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Abstract

In this study, we identify the key length and time scales associated with CO2 mineralization in basalt reservoirs. This is achieved

through the development and application of a simple yet complete model of the fate and transport of a supersaturated CO2-

charged fluid moving unidirectionally through an initially uniform basalt rock. The model consists of three coupled equations

describing, (i) the spatiotemporal evolution of porosity with the mineralization reaction, (ii) the resulting temporal and spatially

varying fluid discharge, and (iii) the fate and transport of the mineralization reactant(s) in the aqueous phase. A dimensional

analysis provides length and time scales that characterize the extent and duration of field-scale carbon mineralization. These

scales are applied to a field site to estimate poorly constrained mineralization parameters, notably, the effective first-order

reaction rate constant.
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Key points

� We develop a �rst-order carbon mineralization model and perform a scaling analysis to identify key
length and time scales

� Through the scaling analysis, we de�ne expressions for the operational length and shuto� time of a
mineralization operation

� Using typical �eld data we estimate a range of shuto� times and an e�ective �rst-order precipitation
rate constant

Abstract

In this study, we identify the key length and time scales associated with CO2 mineralization in basalt
reservoirs. This is achieved through the development and application of a simple yet complete model of
the fate and transport of a supersaturated CO2-charged �uid moving unidirectionally through an initially
uniform basalt rock. The model consists of three coupled equations describing, (i) the spatiotemporal
evolution of porosity with the mineralization reaction, (ii) the resulting temporal and spatially varying
�uid discharge, and (iii) the fate and transport of the mineralization reactant(s) in the aqueous phase.
A dimensional analysis provides length and time scales that characterize the extent and duration of
�eld-scale carbon mineralization. These scales are applied to a �eld site to estimate poorly constrained
mineralization parameters, notably, the e�ective �rst-order reaction rate constant.

Plain Language Summary

A promising method to combat global climate change is to sequester carbon dioxide through carbon miner-
alization. Unlike geologic carbon sequestration, where carbon must remain trapped in aquifers for millennia
by an intact caprock, carbon mineralization securely stores carbon by rapidly converting injected carbon
dioxide into carbonate rocks. A major challenge in designing these systems, however, is knowing how aquifer
properties and injection parameters determine how large a mineralization site must be as well as the time
over which it can operate before clogging. Here, we develop a simple model based on the formation of
carbonate rocks in a basalt aquifer and analyze it to determine these necessary length and time scales. We
�nd that the length scale of mineralization depends on the injection pressure, aquifer conductivity, and
reaction rate of carbonation, while the time scale for shuto� depends on initial porosity, reaction rate, and
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how e�ciently the carbonate minerals can �ll the aquifer. We also show, using typical carbon mineralization
�eld data, how this scaling can be used to estimate a range of values for an e�ective reaction rate constant.
Together, the modeling and scaling results provide powerful tools for the research and development of carbon
mineralization.

1 Introduction

Carbon sequestration technologies have long been considered a primary pathway of mitigating climate change
arising from the overabundance of CO2 gas in our atmosphere. An emerging technology that shows promise
is the capture of carbon in the subsurface through the mineralization of CO2 by injection into ma�c (basalts)
and ultrama�c rock reservoirs [Snæbjörnsdóttir et al., 2017, 2018, 2020, Clark et al., 2020, Kelemen et al.,
2020, Power et al., 2013, Matter et al., 2016, White et al., 2020]. The advantage of this approach is that
it `locks' the carbon into the rock, handily mitigating the risk of CO2 leaking back into the atmosphere.
Conventional approaches (i.e. through geologic storage) in relatively inert aquifers predict mineralization
occurs, but only after tens of thousands of years. By contrast, aquifers containing ma�c and ultrama�c rocks
can be dissolved by CO2, liberating cations that result in precipitation of carbonate rocks in a matter of only
a few years. The starting point for engineering carbon mineralization is to identify the factors that enhance
or limit the ability to precipitate carbonate minerals in subsurface rock masses. This is the �rst step toward
ultimately answering the critical questions: For a given mineralization process what is the ultimate capacity
of carbon that can be stored? and How long will it take for this capacity to be realized?

In determining the potential storage of a given aquifer there are two end members. At one end we might
consider using reservoirs of ultrama�c rock (e.g., peridotite) which are highly reactive to carbon mineraliza-
tion but have very low permeability. Here, the capacity of the operation will rest on engineering �uid �ow by
creating and maintaining �uid �ow paths [Kelemen et al., 2020]. This could be accomplished by leveraging
the mechanical forces unleashed by the expanding mineralization products, known as reaction driven crack-
ing. At the other end, we might use basalt reservoirs (as in the CarbFix project in Iceland or Wallula Basalt
Pilot Project in the United States) where mineralization reactions are slower, but permeabilities are large
enough to permit �ow [Snæbjörnsdóttir et al., 2018, Callow et al., 2018, Snæbjörnsdóttir et al., 2020, Matter
et al., 2016, White et al., 2020]. In this case, which will be our focus here, determining the carbon storage
potential essentially reduces to estimating the length and time scales of a �eld operation, in particular:

