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Abstract

Sap flow observations provide a basis for estimating transpiration and understanding forest water use dynamics and plant-climate

interactions. This study developed a continental modeling approach using Long Short-Term Memory networks (LSTMs) to

predict hourly tree-level sap flow across Europe based on the SAPFLUXNET database. We developed models with varying

levels of training sets to evaluate performance in unseen conditions. The average Kling-Gupta Efficiency was 0.77 for gauged

models trained on 50 % of time series across all forest stands and was 0.52 for ungauged models trained on 50 % of the forest

stands. Continental models matched or exceeded performance of specialized and baseline models for all genera and forest

stands, demonstrating the potential of LSTMs to generalize hourly sap flow across tree, climate, and forest types. This work

highlights hence the potential of deep learning models to generalize sap flow for enhancing tree to continental ecohydrological

investigations.
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Key Points: 16 

● LSTMs demonstrate their ability in predicting hourly sap flow for diverse trees and 17 

climates across Europe. 18 

● Training on extensive datasets enhances LSTM's ability to simulate sap flow accurately 19 

in both seen and unseen environments. 20 

● The study underscores the value of large-scale deep learning models and advocates for 21 

the expansion of datasets like SAPFLUXNET. 22 

  23 

mailto:Ralf.Loritz@kit.edu


manuscript submitted to Geophysical Research Letters (GRL) 

 

Abstract.  24 

Sap flow observations provide a basis for estimating transpiration and understanding forest water 25 

use dynamics and plant-climate interactions. This study developed a continental modeling 26 

approach using Long Short-Term Memory networks (LSTMs) to predict hourly tree-level sap 27 

flow across Europe based on the SAPFLUXNET database. We developed models with varying 28 

levels of training sets to evaluate performance in unseen conditions. The average Kling-Gupta 29 

Efficiency was 0.77 for gauged models trained on 50 % of time series across all forest stands and 30 

was 0.52 for ungauged models trained on 50 % of the forest stands. Continental models matched 31 

or exceeded performance of specialized and baseline models for all genera and forest stands, 32 

demonstrating the potential of LSTMs to generalize hourly sap flow across tree, climate, and 33 

forest types. This work highlights hence the potential of deep learning models to generalize sap 34 

flow for enhancing tree to continental ecohydrological investigations.  35 

 36 

Plain language summary. 37 

Transpiration is the dominant flux of water from the land surface to the atmosphere, yet it 38 

remains challenging to measure and estimate especially given different climates and tree types. 39 

This study shows how large-scale deep learning models can simulate sap flow, the movement of 40 

water within trees, with high precision, even in forests and conditions not previously studied. We 41 

show that these models excel when they learn from large and diverse datasets. The flexible 42 

design of our model training means that every new sap flow measurement can potentially be 43 

used to further optimize our networks. Our findings indicate that this approach of continuously 44 

updating the model with new information greatly improves its performance to simulate and 45 

predict tree-level sap flow. This work thus highlights the potential of deep learning models to 46 

generalize sap flow, thereby enhancing ecohydrological investigations from the tree to the 47 

continental scale. 48 

1 Introduction 49 

Accurate quantification of plant transpiration is a critical component in hydrological research, 50 

accounting for approximately 65 % of global terrestrial evapotranspiration (e.g. Good et al., 51 

2015). Plants play thereby a pivotal role in controlling the exchange of water between the 52 

atmosphere and the land surface. Yet, capturing complex plant water use responses to 53 

environmental conditions and estimating transpiration across spatio-temporal scale, remains 54 

challenging. Among the limited number of available measurements for plant transpiration, in-situ 55 

sap flow sensors are the most widespread technique due to their (relative) low cost and ease of 56 

use (Dugas et al., 1993). Sap flow has long been recognized, especially in ecology and plant 57 

physiology fields, as a fundamental measurement for deciphering vegetation functionality and 58 

transpiration dynamics in both forested (Granier & Loustau, 1994) and agricultural ecosystems 59 

(Dugas et al., 1994).  60 
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 61 

