%) - compared to the remaining months. In group 6, most336

precipitation occurs during the winter (JJA), and biases can be found in any month. In337

group 10, precipitation falls uniformly throughout the year, with slightly larger amounts338

and larger biases during the summer (DJF). When the BCM is applied seasonally (4b,339

center), monthly precipitation biases persist. However, these are generally lower com-340

pared to the case when the bias correction is applied using the entire dataset, especially341

in climate group 10. As expected, biases are nearly removed with a monthly TS (Fig-342

ure 4b, right), regardless of the GCM, bias correction method, grid cell, or climate group.343
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Figure 4. Historical biases in precipitation at the (a) annual and (b) seasonal time scales in

three climate groups (rows) after applying the BCMs. The columns in panel b) show results for

the three TSs used to apply the BCMs. Each boxplot comprises results from the 100 grid cells

within a specific climate group, 29 GCMs, and seven BCMs. The different seasons are highlighted

through grey-white areas.

Figure 5 displays the relative contributions of the BCM, TS, and residuals for mean344

annual, seasonal (summer and winter), and monthly (January and July) precipitation345

biases averaged across 1,000 grid cells in continental Chile. We show two seasons and346

months to examine possible differences between the dry and wet seasons. Additionally,347

the results from different GCMs are stratified according to their historical raw perfor-348

mance, measured by the Taylor Skill Score. As in Figure 4, the ANOVA analysis for his-349

torical biases shows differences among temporal stratifications, especially when compared350

to annual biases (Figure 5a). Because the relative contributions of BCM and TS to pre-351

cipitation biases do not greatly differ among climate groups, we show results at the na-352

tional scale. The choice of BCM explains most of the variance for the mean annual pre-353

cipitation bias, whereas the choice of TS explains almost all the variance for mean sea-354

sonal and monthly precipitation biases. It is worth noting that the biases at the annual355

scale are, in general, very low (Figure 4, <1%), and that the relative importance of the356

choice of TS for seasonal and monthly biases does not decrease for GCMs with high TSS357

values. The latter result is counterintuitive since one might expect that GCMs with good358

raw precipitation seasonality will be effectively bias-corrected, regardless of the TS se-359

lected. For variables related to quantiles (highest 1% daily precipitation, dry and wet-360
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spell lengths, and wet-day fraction), the relative importance of BCMs increases for GCMs361

with higher TSS, being BCM the most important decision, even at seasonally and monthly362

time scales (Figure S1).363
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Figure 5. Relative importance (as a fraction averaged from all grid cells and GCMs for

continental Chile) of the bias correction method and the temporal stratification to explain the

precipitation biases at the annual, seasonal (DJF and JJA), and monthly (January and July)

time scales during the historical period (1980-2014), for different levels of historical GCM perfor-

mance (x-axis). Biases are computed after applying BCMs.

4.3 Projected changes364

We now analyze the interplay between the choice of TS, the raw GCM precipita-365

tion seasonality, and its effects on projected changes in precipitation for the period 2065-366

2099 (with respect to 1980-2014) at different time scales. Figure 6 displays projected changes367

in mean annual, seasonal, and monthly precipitation for one grid cell located in central368

Chile (red dot in map) and one GCM (INM-CM4-8) with a high R value. For this GCM369

and grid cell, TSS = 0.76 during the period 1980-2014, with a Pearson correlation co-370

efficient between mean monthly raw GCM and reference amounts of 0.98, and a 41% un-371

derestimation of the standard deviation. The high value of R indicates a good season-372

ality of raw GCM outputs. Figure 6 shows that different BCMs yield a high dispersion373

in projected changes of mean annual precipitation (different lines), with little influence374

on the selected TS (x-axis of each subplot). Additionally, all BCMs alter the raw GCM375

projection. For example, if all BCMs are applied using the entire dataset, projected changes376

in summer precipitation range between -8% to 5%, whereas the raw projection is close377

to -30%. The application of MBCn using the entire period yields a positive projected378

change in the mean summer precipitation, while a seasonal and monthly application of379

the same BCM projects a decrease in summer precipitation. The results for individual380

months (January and July) reveal more dispersion and interaction among BCMs and the381

choice of TS. For example, applying the BCM with the entire time series results in pos-382

itive and negative projections of mean July precipitation (the rainiest month for this grid383

cell). Similarly, different TSs can also provide different projected signals.384

Figure 6 reveals that the choice of TS affects the signal of projected changes in sum-385

mer precipitation (e.g., for the MBCn method) and, in particular, in January and July386

precipitation amounts. The TS can be considered relevant for a specific grid cell if it is387

able to switch the projected signal of a variable for a particular GCM-BCM combina-388

tion. This is, for example, the case of mean July precipitation (Figure 6), for which the389
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Figure 6. Projected change in annual, seasonal (summer and winter), and monthly (January

and July) precipitation for different temporal stratifications (x-axis) and bias correction methods