1. The process length scale (i.e. aquifer size) needed to achieve complete mineralization of carbon from
an injected CO2 laden �uid

2. The process time before the precipitate products `clog' and terminate �ow pathways

Our methodology to make these estimates will be through the development of a model that describes the
interacting coupled chemical and transport processes that are involved, focused on a case where precipitation
is the rate limiting process compared to dissolution. By applying a dimensional scaling analysis to the
model, we identify and extract the relevant length and time scales that control carbon mineralization. We
demonstrate that these length and time scales provide critical and fundamental information for designing
successful carbon mineralization processes in basalt and similar rock masses.

2 A Carbon Mineralization Precipitation Model

2.1 Overview of Model

Towards the aim of determining the carbon mineralization storage potential of a given reservoir, we will
consider a model system where a prescribed constant pressure head gradient transports CO2-charged water
through a one-dimensional porous reservoir of length 0 ≤ x ≤ L, see Fig. 1. We consider simpli�ed
precipitation reaction cases, such as A(aq)+B(aq) → P(s), where an injected reactant A mixes with reactant
B in the aquifer to form a precipitate. In the case of carbon mineralization in ma�c or ultrama�c rocks,
A, B, and P might represent carbonate ions, cations released by the dissolved host rocks, and precipitated
carbonate minerals, respectively. As the precipitate forms it will decrease the porosity in the reservoir, which
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in turn decreases the �ow, eventually leading to complete clogging of the reservoir and a �ow shuto�. The
overall aim of the model is to identify the length over which mineralization occurs before shuto� terminates
the operation. This requires construction of three interacting and coupled model components:

1. an expression for the porosity change within the pore spaces as a function of mineral precipitation on
the pore surfaces, which is driven by the reaction of dissolved carbonate and cations,

2. an equation to describe the �ow of the �uid through the reservoir, accounting for changes of porosity
in space, and

3. an equation describing the fate and transport of the aqueous mineralization reaction reactants, also
accounting for changes in porosity in space.

In total these components are able to describe and account for the competition between the �ow of the
CO2-charged water and the clogging of the �ow pathways.

~10’s m

precipitate, rock, reactive fluid 

~10’s mm

problem domain 

detail of domain interior 

x = 0

dissolution precipitation

Figure 1: Schematic of a carbon mineralization operation and a representation of the problem domain whose
entrance is where precipitation initiates, x = 0, and whose exit is at the out�ow at x = L. This is the porous
media reservoir over which precipitation occurs. The model describes the system at the continuum scale,
but the schematic provides a view of the pore scale for reference to how precipitation and pore clogging is
e�ectively modeled.

2.2 Key Assumptions

Before we begin to derive our governing equations and relationships, we emphasize that the objective in
building our model is to balance between simplicity and reality. We aim to capture the �rst-order critical
features of the system, simpli�cations that will provide identi�cation of the key process and phenomena
controlling the length and time scales. In this light, the key assumptions in our model are the following:

1. We only consider precipitation in the domain of interest, i.e., dissolution reactions, dissolving the host
rock and releasing cations for mineralization, occur upstream of the domain entrance at x = 0.
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2. The sole reaction that forms the mineral precipitate has unit stoichiometry with pseudo-�rst-order
kinetics.

3. Precipitation occurs only on pore surfaces.

4. To leading order, as precipitation occurs, the hydraulic conductivity and speci�c surface area are
functions of the porosity, i.e.,

K(x, t) = Kigk(ϕ(x, t)) (1)

and

S(x, t) = Sigs(ϕ(x, t)), (2)

where Ki [m/s] and Si [m2/m3] are the values of the conductivity and speci�c surface area at the initial
porosity, ϕi, and the values of the functions at the initial porosity are gk(ϕi) = gs(ϕi) = 1.

5. The �ow through the porous medium is governed by Darcy's law, i.e., the discharge q [m3/m2/s]
(volume �ux per unit cross-sectional area of the porous medium), is given by

q(x, t) = ϕu(x, t) = −K(x, t)
∂h

∂x
= −Kigk(ϕ)

∂h

∂x
(3)

where u(x, t) [m/s] is the seepage velocity (the �uid velocity in the pore spaces) and h(x, t) [m] is the
pressure head.

6. At the initial time, before the reactants are introduced, the porosity ϕ, hydraulic conductivity K [m/s],
and speci�c surface area S [m2/m3] of the porous medium in the domain take constant values.

7. The �uid density and precipitate densities in the porous medium take constant values where changes in
density due to chemical reactions or the dissolution of CO2 into pore �uids are assumed to be negligible.