While the analysis of sap flow has been less prevalent in catchment hydrology, recent studies 62 

highlight how sap flow measurements can enhance understanding of intricate relationships 63 

among vegetation characteristics, hydrometeorological factors, and catchment properties. For 64 

instance, Hassler et al. (2018) conducted an extensive study to determine the relative influence of 65 

tree-, stand-, and site-specific characteristics on sap velocity patterns, using data from 61 beech 66 

and oak trees across 24 sites in Luxembourg. Their findings suggest that transpiration estimates 67 

at the catchment scale could be significantly improved by taking into account not just hydro-68 

meteorological drivers, but also the spatial patterns of the composition of forests in a catchment. 69 

Renner et al. (2016) showed that variability in sap flow driven by topography and aspect could 70 

be balanced out by the forest stand composition, resulting in equivalent transpiration rates across 71 

south and north facing hillslopes. This exemplifies how vegetation dynamics adapt to 72 

environmental conditions to effectively use available resources. Hoek van Dijke et al. (2019) 73 

used sap flow measurements to explore the link between normalized difference vegetation index 74 

(NDVI) and transpiration. They showed that NDVI is not always reliable for modeling 75 

transpiration, especially during drought periods, as the correlation between NDVI and sap flow 76 

can vary positively or negatively, influenced by seasonal changes, moisture availability, and 77 

hydrogeological factors. Integrating sap flow into catchment studies and understanding its spatio-78 

temporal variability is thus key for improving our ability to estimate transpiration at landscape 79 

scales 80 

 81 

Sap flow measurement campaigns have typically been designed to examine plant-soil interaction 82 

at plot or plant scales (e.g. Jacksich et al., 2020, Seeger et al., 2022). Nevertheless, recent 83 

modeling demonstrates avenues for incorporating individual sap flow measurements to advance 84 

our understanding of large-scale ecohydrological dynamics, for instance, by validating large 85 

scale environmental models and / or by improving catchment wide transpiration estimates (Loritz 86 

et al., 2022). Further, the SAPFLUXNET initiative was founded to combine and harmonize 87 

numerous, individual small-scale field campaigns in a global open-source sap flow database and 88 

hence overcome the spatial and temporal scarcity of sap flow data sets (Poyatos et al., 2021). The 89 

SAPFLUXNET database therefore presents unique opportunities to learn generalizable 90 

relationships across different plant genera and different climates, critical for estimating sap flow 91 

in ungauged regions at the tree level. Such relationships have yet to be encoded into data-driven 92 

models to predict sap flow regionally based on tree type, stand characteristics and climate. 93 

 94 

Deep learning offers powerful avenues to find generalizations in large and diverse datasets (e.g. 95 

LeCun et al.,  2015). For example, Koppa et al. (2022) employed a feed-forward neural network 96 

to analyze daily, global datasets from eddy covariance stations, satellites and sap flow 97 

measurements from SAPFLUXNET. Their aim was to create an accurate global vegetation stress 98 

model that improves simulations of the reduction of evaporation from its theoretical maximum, 99 

for instance during periods of water limitations. By integrating the feed-forward neural network 100 
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into an existing process-based model, they improved the ability of the process-based model to 101 

estimate global evaporation rates. Further, Loritz et al. (2022) showed that gated recurrent units 102 

(Cho et al., 2014), a form of recurrent neural network that drops old information as it ingest new 103 

information, could simulate vegetation dynamics in form of catchment-averaged sap velocities 104 

with low residuals even in areas where the model has not been trained. Similar to Koppa et al. 105 

2022, Loritz et al. (2022) showed that the deep-learning-based sap velocity simulations can be 106 

coupled with a process-based, hydrological model, in this case with the objective to replace the 107 

semi-empirical Steward-Jarvis equation, resulting in more accurate transpiration estimates and 108 

ultimately better soil moisture simulations particularly during a drought year. In addition, Li et 109 

al. (2022), highlighted the ability of recurrent neural networks to estimate the vegetation 110 

dynamics of a specific tree species in New Zealand from standard meteorological variables. Both 111 

Loritz et al. (2022) and Li et al. (2022) found that particular recurrent neural networks like Long 112 

Short-Term Memory (LSTM; Hochreiter and Schmidhuber, 1997) models are suitable 113 

architectures to simulate and predict sap flow when they compared different networks. However, 114 

both studies trained models on relatively small and local datasets, representing only the dynamics 115 

of a forest stand or a small catchment without deciphering different tree species behavior. The 116 

extent to which recurrent neural networks can detect consistent relationships between tree-level 117 

sap flow and meteorological drivers across different species, measurement methods, climates and 118 

forest stands remains an open question.  119 

 120 

This study aims to investigate the potential of LSTMs, a well-suited architecture for simulating 121 

environmental time series (e.g. Shen et al., 2017, Kratzert et al., 2018, 2019, Besnard et al., 122 

