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Abstract

The land sink of anthropogenic carbon emissions, a crucial component of mitigating climate change, is primarily attributed to

the CO2 fertilization effect on global gross primary productivity (GPP). However, direct observational evidence of this effect

remains scarce, hampered by challenges in disentangling the CO2 fertilization effect from other long-term drivers, particularly

climatic changes. Here, we introduce a novel statistical approach to separate the CO2 fertilization effect on GPP and daily

maximum net ecosystem production (NEPmax) using eddy covariance records across 38 extratropical forest sites. We find the

median stimulation rate of GPP and NEPmax to be 16.4 ± 4% and 17.2 ± 4% per 100 ppm increase in atmospheric CO2 across

these sites, respectively. To validate the robustness of our findings, we test our statistical method using factorial simulations

of an ensemble of process-based land surface models. We acknowledge that additional factors, including nitrogen deposition

and land management, may impact plant productivity, potentially confounding the attribution to the CO2 fertilization effect.

Assuming these site-specific effects offset to some extent across sites as random factors, the estimated median value still reflects

the strength of the CO2 fertilization effect. However, disentanglement of these long-term effects, often inseparable by timescale,

requires further causal research. Our study provides direct evidence that the photosynthetic stimulation is maintained under

long-term CO2 fertilization across multiple eddy covariance sites. Such observation-based quantification is key to constraining

the long-standing uncertainties in the land carbon cycle under rising CO2 concentrations.
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Key Points: 11 

• We present a novel statistical method to disentangle the variability of photosynthetic  12 

rates related to climate and non-climate drivers 13 

• The analysis from 38 eddy covariance sites shows a 16.4 ± 4% increase in photosynthetic 14 

carbon uptake for a 100 ppm rise in atmospheric CO2 15 

• Our statistical method is successfully validated against idealized model simulations with 16 

and without increasing CO2  17 
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Abstract 18 

The land sink of anthropogenic carbon emissions, a crucial component of mitigating climate 19 

change, is primarily attributed to the CO2 fertilization effect on global gross primary productivity 20 

(GPP). However, direct observational evidence of this effect remains scarce, hampered by 21 

challenges in disentangling the CO2 fertilization effect from other long-term drivers, particularly 22 

climatic changes. Here, we introduce a novel statistical approach to separate the CO2 fertilization 23 

effect on GPP and daily maximum net ecosystem production (NEPmax) using eddy covariance 24 

records across 38 extratropical forest sites. We find the median stimulation rate of GPP and 25 

NEPmax to be 16.4 ± 4% and 17.2 ± 4% per 100 ppm increase in atmospheric CO2 across these 26 

sites, respectively. To validate the robustness of our findings, we test our statistical method using 27 

factorial simulations of an ensemble of process-based land surface models. We acknowledge that 28 

additional factors, including nitrogen deposition and land management, may impact plant 29 

productivity, potentially confounding the attribution to the CO2 fertilization effect. Assuming 30 

these site-specific effects offset to some extent across sites as random factors, the estimated 31 

median value still reflects the strength of the CO2 fertilization effect. However, disentanglement 32 

of these long-term effects, often inseparable by timescale, requires further causal research. Our 33 

study provides direct evidence that the photosynthetic stimulation is maintained under long-term 34 

CO2 fertilization across multiple eddy covariance sites. Such observation-based quantification is 35 

key to constraining the long-standing uncertainties in the land carbon cycle under rising CO2 36 

concentrations.  37 

Plain Language Summary 38 

Through photosynthesis, plants convert CO2 and water into sugars and oxygen using solar 39 

energy, one of the most important chemical reactions on Earth. Human-made carbon emissions 40 

are increasing increasing atmospheric CO2 levels, impacting global photosynthesis. The 41 

additional carbon is believed to have a fertilizing effect on photosynthesis, causing vegetation to 42 

absorb a significant portion of the emitted CO2. However, the strength of this CO2 fertilization 43 

effect on photosynthesis is uncertain, but is a crucial factor in determining the future trajectory of 44 

atmospheric CO2 concentrations. In this study, we introduce a new statistical method to quantify 45 

the increase in photosynthetic carbon uptake, stimulated by rising CO2, based on measurements 46 

from 38 forest sites. Our results reveal that a 100 ppm increase in CO2 enhances photosynthesis 47 

by approximately 16%. Validation of the statistical method with artificial model experiments 48 
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supports the robustness of our findings. Our study improves the understanding of the impacts of 49 

human-made CO2 emissions on the global carbon cycle.  50 

1 Introduction 51 

Forests play a crucial role in the global carbon cycle, acting as a significant sink for 52 

anthropogenic carbon emissions. Approximately 25% of annual carbon emissions are estimated 53 

to be sequestered and stored by forests via photosynthesis, with boreal and temperate forests 54 

making substantial contributions (Pan et al., 2011). The physiological effects of increasing 55 

atmospheric carbon dioxide (CO2) on plant productivity, known as the CO2 fertilization effect, 56 

are expected to stimulate photosynthesis and drive the enhanced carbon uptake. However, 57 

obtaining observational evidence for these effects in natural ecosystems and understanding how 58 

this process has changed historically remains a key knowledge gap. 59 

Multiple lines of evidence support an enhancement in photosynthesis (or gross primary 60 

production; GPP) in response to an increase in CO2: CO2 enrichment experiments (Norby et al., 61 

2010; Walker et al., 2021), ecosystem monitoring (Keenan et al., 2013; Fernández-Martínez et 62 

al., 2017; Mastrotheodoros et al., 2017) and indirect proxies based on long-term atmospheric 63 

carbonyl sulfide records (Campbell et al., 2017) or isotopomer signal (Ehlers et al., 2015). 64 