2.3 Model Components

2.3.1 Precipitation Reaction

As stated, the rate law for the precipitation reaction is assumed to be pseudo �rst-order in the reactant
concentration C,

r = k∗Sigs(ϕ)

(
1− C

Ceq

)
= kgs(ϕ)(Ceq − C) (4)

where k∗ is the geochemical reaction rate constant [mol/m2/s], Ceq the equilibrium concentration of
the main reactants [mol/m3], and k = k∗Si/Ceq is the pseudo-�rst-order reaction rate constant. The use
of pseudo �rst-order rate laws is a common practice in the interpretation and modeling of precipitation
reactions [Morse et al., 2007, Nancollas and Reddy, 1971, Reddy and Nancollas, 1971, 1976, Lasaga, 1997].
A geochemical derivation of this expression from transition state theory, as well as special cases where these
�rst-order kinetics will readily appear is discussed in the Supporting Information.

2.3.2 The Porosity Change

The reaction rate in eq.(4) represents the rate at which reactant is consumed per unit volume of the domain.
This rate of consumption will be related in the rate of formation of new solid volume per unit volume of
the domain through precipitation, expressed as the negative rate of the change of porosity −∂ϕ

∂t . Noting our
unit stoichiometry, reactant mass conservation (i.e. mass of reactant plus the precipitate) gives the relation
between consumption of reactant and rate of increase of volume by the precipitate as

4



∂ϕ

∂t
= νSr = νSkgs(ϕ)(Ceq − C) (5)

where νS is the molar volume of the precipitate; the appropriate initial condition for this rate equation
is ϕ(x, 0) = ϕi.

2.3.3 Flow

Due to our assumptions of constant, but potentially di�erent densities in the liquid and solid phases, the
rate of change in mass, in a �xed control volume, due to the formation of precipitates is

ṁ = (ρ− ρp)
∂ϕ

∂t
, (6)

ρ
[
kg/m3

]
is the liquid density and ρp

[
kg/m3

]
is the density of the precipitate. This mass rate is related

to the net rate of �ow in and out of the volume, which can be expressed in terms of the divergence of the
discharge, i.e.,

ṁ = (ρ− ρp)
∂ϕ

∂t
= −ρ ∂q

∂x
(7)

On dividing through by the �uid density ρ, de�ning the density ratio ρr = ρp/ρ, and using both Darcy's
law [eq.(3)] and the expression for porosity change [eq.(5)], we can write this balance as the following equation,

(1− ρr)νSkgs(ϕ)(Ceq − C) =
∂

∂x

(
[Kigk(ϕ)]

∂h

∂x

)
, 0 ≤ x ≤ L, (8)

with initial condition ϕ(x, 0) = ϕi and boundary conditions of prescribed heads at the ends of the domain,
i.e., h(0, t) = h0 > h(L, t) = hL.

2.3.4 Reactant Fate and Transport

We also require an advection-dispersion-reaction model to describe the fate and transport of the reactant,
given by

∂(ϕC)

∂t
=
∂

∂x

(
[Kigk(ϕ)]

∂h

∂x
C

)
+

∂

∂x

(
D
∂C

∂x

)
+ kgs(ϕ)(Ceq − C) +

∂ϕ

∂t
C, 0 ≤ x ≤ L,

(9)

with initial condition C(x, 0) = Ceq as well as boundary conditions C(0, t) = C0, and (∂C(L, t)/∂x) = 0.
The �rst term on the right-hand side of eq.(9) is the contribution from advective transport. The second
term accounts for the contribution of dispersive transport, where D = DL+ϕDm is the dispersion coe�cient
[m2/s]; DL is the longitudinal dispersion and Dm is the molecular di�usion. The third term is the rate of
consumption of the reactant in forming the precipitate, see eq.(4). The last term accounts for the loss of
�uid mass due to precipitation reducing the pore space. On combining this last term with the left-hand side,
we can rewrite the fate and transport equation as

ϕ
∂C

∂t
=

∂

∂x

(
Kigk(ϕ)

∂h

∂x
C

)
+

∂

∂x

(
D
∂C

∂x

)
+kgs(ϕ)(Ceq − C), 0 ≤ x ≤ L,

(10)

In further developing this model we will neglect contributions from molecular di�usion because we should
expect this to be orders of magnitude smaller than the longitudinal dispersion. Thus, following Bear [1972],
we can model the dispersion coe�cient as
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D = DL = αLu = αL

(
q

ϕ

)
(11)

where αL [m] is the longitudinal dispersivity. Typically, αL scales with the domain size as shown in
Gelhar et al. [1992], i.e, αL = βLL, a choice that, on using the Darcy expression for discharge [eq. (3)] and
the expression for gk, generates the following model for the dispersion coe�cient,

D = −βLL
Kigk(ϕ)

ϕ

∂h

∂x
, (12)

which assumes that the head gradient is negative. On inserting this treatment into our fate and transport
model [eq.(9)], we arrive at the advection-dispersion-reaction equation

ϕ
∂C

∂t
=
∂

∂x

(
Kigk(ϕ)

∂h

∂x
C − βLL

[
Kigk(ϕ)

ϕ

∂h

∂x

]
∂C

∂x

)
+

kgs(ϕ)(Ceq − C), 0 ≤ x ≤ L.