2019), for modeling tree-level sap flow at an hourly time scale across the European continent. 123 

We developed continental tree-level sap flow models leveraging the SAPFLUXNET database to 124 

extract generalized relations between sap flow from different tree genera, dynamic atmospheric 125 

drivers and forest stand characteristics. We developed different experimental training setups with 126 

the aim of evaluating the performance of continental deep learning sap flow models in-sample 127 

and out-of-sample against simple baseline models and more specialized, local models. Such a 128 

deep learning approach for continental tree-level sap flow modeling offers avenues to overcome 129 

limitations of transpiration models when tree–level parameterizations for stomatal conductance 130 

are locally unavailable, could be used to assess different forest structures and their implications 131 

for regional transpiration rates, and ultimately provide robust sap flow based transpiration 132 

estimates across scales. 133 

2 Material and Methods 134 

2.1 The SAPFLUXNET database 135 

The SAPFLUXNET database (Poyatos et al., 2021) represents a comprehensive global 136 

repository of tree-level sap flow measurements and their ancillary data including tree and forest 137 

characteristics and meteorological observations. We used version 0.1.5 of the database 138 
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encompassing 202 datasets providing information on 2714 individual trees. The sap flow 139 

datasets span 174 species (141 angiosperms and 33 gymnosperms), 95 genera, and 45 families 140 

and covers the temporal period 1995-2018. The measurement periods for individual trees within 141 

the database extends from a minimum of 3 months up to a maximum of 16 years. 142 

2.1.1 A European subset of the SAPFLUXNET database 143 

We selected a European subset of the SAPFLUXNET dataset, comprising 64 forest stands out of 144 

202 stands in the global datasets, encompassing 738 individual trees. We specifically focused on 145 

the European subset of SAPFLUXNET due to the high density of measurements and strong 146 

overlap of tree genera found within this region. In total, we included six tree genera with > 20 147 

individual tree measurements: 282 plants with Pinus, 159 plants with Picea, 144 plants with 148 

Quercus, 94 plants with Fagus, 30 plants with Larix, and 29 plants with Pseudotsuga. Selected 149 

datasets represented six forest types according to the International Geosphere-Biosphere 150 

Programme (IGBP) classification: 34 evergreen needle-leaf forest (ENF), 11 mixed forest (MF), 151 

8 deciduous broadleaf forest (DBF), 5 deciduous needle-leaf forest (DNF), 4 evergreen broadleaf 152 

forest (EBF), and 2 savannas (SAV). We treated each individual tree seasonal sap flow time 153 

series separately resulting in a total of 2279 years of sap flow (cm
3 

h
-1

) observations, each 154 

corresponding to about one vegetation season (April to September,  3-6 months depending if the 155 

sensor was installed for a shorter period). The division into individual seasonal time series is 156 

important and allows us to include all sensors in our study, even if they cover only a few months 157 

at any possible point in time. The winter period (October to March) was excluded as 158 

transpiration is low or zero at most stands.  159 

2.1.2 Selected model features  160 

We considered six dynamic features comprising meteorological variables at an hourly resolution 161 

available in the SAPFLUXNET database: air temperature (°C), relative humidity (%), vapor 162 

pressure deficit (kPa), shortwave incoming radiation (W m
-2

), precipitation (mm), and wind 163 

speed (m s
-1

). We considered six static features, comprising four forest stand characteristics: 164 

mean elevation (m), long-term mean annual temperature (°C), long-term mean annual 165 

precipitation (mm), and forest type (DBF, DNF, EBF, ENF, MF, SAV), and two individual tree-166 

level characteristics: diameter at breast height (DBH; cm) and tree genera (Fagus, Larix, Picea, 167 

Pinus, Pseudotsuga, and Quercus). We implemented one-hot-encoding for each of the 6 genera 168 

and 6 forest types in the dataset. We note that we included the DBH as a scaling variable in the 169 

model features to adequately estimate tree-level sap flow instead of standardizing and upscaling 170 

the sap flow measurements into transpiration rates per unit area. As such, one can apply the 171 

resulting models in unseen locations, potentially test novel stand structure scenarios and have the 172 

flexibility to estimate forest-level transpiration given different tree genera, sizes, and density. 173 



manuscript submitted to Geophysical Research Letters (GRL) 