(lines). All combinations of TS and BCM decisions, along with projected changes from the raw

(biased) GCMs, are displayed. The results are valid only for the grid cell shown and the GCM

INM-CM4-8. The metrics (e.g., TSS) were computed using the raw (biased) GCM data for the

period 1980-2014.

signal of projected changes is different among TSs for the MBCn, MBCr, and R2D2 meth-390

ods.391

Figure 7 shows, for all the grid cells analyzed, the fraction of ‘well-behaved’ GCMs392

(i.e., with TSS ≥ 0.7; e.g., Kwon et al., 2019) for which the selection of TS leads to393

different signs in projected precipitation changes. Note that the number of GCMs that394

meet the performance requirement - obtained by spatially averaging the number of GCMs395

with TSS ≥ 0.7 at each latitudinal band - varies along the domain. In general, the choice396

of TS does not alter the signal of projected changes in mean annual precipitation, although397

a few GCMs are affected by this decision in some areas (e.g., northern Chile). Never-398

theless, the effects of TS are more evident in seasonal projections (Figure 7b and 7c).399

During the summer, >50% of the number of GCMs are affected by the TS in Central400

Chile (dry season). During winter, the Altiplano region and part of southern Chile are401

largely influenced by the choice of TS. It should be noted, however, that the summer sea-402

son in Central Chile and the winter season in the Altiplano region are dry seasons. There-403

fore, while the signal of projected changes may vary for different TSs, the precipitation404

amounts involved are small. For mean monthly January and July precipitation, the choice405

of TS is even more relevant. Indeed, nearly all GCMs are affected by the TS along the406

coast of northern Chile, while ∼50% of the GCMs yield different signals in projected changes407

for different TSs in Central Chile. The case of July is more interesting since it is the raini-408

est month in most of continental Chile. In July, ∼50% of the GCMs are affected by the409

TS along the Central Chilean Andes (western border), impacting the accumulation of410

snow and, therefore, meltwater volume and timing estimates for the spring and summer411

seasons. In southern Chile, one can find grid cells where GCMs are affected by the TS412

decision, though that fraction is lower compared to the Central Chilean Andes.413
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Figure 8a compares the raw GCM output (obtained from the GCM ACCESS-CM2)414

and the reference precipitation seasonality over a historical period at one grid cell located415

in central-southern Chile (red dot on the map). For this GCM-grid cell combination, TSS =416

0.96, R = 0.94 and σ̂ = 1.08. Note that the GCM simulates the maximum monthly417

precipitation in July instead of June (when the maximum occurs according to the ref-418

erence). Figure 8b displays, for the same GCM-grid cell, the projected precipitation sea-419

sonality for each BCM-TS combination (thin lighter lines). The results show that ap-420

plying a BCM using the entire period (green lines) provides the same seasonality as the421

raw GCM; however, seasonal and monthly TSs distort the raw projected seasonality. Fur-422

ther, when BCMs are applied using a monthly TS (black/gray lines), the projected month423

of maximum precipitation is June, whereas for seasonal and entire period such month424

is July. Additionally, seasonal and monthly TSs yield higher precipitation fractions (com-425

pared to the raw GCM) during April and May, and smaller values during September and426

October. Such differences in projected precipitation seasonality may affect any subse-427

quent analyses of simulated hydrological fluxes and states.428

To examine the extent to which projected precipitation seasonality is affected by429

the temporal stratification, we focus on the projected maximum mean monthly precip-430

itation. Hence, we contrast, for each GCM-grid cell combination, three curves obtained431

with the three temporal stratifications (each obtained by averaging the projections among432