Process-based land-surface models, which simulate the physiological responses of vegetation to 65 

environmental changes, also predict a stimulation of photosynthesis with increasing CO2 levels 66 

(Sitch et al., 2015). However, multi-model projections of the CO2 effect on long-term GPP 67 

diverge considerably due to uncertainties in process parameterizations and feedback 68 

mechanisms, particularly in response to meteorological extremes and climatic changes associated 69 

to rising CO2 (Zaehle et al., 2005; De Kauwe et al., 2013; Rogers et al., 2014). Constraining the 70 

CO2 fertilization effect in models through direct observational evidence is a long-called-for 71 

necessity to advance our understanding of carbon cycling and essential for more reliable future 72 

projections of carbon sequestration. 73 

The global network of eddy covariance (EC) flux towers observing the exchange of CO2 at the 74 

ecosystem scale provides a valuable resource, as it has accumulated sufficiently long time series 75 

data to potentially provide direct evidence of the CO2 fertilization effect (Knauer et al., 2017; 76 

Baldocchi, 2020; Zhan et al., 2022). Previous studies have attempted to attribute the CO2 77 

fertilization effect on GPP by utilizing EC records. However, these studies have not adequately 78 
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accounted for confounded drivers of GPP, potentially leading to a misattribution, or only relied 79 

on an indirect use of measurements for attribution, such as using EC data to calibrate a 80 

predefined model. For instance, (Chen et al., 2022) used an eco-evolutionary optimality 81 

framework to reproduce EC-inferred GPP and subsequently attribute the CO2 fertilization effect 82 

on GPP. Their analysis estimated a global GPP enhancement of 63 g C m−2 yr−1 from 2001-2014 83 

due to rising CO2. Similarly, (Ueyama et al., 2020) utilized a model constrained with data from 84 

104 EC towers and estimated a 12.4 g C m−2 yr−1 increase in GPP. (Fernández-Martínez et al., 85 

2017), employing generalized mixed linear models, attributed an increase of 11.2 ± 2.5 g C m−2 86 

yr−1 in the GPP from 1995-2011 at 23 forest sites to CO2. These variations emphasize the 87 

importance of disentangling the CO2 effect on GPP directly, i.e., not using predefined model 88 

structures, and by carefully considering confounding drivers in leveraging the continuously 89 

growing EC records. 90 

In this study, we aim to disentangle the CO2 fertilization effect on photosynthetic uptake directly 91 

and exclusively from long-term multi-site flux measurements and accompanying meteorological 92 

data. Several factors, such as CO2, climate changes, land-use and land-cover changes, affect 93 

ecosystem productivity and are correlated and confounded on the multi-decadal time-scale. We 94 

introduce the so-called GPP residual method that statistically captures the sensitivity of GPP to 95 

CO2 and climate variables at different time scales to account for co-linearities among the drivers. 96 

First, we detrend the GPP time series to separate the long-term variability of GPP (the trend) 97 

primarily driven by CO2 and climate, from the shorter-term variability (anomalies) primarily 98 

driven by climate variabilities. The method estimates the sensitivity of GPP to climate, referred 99 

to as the γ effect with temperature change as the proxy for climatic change, based on these 100 

anomalies. Next, we can quantify the γ effect based on long-term changes assuming the 101 

sensitivity remains consistent over the time scales of a few decades. The difference between the 102 

original observed GPP trend and the inferred GPP trend due to climate changes yields the 103 

unexplained GPP residual, which can be attributed to the long-term CO2 effect on GPP, here 104 

referred to as the 𝛽 effect. Specifically, we define the 𝛽 factor as the relative change in GPP (%) 105 

per 100 ppm increase in CO2, and the γ factor as the relative change in GPP (%) per Kelvin 106 

increase in surface air temperature. It’s important to note that the GPP residual may also include 107 

other long-term effects specific to individual sites, such as signals related to nitrogen deposition 108 

or land management. First, we validate the robustness of the GPP residual method using site-109 
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level simulations with the QUINCY model (QUantifying Interactions between terrestrial 110 

Nutrient CYcles and the climate system; Thum et al., 2019). We use the GPP residual method to 111 

further estimate the 𝛽	and	γ effects in both GPP and daily maximum net ecosystem production 112 

(NEPmax) using long-term EC records. At last, we compare the results from EC records and 113 

factorial simulations from a set of land-surface models (TRENDY version 9; Sitch et al., 2015). 114 

Additionally, we discuss the relevance of other potential long-term impacts on GPP in more 115 

detail. 116 

2 Materials and Methods 117 

2.1 Eddy covariance data 118 

This study comprises 38 forested eddy covariance (EC) sites (Table S1), where CO2 flux data 119 

and meteorological data are collected by flux towers from Integrated Carbon Observation System 120 

(ICOS; Rebmann et al., 2018), and AmeriFlux (Novick et al., 2018). We focus on tree-dominated 121 

ecosystems as they exhibit less sensitivity to short-term climate variability compared to grass-122 

dominated ecosystems. We focus on tree-dominated ecosystems due to the heightened sensitivity 123 

of grass-dominated ecosystems to short-term climate variability, adding complexity to the 124 

disentanglement of their response to CO2 (Hovenden et al., 2014; Reich et al., 2018). The sites 125 

span geographically across Europe and North America. The forest types can be broadly classified 126 

into: deciduous broadleaf forest (DBF; 12 sites), evergreen need-leaved forest (ENF; 20 sites), 127 

and mixed deciduous–coniferous forest (MF; 6 sites). 128 

We obtain long-term recorded (≥10 years) eddy covariance data at daily scale and net ecosystem 129 

production (NEE) at half-hourly scale from 1994 to 2022 (Table S2). GPP is estimated from the 130 

nighttime partitioning algorithm (Reichstein et al., 2005) . Meteorological variables used in this 131 

study include temperature, incoming shortwave radiation and vapour pressure deficit (VPD). 132 

