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Abstract

Irrigated cultivation, as a prevalent anthropogenic activity, exerts a significant influence on land use and land cover, resulting

in notable modifications to land-atmosphere interaction and the hydrological cycle. Given the extensive cropland, high produc-

tivity, compact rotation, semi-arid climate, intense irrigation, and groundwater depletion in the North China Plain (NCP), the

development of a comprehensive crop-irrigation-groundwater model becomes imperative for understanding agricultural-induced

climate response in this region. This study presents an integrated crop model explicitly tailored to the NCP, which incorporates

double-cropping rotation, irrigation practice, and groundwater interactions into the regional climate model. The modifications

are implemented to: (1) enable a seamless transition from field scale application to regional scale application, facilitating the

incorporation of spatial variability, (2) capture the distinctive attributes of the NCP region, ensuring the model accurately

reflects its unique characteristics, and (3) reinforce the direct interaction among crop-related variables, thereby enhancing the

model’s capacity to simulate their dynamic behaviors. The integrated crop modeling system demonstrates a commendable per-

formance in crop simulations using climatic conditions, which is substantiated by its identification of crop stages, estimation of

field biomass, prediction of crop yield, and finally the projection of monthly leaf area index. In our next phase, this integrated

crop modeling system will be employed in long-term simulations to enhance our understanding of the intricate relationship

between agricultural development and climate change.
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Key Points: 17 

• The implementation of the widely adopted double cropping rotation allows for a 18 

significantly improved simulation of crop phenology in NCP. 19 

• The water-sensitive crop simulation underscores the importance of irrigation in 20 

maintaining compact rotation and high productivity in NCP.  21 

• The use of province-based thresholds and crop-followed applications effectively 22 

captures the spatial variability of irrigation consumption. 23 
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Abstract 25 

Irrigated cultivation, as a prevalent anthropogenic activity, exerts a significant influence on 26 

land use and land cover, resulting in notable modifications to land-atmosphere interaction and 27 

the hydrological cycle. Given the extensive cropland, high productivity, compact rotation, 28 

semi-arid climate, intense irrigation, and groundwater depletion in the North China Plain 29 

(NCP), the development of a comprehensive crop-irrigation-groundwater model becomes 30 

imperative for understanding agricultural-induced climate response in this region. This study 31 

presents an integrated crop model explicitly tailored to the NCP, which incorporates double-32 

cropping rotation, irrigation practice, and groundwater interactions into the regional climate 33 

model. The modifications are implemented to: (1) enable a seamless transition from field scale 34 

application to regional scale application, facilitating the incorporation of spatial variability, (2) 35 

capture the distinctive attributes of the NCP region, ensuring the model accurately reflects its 36 

unique characteristics, and (3) reinforce the direct interaction among crop-related variables, 37 

thereby enhancing the model's capacity to simulate their dynamic behaviors. The integrated 38 

crop modeling system demonstrates a commendable performance in crop simulations using 39 

climatic conditions, which is substantiated by its identification of crop stages, estimation of 40 

field biomass, prediction of crop yield, and finally the projection of monthly leaf area index. 41 

In our next phase, this integrated crop modeling system will be employed in long-term 42 

simulations to enhance our understanding of the intricate relationship between agricultural 43 

development and climate change.  44 

 45 

Plain Language Summary 46 

Irrigated cropping in the North China Plain (NCP) have a significant impact on the regional 47 

climate and water cycle. To better understand how agriculture affects the climate in this region, 48 

we developed a comprehensive crop-irrigation-groundwater model. This model specifically 49 

focuses on the NCP region and includes double-cropping rotation, irrigation practices, and 50 

groundwater dynamics. By comparing with the observation, the integrated model make great 51 

improvement in simulating crop stages, leaf and stem mass, crop yield, and vegetation greeness. 52 

In the next phase, we will use this model to study the long-term effects of agricultural 53 

development on climate change in the NCP. 54 

 55 

 56 
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 62 



1 Introduction 63 

Agriculture is one of the primary drivers of land use changes (Goldewijk, 2001) and the largest 64 

consumer of water resources globally (Foley et al., 2011). To increase crop productivity and 65 

feed the exploding population, irrigation has rapidly expanded in the past decades, and accounts 66 

for over 70% of the global freshwater withdrawal today, exerting a significant influence on the 67 

hydroclimate (McDermid et al., 2023; S. Siebert et al., 2010). As surface water becomes 68 

increasingly scarce, groundwater is then being exploited to meet the demands of intensive 69 

irrigation, particularly in semi-arid regions or during the dry season (Famiglietti, 2014; Wada 70 

et al., 2012). The overexploitation of groundwater resources can lead to depletion of soil 71 

moisture and freshwater availability, as well as potential disasters such as land subsidence and 72 

seawater intrusion (An et al., 2021; Famiglietti, 2014). While cultivation practices gradually 73 

alter the climatic processes, it is also worth noting that the changing climate also influences 74 

back onto crop production (Ahmed et al., 2015; M. Yang & Wang, 2023). Hence, it is 75 

imperative to incorporate the cultivation-climate interactions into the current climate models, 76 

specifically into the land-surface models (LSMs), to better simulate and understand the 77 

complex relationships between agriculture and climate change.  78 

Although agriculture has not been explicitly represented in most regional climate models 79 

(Oleson et al., 2013), few relevant schemes are already implemented. Several crop models have 80 

been designed to capture the seasonal and interannual pattern of crop phenology, such as leaf 81 

area index and biomass (X. Liu et al., 2016; Oleson et al., 2013; Yin & van Laar, 2005). Unlike 82 

generic dynamic vegetation schemes, these crop models can identify current crop stages (e.g., 83 

emergence, reproduction) based on the climate conditions (e.g., temperature, sunshine), 84 

calculate vegetation growth in different crop stages (e.g., growth rate, carbon allocation), as 85 

well as simulate the human practices (e.g., planting and harvesting). Furthermore, irrigation 86 

can be applied with a fixed amount (Vira et al., 2019) or dynamically based on soil conditions 87 

(Ozdogan et al., 2010; Qian et al., 2013; Valayamkunnath et al., 2021; L. Wu et al., 2018; B. 88 

Yang et al., 2016; Z. Yang et al., 2017, 2019, 2020), which has improved the understanding of 89 

the climate response to irrigation. Although it has been generally agreed that irrigation has a 90 

cooling and moistening effect globally (Cook et al., 2011; Lo et al., 2021; Pokhrel et al., 2012; 91 

Puma & Cook, 2010), its influence is non-linear and location-specific at regional scales, as it 92 

greatly depends on the agricultural and climatic conditions of the region in which it is deployed 93 

(Yuwen Fan et al., 2023; Im et al., 2014; Kang & Eltahir, 2018, 2019; Pei et al., 2016; 94 

Tuinenburg et al., 2014; Wey et al., 2015; Z. Yang et al., 2019). Independent with the crop 95 

modules and irrigation schemes, some groundwater models parameterize the soil-groundwater 96 

interactions such as downward drainage and capillary rise (Lo & Famiglietti, 2011; Niu et al., 97 