BCMs for each GCM). We consider that the TS affects the projected seasonality if the433

month where the maximum mean monthly precipitation amount occurs differs. Conversely,434

if such a month is the same for the three TSs, we consider that this decision does not435

impact the seasonality. Figure 8c displays the fraction of the number of GCMs with TSS ≥436

0.7 for which the TS impacts the projected precipitation seasonality. Interestingly, the437

number is relatively high (>40%) for most of continental Chile. The fraction of GCMs438

affected by the TS decision is even higher in northern Chile, the Central Chilean Andes,439

and the Southernmost part of Chile, where more than 60% of GCMs are affected.440

5 Discussion441

The results presented here highlight the relevance of the temporal stratification used442

when applying bias correction techniques, which affects (i) SDBC-biases in seasonal and443

monthly precipitation amounts over a historical period, and (ii) the signal of projected444

changes and the seasonality of projections.445

5.1 Temporal stratification as a source of uncertainty446

Our results show that the temporal stratification can largely affect precipitation447

biases during a historical period, as well as the signal and seasonality of projected changes.448

However, this methodological choice has been rarely explored in climate change impact449

assessments, and the lack of guidance has motivated the use of more than one TS in some450

studies (e.g., Wootten et al., 2021). Further, model errors may not necessarily be removed451

in the process. For example, Hakala et al. (2018) obtained that biases in precipitation452

and streamflow seasonality remained after applying BCMs. Here, we found that only a453

monthly application of the BCM can replicate the reference precipitation seasonality, even454

for GCMs with a good raw representation of annual cycles.455

5.2 Projected seasonality456

Our study reveals that one of the main effects of selecting different TSs is the pos-457

sibility to distort the precipitation seasonality projected by raw GCM outputs. In hy-458

drologic impact assessments, this artifact may propagate into the timing of simulated459

variables like snow accumulation and melting, energy fluxes, and streamflow (Meyer et460

al., 2019). Our results show that when the raw GCM seasonality has timing errors (com-461
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Figure 8. Influence of the temporal stratification used to apply bias correction methods on

the projected precipitation seasonality. (a) Dimensionless historical seasonality for one grid cell

(red dot on the map) and one GCM (ACCESS-CM2). Note that the sum of monthly fractions

is equal to 1. (b) Projected raw (circles) and bias-corrected (colored lines) GCM precipitation

seasonality. Lighter and thinner lines represent different BCMs, whereas thick lines represent the

average across BCMs. (c) Fraction of the total number GCMs with TSS ≥ 0.7, for which the

temporal stratification yields different projected seasonality, measured as different months for

maximum mean monthly precipitation for the 2065-2099 period. In c), the average number of

GCMs meeting the TSS criterion is computed for latitudinal bands.
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pared to the reference), a pronounced shift in the projected seasonality can be obtained462

after applying BCMs (compared to the case without bias correction). However, when463

the raw GCM replicates the historically observed precipitation seasonality reasonably464

well, one might expect that different TSs yield the same projected seasonality. To test465

this hypothesis, we compare the precipitation seasonality projected with three TSs (bot-466

tom panels) by two GCMs (CanESM5 and NorESM2-MM, Figure 9) that replicate an-467

nual cycles (i.e., high Pearson correlation coefficients, with GCM and reference maximum468

mean monthly precipitation being the same, top panels). For GCM CanESM5 (Figure469

9a), the choice of TS has little effect on the projected precipitation seasonality. Conversely,470

the temporal stratification affects the seasonality projected by NorESM2 (Figure 9b).471

For example, if the BCM is applied seasonally and monthly, the months of maximum mean472

monthly precipitation are May and August, respectively. Interestingly, TSS = 0.951 for473

this GCM, which is higher than the value obtained for CanESM5 (0.694), and both GCMs474

have similar Pearson correlation coefficients. These results emphasize that even GCMs475

with a good raw representation of historical seasonality can be affected by the tempo-476

ral stratification used to apply BCMs.477
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Figure 9. Impact of the temporal stratification used in bias correction for two GCMs. The

results presented here are spatially averaged values of the grid cells contained in climate group 6

(highlighted in red on the map). Top row: comparison of the raw GCMs and the reference for the

period 1980-2014. Bottom row: projected precipitation seasonality in terms of fraction of mean

annual precipitation (average from the seven BCMs).