Due to the limited depth of soil moisture measurements (Yu et al., 2022), we calculate a water 133 

availability index (WAI; Tramontana et al., 2016) following a bucket model approach. The 134 

maximum cumulative water deficit (Aragão et al., 2007) represents the available water content 135 

(awc). WAI is calculated as the balance of precipitation recharge and observed 136 

evapotranspiration as follows: 137 
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𝑖𝑛𝑝𝑢𝑡(𝑡) = min0𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛(𝑡), 𝑎𝑤𝑐 −𝑊𝐴𝐼(𝑡)= (1) 138 

𝑊𝐴𝐼	(𝑡 + 1) = max A0𝑊𝐴𝐼(𝑡) + 	𝑖𝑛𝑝𝑢𝑡(𝑡) − 𝐸𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)=, 0F (2) 139 

Where t represents the timestep t. We exclusively include data with daily quality control 140 

indicators for NEE and meteorological variables surpassing 0.6, denoting a 60% or higher 141 

percentage of measured and high-quality gap-filled data. In summary, EC sites are selected for 142 

this study based on three criterias: (a) only sites dominated by tree-ecosystems are selected; (b) 143 

there has to be a long-term record of EC observations (≥10 years) after the quality control when 144 

(c) at least 60% data per day is measured or gap-filled with good quality. In total we estimate 𝛽 145 

and γ for 228 site-months. 146 

Maximum leaf area index (LAImax, m2 m−2), forest age (years), site-specific disturbance or 147 

management information are collected from the literature (Musavi et al., 2017; Besnard et al., 148 

2018; Flechard et al., 2020; Migliavacca et al., 2021), the BADM product, and/or site principal 149 

investigators. 150 

Due to the systematic biases of the atmospheric CO2 measurements in the eddy covariance data, 151 

for consistency, we replace the CO2 measurement with the CO2 product CAMS CF-1.6 152 

(Chevallier et al., 2005, 2010) from the nearest pixel to each EC site. The CO2 reanalysis data 153 

spans from 1994 to 2022 with daily resolution, thus sufficient to match the time period of the 154 

eddy covariance data. 155 

2.2 Estimating 𝛽 and γ using the GPP residual method 156 

We develop the GPP residual method (Figure 1) to isolate the CO2 fertilization effect (𝛽) from 157 

other confounding factors (e.g., climate). 𝛽 is inferred for each site and each month-of-year 158 

separately, using the median values of GPP and hydro-meteorological data across five-day 159 

intervals within the considered months to filter out synoptic weather variability and its impact on 160 

GPP dynamics. The calculation of 𝛽 consists of three steps: (1) Data preparation (Figure 1b). 161 

The growing season when plant photosynthesis is active is defined based on the mean seasonal 162 

cycle of GPP (averages by day-of-year) across the time series. A month is considered within the 163 

growing season, if there are more than twenty days when GPP is greater than 25% of the 164 
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maximum of GPP as inferred from the mean seasonal cycle. Within each month, the median 165 

values of all variables are retrieved for every five-day interval. We then calculate anomalies 166 

using the median values by subtracting the long-term trend of the linear-fit for each month-of-167 

year (e.g., July in 1999, …,2020). We rescale the anomalies of all variables by adding the 168 

average value across the considered time period. The rescaling allows the random forest model 169 

in step (2) is trained and applied at an identical magnitude to extrapolate; (2) Model training and 170 

predicting climatic effects on GPP (Figure 1c). We train a random forest regression model for 171 

GPP anomalies using anomalies of hydro-meteorological variables (i.e., temperature (Temp), 172 

incoming shortwave radiation (SWin), vapor pressure deficit (VPD), water availability index 173 

(WAI), growing degree days (GDD)). We use the model to predict GPP using the actual hydro-174 

meteorological data (including both trends and anomalies) at each month-of-year. The predicted 175 

GPP (GPPclimatic) thus only reflects the effect of climate. Next to the random forest regression 176 

model, we call a multivariate linear regression model to test the robustness of the results from the 177 

random forest regression model (Figure S1); (3) Isolating non-climatic effects on GPP (Figure 178 

1d). The non-climatic effects on GPP (GPPresidual) are derived by removing the GPPclimatic from 179 

the actual GPP time series (GPPresidual = GPP - GPPclimatic). GPPbaseline is calculated as the mean 180 

GPP over the first two years in the considered time series. The relative change of GPP in 181 

response to CO2 (i.e., 𝛽) is derived as the trend of the linear-fit between CO2 concentration and 182 

GPPresidual in relative to GPPbaseline. Similarly, the sensitivity of GPP to temperature (i.e., γ) is 183 

derived as the trend of linear-fit between temperature and GPPclimatic in relative to GPPbaseline: 184 

𝛽 =

∆𝐺𝑃𝑃!"#$%&'(
𝐺𝑃𝑃)'#"($*"
∆𝐶𝑂+

× 100% (3) 185 

𝛾 =

∆𝐺𝑃𝑃,($-'.$,
𝐺𝑃𝑃)'#"($*"
∆𝑇𝑒𝑚𝑝

× 100% (4) 186 

The advantage of the GPP residual method is that we separate the confounding factors at 187 

different time scales, thus, it can solve the issue of multicollinearity to some extent, when the 188 

independent variables are highly correlated to one another. To show the different results yield 189 

from the GPP residual method and a multivariate regression method, we adopt a simple 190 

multivariate regression model as the following: 191 
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𝐺𝑃𝑃
𝐺𝑃𝑃)'#"($*"