2007, 2011). In addition to vertical water transportation, lateral flow (Ying Fan et al., 2007; 98 

Kabir et al., 2023; Miguez‐Macho et al., 2007; Zeng et al., 2018) and human consumption 99 

(Anderson et al., 2015; Kabir et al., 2023; L. Wang et al., 2020) have also been included in the 100 

subsurface process to complete the groundwater dynamics. The implementation of the 101 

groundwater sector shows its potential to reduce dry and hot biases over the central United 102 

States, as groundwater replenishes the nearby river and root-zone soils (L. Wang et al., 2020). 103 



Prior research has demonstrated a widespread potential for simulating cultivation including 104 

crop phenology, irrigation practices, and groundwater storage. Additionally, these modules 105 

have been integrated to address more complex processes. A common approach is to combine a 106 

crop module with irrigation activity (Xu et al., 2019; B. Yang et al., 2016; Z. Zhang et al., 107 

2020), which has resulted in significant enhancements in crop yield predictions and a better 108 

understanding of irrigation impact. Other studies have joint soil-moisture-dependent irrigation 109 

with the unconfined layer (Kabir et al., 2023; Leng et al., 2014; L. Wu et al., 2018), improving 110 

model performance in reproducing the latent heat and soil moisture (Wang 2020). However, 111 

few studies comprehensively considered all of these factors simultaneously, especially in 112 

regional climate models. Given the close and complex relationships between these processes, 113 

any missing component would lead to inadequacies in representing the climatic process over 114 

croplands. Therefore, there is an increasing need to develop a joint crop‐irrigation-groundwater 115 

model in LSMs. 116 

As a key agricultural region, the North China Plain (NCP) encompasses more than 40% of 117 

China's total harvested area (FAO, 2019). Approximately two-thirds of the land within the NCP 118 

is dedicated to cropland, contributing to nearly half of the national wheat production and one-119 

third of the corn production (E. Wang et al., 2008). The significance of NCP for agricultural 120 

study is rooted not only in its extensive cropland and high productivity, but also in its compact 121 

rotation, semi-arid background, intense irrigation, and groundwater depletion, which makes the 122 

NCP an ideal testbed for evaluating the integrated crop modeling system. To maintain its high 123 

productivity, a double-cropping system, typically winter wheat with summer maize, is widely 124 

adopted in NCP (Jiang et al., 2021). However, the annual precipitation in NCP is only around 125 

800mm, which is almost half of that in southern China (Zhe et al., 2014), increasing its 126 

dependency on irrigation, especially from groundwater. About 40% of the farmland on the 127 

NCP is reliant on irrigation (Portmann et al., 2010; Stefan Siebert et al., 2013), with around 62% 128 

of the water usage coming from underground (J. Wang et al., 2019). The relatively dry climate 129 

in the NCP makes it more sensitive to the additional water induced by the intense irrigation 130 

(Yuwen Fan et al., 2023), and groundwater overexploitation has led to a rapid expansion of 131 

above-ground water storage, potentially causing long-term hydrological alterations (Y. Zhou 132 

et al., 2022). All of these imply that the crop modelling system for the NCP region needs to 133 

consider all the interactions between crop growth, irrigation practice, and groundwater usage, 134 

which will have further implications for the long-term agriculture and climate in the region. 135 

Given the unique characteristics of the NCP, our research aims to develop an integrated crop 136 

model with irrigation and groundwater interaction, specifically tailored for the NCP and its 137 

surrounding region. In light of the reasonable performance of various related schemes, the main 138 

focus of this study is to combine these components together with appropriate modifications, 139 

instead of reinventing new algorithms. To achieve this, Noah-Multiparameterization (Noah-140 

MP) has been selected, as it already encompasses several functions related to cultivation 141 

simulation. It is conducted online with the Weather Research Forecast (WRF) to include the 142 

two-way nested feedback between the crop system and climate dynamics. Moreover, 143 

regionalization becomes imperative since certain schemes within Noah-MP are primarily 144 

developed and calibrated based on local field observations in the United States. Although the 145 



general algorithm might be applicable worldwide, the specific details or parameters may not 146 

be suitable for the NCP. For instance, it is necessary to consider the prevailing practice of 147 

double cropping rotation since it has the potential to greatly affect the vegetation pattern and 148 

irrigation demand. Also, applying spatially varied crop calendars and irrigation thresholds 149 

according to the regional-specific observation, rather than a uniform value, can greatly improve 150 

crop yields and irrigation amount (Xu et al., 2019; Z. Zhang et al., 2020). And large regional 151 

uncertainties may exist in some parameters such as leaf area per living leaf biomass (BIO2LAI, 152 

also known as specific leaf area) (Yu et al., 2022; Z. Zhang et al., 2020). Hence, we conduct 153 

parameter calibration and adopt local inputs. While regionalizing the model, the generality 154 

should also be considered to ensure its potential application in other regions or other climate 155 

models. By integrating and regionalizing the crop modelling system, this study primarily 156 

focuses on the model development and its predictability assessment in crop phenology and 157 

irrigation requirements. However, there is a great potential for applying it in long-term 158 

simulation, which represents a promising avenue for advancing our understanding of the 159 

coupled human-natural system.  160 

 161 

2 Model Description and Experiment Design 162 

The study domain is centered on the NCP, encompassing a significant portion of China's 163 

cropland. Considering the specific attributes of the study area, modifications are made under 164 

the following conditions: (1) to facilitate the transition from field scale application to regional 165 

scale application, enabling the incorporation of spatial variability, (2) to capture the local 166 

specialties of the NCP region, ensuring the model accurately represents its unique 167 

characteristics, (3) to complement the direct interaction among crop-related variables, 168 

enhancing the model's ability to simulate their dynamics. Experiments are designed to compare 169 

the model's performance with and without these modifications. 170 

 171 

2.1 Study Area 172 

Figure 1 illustrates some key background variables, outlining the NCP region within black 173 

boxes. The topography and cropland fraction are basic geostatic inputs for the WRF, initially 174 

retrieved from the United States Geological Survey and Moderate-resolution Imaging 175 

Spectroradiometer (MODIS), respectively. Notably, the NCP region, being the largest plain in 176 

eastern China, exhibits an average elevation even below 100m (Figure 1b), contributing to its 177 

suitability for cultivation. Despite the high cropland fraction exceeding 95% in most of the 178 

pluvial area (Figure 1c), the climatology annual precipitation (retrieved from China 179 

Meteorological Forcing Dataset) in 2000-2009 is merely half that of southern China (Figure 180 

1a), highlighting the need for irrigation. According to the FAO AQUASTAT database (Stefan 181 

Siebert et al., 2013), irrigated cropland constituted more than 70% of the total land use in the 182 

pluvial area in 2005 (Figure 1d). Given the scarcity of surface water in northern China, 183 

groundwater plays a crucial role in meeting the substantial irrigation demand (Figure 1e). 184 



Statistical data indicates that groundwater dependence in Hebei and Henan provinces reached 185 