5.3 A priori evaluation of the TS impact on projected precipitation sea-478

sonality479

Understanding the potential effects of the TS on the projected signal and season-480

ality of precipitation from a specific GCM could be helpful for a more detailed assess-481
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ment of climate change and/or hydrological changes. Here, we propose using the linear482

scaling method (LSM) (Widmann et al., 2003; Maraun, 2016) - due to its low compu-483

tational cost and simplicity (Lafon et al., 2013; Chaubey & Mall, 2023) -, as a quick di-484

agnostics tool to inform if the TS may be an influential decision (an example of an LSM485

application is provided in Appendix B). The LSM removes the bias from the raw GCM486

time series (fbias) through a multiplicative factor for the case of precipitation and an ad-487

ditive term for temperature, using an observational dataset as a reference. For exam-488

ple, if the reference and raw GCM mean annual precipitation amounts are 500 mm/year489

and 650 mm/year, respectively, a factor fbias = 500/650 = 0.77 is applied to the raw490

GCM time series to remove the bias. Accordingly, seasonal or monthly applications of491

LSM require more scaling factors (Maraun et al., 2010). Hence, the raw GCM projected492

change (f∆) is preserved (at the TS time scale), since the scaling factors are typically493

considered to be time-invariant. Additionally, the influence of the temporal stratifica-494

tion and the reference dataset (in case there is more than one available) can be isolated495

for a specific grid cell-GCM combination.496

Figure 10a illustrates the application of the linear scaling method (dashed lines)497

to the GFDL-CM4 GCM in one grid cell (red dot in map), using the entire period and498

stratifying the data seasonally and monthly. For this GCM-grid cell combination, TSS =499

0.72 and R = 0.7, and different TSs yield different projected precipitation seasonali-500

ties when applying the LSM. Figure 10a shows that the precipitation factors obtained501

with LSM agree with the averages obtained from all (seven) bias correction methods (solid502

lines).503

Finally, we examine the capability of the LSM to identify the precipitation season-504

ality projected with different TSs correctly. To this end we obtain, for each grid cell-GCM-505

TS combination, the precipitation seasonalities from (i) the average between the seven506

BCMs, and (ii) the application of the LSM. If the months of the projected maximum pre-507

cipitation agree, we consider that the LSM correctly identifies the seasonality, and if this508

occurs for the three TSs, we consider that the LSM successfully identifies the projected509

bias-corrected seasonality for that specific grid cell-GCM combination. Figure 10a illus-510

trates a successful case since, for each TS, the month of maximum precipitation is the511

same for the average among seven BCMs and from the LSM. Then we compute, for the512

1,000 grid cells analyzed here, the fraction of GCMs for which the LSM successfully iden-513

tifies the projected seasonality (accuracy, Figure 10b). The results show that, in almost514

all the grid cells, the LSM successfully identifies the projected seasonality of ∼70% of515

the GCMs, whereas for most grid cells (> 85%), the LSM successfully projects the sea-516

sonality for more than 85% of the GCMs.517

5.4 Limitations and future work518

In this study, we selected the SSP5-8.5 scenario and 29 GCMs, although other fu-519

ture scenarios and/or a subset of GCMs could be considered to assess the effects on his-520

torical biases (after bias correction) and/or future projections. We did not focus on per-521

formance metrics for specific GCMs because evaluating the adequacy of particular bias522

correction methods is out of the scope of this work; instead, we focus on how these tech-523

niques are traditionally applied. Although we selected univariate and multivariate BCMs524

(e.g., Q. Guo et al., 2020), quantile-based, neural networks, and linear regressions, dif-525

ferent approaches could be considered.526

Additionally, we did not conduct any hydrological modeling. Instead, we focused527

on the repercussions of some decisions on the historical biases and the projected season-528

ality of climate variables required to run hydrological and land surface models. However,529

previous work has shown that hydrological models tend to amplify biases in the forcings530

(Teng et al., 2015). We emphasize that any assessment of climate change impacts should531

ensure that the climatological annual cycles of hydrological simulations forced with (i)532
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Figure 10. Linear scaling method used as a proxy to estimate the projected precipitation

seasonality. (a) Example of projected precipitation seasonalities for one grid cell and one GCM,

obtained from applying the LSM and the seven BCMs tested. The metrics summarize the raw