 

2.2 Deep learning model - Long Short-Term Memory 174 

LSTMs are recurrent neural networks that are specifically engineered to circumvent the 175 

vanishing and exploding gradient problem encountered in regular recurrent neural networks 176 

(Hochreiter and Schmidhuber, 1997; Hochreiter 1998). This is achieved through the introduction 177 

of a cell state, which provides the network with the capability to learn long-term dependencies 178 

that are typically important in environmental, sequential data. The memory cell works in 179 

conjunction with so-called "gates", mechanisms that evolve the memory and output over time, 180 

while allowing the error to propagate consistently through the network, thereby facilitating the 181 

learning process. LSTMs have showcased their efficiency and aptitude in hydrological modeling 182 

and have emerged as one of the top-performing models for simulating various state-dependant 183 

ecohydrological phenomena, such as streamflow, soil moisture and ecosystem water and carbon 184 

fluxes (e.g. Kratzert et al., 2018; 2019, Besnard et al., 2019; Bartolomeis et al., 2023).  185 

2.2.1 LSTM hyperparameters 186 

We explored ranges of LSTM hyperparameter settings based on previous hydrological studies 187 

(Mai et al., 2022) and saw that the LSTM performance was relatively stable with a wide range of 188 

hyperparameters. Thus, for the sake of simplicity, we only show the results of a single set of 189 

parameters here. We chose the settings from Mai et al. 2022, with modifications made to (1) a 190 

reduced sequence length (which represents the number of time steps the network looks back to 191 

process and learn from sequential inputs) and (2) a reduced number of epochs. Both changes 192 

only minimally influenced the model performance while greatly decreasing training times of the 193 

LSTMs. The hyperparameter setting used for all model variants are: number of hidden layers = 194 

1; hidden layer neurons = 256; learning rate = 0.0005; dropout rate = 0.4; batch size = 64; 195 

sequence length = 24 hours; epoch 20; iterative optimization algorithm = ADAM. 196 

2.2.2 Model setups and evaluation 197 

We developed several experimental setups that differ in the amounts of data that were used to 198 

train the models with the goal of testing the model performance in different conditions. Our 199 

objective is to compare simple baseline, specialized and continental model setups 1) to assess the 200 

value of training deep learning models on larger and more diverse datasets instead of building 201 

models for each site or genera and 2) quantify model performance in predicting sap flow for 202 

unseen periods and for unseen locations.  203 

 204 

For all model setups, the data were divided such that a single vegetation growing season of tree-205 

level sap flow data is treated as an individual time series and entirely part of either the training, 206 

validation or test data (in total 2279 individual time series). We split the 2279 individual time 207 

series ten times into 1140 years (50%) for training, 912 years (40%) for testing and set aside the 208 

remaining 227 years (10 %) for validation. This so-called Monte Carlo Cross Validation scheme 209 

allows us to assess the robustness of our models with respect to the information content of the 210 
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training data by training LSTMs on ten different random subsamples that are drawn without 211 

repetitions (Maier et al., 2023). We assessed each model's performance using the Kling-Gupta 212 

efficiency (KGE) and its three components: Pearson correlation (r), bias ratio (α), and variability 213 

ratio (β), the Nash-Sutcliff efficiency (NSE), and the mean absolute error (MAE). For definitions 214 

of these performance metrics please see Gupta et al. (2009). All numeric input features were 215 

standardized by subtracting the mean and by dividing them by the standard deviation of the 216 

training data.  217 

 218 

We developed two types of specialized models that have been trained on smaller subsets of the 219 

data described in section 2.1.1: For the single forest stand models, we trained LSTMs on a single 220 

forest stand (location) at a time and across several tree genera; if present at the forest stand. For 221 

the single tree genera models, we trained LSTMs on a single genera at a time (e.g. Fagus, Pinus) 222 

and across several forest stands where the genera is present. Further we trained gauged-223 

continental models across all 64 forest stands. With the gauged-continental models, we assess the 224 

ability of the LSTMs to generalize in new time periods but in seen forest stands. Finally, we 225 