∗ 100% = 	𝛽 × 𝐶𝑂+ + 𝛾 × 𝑇𝑒𝑚𝑝 + 𝜌/01 × 𝑉𝑃𝐷 + 𝜌234 ×𝑊𝐴𝐼

+𝜌511 × 𝐺𝐷𝐷 + 𝜌62!" × 𝑆𝑊$* (5)
 192 

Where 𝛽 is the sensitivity of GPP to CO2, and γ is the sensitivity of GPP to temperature. After 193 

obtaining 𝛽 values for each site-month, we calculate the median 𝛽. This approach helps to 194 

mitigate the influence of outliers. We further estimate the uncertainty of the median 𝛽 using the 195 

bootstrap method. By repeatedly sampling from the considered 𝛽 distribution, we create multiple 196 

bootstrap samples. Each sample is then used to calculate the median 𝛽. The standard deviation 197 

across these bootstrap estimates provides an estimate of the uncertainty associated with median 198 

𝛽. We calculate the median γ and its uncertainty in the same way. 199 

To consider the seasonal and spatial variation of GPP, we further calculate annual 𝛽 and γ by 200 

aggregating monthly 𝛽 and γ weighted by monthly 201 

GPPbaseline:202 

𝐴𝑛𝑛𝑢𝑎𝑙	𝛽 = ∑ 𝛽-7*.8! ×
500#$%&'!"&!

500(%
*
$9: (6) 𝐴𝑛𝑛𝑢𝑎𝑙	𝛾 = ∑ 𝛾-7*.8! ×

500#$%&'!"&!
500(%

*
$9: (7) 203 

Where i represents a specific month, and n is the total number of months. GPPgs is the sum of 204 

baseline GPP across the considered growing season. Similarly, the annual 𝛽 and γ at each site 205 

can be further aggregated across space: 206 

𝑚𝑒𝑎𝑛	𝛽 =]𝐴𝑛𝑛𝑢𝑎𝑙	𝛽$ ×
𝐺𝑃𝑃;#!
𝐺𝑃𝑃#&-

*

$9:

(8) 207 

𝑚𝑒𝑎𝑛	𝛾 =]𝐴𝑛𝑛𝑢𝑎𝑙	𝛾$ ×
𝐺𝑃𝑃;#!
𝐺𝑃𝑃#&-

*

$9:

(9) 208 

Where i represents a specific site, and n is the total number of sites. GPPsum is the sum of 209 

baseline GPP across all sites. To assess the robustness of the median 𝛽 or γ values and determine 210 

if they are influenced by site selection, we compare the mean 𝛽 or γ calculated across all sites, 211 

weighted by baseline GPP, with the median 𝛽 or γ derived from the distribution of monthly 𝛽 or 212 

γ values. If the median value remains relatively stable and comparable to the mean value across 213 

all sites, it suggests that the selection of sites does not significantly impact the robustness of the 214 
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median 𝛽 or γ estimations. 215 

 216 

Figure 1. Schematic of the statistical GPP residual method to isolate the CO2 fertilization effect 217 
and climatic effect in observational data of GPP. (a) Hypothesis. The overall goal of the GPP 218 
residual method is to isolate the CO2 fertilization effect on GPP by removing long-term climate 219 
effects inferred from short-term variability. (b) Data preparation. All the time series of climate 220 
variables and GPP are detrended and individually rescaled to the long-term mean of each 221 
variable. The black lines denote the actual time series for each variable, and the red line denotes 222 
the detrended time series. (c) A random forest model or multivariate linear regression model is 223 
trained to learn the sensitivity of GPP to the climate variables based on the detrended time series, 224 
i.e., interannual variability. (d) The trained model predicts the long-term changes in GPP caused 225 
by climate changes using the original time series of climate predictors, including the long-term 226 
trend. The non-climate-induced effect on GPP is therefore estimated from the residual of 227 
absolute GPP minus climate-induced GPP, shown as the red line. 228 

The EC technique allows for direct measurement of NEE, which is the difference between GPP 229 

and ecosystem respiration (RECO):	230 

𝑁𝐸𝐸 = 𝑅𝐸𝐶𝑂 − 𝐺𝑃𝑃 (10)231 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

The maximum net ecosystem production (NEPmax) is defined as the negative sign of the 232 

minimum NEE during a day from half-hourly measurement: 233 

𝑁𝐸𝑃-'< = −𝑁𝐸𝐸-$* (11)234 

In addition to GPP, we further estimate 𝛽 or γ for NEPmax following the same method. 235 

2.3 Validate the GPP residual method with a land surface model 236 

We use the terrestrial biosphere model QUINCY (QUantifying Interactions between terrestrial 237 

Nutrient CYcles and the climate system; Thum et al., 2019), which has been evaluated against a 238 

subset of FLUXNET sites across large geographical ranges and different ecosystem types, to 239 

validate the GPP residual method. We perform two simulations with identical climate but 240 

varying CO2 concentrations (transient CO2 as observed, and constant CO2 at levels of the year 241 

1988) at 166 forested sites distributed across the globe. The model setup and model simulations 242 

are identical with the “freeze-CO2 experiment” in Zhan et al. (2022). For better comparison with 243 

eddy covariance records, we take the last twenty years (1999-2018) in the simulations as the time 244 

period of the validation.  245 

The advantage of this method is that we can compare the 𝛽 estimated by the GPP residual 246 

method (𝛽estimated) with 𝛽 modeled by QUINCY (𝛽QUINCY), which is regarded as a surrogate truth 247 

that represents theory of photosynthetic responses to CO2, climate and water availability. 248 