(biased) GCM performance for the historical period (1980-2014). (b) LSM accuracy (as a fraction

of the total number of GCMs) for all grid cells.
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reference data sets and (ii) bias-corrected time series from GCMs/RCMs are similar (Hakala533

et al., 2018). Hence, verifying the reference and bias-corrected GCM forcing data dur-534

ing a historical period arises as a crucial step (Chen et al., 2013; Clark et al., 2016; Men-535

doza et al., 2016; Melsen et al., 2019). Future work could consider the impacts of SDBC536

historical biases and differences in projected seasonality on different aspects of the hy-537

drograph (e.g., mean values, extremes, timing, etc.) and signatures formulated from other538

variables than streamflow (e.g., SWE, soil moisture; McMillan et al., 2022; Araki et al.,539

2022).540

6 Conclusions541

In this paper, we examined how methodological choices involved in GCM bias cor-542

rection affect historical and future climate portrayals. To this end, we used seven bias543

correction methods, 29 CMIP6 GCMs, and three temporal stratifications. All the con-544

figurations were applied to daily time series of precipitation and maximum and minimum545

daily temperature derived from the CR2MET gridded observational product, available546

for continental Chile. Our main findings are as follows:547

1. A monthly application of bias correction methods is required to replicate the ref-548

erence precipitation seasonality, even for GCMs with good raw seasonality.549

2. The temporal stratification is the most relevant decision to quantify seasonal and550

monthly precipitation biases.551

3. Different temporal stratifications may yield different projected signals and season-552

ality, even for GCMs with good raw seasonality.553

4. The linear scaling method can be used to estimate the projected seasonality of GCMs554

and, therefore, to identify the climate models for which the choice of temporal strat-555

ification may be critical, before applying more sophisticated and computationally556

expensive bias correction methods.557

Appendix A Selected GCMs558

Table A1 shows the GCMs included in this study.559

Appendix B Scaling factor example560

We illustrate the effects of the temporal stratification by applying the linear scal-561

ing method (LSM) (Maraun et al., 2010) for one grid cell-GCM combination. Figure B1a562

shows monthly precipitation averages from raw GCM outputs, whereas Figure B1b-d shows563

the bias-corrected GCM values for three different temporal stratifications. Monthly val-564

ues were obtained from the daily corrected time series.565

Note that when the entire period is used to bias-correct the GCM, only one factor is ap-566

plied. In the grid cell analyzed, the reference annual precipitation is 4371 mm, which is567

below the historical raw GCM amount for the same period (5020 mm). Hence, the raw568

GCM precipitation time series is multiplied by the factor f = 4731/5020 = 0.87, which569

removes the annual SDBC bias; nevertheless, monthly SDBC-biases persist (see differ-570

ences between black and blue lines in Figure B1b). When the LSM is applied season-571

ally, four factors are used to multiply the raw GCM time series. For example, daily val-572

ues from March, April, and May are bias-corrected by the seasonal factor obtained from573

the reference (1134 mm/season) and the raw GCM (1498 mm/season) precipitation amounts.574

In this case, the factor used to bias-correct daily precipitation from March, April, and575

May is fMAM = 1134/1498 = 0.76. Similarly, if the LSM is applied monthly, daily576

precipitation amounts from March are bias-corrected using the reference (374 mm/month)577

and raw GCM (498 mm/month), which yields a factor f = 374/498 = 0.75. For the578

monthly TS, the black and blue lines are the same. Note that the projected maximum579
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Figure B1. Illustration of the linear scaling method, applied to one grid cell-GCM combina-

tion, and its effects on the SDBC-biases and projections. (a) Reference (observational) and raw

GCM seasonality during the period 1980-2014 (black and blue lines). The projected raw sea-

sonality is also shown in red (2065-2099). (b), (c) and (d) show the bias-corrected precipitation

amounts using the entire period, seasons, and months, respectively, for temporal stratification.