(13)

2.4 A Model of Carbon Mineralization

Gathering the appropriate equations together, the coupled model for carbon mineralization through precip-
itation is formed as:

Porosity [eq.(5)] :

∂ϕ

∂t
= νSkgs(ϕ)(Ceq − C),

with ϕ(x, 0) = ϕi.
Flow [eq.(8)]:

(1− ρr)νSkgs(ϕ)(Ceq − C) =
∂

∂x

(
Kigk(ϕ)

∂h

∂x

)
, 0 ≤ x ≤ L,

with ϕ(x, 0) = ϕi, h(0, t) = h0, and h(L, t) = hL.
Reactant fate and transport [eq. (13)]:

ϕ
∂C

∂t
=
∂

∂x

(
Kigk(ϕ)

∂h

∂x
C − βLL

[
Kigk(ϕ)

ϕ

∂h

∂x

]
∂C

∂x

)
+

kgs(ϕ)(Ceq − C), 0 ≤ x ≤ L,

with C(x, 0) = Ceq, C(0, t) = C0, and (∂C(L, t)/∂x) = 0.

2.5 Examples of Constitutive Models

As noted, to solve the coupled model equations [eqs. (5), (8), (13)], we will need to introduce constitutive
models for the hydraulic conductivity and speci�c surface area functions, gk(ϕ) and gs(ϕ), respectively. Here,
fully recognizing the existence of alternative choices, we provide a basic example of a constitutive model for
each of these variables.

2.5.1 Hydraulic Conductivity

A classical model for the hydraulic conductivity would be Kozeny-Carman, though other models can be used
as appropriate [Kozeny, 1927, Sabo and Beckingham, 2021, Carman, 1997]. This would set the conductivity
function gk as

gk(ϕ) =
ϕ3(1− ϕi)

2

(1− ϕ)2ϕ3i
(14)
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2.5.2 Speci�c Surface Area

Experiments and measurements indicate that it is reasonable to expect that speci�c surface will trend
upwards with decreasing porosity [Noiriel et al., 2009, Helgeson et al., 1984]. A general representation of
this behavior can be captured by setting the speci�c surface area as

gs(ϕ) =
(1− ϕ)m

(1− ϕi)m
(15)

where m ≥ 0. Here, to explore the range of possibilities, we will consider two end-members. Setting
m = 1 results in a linear increase in speci�c surface area with decreasing porosity, while setting m = 0 makes
the speci�c surface area constant with respect to porosity.

3 Dimensional Analysis

For a given domain length L and speci�ed constitutive models for hydraulic conductivity and speci�c surface
area, the solution of the governing equations in section 2.4 requires specifying 10 parameters

[k, νS , Ceq, C0,Ki, ρr, h0, hL, βL, ϕi],

some of which may be di�cult to fully characterize. Below we carry out a dimensional analysis to reduce
the number of parameters. This is done in two steps. First through developing a non-dimensional form of
the governing equations, followed by a scaling analysis that eliminates lower order terms.

3.1 Dimensionless Model Equations

We propose the following dimensionless scalings for space, time, pressure head, and reactant concentration

ξ =

√
k

Ki∆h
x, τ = νS(C0 − Ceq)kt, η =

h− hL
∆h

, Γ =
C − Ceq

C0 − Ceq
. (16)

The choice of length scale captures the competing e�ects of advective transport and reaction on the
reactant concentration. We can expect that in cases where reaction is very fast compared to transport that
the resulting pro�les of �ow and concentration will be compressed, and vice versa, with slow reaction and
fast �ow stretching concentration pro�les out. The choice of time scale normalizes time to the initial rate of
porosity formation.

With these scalings in hand we can de�ne the following dimensionless parameters: the dimensionless
domain length

ℓ =

√
k

Ki∆h
L, (17)

the dimensionless �ow discharge (Darcy Flux)

ψ = −gk(ϕ)
∂η

∂ξ
, (18)

the yield (the relative volume of the precipitate created by the reaction)

Y = νSC0, (19)

and the initial supersaturation ratio

R =
C0

Ceq
. (20)

Further, on making the substitutions

7



x =

√
Ki∆h

k
ξ, t =

τ

νSk(C0 − Ceq)
, h = η∆h+ hL,

C = Γ(C0 − Ceq) + Ceq,

(21)

into eqs. (5), (8), and (13), we arrive at the following set of dimensionless equations:

Porosity:

∂ϕ

∂τ
= −gs(ϕ)Γ (22)

with ϕ(ξ, 0) = ϕi.