𝛽QUINCY is calculated as the sensitivity of the CO2-induced change in GPP to CO2 concentration, 249 

in which GPP is calculated as the difference between simulations forced with transient CO2 and 250 

constant CO2 during the considered time period. 𝛽 is calculated for each site and each month-of-251 

year. The selection of months follows the same rule as the data preparation in the previous 252 

section. 𝛽estimated is calculated using the GPP residual method elaborated in the previous section 253 

from the simulation forced with transient CO2. 254 

We evaluate the agreement of 𝛽estimated and 𝛽QUINCY for each forested site (166 sites in total) in 255 

the model. We use the root-mean-square error (RMSE) to measure the difference between 256 

𝛽estimated and 𝛽QUINCY across the growing season. The RMSE of 𝛽 estimation per site is calculated 257 

as: 258 
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𝑅𝑀𝑆𝐸(𝛽) = c∑ 0𝛽"#.$-'."%! − 𝛽=>4?@A!=
+*

$9:

𝑛
(10) 259 

where n is the number of months when 𝛽 is estimated; 𝛽"#.$-'."%! 	 and 𝛽=>4?@A! 	 is the 𝛽 260 

estimated and modeled at month i, respectively. In this study, we use the validated GPP residual 261 

method to estimate 𝛽 in tree-dominated ecosystems based on measured meteorological data and 262 

the CO2 atmospheric inversion product. 263 

2.4 𝛽 and γ determined from the TRENDY v9 ensemble 264 

We use simulations from twelve process-based global dynamic vegetation models (DGVM) 265 

within the TRENDY projects (Sitch et al., 2015; Le Quéré et al., 2018) to derive the modeled 𝛽 266 

and γ. We use four simulations (called S0, S1, S2, S3 in the TRENDY v9 protocol; see Table S3) 267 

with and without land use and land cover changes (LULCCs) under both transient (historically 268 

observed) and pre-industrial (constant) environmental conditions. CO2 effect on GPP modeled by 269 

TRENDY (𝛽S1-S0) is calculated as the difference between output from S1 and S0, to avoid the 270 

effect from climate recycling. To test the robustness of the GPP residual method and the 271 

potential LULCCs effect, we apply the same statistical method (i.e., the GPP residual method) 272 

on simulations in S2 and S3, respectively. We derive γ from S2 simulations by calculating the 273 

sensitivity of GPP in S2 to temperature. We select grid-cells containing the 38 considered eddy 274 

covariance sites in all models. 𝛽 and γ is calculated for the same site-months as data analyzed in 275 

EC records. 276 

3 Results and Discussion 277 

3.1 Evaluating the GPP	residual	method	with a land surface model	278 

We develop and test the GPP residual method with QUINCY model simulations (Methods) from 279 

which we cannot only infer 𝛽 with our method, but also directly compare with the modeled 𝛽. 280 

Overall, we find that our method can satisfactorily estimate 𝛽, and can capture the seasonal 281 

variations of 𝛽 across biomes. We find 𝛽 in tropical forest is overall well reproduced by our 282 

statistical method, supported by a mean root-mean-square error (RMSE) of 1.2 gC/m2/year/ppm. 283 

However, the performance in the cold northern high latitude regions, where part of the boreal 284 
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needle leaf forests and temperate forests are located, is slightly diminished, with a mean RMSE 285 

of 1.5 gC/m2/year/ppm (Figure 2a, b). The GPP residual method with implemented random 286 

forests exhibits better estimation in temperate broadleaf summergreen trees (TeBS), compared 287 

with both multivariate regression methods that estimate negative 𝛽 in TeBS during the beginning 288 

and the late growing season (Figure S1, S2). Additionally, we find a slight overestimation 289 

accompanied with higher RMSE, during summer months in boreal needleleaf evergreen (BNE) 290 

forested sites and boreal needleleaf summergreen (BNS) forested sites. The discrepancy between 291 

estimated 𝛽 and modeled 𝛽 can be attributed to the limitations associated with constructing a 292 

statistical model to estimate the sensitivity of GPP to climate variables relying on interannual 293 

variabilities. This means this statistical model does not account for vegetation acclimation on 294 

climatic variability in the long-term, such as phenological changes, which cannot be learned 295 

from interannual variabilities. Thus, the statistical method exhibits decreased accuracy, 296 

particularly in ecosystems where seasonality exerts strong control.  297 

In addition to the limitation of capturing vegetation phenology, we individually consider the 298 

effect of rising CO2 and the effect of changing climatic conditions. Thus, the synergetic effect of 299 

rising CO2 and temperature (Drake et al., 1997) is not considered in our approach, where e.g., 300 

increasing CO2 can modify plants’ response to temperature. This simplification could result in 301 

the overestimation of the CO2 fertilization effect on GPP. On the other hand, the anomalies 302 

associated with extreme events can be theoretically reproduced by the statistical method. 303 

However, given that only a few instances of extreme events are in the training dataset, we 304 

acknowledge that the non-linear relationship between climate and GPP during extreme 305 

conditions can induce errors in the estimation of 𝛽. Overall, we find encouraging consistency 306 

between the 𝛽 estimated by the GPP residual method and 𝛽 modeled by QUINCY. 307 
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 308 

Figure 2. Validation of the GPP residual method with QUINCY model simulations. (a) Seasonal 309 
variation of 𝛽 across vegetation types estimated by the GPP residual method with a random 310 
forest model in red and QUINCY in black (166 sites with 1220 site-months). The red and black 311 
shaded area depicts one standard deviation around the mean value of 𝛽 across multiple site-312 
months (solid lines). (b) The map shows the root mean square error (RMSE) between estimated 313 
𝛽 and modeled 𝛽 in the growing season for each site in the QUINCY model. Brighter color 314 
indicates lower bias and thus a better performance of the GPP residual method. 315 