The reference value is shown in all panels for completeness, and the shaded areas represent the

temporal stratification.

monthly precipitation is October for the three TS, which is the same as the raw GCM580

projection. However, the projected minimum monthly precipitation is September, March,581

and March for the entire period, season, and monthly application of the LSM, respec-582

tively.583

Open Research Section584

The CR2MET dataset (Boisier et al., 2018) is available at https://www.cr2.cl/datos-585

productos-grillados/. The GCMs data was downloaded from the Earth System Grid Fed-586

eration (https://esgf-node.llnl.gov/search/cmip6/). All the data used in this study is avail-587

able at https://bhuch.myqnapcloud.com/share.cgi?ssid=43cb3da649cd41ca9bfc42150a855e89.588
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Cepeda, J. (2021). Impacts of Climate Change on Water Resources in Chile.827

In B. Fernández & J. Gironás (Eds.), Water resources of chile (pp. 347–363).828

Cham: Springer International Publishing. Retrieved from https://doi.org/829

10.1007/978-3-030-56901-3 19 doi: 10.1007/978-3-030-56901-3{\ }19830

Vogel, E., Johnson, F., Marshall, L., Bende-Michl, U., Wilson, L., Peter, J. R.,831

. . . Duong, V. C. (2023, 7). An evaluation framework for downscaling and832

bias correction in climate change impact studies. Journal of Hydrology , 622 ,833

129693. doi: 10.1016/j.jhydrol.2023.129693834

Vrac, M., & Thao, S. (2020, 11). R2D2; v2.0: accounting for temporal dependences835

in multivariate bias correction via analogue rank resampling. Geoscientific836

Model Development , 13 (11), 5367–5387. doi: 10.5194/gmd-13-5367-2020837

Wan, Z. (2014, 1). New refinements and validation of the collection-6 MODIS land-838

surface temperature/emissivity product. Remote Sensing of Environment , 140 ,839

36–45. doi: 10.1016/j.rse.2013.08.027840

Werner, A. T., & Cannon, A. J. (2016, 4). Hydrologic extremes – an intercompar-841

ison of multiple gridded statistical downscaling methods. Hydrology and Earth842

System Sciences, 20 (4), 1483–1508. doi: 10.5194/hess-20-1483-2016843
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Contents of this file

1. Figures S1 to S19 expand the results to other climate indices since the main

manuscript only contains results for precipitation at different time scales.

Additional Supporting Information (Files uploaded separately)

1. Taylor Skill Score (Taylor, 2001) for (i) each climate region (ds01) and (ii) grid cell

(ds02), uploaded as excel (.xlsx) files.

2. Grid cells’ coordinates and attributes used for clustering (ds03; as .csv).

Introduction. The material included here expands the results presented for precipitation

(during the historical period) to the rest of the climate indices: (i) air temperature (T),

(ii) diurnal temperature range (DTR), (iii) precipitation (P), (iv) coefficient of variation

of inter-annual precipitation (c.o.v. P), (v) 1% highest daily precipitation (P-1%), (vi)

wet spell length (WSL), (vii) dry spell length (DSL), (viii) wet fraction (WF) and (ix)

snowfall fraction (SF). Figures S1 to S9 display the biases at the annual, seasonal, and

monthly time scales. Figures S10 to S19 show the results of the Analysis of Variance

(ANOVA). Two additional files were uploaded separately. They contain the Taylor Skill

score values (TSS) for each grid cell and also the TSS computed at the climate cluster

scale. TSS cluster values were calculated from the mean cluster precipitation seasonality

for the period 1980-2014 (as the grid cell average within each cluster).

Biases After Applying Correction Methods Figures S1 to S9 display the bias of

each climate index at the annual and monthly time scales, disaggregated by the temporal

stratification (TS) considered to bias correct the raw GCM outputs (entire period, seasons,

and months). When not shown, the unit of the bias corresponds to the difference between

the bias-corrected GCM and the reference (XGCM −Xref ).
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VÁSQUEZ ET AL.: PITFALLS IN USING STATISTICAL BIAS-CORRECTION METHODS X - 3

Relative Importance to Remove Biases. Figure S10 shows the relative importance

of the bias correction method (BCM) and the TS to explain the variance of errors in

bias-corrected climate indices during the historical period for Continental Chile, based

on Analysis of Variance (ANOVA). The Total Variance (TV) is formulated as TV =

BCM + TS + Residuals. Results from the ANOVA analysis (BCM/TV , TS/TV , and

Residuals/TV ) are computed for each grid cell and GCM and subsequently averaged for

continental Chile. Figures S11 to S19 show the same results, disaggregated by climate

clusters.
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Figure S1. Temperature bias at the (a) annual and (b) monthly time scales after bias cor-

rection, separated for each climatic group (rows). The colors indicate the temporal stratification

used to apply the BCM. Biases are computed for the 1980-2014 period.
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VÁSQUEZ ET AL.: PITFALLS IN USING STATISTICAL BIAS-CORRECTION METHODS X - 5