70% and 60%, respectively (National Bureau of Statistics of China, 2005). 186 

Figure 1. (a) Annual precipitation (mm/day) and basic geostatic variables applied in this 187 

project including (b) topography (m), (c) cropland fraction (%), (d) irrigated land fraction (%), 188 

(e) groundwater dependence (%). 189 

 190 

2.2 Model Configuration and Experiment Design 191 

The study employs the Advanced Research version of the WRF Model (version 4.3), a non-192 

hydrostatic numerical weather prediction model that has been widely adopted in regional 193 

studies. The horizontal grid spacing is 27km, with 38 vertical layers in the atmosphere and 4 194 

soil layers below the ground. Its physical options mostly follows Fan et al. (2023), including 195 

the WRF double-moment 5-class microphysical parameterization (Hong et al., 2004), the 196 

Rapid Radiative Transfer Model as the longwave radiation scheme (Mlawer et al., 1997), the 197 

Dudhia shortwave radiation scheme (Dudhia, 1989), the Yonsei University planetary boundary 198 

layer scheme (Hong et al., 2006), the scale-aware New Simplified Arakawa-Schubert scheme 199 

(Han & Pan, 2011; Kwon & Hong, 2017), and Noah-MP land surface model coupled with our 200 

improved crop, irrigation and groundwater schemes (Ek et al., 2003). The initial and lateral 201 

boundary conditions are obtained from the ERA5 reanalysis dataset, with 6-hour output 202 

intervals, which helps to reduce the uncertainty arising from the boundary condition (Hersbach 203 

et al., 2020). 204 

Table 1. Description of all experiments 205 

Experiment 
Model 

Crop Irrigation Groundwater 

CTL    

CROPdef default version   

CROPnew improved version   

IRRdef improved version default version  

IRRnew improved version improved version  

GWnew improved version improved version improved version 

 206 



We conduct multiple experiments to validate the crop growth and irrigation behaviour in 2005, 207 

which has a normal value of the East Asian Summer Monsoon Index. Considering that winter 208 

wheat is typically sown in the autumn of the preceding year, all experiments are started on 1 209 

March 2004. This allows for a spinning-up period of at least six months prior to the 2004-2005 210 

crop season, ensuring that the model was appropriately initialized for accurate simulations. 211 

When examining the intra-annual pattern (e.g., monthly crop growth), we only present the 212 

monthly pattern specifically in the year 2005. 213 

Detailed information regarding all experiments can be found in Table 1, including the choices 214 

of crop, irrigation, and groundwater models. All models are inactive in the control experiment 215 

(CTL), in which static vegetation with predefined monthly patterns from satellite data is 216 

employed. The crop and irrigation model can be applied either in the default version or the 217 

improved version. The default crop model is conducted using the original scheme proposed by 218 

Liu et al. (2016) and parameters derived from Zhang et al. (2020), while the improved crop 219 

model involves both modifications to the algorithms and recalibration of the parameters. In 220 

order to exclusively demonstrate the advancements made by the crop model, the irrigation 221 

component remains inactive in both CROPdef and CROPnew. This implies that no 222 

supplementary water is introduced to the cropland, thereby highlighting the impact solely 223 

attributed to the enhancements made within the crop model. The added value of our 224 

improvements on the irrigation model can be discerned through a straightforward comparison 225 

between IRRdef and IRRnew experiments. In IRRdef, the default version of dynamic irrigation 226 

is derived from He et al. (2023) and serves as the baseline for the improved version. In the 227 

default version, the target soil moisture availability as a parameter threshold is uniformly set to 228 

0.8, as suggested by Fan et al. (2023), while in the improved version, it exhibits spatial 229 

variability between provinces. Finally in GWnew, we incorporate the irrigation extraction 230 

process into Miguez-Macho et al. (2007) groundwater scheme, together with the improved crop 231 

and irrigation model, to visualize the distinct effects on crop prediction resulting from the 232 

interactions between groundwater and soil. The detailed improvements made to the crop, 233 

irrigation, and groundwater models will be explained in Sections 2.3, 2.4, and 2.5, respectively. 234 

 235 

2.3. Modification of the crop model 236 

2.3.1 Crop area and FVEG prediction 237 

In order to achieve efficient computation, the crop module developed by Liu et al. (2016) is 238 

selected as the foundation for crop simulation. This module operates based on the planting and 239 

harvesting dates, using growing degree days (GDD) to predict the growth stages on a yearly 240 

routine. The growth rate and carbohydrate accumulation are primarily influenced by factors 241 

such as photosynthesis and respiration, which are sensitive to crop mass, water stress, soil 242 

temperature, CO2 concentration, and solar radiation. Then, these carbohydrates are allocated 243 

among different plant components, including leaves, stems, roots, and grains, dedicated by 244 

distribution schemes that vary with the growth stage. This particular crop model was initially 245 

designed for crop fields and thus applied uniformly to all the grids within the domain. However, 246 

to extend its application to a larger domain that has various land-use types, the model needs to 247 

be exclusively activated on crop grids, while non-crop grids utilize prescribed vegetation. A 248 



crop grid is defined based on MODIS land-use classification as either 'Croplands' or 249 

'Cropland/Natural Vegetation Mosaic'. This definition aligns with Fan et al. (2023), and is 250 

similar to the approach employed by Yu et al. (2022) who set a threshold of 50% cropland 251 

percentage, since the majority of grids in the NCP region contain over 90% cropland (Figure 252 

1c).  253 

Figure 2. The relationship between FVEG and LAI+SAI in the NCP region. The thick solid 254 

line presents the original empirical relationship (Equation 1), the fine solid line for the best-fit 255 

relationship, and while thick dash line for the adjusted equation (Equation 2). 256 

Although the dynamic leaf area index (LAI) and stem area index (SAI) can be calculated based 257 

on crop growth and climate conditions, the default crop model sets the vegetation fraction 258 

(FVEG) to the maximum value (i.e., 95%) for all grids, to represent the dense vegetation in the 259 

crop field. However, this fixed value might not be appropriate for regional-scale applications. 260 

Considering the long-term impact of FVEG variability through vegetative radiation and canopy 261 

interception (W. Liu et al., 2020; D. Wang et al., 2007), we correlate FVEG with the LAI/SAI 262 

using the empirical relationships (Equation 1) proposed by Niu et al. (2011) and further testified 263 

by Wu et al. (2018) in the NCP region. However, according to the MODIS observation 264 

retrieved from the input of the CTL, it is imperative to note that the original curve 265 

underestimates the FVEG at low LAI+SAI and overestimates it at high LAI+SAI (Figure 2), 266 

which poses a potential risk to the reliability of the predictions. More specifically, at the onset 267 

of the crop season, accurate LAI+SAI estimation leads to an underestimation of the calculated 268 