3.2 CO2 fertilization effect in forested ecosystems inferred from eddy covariance records 316 

Using the GPP residual method, we estimate the strength of the CO2 fertilization effect on 317 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

photosynthetic carbon uptake as recorded in eddy covariance (EC) time series at 38 forested sites 318 

(Figure 3). We assess the sensitivity of GPP to CO2, denoted 𝛽 (Methods), separately for each 319 

individual month across the years of the time series to account for seasonal variations. The 320 

median 𝛽 value across all sites and months is 16.4 ± 4.1 % increase in GPP per 100 ppm rise in 321 

atmospheric CO2. While 𝛽 displays considerable variability across sites and months, positive 𝛽 322 

values are consistently observed in 61 % of sites for at least two months in the record. The 323 

strongest enhancement of 𝛽 occurs during the boreal summer months, although a selection of 324 

sites exhibits stronger effects in spring (e.g., CA-Ca3, IT-Ren) or autumn (e.g., US-GLE, FR-325 

FBn).  326 

Among the analyzed sites, the top seven sites listed in Figure 3a (DE-Hzd, CA-LP1, CA-Ca3, 327 

CA-Cbo, US-GLE, IT-Ren, CA-TP4) exhibit the most pronounced GPP enhancement, with their 328 

site-specific annual mean 𝛽 values surpassing the top 20% of all the sites. In addition to the 329 

median 𝛽 value across all sites and months, we aggregate monthly 𝛽 based on the monthly 330 

baseline GPP, to represent the mean 𝛽 across selected sites. The aggregated mean 𝛽 is 14.9 % 331 

per 100 ppm, indicating the median 𝛽 is representative and not biased by the site selection, 332 

considering the variation in GPP across sites. 333 

The presented approach lacks the ability to isolate additional hidden long-term effects stemming 334 

from human activities, and these effects may manifest in an over- or under-estimation of 𝛽 335 

derived at individual sites. Notably, certain sites (e.g., DE-Obe, CH-Dav, FI-Let, DE-Hai) 336 

exhibit negative 𝛽 values consistently throughout the growing months. The negative 𝛽 identified 337 

at the “CH-Dav” site may be associated with a disturbance event, specifically a harvest 338 

conducted in the year 2006. Similarly, the thinning activity at the “FI-Let” site in 2016 induced a 339 

declining of GPP trend, leading to a negative 𝛽 estimate throughout the year. Forest in the “DE-340 

Hai” site is recoving from a sever drought. Conversely, other drivers such as nitrogen deposition 341 

at nitrogen-limited sites (De Vries et al., 2006; Sutton et al., 2008; de Vries et al., 2014) or 342 

forests undergoing succession (Pugh et al., 2019) can induce a long-term increase of GPP, 343 

potentially resulting in an overestimation of 𝛽. However, these rather site-specific trends in 344 

opposing directions may offset each other within a well-distributed and sufficiently large sample 345 

size, enabling the median 𝛽 across sites to predominantly capture the widespread CO2 346 

fertilization effect. This notion is supported by excluding known disturbance sites (e.g., forest 347 
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thinning) from the analysis, resulting in a median 𝛽 (11.9 ± 4.1 % per 100 ppm) that does not 348 

significantly differ from the 𝛽 estimated using all sites (Figure 3b).  349 

 350 

Figure 3. Estimation of 𝛽 from eddy covariance data using the GPP residual method with a 351 
random forest model. (a) Plot showing the estimated 𝛽 for each eddy covariance site across 352 
months in the growing season. The size of circles represents the magnitude of monthly baseline 353 
GPP. Sites are shown in descending order of the annual mean 𝛽 (Methods). Site-codes marked 354 
by a star are presented separately at the end of the list, indicating that disturbances have been 355 
recorded at those specific sites. Site-codes shown in blue and black color locate in Europe (c) 356 
and North America (d). (b) The histogram of 𝛽 values shown in panel (a). The grey (yellow) 357 
vertical dashed lines denote the median 𝛽 (Methods) estimated from all sites and months 358 
(excluding the disturbed sites). The grey (yellow) shaded area indicates the bootstrap estimates 359 
for the uncertainty of median 𝛽 from all sites (excluding the disturbed sites). Maps (c) and (d) 360 
display the annual mean 𝛽 values at each site.  361 

The daily maximum net ecosystem production (NEPmax) provides insights into the peak 362 

photosynthetic activity of the ecosystem during optimal conditions within a day. It is valuable for 363 

understanding the ecosystem's contribution to carbon sequestration. In addition to GPP, we 364 

identify the CO2 fertilization effect on NEPmax as 17.2 ± 3.6 % per 100 ppm (Figure 4). The 365 

temporal and spatial variation of 𝛽 in NEPmax is consistent with 𝛽 in GPP (Figure 3), adding 366 

additional observational evidence of the CO2 fertilization effect for better understanding of the 367 

global carbon cycle dynamics. 368 
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 369 

Figure 4. Estimation of 𝛽 from eddy covariance data using the GPP residual method with a 370 
random forest model. Analogous to Figure 3 but 𝛽 is estimated for NEPmax. 371 

Next, we assess the robustness of our findings by testing multiple regression methods in 372 

estimating the GPP sensitivity to climatic changes, and evaluate their statistical performance. 373 

Testing a multivariate linear regression instead of a random forest regressor, we find that the 374 

median 𝛽 yields a slightly different estimate of 15.1 ± 5.0 % per 100 ppm (Figure S3). If we 375 

however apply the multivariate regression model without accounting for confounding drivers of 376 

rising CO2 and climatic changes (Methods), the median 𝛽 is notably lower and amounts to 11.4 ± 377 