compare gauged-continental models to gauged-baseline models, representing the monthly 226 

averaged hourly diurnal cycle of sap flow for each stand and for each genera across the European 227 

continent. These baseline models are built ten times on the same randomly selected training data 228 

as the gauged-continental models.  229 

 230 

We developed ungauged-continental models to fully examine the LSTM networks’ ability to 231 

generalize at unseen forest stands and trees. We divided the data into random subsets of 50 % 232 

training (33 stands) and 50 % testing (31 stands). We stratified the splits to maintain the fractions 233 

of forest type (IGBP) within each split (Kang et al., 2023). For the forest type evergreen broad-234 

leaved forest (EBF), which had three stands, two were used for training and one for testing. The 235 

total number of stands for training was 33 versus 31 stands for testing.  We compare ungauged-236 

continental models to ungauged-baseline models, representing the monthly averaged hourly 237 

diurnal cycle of sap flow for each genera across the european continent. These ungauged-238 

baseline models are built ten times on the same training data as the ungauged-continental 239 

models. 240 

3 Results 241 

3.1 Performance of gauged-continental models 242 

The gauged-continental models, representing the upper bound in performance, were capable of 243 

simulating sap flow with an average KGE of 0.77 ± 0.04 (Figure. 1) in comparison to the 244 

gauged-baseline models of 0.64 ± 0.05. The comparison is, however, in favor of the gauged-245 

baseline models as not all stands have several trees with the same genera and as we use a random 246 

subsampling to generate our training data. The latter entails that the genera-specific monthly 247 

averaging works only at sites with several sensors or long observation time series where we 248 
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typically also observe higher performances of the gauged-continental models. The performance 249 

differences between the ten random training splits were small (± 0.04 KGE). This indicates that 250 

the randomly selected training data each hold a similar amount of information about the 251 

relationship between input features and sap flow and that the model is capable of generalizing. 252 

Looking closely at model performance across tree genera, there is a consistent pattern of high 253 

KGE values for Quercus, Fagus, and Pseudotsuga trees. Notably, even Pseudotsuga, the tree 254 

genera with one of the smallest dataset (80 years), achieves a KGE of  0.76 ± 0.07 in contrast to 255 

a KGE of 0.34 ± 0.07 for the gauged-baseline model. On the other hand, sap flow simulations of 256 

the Picea trees showed weaker performances with KGEs of 0.55 ± 0.06, despite being frequently 257 

found in the data (gauged-baseline models = 0.28 ± 0.03). The amount of data for a tree genera 258 

does not directly correlate with the model performance.  259 

 260 

Figure. 2 illustrates three sequences of hourly sap flow simulations and observations of a 261 

Quercus tree, a Pseudotsuga tree and a Picea tree for five consecutive days. While there is some 262 

uncertainty, most models of the ensemble agree on the diurnal sap flow pattern, which is 263 

underpinned by the fact that Pearson correlations between different members of the model 264 

ensemble are all higher than 0.8. In agreement with the overall findings, the gauged-continental 265 

models capture the sap flow dynamics from the shown Quercus tree well (Pearson correlation = 266 

0.9) and also match the absolute values (β = 1.03). The model performance for the shown Picea 267 

tree was lower and matches the dynamics to a certain extent (Pearson correlation = 0.77) but 268 

misses the absolute values. For the Pseudotsuga, the patterns and absolute values are well 269 

matched and even the drop of sap flow during midday for two days is matched reasonably well 270 

by the gauged-continental model. Model uncertainty across random subsampling is low for both 271 

the Quercus and Pseudotsuga tree compared to the Picea tree. 272 

3.2 Performance of specialized models 273 

Overall, models trained on a single genera did not outperform the gauged-continental models. At 274 

best they achieved an equivalent performance to the gauged-continental models. However, single 275 

genera models were found to be more sensitive to the amount of data, particularly if trained only 276 

on a few sites, and can exhibit large performance differences, even leading to negative KGEs for 277 

some tree genera. In contrast, the gauged-continental models remain relatively stable and less 278 

affected if the data representing a genera is reduced or if the number of stands is varied. Here, no 279 

simulation, not even removing a tree genera completely, resulted in a negative KGE. This opens 280 

the avenue to extend the training dataset by new tree types even if they have only been measured 281 

at a few locations for a short period.  282 

 283 

We also compared the outcomes of the single-stand and gauged-continental models, focusing on 284 

the specific tree genera measured at each site as not all tree types are present in each forest stand. 285 