FVEG. This, in turn, results in reduced shortwave radiation intercepted by vegetation and a 269 

slower rate of photosynthesis. Consequently, the leaf growth is undervalued in the next 270 

timestep, and the less LAI creates a larger bias on the FVEG prediction. This positive feedback 271 

continues to accumulate underestimation during subsequent iterations, and ultimately, results 272 

in the failure of the entire crop season. Similarly, the curve exhibits an exaggerated FVEG 273 

during the flourishing period, which easily leads to uncontrollable overgrowth. This 274 

susceptibility underscores the necessity to consider and address this inherent limitation. Even 275 

when employing the best-fitting curve, this issue persists for almost half of the grids. Therefore, 276 

we propose a constraint on the range of FVEG, limiting it to [0.25, 0.75], instead of utilizing 277 

the full range of [0, 1]. This allows for a slight overestimation in the initial stages and an 278 



underestimation towards the end, ensuring a successful startup and a steady progression toward 279 

its peak. The adjustment on this equation enables the spatial and temporal variations of FVEG, 280 

as well as the vegetation responses to the irrigation application. 281 

Original FVEG = 1 − e(−0.52×(LAI+SAI)) , FVEG ϵ [0,1]       (1) 282 

  Adjusted FVEG = 0.75 − 0.5 × e(−0.52×(LAI+SAI)), FVEG ϵ [0.25,0.75]    (2) 283 

 284 

2.3.2 From single cropping to double cropping 285 

The default model only considers single cropping, allowing one crop type per grid but different 286 

crops spatially. However, NCP widely adopts double-cropping rotation, as evident from 287 

satellite vegetation patterns (Qiu et al., 2022; W. Wu et al., 2010; Yan et al., 2014; Yuan et al., 288 

2020). The first growing season typically begins in late spring to early summer and extends 289 

until mid to late autumn, followed immediately by the second growing season which stops just 290 

before the restart of the first growing season. And it’s necessary to consider the second crop 291 

season in the crop-irrigation-groundwater system, because the dry soil in the winter and spring 292 

probably requires significant irrigation and groundwater supply (Yuwen Fan et al., 2023; Koch 293 

et al., 2020; L. Wu et al., 2018; B. Yang et al., 2016). According to the prevalence (Qiu et al., 294 

2022; W. Wu et al., 2010), we select winter wheat and summer maize for double cropping 295 

region (shown in orange in Figure 3a), as identified by satellite data (Qiu et al., 2022), and 296 

spring maize for single cropping region (shown in blue in Figure 3a).  297 

Figure 3. Spatial distribution of (a) the cropping system, (b-e) harvest date and planting date 298 

for wheat and maize over a year based on the chronological order. 299 

 300 

The planting date and the harvesting date are fed into the crop model as the definition of the 301 

crop seasons, whose spatial variability is claimed to be beneficial to the accuracy of crop 302 

growth prediction (Xu et al., 2019; Z. Zhang et al., 2020). The harvesting date of the spring 303 

maize is assigned to be 15 days after the physiological maturity date obtained from a satellite-304 

based post-processed dataset (Luo et al., 2020). The planting date is determined as 15 days 305 

prior to the V3 stage, which represents the early vegetative stage of maize when the third leaf 306 

is fully expanded. Similarly, for double-cropping regions, the maturity dates of wheat and 307 

maize, with a 15-day buffer, mark the end of the respective cropping seasons, while the 308 



subsequent cropping season starts 5 days later. The ’15-day’ buffer and ‘5-day’ interval are 309 

roughly defined according to the LAI pattern in Luo et al. (2020). Few grids not covered by 310 

the satellite dataset are assigned 1 May (121st Julian Day) and 11 October (284th Julian Day) 311 

as the default planting and harvesting date for maize, respectively, based on field study (Yu et 312 

al., 2022). The planting date and the harvesting date also perform similar spatial patterns to 313 

those generated by Wu et al. (2010). 314 

 315 

2.3.3 Input Setting and Parameter Calibration 316 

We begin with the parameters for one-year corn in Bondville (Z. Zhang et al., 2020), and 317 

calibrate them using data from two ChinaFlux sites, Yucheng (36.83°N, 116.57°E) for double-318 

cropping and Shenyang (41.52°N, 123.39°E) which is nearby the NCP region for single-319 

cropping, as indicated in Figure 2a. In the case of spring maize and summer maize, we first try 320 

to adopt the parameters from previous studies and recalibrate if necessary, to keep the 321 

generality. Conversely, a new set of parameters is developed specifically for winter wheat, 322 

drawing upon statistical information from the Yucheng station, satellite datasets, and other 323 

agronomy studies (Y. Zhang et al., 1991; Z. Zhang et al., 2023). Table S1 provides the adjusted 324 

parameters for wheat and maize, along with the supporting scientific references. The 325 

recalibration sequences are as follows. 326 

The recalibration starts from crop-stage identification, since it relies purely on the accumulated 327 

Growing Degrees Days (GDD) and is less affected by other crop parameters. The GDD-related 328 

parameters are retrieved from Zhang et al. (2020) and Zhang et al. (1991), and then validated 329 

with the heading date and maturity date retrieved from the satellite data (Luo et al., 2020). The 330 

crop stage comprises the pre-planting stage, three vegetative stages (emergence, initial 331 

vegetative, post-vegetative), two reproductive stages (initial reproductive, post-reproductive), 332 

and finally, one maturity stage. During the vegetative stage, a majority of carbohydrates are 333 

allocated to the leaves and stems, while in the reproductive stage, the allocation shifts towards 334 

the grain. In our simulation results, we consider the transition date from post vegetative stage 335 

to the initial reproductive stage as the heading date. This allows us to capture the transfer of 336 

focus from leaf development to grain formation, aligning it with the time of maximum Leaf 337 

Area Index (LAI) identified by the satellite and facilitating meaningful comparisons. 338 

Next, the general growth rate including BIO2LAI can be extracted from the station data, and 339 

the Maximum rate of carboxylation at 25 °C (VCMX25) can also be estimated using the 340 

monthly satellite data of Gross Primary Product (GPP) and LAI, since the photosynthesis rate 341 

and the LAI are approximately linearly related, especially on sunny days when the canopy 342 

temperature is around 25°C (He et al., 2023). Instead of the linearly interpolated data from 343 

WRF pre-processing, both GPP and LAI that we adopted are initially derived from MODIS 344 

products but have undergone further post-processing to generate a more continuous monthly 345 

pattern (S. Wang et al., 2020; Yuan et al., 2020), and will be considered as the observation 346 

(OBS). Furthermore, the AVCMX, which represents the crop sensitivity to the temperature, 347 

can be determined by the gradient of biomass accumulation (H. Huang et al., 2022), especially 348 

in spring and autumn with greater temperature changes. For maize, the values of VCMX25 and 349 