5.6 % per 100 ppm (Figure. S4). We utilize the “Out-of-Bag” (OOB) score to estimate the 378 

performance of the random forest regressor on unseen data without the need for a separate 379 

validation set (Methods). Although there are instances of relatively low OOB score at certain 380 

sites and months, no clear relationship emerges between estimated 𝛽 values and model 381 

performances (Figure S5). 382 

3.3 Exploring the spatial variation of the CO2 fertilization effect 383 

We further explore the spatial variability in estimated 𝛽. Thereby, we assess the roles of plant 384 

functional types (PFTs), forest age, temperature, VPD and maximum leaf area index (LAI). Past 385 

studies have found stronger stomatal responsiveness to changes in CO2 in deciduous trees versus 386 

conifers (Saxe et al., 1998; Medlyn et al., 2001; Brodribb et al., 2009; Klein and Ramon, 2019), 387 
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although variability exists when assessing their different responses in photosynthesis (Saxe et al., 388 

1998). Overall, we find a greater enhancement in GPP in evergreen needle-leaved forest (ENF) 389 

in response to increasing CO2 (Figure S6), compared with deciduous broadleaf forest (DBF). The 390 

difference in GPP responses to increasing CO2 across PFTs may vary with scales, or complex 391 

environmental conditions (e.g., under stress or not). Future work may focus on this difference in 392 

more detail. An open question is whether mature forests, which may be approaching a quasi-393 

equilibrium state, are responding to CO2 and climate in the same fashion as younger stands (Kira 394 

and Shidei, 1967; Odum, 1969; Luyssaert et al., 2008). We find no significant relationship 395 

between 𝛽 and forest age, but we show a tendency of GPP enhancement to decline towards older 396 

stands (Figure S7a). Theoretically, the enhancement in GPP would relate to differences in 397 

growing season temperature and VPD, with greater enhancement at warmer growth temperatures 398 

(suppression of photorespiration; Baig et al., 2015). However, we find no significant but slight 399 

negative trend in the relationship between 𝛽 and temperature as well as VPD (Figure S7b, c). 400 

This trend may be attributed to the combined impact of temperature and VPD. We find a positive 401 

tendency of 𝛽 with increasing site maximum LAI (Figure S7d), which could be an interaction 402 

between rising CO2 and exponential growth phase (i.e., regrowth).  403 

3.4	Comparing the CO2 fertilization effect inferred from eddy covariance sites and TRENDY 404 

ensemble	405 

We compare our EC based 𝛽 estimates with an ensemble of twelve process-based global 406 

dynamic vegetation models (DGVM) following the TRENDY simulation protocol (Sitch et al., 407 

2015; Le Quéré et al., 2018). The TRENDY ensemble consists of four experiments (Table S3): 408 

the pre-industrial control run (S0), the run considering only CO2 changes (S1), the run 409 

considering CO2 and climate change forcings (S2), and the latter with additional prescribed land-410 

use and land-cover changes (S3). To conduct the comparison, we extract model time series from 411 

the individual grid-cells containing the 38 considered eddy-covariance sites. The modeled CO2 412 

fertilization effect inferred by calculating the difference 𝛽S1-S0, exhibits a large spread among the 413 

TRENDY models. The median 𝛽S1-S0 across the grid-cells and models is 17.7 % per 100 ppm, 414 

which is remarkably close to the median 𝛽 obtained through the GPP residual method using EC 415 

records. Seven models (VISIT, CLM5.0, JULES-ES-1p0, CLASSIC, ISAM, ORCHIDEE and 416 

LPJ-GUESS) fall within the bootstrapped uncertainty range of the median 𝛽 estimated from 417 
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observations (Figure 5; Methods). We acknowledge the limitation of this comparison, as it 418 

involves contrasting site-level estimates with grid-level results, which is influenced by the 419 

heterogeneity within each grid-cell. Nevertheless, we argue that the median values across the 420 

sites and grid-cells provide a more aggregated perspective that helps mitigate the influence of 421 

sub-grid heterogeneity. 422 

 423 

Figure 5. Comparing 𝛽 estimated from eddy covariance data and the TRENDY model ensemble. 424 
The medians and interquartile ranges of 𝛽 are shown for each model and for the ensemble mean, 425 
as horizontal lines within the boxes, and the upper and bottom lines of the box, respectively. 426 
Each box includes grid-cells containing the 38 considered eddy covariance sites. Box plots for 427 
individual models are in an ascending order based to the median 𝛽. The dotted red line represents 428 
the median 𝛽 derived from eddy covariance records (as shown also in Figure 3), with the 429 
uncertainty showing in shaded area. 430 

Other factors, such as nitrogen deposition, disturbances, and particularly land management, can 431 

influence ecosystem productivity as recorded in EC data. These factors potentially influence the 432 

estimation of 𝛽 using the GPP residual method. To assess the effect of land-use and land-cover 433 

changes (LULCCs) on 𝛽 estimation, we compare 𝛽 derived from the TRENDY S2 and S3 434 

simulations using the GPP residual method. With the exception of the LPJ-GUESS and JULES-435 

ES-1p0 models, the ensemble mean of 𝛽S2 closely aligns with 𝛽S3 (Figure 5), suggesting that the 436 

neglected effects of LULCCs do not substantially affect the 𝛽 estimation. Furthermore, in line 437 
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with the validation using QUINCY simulations, the GPP residual method tends to slightly 438 

overestimate 𝛽 when comparing 𝛽S2 with 𝛽S1-S0 derived from TRENDY. This further emphasizes 439 

that the method cannot account for long-term vegetation acclimation and phenological changes; 440 

however, these effects are minor within the considered time period. 441 

3.5	Influence of climatic changes on productivity throughout the season	442 

Conventionally, the γ factor is defined as the sensitivity of land carbon storage to climate 443 

variations using temperature change as the proxy (Friedlingstein et al., 2006; Gregory et al., 444 