At certain forest stands, for example in some locations in central Europe, the performance of the 286 

single stand models closely mirrors the gauged-continental model for the dominant genera at 287 
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these sites (Fagus). On the other hand, in some locations in South France, performance was 288 

lower than the gauged-continental model for the dominant genera (Quercus trees) with KGEs 289 

around 0.5 or 0.6 versus KGEs of 0.79. At no forest stand did the single-stand models 290 

outperform the gauged-continental model.   291 

 292 
Figure. 1: Performance and standard deviation (±) of the ten a) gauged-continental models and b) the ten ungauged-continental models measured 293 
by the KGE for all testing data (overall; orange) and for each of the six tree genera (genera name; green). 294 
 295 

 296 

Figure. 2: Observed and simulated hourly sap flow using the gauged-continental model for five consecutive days in the testing data for a) a 297 
Quercus tree in the year 2011 (France), b) a Pseudotsuga tree in the year 2012 (Germany) and c) for a Pinus tree in the year 2001 (Sweden). Blue 298 
bands visualize the uncertainty of the gauged-continental model given the five random training subsampling. 299 

3.3 Performance of ungauged-continental models 300 

As expected, the performance of the ungauged-continental model is on average lower than that 301 

of the gauged-continental model yet proved reasonable with an average KGE of 0.52 ± 0.16 in 302 

comparison to a KGE of -0.11 ± 0.15 of the ungauged-baseline model. The difference for the 303 
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genera-specific performance is also in this range with the highest difference of 0.79 (KGE) for 304 

Quecrus trees (ungauged-baseline models = 0.43 and ungauged-continental models = -0.36). 305 

Model performance of the ungauged-continental models increased rather quickly if, for instance, 306 

70 % instead of 50% of the data was used for training (KGE ~= 0.65). Diving into the individual 307 

models, we found that the performance was particularly affected by the frequency of forest types, 308 

despite stratifying random subsampling of the training data by IGBP. In other words, forest types 309 

with lower frequencies had a larger effect on the overall test scores than the amount of samples 310 

of a tree genera. The observed performance variance of the ungauged-continental models 311 

(standard deviation of 0.16) highlights the variability of the information content in the training 312 

data. Again this value reduces rather quickly if the models are trained on more data. 313 

4 Discussion 314 

4.1 Gauged-continental models provide robust sap flow estimates across the European 315 

continent compared to specialized and baseline models 316 

Gathering sap flow data can result in strong variations even at the same tree, making it 317 

challenging to achieve consistent and accurate readings (Steppe et al., 2010). For instance, sap 318 

flow measurements taken just a few meters apart in trees of similar genera, size, and height can 319 

show significant differences (Vandegehuchte and Steppe, 2013). Particularly absolute values 320 

vary, while the overall dynamics, akin to what is frequently found with respect to in-situ soil 321 

moisture observations, are typically well-matched if similar sensors are installed in different 322 

trees located in the same forest stand (e.g. Zehe et al., 2005; Loritz et al., 2017; Hassler et al., 323 

2018). Differences in absolute values might thereby arise from various small-scale structural 324 

characteristics, such as properties of the sap wood or heterogeneous flow paths inside the stem. 325 

These factors are typically unknown and not provided to our models as input. The model has, 326 

therefore, no way to learn such small-scale differences that might explain why at two similar 327 

trees in close proximity different absolute sap flows have been measured. This might be one 328 

reason why all models in this study generally learn to represent the dynamics of sap flow well, 329 

but can exhibit a high bias for certain trees. Nevertheless, given that SAPFLUXNET uses various 330 

sensors and measurement techniques across the globe (see the discussion of the SAPFLUXNET 331 

publication during the review process in Earth System Science Data; Poyatos et al., 2021) it is 332 

striking that LSTMs can generalize tree-level sap flow across diverse climate zones and genera 333 

with a performance akin to the local models described by Li et al. (2022), Loritz et al. (2022) and 334 

the specialized models trained in this study (e.g. in terms of sensor type, installing method, tree 335 

type, climate zone). Our findings reinforce thereby previous research suggesting that deep 336 

learning models, trained on large and diverse datasets, often outperform those trained on more 337 