Flow:

−(1− ρr)Y

(
1− 1

R

)
gs(ϕ)Γ =

∂

∂ξ

(
gk(ϕ)

∂η

∂ξ

)
= −∂ψ

∂ξ
(23)

with η(0, τ) = 1 and η(ℓ, τ) = 0.

Reactant fate and transport:

Y ϕ

(
1− 1

R

)
∂Γ

∂τ
=

∂

∂ξ

(
−ψ

(
Γ +

1

R− 1

)
+ βLℓ

[
ψ

ϕ

]
∂Γ

∂ξ

)
− gs(ϕ)Γ 0 ≤ ξ ≤ ℓ, (24)

with Γ(ξ, 0) = 0, Γ(0, τ) = 1, and ∂Γ/∂ξ(ℓ, τ) = 0.

3.2 Simpli�ed Dimensionless Model

The values of the reactant supersaturation and yield are important in understanding the behavior of both
the �ow and the reactive transport equations. A large value of R will ensure the e�ciency of the operation
by providing ample supply of reactants. Here, our expectation is that R > 10, which is discussed further
in the Supplementary Information. In terms of determining the yield, we note that the molar volume of
the mineral precipitate is well constrained and will have a value of O(10−5) [Parkhurst and Appelo, 2013].
The value of the initial concentration can be determined from the given injection condition. The �eld value
reported from CarbFix 1 is 840 [mol/m3] which would provide a value of the yield Y on the order of 0.01
[Snæbjörnsdóttir et al., 2018, 2020]. However, our model uses the in-situ concentration at the start of the
precipitation, which we expect may be reduced from the injection value. Thus, it is reasonable to project
that model values of Y will be less than 0.01. In the Supporting Information we further explore the possible
value ranges for the parameters and terms in our dimensionless model.

Based on our understanding of the expected size of the yield, Y < 0.01, and initial supersaturation ratio,
R > 10, we can, using the data values in our SI, make some simpli�cations of the governing dimensionless
equations for �ow and transport. We start this simpli�cation by noting that:

1. In our current governing equations, the parameters (1− ρr), gs(ϕ), and (1− 1/R) are all order 1.

2. Expected �eld values for the porosity and dispersion coe�cient are ϕ ∼ 0.1 and βL ∼ 0.1 respectively,
and are discussed in the supplementary information.

3. Values of the dimensionless domain length are ℓ < 10; this is con�rmed in subsequent analysis.

4. A representative dimensionless discharge is ψ ∼ 1
ℓ , which, based on the expected domain length above,

will take values between 0.1 and 1.

5. The dimensionless concentration is bounded in 0 < Γ ≤ 1, with, due to its decreasing value with
increasing ξ, an average domain value noticeably less than order 1.
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In the light of this information, we can conclude that the left-hand side of (23) will take a value of order
10−2 or less, suggesting that it is reasonable to approximate the dimensionless discharge as divergence free.
Further, with reference to eq.(24), we see that the ratios of the advection to transient terms ( 1

ℓY ϕ ) and

dispersion to transient terms ( βLℓ
ϕ2Y ) will be order 100 or larger. These imply that it is reasonable to neglect

the transient term on the left-hand side of eq.(24). Assuming a divergence-free discharge and dropping
the transient term in the transport equations, we arrive at a simpli�ed dimensionless model for carbon
mineralization:

Porosity:

∂ϕ

∂τ
= −gs(ϕ)Γ (25)

with ϕ(ξ, 0) = ϕi�identical to eq.(22).

Flow:

∂

∂ξ

(
gk(ϕ)

∂η

∂ξ

)
= −∂ψ

∂ξ
= 0 (26)

with η(0, τ) = 1 and η(ℓ, τ) = 0.

Reactant fate and transport:

−ψ∂Γ
∂ξ

+ βLℓψ
∂

∂ξ

(
1

ϕ

∂Γ

∂ξ

)
− gs(ϕ)Γ = 0 (27)

with Γ(0, τ) = 1, Γ(ξ, τ) = 0, (∂Γ(ℓ, τ)/∂ξ) = 0, and includes the assumption of divergence-free �ow.
Dropping terms that include the yield e�ectively states the rate of change of porosity is slow enough that

its e�ect on the �ow and transport can be neglected. We recognize that dropping these terms may result
in some loss of accuracy, in particular when the yield is close to its upper limit of 0.01. However, in the
context of our objective here, i.e., identi�cation of the governing length and time scales of mineralization,
assuming a divergence-free discharge and dropping the transient term in eq. (24) are both reasonable
approximations. The key advantage of this step is that after providing appropriate constitutive models
for hydraulic conductivity and speci�c surface area, we only need to specify the initial porosity ϕi and
dimensionless longitudinal dispersivity βL�aquifer intrinsic properties�to resolve the model.