2009; Arora et al., 2020). Analogously, we define γ as the relative change in the climate-driven 445 

GPP component over temperature change, which is already obtained in the GPP residual method 446 

(Methods). The median γ in GPP estimated from the EC dataset is 1.8 ± 0.2 % per Kelvin 447 

(Figure 5). Comparing this to the sensitivity of GPP to CO2, assuming a 100 pm increase in 448 

atmospheric CO2 concentration is roughly equivalent to 1 Kelvin temperature increase in the 449 

historical period, we find that γ is considerably lower than 𝛽, in line with previous studies 450 

(Fernández-Martínez et al., 2017; Chen et al., 2022). The median γ in NEPmax (-0.2 ± 0.2 % per 451 

Kelvin) is much lower than γ in GPP, reflecting a negative response of NEPmax to temperature 452 

variations, particularly at the peak of the growing season (Figure S8). The median γ estimated 453 

from the TRENDY ensemble (S2 simulations) is 0.8 ± 0.2 % per Kelvin (Figure S9). Also, γ 454 

exhibits a large spread among models compared to γ from EC, suggesting a more pronounced 455 

uncertainty in the process representation in estimating ecosystem responses to climate changes 456 

among the land-surface models (Figure S10). A clear seasonality of γ emerges in both 457 

observations and models (Figure 5, Figure S8, Figure S9). While γ is higher at the beginning and 458 

the end of the growing season for most of the sites, most sites show negative γ in at least one 459 

month of the growing season (26 out of 38 in the EC estimated GPP; 36 out of 38 in the EC 460 

measured NEPmax; 33 out of 38 in the TRENDY ensemble mean). Our results indicate that 461 

warming may have a positive effect on vegetation productivity at colder conditions and a 462 

potential negative effect in warm climate. A high temperature is usually accompanied by a high 463 

VPD, which limits the stomatal conductance and evapotranspiration (Park Williams et al., 2013; 464 

Novick et al., 2016). On the other hand, plant productivity response to temperature is associated 465 

with water availability; a positive effect of temperature can occur when water is not limiting the 466 

ecosystem functioning (Fernández-Martínez et al., 2019). Additionally, the negative climate-467 
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carbon feedback may contribute to, and potentially partly mask or enhance the CO2 fertilization 468 

effect. 469 

 470 

Figure 6. Estimation of γ from eddy covariance dataset using the GPP residual method with a 471 
random forest model. (a) Plot showing the estimated γ for each eddy covariance site across 472 
months in the growing season. The size of circles represents the magnitude of monthly baseline 473 
GPP. Sites are shown in descending order of the annual mean γ (Methods). Site-codes marked by 474 
a star are presented separately at the end of the list, indicating that disturbances have been 475 
recorded at those specific sites. Site-codes shown in blue and black color locate in Europe (c) 476 
and North America (d). (b) The histogram of γ values shown in panel (a). The grey (yellow) 477 
vertical dashed lines denote the median γ (Methods) estimated from all sites and months 478 
(excluding the disturbed sites). The grey (yellow) shaded area indicates the bootstrap estimates 479 
for the uncertainty of median γ from all sites (excluding the disturbed sites). Maps (c) and (d) 480 
display the annual mean γ values at each site.  481 

Overall, we recognize the inherent limitations in EC-based data acquisition, the assumptions of 482 

the GPP residual method, and the potential influence of other long-term factors such as human 483 

activities, which can introduce biases in the estimation of 𝛽 and γ from observations. However, 484 

despite these challenges, the 𝛽 and γ values estimated from the EC records align with the 𝛽 and γ 485 

values simulated by the TRENDY model, both in terms of the median values across multiple 486 

sites and the seasonality of γ. Furthermore, utilizing the TRENDY simulations, we demonstrate 487 

that the discrepancy in 𝛽 estimation, influenced by land use and land cover changes, remains 488 

within an acceptable range. 489 
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4 Conclusions 490 

Our study isolates a robust, multi-decadal enhancement in vegetation productivity (𝜷𝑮𝑷𝑷 = 16.4 491 

± 4 % per 100 ppm, 𝜷𝑵𝑬𝑷𝒎𝒂𝒙 = 17.2 ± 4 % per 100 ppm) across Northern Hemisphere forests in 492 

response to the rising atmospheric CO2 concentration. We further diagnose the median value of 493 

GPP sensitivity to temperature (γ) of 1.8 ± 0.2 % per Kelvin, and find evidence of a negative 494 

effect of temperature on photosynthesis at the peak of the growing season. Assuming a 100 pm 495 

increase in CO2 concentration is equivalent to 1 Kelvin temperature increase, the negative 496 

temperature effect potentially masks the positive increasing CO2 effect on GPP. While the 497 

TRENDY ensemble captures the median 𝛽 and γ inferred from eddy covariance records, there is 498 

a notable variation in 𝛽 and γ exhibited between individual models. To improve the 499 

representation of the temperature effect on GPP in TRENDY models, further studies should 500 

focus on reducing uncertainties associated with physiological processes and incorporating multi-501 

model constraints. This study paves the way for future investigations into long-term drivers of 502 

change and ecosystem functioning. We anticipate that our approach could be readily applied to 503 

other ecosystems (e.g., drylands), other datasets (long-term satellite records of change, i.e., 504 

vegetation greenness, etc.), and other variables that describe ecosystem function (e.g., 505 

evapotranspiration). Together with a wide range of evidence of global vegetation productivity in 506 

response to rising atmospheric CO2 concentration and climate change, a better estimation of the 507 

remaining carbon budget to achieve the climate goals in the Paris Agreement is possible. 508 
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