AVCMX have simply followed the previous studies, while BIO2LAI is subject to recalibration, 350 

as its necessity of recalibration has been demonstrated by Yu et al. (2022). 351 

Following the establishment of the general photosynthesis rate, we proceed to fine-tune the 352 

distribution of carbohydrates among the leaf, stem, and grain compartments, based on the 353 

annual cycle of leaf mass and stem data obtained from the station data. Any remaining 354 

carbohydrates are allocated to the root. In cases where the recalibration of the distribution 355 

scheme alone does not yield satisfactory predictions, adjustments to the turnover and 356 

translocation rates are implemented. Additionally, the crop yield will be validated through 357 

comparisons with remotely sensed estimations from Cheng et al. (2022). 358 

Finally, the incorporation of irrigation and groundwater modules into the crop model may 359 

introduce deviations in crop growth and affect the predictability of associated parameters. As 360 

a result, slight adjustments are made after the integration. In essence, the crop-irrigation-361 

groundwater system, conducted in GWnew, aims to provide the most accurate simulation since 362 

it reflects the closest approximation to reality.  363 

 364 

2.4 Modification of the irrigation model 365 

In this study focusing on the NCP, which predominantly practices dryland cultivation, the 366 

irrigation methods will mostly pertain to dryland irrigation, excluding grassland irrigation and 367 

paddy field irrigation. To avoid difficulties in modeling canopy interception and surface losses 368 

inherent in sprinkler and fast flooding techniques, we opt for drip irrigation using the Noah-369 

MP version 5.0 model (He et al., 2023). This choice simplifies the system while maximizing 370 

water resource utilization. The default irrigation module is employed from the planting date to 371 

the harvesting date. In order to establish a stronger connection between irrigation and crop 372 

growth, irrigation is initiated upon crop emergence and discontinued upon physiological 373 

maturity. Thus, a reciprocal relationship between crop growth and irrigation is established. The 374 

cooling effect resulting from irrigation extends the crop season, and in turn, requires a longer 375 

irrigation period. 376 

The default irrigation is activated all day all year round, which might not be realistic in large-377 

scale applications. In accordance with previous investigations, we add constraints that the 378 

irrigation is implemented solely during the local time window of 6 A.M. to 10 A.M. to 379 

minimize evaporative losses (Ozdogan et al., 2010; Qian et al., 2013; B. Yang et al., 2016). 380 

Furthermore, the inclusion of winter cultivation necessitates the imposition of temperature 381 

limitation, as irrigation under freezing conditions is deemed impractical and detrimental to 382 

winter wheat (B. Yang et al., 2016). To make sure the soil is appropriate for irrigation, we 383 

check whether the mean temperature of the uppermost soil layer within the preceding 24-hour 384 

period exceeds 5°C. Additionally, we follow the rules from the default irrigation model that 385 

the irrigation can be promptly suspended in the presence of precipitation exceeding a threshold 386 

rate of 1mm/hr. 387 

The default daily irrigation amount is resolved according to Equation (3) based on the soil 388 

moisture and vegetation fraction which is fixed to be 0.95. When adopting it to large-scale 389 



irrigation, we replace the 0.95 with the irrigation land fraction (IRRFRA) map around 2005 390 

from the Food Agriculture Organization database (Stefan Siebert et al., 2013).  391 

    Default Irrigation Amount = ∫(SMCLIM − SMCAVL) ∗ 0.95     (3) 392 

Improved Irrigation Amount = ∫(SMCLIM − SMCAVL) ∗ IRRFRA    (4) 393 

Irrigation is required when the soil moisture is lower than the predefined irrigation threshold 394 

called management allowable deficit (MAD). MAD is a decimal number between 0 and 1, 395 

indicating the cursor between the wilting and the saturated soil moisture. Soil water deficit is 396 

the gap between current soil moisture availability (SMCAVL) and the expected soil moisture 397 

defined by the MAD (SMCLIM). The total irrigation amount is the integrated deficit of all soil 398 

layers. It is stated that the county-level calibrated irrigation threshold significantly enhances 399 

the irrigation prediction (Xu et al., 2019; Z. Zhang et al., 2020). Similarly, we calibrated the 400 

irrigation threshold province by province using the updated irrigation function, and finally 401 

apply this MAD spatial map to IRRnew experiment. As a comparison, IRRdef only adopts 0.8 402 

as a uniform threshold which is simply calibrated by the national total amount (Yuwen Fan et 403 

al., 2023). 404 

 405 

2.5 Modification of the groundwater model 406 

Since the inclusion of lateral flow becomes crucial in predicting soil moisture in the western 407 

NCP due to the steep water table gradient along the mountainous region, we select the 408 

groundwater model from Miguez-Macho et al. (2007) which incorporates both water table 409 

dynamics and subsurface lateral flows, and then add the irrigation extraction to it. Irrigation is 410 

partially extracted from the groundwater (Equation 5) based on the reported groundwater 411 

dependence of each province (Figure 1e). Since the default groundwater only updates every 30 412 

minutes instead of every timestep, the accumulated extraction amount during that timeframe is 413 

extracted all at once. And the groundwater table level is then recalculated based on new storage 414 

as well as the soil porosity.  415 

   Groundwater = Groundwater −  Total Irrigation × Groundwater Dependence (%)   (5) 416 

 417 

3 Results 418 

3.1 Irrigation Simulation 419 

 420 

It is a challenge to obtain a comprehensive and accurate observed irrigation map that covers 421 

the entirety of eastern China, thus, we combine the statistical data and the satellite data, 422 

considering the merged dataset as the 'observation' for calibration purposes. The statistical 423 

dataset is province-based, and it was collected in 2005 which well matches our experiments. 424 

However, it is provided as annual agricultural water usage which not only comprises irrigation, 425 

but also husbandry, forestry, and fishery consumption (National Bureau of Statistics of China, 426 

2005). So firstly, agricultural water withdrawal (Figure 4b) is converted to net irrigation (Figure 427 



4c) by multiplying the provincial ratios from Zhu et al. (2012). For better visualization, 428 

irrigation is redistributed to each crop grid based on the irrigation fraction (Figure 4a). In other 429 

words, the weighted provincial mean value of the redistribution map (Figure 4d) is the same as 430 

the statistical irrigation usage (Figure 4c). Surprisingly, in Figure 4d, the annual irrigation 431 

outside the NCP, such as southern coastal region, is much more intense than that in the NCP 432 

region, probably because it includes the great consumption used for raising rice in the extensive 433 

paddy field, which is not the main focus of this study. Another satellite-based irrigation dataset 434 

contains spatial maps retrieved from water balance equations orientally. Its irrigation amount 435 

(Figure 4e) has a high similarity with the irrigation land fraction, but it only covers 2011 to 436 

2018 and it has a non-negligible underestimation (K. Zhang et al., 2022). Therefore, the 437 

statistical irrigation in the targeted NCP (i.e., Beijing, Tianjin, Hebei, Shandong, and Henan, 438 

follows D. Wu et al., 2018) is coupled with the satellite-based irrigation in other regions to be 439 

the final observation we used for calibration and validation (Figure 4f). 440 

Figure 4. Spatial maps of (a) irrigation fraction (same as Figure 1d), (b) agricultural usage, (c) 441 

estimated irrigation usage, (d) statistical irrigation, e) satellite irrigation, f) observation 442 

irrigation, (g-i) simulated irrigation, and (j) MAD threshold adopted in IRRnew and GWnew 443 