4 Length and Time Scales for Carbon Mineralization Processes

4.1 Process Length

The simpli�ed and dimensionless models for transport and �ow are pseudo-steady state, changing only with
the slowly changing porosity �eld. The implication is that, at given time τ , if we know the current porosity
and surface area pro�les, we can solve the steady-state equation given in eq. (27) to determine the current
concentration pro�le Γ(ξ, τ). With this in hand, we can approximate an e�ective length ℓm(τ) over which
mineralization is occurring by locating the position where Γ(ξ, τ) = Γex, where Γex is a small value (e.g.,
0.01) that indicates a close to complete depletion of the reactant. We should expect that the point ℓm(τ)
will migrate backwards in time as the �ow slows due to the decrease in porosity. Thus, the furthest extent
that reactants will reach, de�ned as the process length ℓp, can be determined by solving eq. (27) for the
initial Γ(ξ, 0) pro�le. Following some rearrangement, this reduces to solving the ODE

d2Γ

dξ2
−
[
ϕi
βLℓp

]
dΓ

dξ
−
[
ϕi
βL

]
Γ = 0, 0 ≤ ξ ≤ ℓp, Γ(0) = 1, (dΓ(ℓp)/dξ) = 0; (28)

note we are assuming the domain is at the process length ℓp and have imposed the initial time values
for the constant porosity ϕi, gs(ϕ) = 1, and discharge ψi = 1/ℓp. Equation (28) is a homogenous ODE with
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constant coe�cients. Since, by design Γ(ℓp, 0) = Γex is small, we can arrive at an accurate approximate
solution by replacing the zero gradient condition at ξ = ℓp with the condition Γ(ξ, τ) → 0 as ξ → ∞, giving

Γ(ξ) = exp(−aξ); a =
1

2

√[
ϕi
βLℓp

]2
+ 4

[
ϕi
βL

]
−
[
ϕi
βLℓp

] . (29)

This solution allows us to form the following relationship for the process length

aℓp = | ln(Γex)|, (30)

leaving the possibility open to provide alternative settings for the mineralization threshold concentration
Γex. Between the expression for the constant a in eq. (29) and the relationship in eq. (30), we can explicitly
solve for the process length

ℓp =

√
| ln(Γex)|+ | ln(Γex)|2

βL
ϕi

(31)

The value of ℓp obtained from the relationship in eq. (31) provides an optimum process length scale
for a mineralization operation. If the extent of the �eld is much longer, then CO2 will escape the system
without mineralizing. In the opposite case, the domain will not be e�ciently used. For 0.001 < Γex < 0.1,
0.1 < ϕi < 0.3, and 0 < βL < 0.1, we can �nd the range of lp values as

2.1 (Γex = 0.1, ϕ, βL = 0) < lp < 7.4 (Γex = 0.001, ϕi = 0.1, βL = 0.1), (32)

which con�rms ℓ < 10. Values from this range can readily be converted to a dimensional length scale
through eq. (21) giving

Lp = ℓp

√
Ki∆h

k
(33)

4.2 Process Time to Shuto�

In addition to a characteristic length scale, we are also interested in determining a relevant timescale for
shuto�, which indicates the operation timescale. On noting that complete precipitation-induced clogging of
the pores will �rst occur at x = 0, where the reactant concentration is always at its highest value of Γ = 1,
we can evaluate a shuto� time on direct solution of eq. (25). Using our generic speci�c surface area function
in eq. (15), the porosity change equation at the entrance can be written as

∂ϕ

∂τ
= − (1− ϕ)m

(1− ϕi)m
, 0 ≤ m ≤ 1, (34)

with ϕ(ξ, 0) = ϕi. De�ning complete shuto� to occur when we reach zero porosity at the entrance,
i.e., ϕ(ξ = 0, τ) = 0, this equation is readily solved for the shuto� time using separation of variables. On
recognizing that the shuto� time decreases monotonically with increasing values of m, we can consider
bounding end member solutions of m = 0 or m = 1. In the former, the inlet porosity changes at a constant

rate giving τm=0 = ϕi − ϕ. For the latter, τm=1 = log
(

1−ϕi

1−ϕ

)
(ϕi − 1). Solving each expression for the time

when ϕ = 0 gives

τm=0 = ϕi, τm=1 = (ϕi − 1) log(1− ϕi), τm=0 > τm=1 (35)

These two predictions are not much di�erent. When ϕi = 0.1, the linear case time is 0.0948, while the
constant case time is 0.1. Since it provides an upper bound on the dimensionless time to shuto�, we propose
adopting τm=0 = ϕi as the dimensionless process time scale. Substituting into the time scaling from the
non-dimensionalization [eq. (21)], we obtain

to� =
ϕi
Y k

(
R

R− 1

)
≈ ϕi
νSC0k

(36)

where we have used the facts that R > 10 and Y = νSC0.
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4.3 Relevant Dimensionless Groups for Carbon Mineralization