localized, less diverse data (e.g. Kratzert et al., 2019, Sunwook and Steinschneider, 2022). While 338 

many single genera or single stand models (specialized models) in our study performed 339 

comparably to the gauged-continental models, there were notable instances where the latter was 340 
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superior. The gauged-continental models displayed reduced variance during the random 341 

subsampling of the training data and are able to simulate a tree genera even if it was entirely 342 

omitted with a KGE ranging from 0.2 to 0.4 depending on the tree genera. This result indicates 343 

that forest type (IGBP) provides more valuable insights for the models than information about 344 

which specific tree genera it should simulate. The reason being, variations within some of the 345 

forest types are less even among different tree genera, than those across forest types.  346 

4.2 Ungauged-continental LSTMs provide reasonable sap flow estimates at ungauged 347 

forest stands, and new data have the potential to further enhance this capability 348 

We quantified LSTMs performance for predicting hourly sap flow at forest stands that were 349 

unseen during training. The results show that the overall ungauged-continental model's 350 

performance, although lower than that of the gauged-continental model, was still reasonable with 351 

an average KGE of around 0.52. We found that the best-performing forest stands were often in 352 

the most frequent forest types (e.g. ENF). While the model was capable of predicting sap flow 353 

also in boreal and mediterranean forests, where measurements are more scarce, these predictions 354 

became less reliable the further they deviated from the training data showing clear limitations of 355 

the ungauged-continental model and the chosen training data set. The random subsampling of the 356 

training data and experiments with increasing the training data highlight that each new set of sap 357 

flow data can make the LSTM more robust, particularly in vegetation types that are less 358 

frequently monitored. Given that there are many tax funded large sap flow datasets available in 359 

Europe (and likely in other parts of the world) that are yet not openly available and not included 360 

in SAPFLUXNET, we argue that our study hints towards the currently unused potential that lies 361 

ahead when these data sets are shared in a consistent manner or if new measurement campaigns 362 

would be designed specifically to close the spatial and ecological gaps in the SAPFLUXNET 363 

dataset.  364 

 365 

The ungauged-continental models can make reasonable hourly predictions of sap flow in unseen 366 

forest stands for a majority of the European continent. This entails that with prescribed forest 367 

type and weather data (e.g. from climate models), it is possible to create hourly sap flow maps 368 

for Europe with one, continental deep learning model. Surely these dynamic maps have clear 369 

limitations but there are limited options to gather hourly information about plant water use at the 370 

tree level at ungauged sites. Furthermore, as we simulate tree-level sap flow based on different 371 

forest stand characteristics (DBH, genera) this model could be used to assess different forest 372 

structures and their implications for regional transpiration rates and how they potentially change 373 

under different forest management strategies. Such dynamic sap flow maps could also be used to 374 

evaluate or replace transpiration models that are frequently found in land surface or hydrological 375 

models as shown in Loritz et al. (2022). Our study hence demonstrates an avenue towards 376 

developing ensembles of continental sap flow models to predict sap flow and evaluate vegetation 377 

dynamics around the globe. 378 
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5. Conclusion 379 

This study evaluated the current potential and limits of deep learning to generalize tree-level sap 380 

flow dynamics across the European continent. Key technical criteria for developing robust 381 

LSTMs include the random subsampling strategy based on the vegetation seasons and the 382 

requirement to train the networks on large and diverse data. If trained properly we demonstrate 383 

that LSTMs can achieve a reasonable level of performance in predicting hourly sap flow for 384 

different tree genera, climate zones and forest types. Training deep learning models on large and 385 

diverse datasets and on several tree genera at the same time proved beneficial compared to 386 

specialized models and supported that LSTMs are capable generalizing vegetation dynamics 387 

beyond the individual tree-level sap flow measurement. This research paves the way for 388 

producing hourly tree-level sap flow maps across Europe, harnessing the combination of forest 389 

characteristics and dynamic meteorological drivers. Our study hints that as more sap flow 390 

datasets become openly available, the accuracy and coverage of such models are expected to 391 

improve significantly particularly for forest types that are less frequently found in the 392 

SAPFLUXNET dataset. This holds the promise of increasing our ability to simulate the 393 

vegetation water use dynamics that are encoded in sap flow and could serve as a valuable 394 

benchmark for different land surface and hydrological models. 395 
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