 444 

The default irrigation scheme (Figure 4g) exhibits a tendency to overestimate irrigation in the 445 

central NCP, deviating from the observed pattern where irrigation is more prevalent in the 446 

western part along the mountain. As expected, the implementation of the spatially varied 447 

irrigation threshold demonstrates a considerable improvement (Figure 4h), closely resembling 448 

the observed spatial variability. Figure 4(j) presents the province-based MAD threshold we 449 

adopted, which is calibrated using the observation. Certain provinces in the NCP exhibit higher 450 

thresholds, even approaching 1, indicating the model's attempt to achieve near-saturation of the 451 

soil. When comparing GWnew with IRRnew, the incorporation of the groundwater scheme 452 

helps to capture the greater irrigation requirement in the mountainous region. This can be 453 



attributed to the deeper groundwater table and quicker dry-down after daily irrigation. The 454 

temporal pattern clearly emphasizes the importance of incorporating soil temperature checks 455 

into the irrigation scheme. In Figure 5, the lines depict the monthly irrigation levels, while the 456 

bars represent the averaged LAI across all crop grids in the NCP region. The default irrigation 457 

scheme tends to apply excessive irrigation during the winter season, which can be attributed to 458 

the relatively drier soil conditions and thus larger gap between the soil moisture and the MAD 459 

threshold. However, despite the intense winter irrigation, the corresponding vegetation growth, 460 

as indicated by the LAI, shows insignificant improvement. And this perceived superiority of 461 

winter irrigation gradually diminishes as spring approaches. On the other hand, the improved 462 

model effectively avoids unnecessary winter irrigation, allowing for a greater allocation of 463 

water resources during the spring and summer seasons when crop growth is more pronounced. 464 

Consequently, this strategic water distribution leads to more flourishing vegetation during the 465 

summer season. In summary, the improved model provides enhanced water support to the crops 466 

while also conserving irrigation consumption on an annual basis. 467 

Figure 5. Monthly irrigation (lines) and LAI (bars) from IRRdef, IRRnew and GWnew. Only 468 

crop grids in the NCP are counted. 469 

 470 

3.2 Evaluation of crop growth 471 

The evaluation of the crop simulation encompasses several key aspects, including crop stage 472 

identification, annual cycle of leaf and stem mass, crop yield prediction, and general LAI 473 

simulation. These components will be scrutinized to assess the accuracy and validity of the 474 

crop model.  475 

As mentioned, the heading and maturity dates serve as indicators of the transition from the 476 

vegetative stage to the reproductive stage, and ultimately to the maturity stage. We compare 477 

the heading and maturity dates of winter wheat and maize, including both summer maize and 478 

spring maize, from each simulation with the estimations derived from MODIS (Figure 6). 479 

Typically, winter wheat heads in March and matures in May, while maize heads in August and 480 

matures in September. The default crop model only considers single cropping without winter 481 

wheat. Moreover, the heading date of CROPdef is observed to be one or two months earlier 482 

than the observations, and the maturity date also exhibits deviations, being earlier in the NCP 483 



but later in Northeast China. This suggests that employing a uniform starting and ending time 484 

is not suitable for a regional domain. The enhanced crop model, CROPnew, incorporates 485 

double cropping and spatially varied planting and harvesting dates, resulting in the presence of 486 

two seasons with a more accurate duration. This is because the adjustment allows for an earlier 487 

seeding and longer growing season for spring maize in the northern region, enabling the 488 

accumulation of the same Growing Degree Days (GDD) by the maturity season. The early bias 489 

is further mitigated by irrigation, as the presence of moist soil induces primary cooling, 490 

subsequently decelerating GDD accumulation and postponing the growth stage. Furthermore, 491 

the improvements made to the irrigation module and the integration of groundwater interaction 492 

slightly enhance the stage identification process, which is presented in the extended version of 493 

stage validation that includes all experiments (Figure S1).  494 

Figure 6. Validation of the crop stage identification by comparing the wheat heading date, 495 

wheat maturity date, maize heading date, maize maturity date between the simulations and 496 

the observation 497 

 498 

When examining the annual biomass of the Yucheng station (Figure 7a and 7c), the biomass 499 

cycle exhibits two distinct peaks, representing two crop seasons. In alignment with Figure 6, 500 

applying irrigation extends the winter wheat growth, moving the peak to the right side and 501 

resulting in a better match with the observation. Furthermore, the upgrades of the irrigation 502 

model led to significant enhancements at the Yucheng station, particularly for summer maize. 503 

This aligns with the conclusions drawn from Figure 5, as well as the suboptimal maize growth 504 

under water stress conditions captured by another crop model (Song & Jin, 2020), further 505 

approving the positive influence of the improved irrigation model on crop growth. On the other 506 

hand, irrigation is not intensely adopted in northeast China, and thus, does not make a 507 

noticeable impact at Shenyang Station (Figure 7b and 7d). In addition, the impact of 508 

groundwater integration is not particularly pronounced in both stations, probably because 509 

groundwater impact is usually considered a long-term effect, and the one-year duration may 510 

not be sufficient to fully demonstrate its impact. And the 27km grid spacing may be insufficient 511 



to capture the lateral dynamics of groundwater (Barlage et al., 2021), thus limiting the 512 

manifestation of groundwater's effect. 513 

Figure 7. Validation of the annual cycle of leaf mass and stem mass at (a, c) Yucheng Station 514 

and (b, d) Shenyang Station. Dots represent station observation and lines are the simulation 515 

results. 516 

Figure 8. Validation of crop yield of wheat and maize. 517 

 518 

By assessing the crop yield prediction in Figure 8, we can observe the progressive 519 

improvements achieved through model modification. The initial CROPdef only considers a 520 

single crop type, and it proves to be inadequate for the heavily irrigated NCP region, even with 521 

the exaggerated assumption of a fixed FVEG value of 0.95. Despite the recalibration of 522 

parameters and adjustments to the planting and harvesting dates, which realizes the double 523 

cropping simulations in the CROPnew, production in the NCP region is still severely hindered 524 

by the limited water availability. The activation of the default irrigation module in IRRdef, 525 

despite some imperfections, significantly promotes crop growth. This highlights the 526 



importance of irrigation in sustaining the compact rotation and high productivity in the NCP. 527 

On the other hand, irrigation impact in northeast China is not as significant as that in the NCP, 528 

which aligns with the fact that the majority of the cropland in northeast China is rainfed. Similar 529 

to Figure 7, the improvement in irrigation practices further enhances crop yields, particularly 530 

for summer maize. The integration of groundwater results in only marginal improvement in the 531 

double cropping of summer corn, while it does not cause any significant deviations in the single 532 

cropping station. 533 

Figure 9. Monthly LAI pattern of the satellite observation, default crop model only, and after 534 

all modification and integration. 535 

 536 

Finally, the validation of monthly LAI as an indicator of overall vegetation growth is essential, 537 

as its accuracy plays a crucial role in determining land-atmosphere interaction and energy 538 

partitioning (X. Liu et al., 2016). Figure 9 compares the simplest crop model and the final 539 

integrated system with observation, emphasizing the remarkable improvement achieved 540 

through the integration and regionalization processes. Figure S2 provides an extended version 541 

inclusive of all experiments, thoroughly visualizing the gradual improvement made by each 542 

step. The observed LAI demonstrates a gradual increase until May, with a slight decline in June, 543 

indicating the harvest of winter wheat. In the second crop season, there is a notable rise in LAI 544 

during July and August, reflecting substantial growth and vegetation development during this 545 

period, followed by a gradual decline in September and October. It becomes evident that the 546 