We can also write out the �eld length scale in terms of the appropriate Damköhler numbers, which give the
e�ective scales of reaction and transport relevant to a mineralization operation. Combining and rearranging
eq.(31) and eq.(33) gives

Lp =

√
| ln(Γex)|+ | ln(Γex)|2

βL
ϕi

√
Ki∆h

k
. (37)

On noting that, at the initial time, t = 0, the dispersion can be parameterized as

Di = βLLp
q

ϕi
= βLLp

Ki∆h

Lp

1

ϕi
= βL

Ki∆h

ϕi
, (38)

it follows from eq. (37) that

Lp = ∆h

√
| ln(Γex)|

DaI
+

| ln(Γex)|2
DaII

(39)

where

DaI =
k∆h

Ki
(40)

is the �rst Damköhler number, expressing the ratio of reaction rate to advective transport rate, and

DaII =
k∆h2

Di
=
k∆hϕi
βLKi

(41)

is the second Damköhler number, expressing the ratio of reaction rate to dispersive transport rate.
Thus, if we can determine the Damköhler numbers for a given �eld condition and specify the extent

of mineralization required�i.e., setting the exit value of Γex�we can obtain an estimate of the required
process length. This scaling also indicates the main controls on the process length are both the intrinsic
characteristics of the aquifers, Ki, ϕi, βL, and k, as well as externally controlled parameters of the operation,
Γex and ∆h. Likewise, our expression for shuto� times [eq. (36)] shows that the main extrinsic parameter
setting shuto� is the injected reactant concentration, C0, while the other parameters (νs, ϕi, k) are primarily
controlled by the aquifer conditions. In this consideration, it is important to note that the value of C0 is not
necessarily the concentration injected at the wellhead because of aquifer geochemistry and mixing of injected
waters with the ambient formation waters [Morse et al., 2007, Clark et al., 2020, Gysi and Stefánsson, 2011,
Snæbjörnsdóttir et al., 2018]. These factors will cause the concentration of reactants when precipitation
initiates to vary from the injected values.

5 Practical Applications of the Scaling Analysis

5.1 Estimates for parameter �eld values

Calculation of Lp and to� requires estimation or determination of a few relevant �eld parameters beyond the
parameters already discussed (i.e. Y , Γex, etc.), speci�cally ∆h, Ki, βL, ϕi, and k. Here, we discuss some
reasonable values of these parameters as an example of how these time and length scales can be used in �eld
settings.

The constant head gradient: This is e�ectively set by the operator and is dependent on the pumps used
as well as the formation characteristics. In our calculations here, we will use a �xed value of ∆h = 100 m.

The dispersion coe�cient: The value of βL is ultimately de�ned by structure of the formation of itself, but
can be characterized with �eld-testing of the target formation with passive tracer tests. Here, we consider
0 < βL < 0.1. This range is further discussed in the supplementary information.

The initial hydraulic conductivity: Conductivities can vary widely depending on the host rock (i.e. basalt)
as well as the properties of the injected �uid after it has mixed with the formation water because of changing
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temperature, CO2 concentrations, etc. In many sites, the presence of fractures will further alter the e�ec-
tive conductivity and relative times of transport, or result in multiple domains with dramatically di�erent
conductivities [Viswanathan et al., 2022]. Based on reported permeability ranges for vesicular basalts and
with water �ow, we consider a range of 10−7 < K < 10−3 [m/s] [Saar and Manga, 1999, Clark et al., 2020,
Snæbjörnsdóttir et al., 2020]. While this is a large range, this can be readily constrained through appropriate
aquifer characterization.

The initial porosity: In the aquifers targeted for mineralization, one can expect a range of possible porosi-
ties, and the initial porosity for a given aquifer can be characterized as a part of site selection. Character-
ization of the target formation may necessarily suggest the use of functions gk(ϕ) and gs(ϕ) that are more
appropriate to the speci�c site. The porosity is additionally necessary to understand beyond its impact on
conductivity since it sets the maximum space where mineralization can occur and controls shuto�. Here, we
consider 0.1 < ϕi < 0.3. This range is also brie�y discussed in the supplementary information.

The �rst-order reaction rate constant: This term has the most uncertainty to it because of uncertainty in
the underlying parameters, Ceq, k∗, and Si, the equilibrium reactant concentration, geochemical reaction rate
constant, and initial reactive surface area, respectively. The value of Ceq in the aquifer is a function of the
precipitation reaction conditions and is discussed further in the supplementary information. While k∗ can be
determined from ex-situ experiments for a single mineral, it is well established that hydrodynamic conditions,
mixing, and other dissolved solutes will in�uence the value of this relevant to in-situ conditions [Lasaga, 1995,
1997, Arvidson et al., 2003, Lin and Singer, 2005, Morse et al., 2007, Plummer et al., 1979, 1978, Kang et al.,
2019]. These factors also do not consider the variable kinetics of the di�erent metal carbonates that may
form. Similarly, the value of Si represents a continuing point of contention for modeling these reactions.
Putting aside uncertainties resulting from mineralogical heterogeneity in a target aquifer, there even remain
questions whether reactive surface areas should be derived from the geometry of the mineral surface, BET
surface area measurements, or some other related parameter, which creates signi�cant variability [Anovitz
et al., 2022, Awolayo et al., 2022, Gouze et al., 2003, Gouze and Luquot, 2011, Morse et al., 2007, Helgeson
et al., 1984, Noiriel et al., 2009]. The combination of these uncertainties result in k being very di�cult to
constrain a priori, but a representative range may be 10−8 < k < 10−3 [1/s].