Entire period

Seasonally
Monthly

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

Temporal stratification

B
ia

s 
(°

C
)

a) Entire period Seasonally Monthly

1

2

3

4

5

6

7

8

9

10

M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

Month

B
ia

s 
(°

C
)

b)

Figure S2. Same as Figure S1, but for diurnal temperature range.
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X - 6 VÁSQUEZ ET AL.: PITFALLS IN USING STATISTICAL BIAS-CORRECTION METHODS

Entire period

Seasonally
Monthly

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

Temporal stratification

B
ia

s 
(%

)

a) Entire period Seasonally Monthly

1

2

3

4

5

6

7

8

9

10

M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60

−30

0

30

60

Month

B
ia

s 
(%

)

b)

Figure S3. Same as in Figure S1, but for precipitation
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VÁSQUEZ ET AL.: PITFALLS IN USING STATISTICAL BIAS-CORRECTION METHODS X - 7

Entire period

Seasonally
Monthly

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Temporal stratification

B
ia

s 
(−

)

a) Entire period Seasonally Monthly

1

2

3

4

5

6

7

8

9

10

M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Month

B
ia

s 
(−

)

b)

Figure S4. Same as Figure S1, but for the coefficient of variation for inter-annual precipitation
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Figure S5. Same as in Figure S1, but for the highest 1% daily precipitation

October 31, 2023, 3:10pm
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Figure S6. Same as in Figure S1, but for the dry spell length
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Figure S7. Same as in Figure S1, but for the wet spell length

October 31, 2023, 3:10pm
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Figure S8. Same as in Figure S1, but for the wet day fraction
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X - 12 VÁSQUEZ ET AL.: PITFALLS IN USING STATISTICAL BIAS-CORRECTION METHODS

Entire period

Seasonally
Monthly

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Temporal stratification

B
ia

s 
(−

)

a) Entire period Seasonally Monthly

1

2

3

4

5

6

7

8

9

10

M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Month

B
ia

s 
(−

)

b)

Figure S9. Same as in Figure S1, but for the snowfall fraction
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Figure S10. Relative importance (averaged across all grid cells and GCMs) of the bias

correction method and the temporal stratification to explain the dispersion of biases with respect

to the reference dataset at the annual, seasonal (DJF and JJA), and monthly (January and

July) time scales during the historical period (1980-2014). Results are stratified according to

the historical raw GCM performance (measured by the TSS; x-axis). Biases are computed after

applying the BCMs, and results are displayed for temperature (T), diurnal temperature range

(DTR), precipitation (P), coefficient of variation of inter-annual precipitation (c.o.v. P), highest

1% daily precipitation amount (P-1%), dry spell length (DSL), wet spell length (WSL) and

snowfall fraction (SF).

October 31, 2023, 3:10pm
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Figure S11. Relative importance (averaged across all GCMs and grid cells within each climate

group) of the bias correction method and the temporal stratification to explain the dispersion

of temperature biases (with respect to the reference dataset) at the annual, seasonal (DJF and

JJA), and monthly (January and July) time scales during the historical period (1980-2014).

Results are stratified according to the historical raw GCM performance (measured by the TSS;

x-axis) and climate group (rows). Biases are computed after applying the BCMs.

October 31, 2023, 3:10pm
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Figure S12. Same as in Figure S11, but for diurnal temperature range.

October 31, 2023, 3:10pm
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Figure S13. Same as in Figure S11, but for precipitation.

October 31, 2023, 3:10pm
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Figure S14. Same as in Figure S11, but for the coefficient of variation of inter-annual

precipitation.

October 31, 2023, 3:10pm
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Figure S15. Same as in Figure S11, but for the highest 1% daily precipitation.

October 31, 2023, 3:10pm
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Figure S16. Same as in Figure S11, but for dry spell length.

October 31, 2023, 3:10pm
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Figure S17. Same as in Figure S11, but for wet spell length.

October 31, 2023, 3:10pm
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Figure S18. Same as in Figure S11, but for wet day fraction

October 31, 2023, 3:10pm
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Figure S19. Same as in Figure S11, but for the snowfall fraction.
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