CROPdef lacks representation of the first crop season and exhibits an early and truncated 547 

second crop season in the NCP. The inclusion of irrigation, both in the IRRdef and IRRnew 548 

models, significantly enhances crop growth in the double cropping region, highlighting the 549 

crucial role of irrigation in this region. Conversely, the crops in Northeast China, where rain-550 

fed agriculture predominates, exhibit reasonably satisfactory growth even without irrigation. 551 

This regional disparity in crop sensitivity to irrigation can be aptly captured by the improved 552 

system. In line with the previous figures, the IRRnew proves particularly beneficial for the 553 

growth of summer maize. Its avoidance of unnecessary irrigation during the freezing winter 554 

months allows for greater resource allocation during the productive summer period, resulting 555 

in improved growth and development. Generally, the GWnew simulation successfully captures 556 



the spatial and temporal LAI patterns, particularly in the NCP region, which demonstrates a 557 

superior capability in accurately representing the dynamics of crop growth compared to the 558 

initial crop model, which lacked regionalization and integration. In addition to the LAI, the 559 

joint crop modelling system also demonstrates reasonable predictability in monthly FVEG 560 

(Figure S3). Consequently, this expanded functionality offers valuable opportunities to conduct 561 

sensitivity tests, enabling a deeper understanding of the agriculture-related climate response. 562 

 563 

4 Discussion and conclusion 564 

Considering the close and complex connections between crop growth, irrigation application 565 

and groundwater interaction in the NCP, the development of a comprehensive crop-irrigation-566 

groundwater model becomes necessary for accurate prediction of crop growth in this region. 567 

The objective of this study is to create an integrated crop model that incorporates irrigation and 568 

groundwater interactions in the regional climate model, specifically designed for the NCP and 569 

its surrounding areas. The inclusion of the prevalent double cropping rotation enables a much 570 

more accurate simulation of plant phenology and irrigation practices. This improved system 571 

can further be applied in long-term simulations to understand the agricultural-related climate 572 

response. 573 

The interconnections between the various models are depicted in Figure 10. In the default 574 

Noah-MP Land Surface Model (LSM), all modules are linked with the surface soil, but direct 575 

connections between them are absent. By introducing direct interactions between these 576 

schemes and regionalizing the functions and parameters, the integrated crop modelling system 577 

demonstrates its overall reasonable ability to predict crop production based on climatic 578 

conditions. This is validated through the accurate identification of crop stages, field point 579 

biomass estimation, crop yield prediction, and the monthly LAI pattern. The integration of 580 

these components enhances the model's predictability and allows for a more comprehensive 581 

understanding of crop growth dynamics in the NCP.  582 

Figure 10. How models are connected. Red arrows are new connections added in this study. 583 
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Nevertheless, the validation process has brought to light several limitations of the current 584 

model. To start with, the model design restricts the simulation of only one crop type per grid. 585 

This simplification may contribute to inaccuracies in predicting the leaf mass of summer maize 586 

at the Yucheng Station, which can be revealed by the inconsistency of LAI observation (Figure 587 

9) in the NCP region and the leaf mass at the Yucheng Station (Figure 7). While the LAI values 588 

indicate that September should have a smaller LAI compared to July, the station data suggests 589 

that September actually has a greater leaf mass than July. This discrepancy can be attributed to 590 

two factors. Firstly, the specific leaf area, or BIO2LAI in the model, varies across different 591 

crop stages, as supported by both station data and existing literature (Amanullah, 2015; H. 592 

Zhou et al., 2020). In other words, the leaves may be thinner and broader in July, while they 593 

become thicker and heavier in September. The second reason is that the observed LAI pattern 594 

represents a spatial average value over the grid, which may contain a diverse range of crops. 595 

Consequently, the specific station data for summer maize may not align well with the spatially 596 

averaged LAI. Since this study primarily focuses on the regional scale rather than individual 597 

field points, we prioritize matching the spatial LAI pattern while partially sacrificing the 598 

accuracy in predicting station leaf mass. As a result, the simulated LAI pattern is well-matched 599 

in the NCP region, while the predicted leaf mass for summer maize may not closely align with 600 

the station data. On the contrary, winter wheat greatly, even exclusively dominates the first 601 

crop season, and thus the station data and spatial pattern are consistent and can both be captured 602 

by the model. Also, the predicted LAI completely cleared up after harvesting, since each grid 603 

can only predict one type of growth pattern, which is different from the gradual fading observed 604 

in June and October. 605 

Additionally, it is important to acknowledge that the model performance may be less 606 

satisfactory in regions outside the primary focus of the NCP. There is some underestimation of 607 

LAI and yield in the southern boundary of the NCP, as well as the overestimation in northeast 608 

China. This could potentially be attributed to the limited predictability of FVEG. Also, 609 

considering their different crop rotations and crop types to the NCP, the current crop system 610 

may not be adequate to capture the LAI dynamics in the south coastal region and southwest 611 

China. Even in regions where the model currently exhibits reasonable performance, uncertainty 612 

can arise from the model's sensitivity to soil moisture (G. Wang, 2005). For instance, this study 613 

only conducts experiments in a normal year, its performance in dry years or wet years needs to 614 

be further tested. 615 

Overall, our study has already demonstrated reasonable performance of this regional-scale 616 

application in somewhere with a totally distinct climate background from the central US, where 617 

the model originally developed. This implies the potential for applying it in other agricultural 618 

zones. And most of our validation data is derived from satellite observations, indicating the 619 

possibility of adopting it in regions even with limited ground-based data. Also, the integrated 620 

crop system clearly highlights the significance of an appropriate irrigation scheme in the NCP 621 

region. The inclusion of the groundwater model enables a more precise representation of the 622 

spatial irrigation pattern, particularly along the mountain where irrigation is more intensified. 623 

However, it does not yield significant differences, particularly in terms of crop growth. 624 

Nevertheless, it is crucial to note that within the span of one year, the water exchange between 625 



the soil and groundwater already influences the irrigation pattern, suggesting that over a longer 626 

period, as groundwater gradually depletes, there may be more substantial changes in the 627 

hydrological cycle. Further research will focus on utilizing this crop system in long-term 628 

simulations, with an emphasis on investigating the cultivation-induced climate impacts and 629 

hydrological changes, including groundwater storage.  630 
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Table 1. Description of all experiments 945 

Figure 4. (a) Annual precipitation (mm/day) and basic geostatic variables applied in this 946 

project including (b) topography (m), (c) cropland fraction (%), (d) irrigated land fraction (%), 947 

(e) groundwater dependence (%). 948 

Figure 5. The relationship between FVEG and LAI+SAI in the NCP region. Thick solid line 949 

presents the original empirical relationship (Equation 1), fine solid line for best-fit relationship, 950 

while thick dash line for the adjusted equation (Equation 2). 951 

Figure 6. Spatial distribution of (a) the cropping system, (b-e) harvest date and planting date 952 

for wheat and maize over a year based on the chronological order. 953 

Figure 4. Spatial maps of (a) irrigation fraction (same as Figure 1d), (b) agricultural usage, (c) 954 

estimated irrigation usage, (d) statistical irrigation, e) satellite irrigation, f) observation 955 

irrigation, (g-i) simulated irrigation, and (j) MAD threshold adopted in IRRnew and GWnew. 956 

Figure 5. Monthly irrigation (lines) and LAI (bars) from IRRdef, IRRnew and GWnew. Only 957 

crop grids in the NCP are counted. 958 

Figure 6. Validation of the crop stage identification by comparing the wheat heading date, 959 

wheat maturity date, maize heading date, maize maturity date between the simulations and the 960 

observation 961 

Figure 7. Validation of the annual cycle of leaf mass and stem mass at (a, c) Yucheng Station 962 

and (b, d) Shenyang Station. Dots represent station observation and lines are the simulation 963 

results. 964 

Figure 8. Validation of crop yield of wheat and maize. 965 

Figure 9. Monthly LAI pattern of the satellite observation, default crop model only, and after 966 

all modification and integration. 967 

Figure 10. How models are connected. Red arrows are new connections added in this study. 968 
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Supplementary 970 

Table S1. Parameter setting for spring maize and summer maize. 971 

 Same as the parameter for one-year corn from Liu et al. (2016) 

 Same as the parameter for one-year corn from Z. Zhang et al. (2020) 

 Same as the parameter for spring wheat from Z. Zhang et al. (2023) 

 Based on winter wheat study from Y. Zhang et al. (1991) 

 Recalibrated with the station/satellite data 

 972 

Parameter 
Maize Wheat 

Winter 
Physical meaning 

Spring Summer 

GDDTBASE 10 0 Base temperature for GDD accumulation 

GDDTCUT 30 30 
Upper temperature for GDD 

accumulation 

GDDS1 50 150 GDD from seeding to emergence 

GDDS2 625 790 GDD from seeding to initial vegetative 

GDDS3 1000 1190 GDD from seeding to post vegetative 

GDDS4 1103 1600 GDD from seeding to initial reproductive 

GDDS5 1555 2010 GDD from seeding to physical maturity 

C3PSN 0 1 Indicator for C3 plant (1) or C4 plant (0) 

KC25 30 30 CO2 Michaelis-Menten constant at 25 °C 

AKC 2.1 2.1 Q10* base for KC25 

KO25 3.E4 3.E4 CO2 Michaelis-Menten constant at 25 °C 

AKO 1.2 1.2 Q10* base for KO25 

AVCMX 2.4 1.5 Q10* base for VCMX25 

VCMX25 60 80 Maximum rate of carboxylation at 25 °C 

BP 4.E3 1.E4 Minimum leaf conductance 

MP 4 9 Slope of conductance-to-photosynthesis 

QE25 (1) 0.08 0.12 Quantum efficiency at 25 °C 

Q10MR 2.0 2.0 Q10* base for maintenance respiration 

LEFREEZ 268 268 characteristic T for leaf freezing 

DILE_FC_S5 0.5 0.5 Coefficient for temperature leaf stress 

death DILE_FC_S6 0.5 0.5 

DILE_FW_S5 0.2 0.2 
Coefficient for water leaf stress death 

DILE_FW_S6 0.2 0.2 

FRA_GR 0.2 0.2 Fraction of growth respiration 

LF_OVRC_S5 0.2 0.05 
Fraction of leaf turnover 

LF_OVRC_S6 0.3 0.05 

ST_OVRC_S5 0.12 0.05 
Fraction of stem turnover 

ST_OVRC_S6 0.06 0.05 

RT_OVRC_S5 0.12 0.12 
Fraction of root turnover 

RT_OVRC_S6 0.06 0.06 



LFMR25 0.8 0.8 Leaf maintenance respiration at 25 °C 

STMR25 0.05 0 Stem maintenance respiration at 25 °C 

RTMR25 0.05 0 Root maintenance respiration at 25 °C 

LFPT_S3 0.36 0.4 0.45 

Fraction of carbohydrate flux to leaf 
LFPT_S4 0.2 0.3 0.55 

LFPT_S5 0.1 0 

LFPT_S6 0.1 0 

STPT_S3 0.24 0.2 0.4 

Fraction of carbohydrate flux to stem 
STPT_S4 0.5 0.2 0.45 

STPT_S5 0.4 0.3 0.4 

STPT_S6 0 0.2 0.3 

RTPT_S3 0.4 0.3 0.15 

Fraction of carbohydrate flux to root RTPT_S4 0.3 0.5 0.0 

RTPT_S5 0.2 0.2 0.1 

RTPT_S6 0.1 0 0.1  

GRAINPT_S5 0.4 0.4 0.5 
Fraction of carbohydrate flux to grain 

GRAINPT_S6 0.8 0.7 0.6 

LFCT_S6 (2) 0 0.0005 
Carbohydrate translocation from leaf to 

grain 

STCT_S6 (2) 0 0.001 
Carbohydrate translocation from stem to 

grain 

BIO2LAI (3) 0.023 0.020 0.008 Leaf area per living leaf biomass 

*Q10 means the rate increases by a 10°C temperature increases 973 

(1) The QE25 parameter is increased following the removal of the great-overestimated and non-974 

water-sensitive assumption 'FVEG=0.95'. This removal significantly decreases the radiation 975 

intercepted by vegetation, consequently imposing light limitations when calculating the 976 

photosynthesis. Since the crop model adopts the same photosynthesis function with other non-977 

crop vegetation in the Noah-MP, for simplicity, we opt to raise the crop quantum efficiency to 978 

achieve higher photosynthesis without affecting other vegetation types. 979 

(2) Carbohydrate translocation from leaf and stem to grain, which typically occurs during the 980 

reproductive stages, has been sometimes overlooked. However, we found it is necessary to 981 

include it when predicting the wheat yield in the highly productive NCP (X. Huang et al., 2020; 982 

Ma et al., 2006).  983 

(3) The average station BIO2LAI is calculated to be 0.02 for maize and 0.01 for winter wheat 984 

approximately. However, the BIO2LAI varies a lot during different stages and different 985 

quadrats, which requires slightly recalibration around that station value. The final 0.023 for 986 

spring maize is similar to the 0.025 calibrated by (Yu et al., 2022) in the northeast China. 987 
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 991 

 992 

Figure S1. Validation of the crop stage identification by comparing the wheat heading date, 993 

wheat maturity date, maize heading date, maize maturity date between the simulations and the 994 

observation. This is an extended version of Figure 6. 995 
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 1007 

Figure S2. Monthly LAI pattern of the satellite observation, default crop model only, and after 1008 

all modification and integration. This is an extended version of Figure 9. 1009 

 1010 

 1011 

Figure S3. Similar to Figure S2 but for FVEG. Notice that in the default crop model (CROPdef) 1012 

all FVEG is fixed to 95%. 1013 