So to summarize, to our best estimates, we consider the following possible �eld parameter values and
ranges

Y < 0.01

0.001 <Γex < 0.01

0 <βL < 0.1

∆h = 100 [m] (42)

0.1 <ϕ < 0.3

10−7 <Ki < 10−3 [m/s]

10−8 <k < 10−3 [1/s]

5.2 Back calculation of reaction rate

The most striking feature of our estimates for �eld parameters in eq.(42) is the orders of magnitude range
in the estimates for the reaction rate k and initial conductivity Ki. We saw above that eq. (31) predicts
dimensionless process length to be within the relatively constrained values of 2 to 7. When we use these values
along with our estimated range of �eld values in eq.(42) with eq.(37), the resulting dimensional penetration
length falls within the range of

20 cm < Lp < 20 km; (43)

this range captures what we might expect in the �eld, but its end values may not be feasible given current
reports from mineralization e�orts [Clark et al., 2020, Snæbjörnsdóttir et al., 2020, White et al., 2020].

The wide range in predicted �eld length scales is strongly controlled by the range of reaction rate constants
and hydraulic conductivities, which are some of the principle unknowns in any carbonization operation.
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Hydraulic conductivity can be constrained by careful aquifer characterization, but the in-situ value of k
is more challenging to characterize. By contrast, the process length is obviously a known and the relative
concentration at the exit well Γex, can be readily measured. Thus, there is an opportunity to use our scaling
in an `inverse' sense to obtain an estimate of the `e�ective' in-situ rate constant. This is accomplished by
rewriting eq. (31) as

k =
ℓ2pKi∆h

L2
p

, (44)

which only requires an estimation of the length over which precipitation is occurring (de�ning both Lp

and ℓp), in addition to the hydraulic parameters of the aquifer that are generally easier to estimate than k.
For example, the CarbFix 1 injection had an approximate well separation of 125 m between the injection
well and monitoring well where signi�cant carbon removal had been observed [Snæbjörnsdóttir et al., 2018,
2017]. They also characterized the horizontal permeability to be 3 × 10−13 m2, which, for water, gives a
hydraulic conductivity around 3 × 10−6 [m/s]. Given the fact some dissolution occurred in that system, a
reasonable range of Lp is 25 to 100 m. When used with the other parameters values in eq. (42) and eq. (32)
this reduces the possible range on the reaction rate by almost 3 orders of magnitude

1× 10−7 < k < 2× 10−5[1/s].

The point here is that with a given operating condition and the knowledge of hydraulic conductivity in
the domain, this proposed scaling can be used to impose signi�cant constraints on the e�ective �rst-order
reaction rate constant.

5.3 Shut-o� time

With a better constrained estimate of the e�ective reaction rate, we can use eq.(36) to improve the bounds
on the time for shuto�. Presuming ϕi = 0.1, Y = 0.001, and using the estimated values of k in eq.(5.2), the
dimensional shuto� time falls in the range

50 days < to� < 30 years

Returning to information from the CarbFix 1 site, we note that injection ran for approximately 90 days
with no reported signs of clogging due to stored carbon [Snæbjörnsdóttir et al., 2020], suggesting that our
analysis provides a meaningful time range. To some degree, for a given application, the shuto� time could
be adjusted by decreasing or, if possible, increasing the supersaturation value, R, in the injected �uids.

6 Conclusions

By considering a simple model of mineral precipitation in a 1D porous media, we have developed a �rst-order
model which represents the key processes relevant to carbon mineralization. By considering a dimensional
analysis of this model, we have further identi�ed the key length and time scales of the operation. These are
speci�cally, the length of the domain where mineralization occurs,

Lp =

√
| ln(Γex)|+ | ln(Γex)|2

βL
ϕi

√
Ki∆h

k

and the time when clogging shuts o� �uid �ow,

to� =
ϕi

νSC0k
,

both of which depend on intrinsic aquifer properties and the operational parameters of the mineralization
operation. These scales are necessary �rst steps to evaluate the total capacity of an aquifer and the time
needed to realize that capacity. The scalings provide not only a sense for the required sizes and operation
times of a mineralization project, but we have also shown that they can be used to place tighter constraints
on the e�ective �rst-order reaction rate constant
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k =
ℓ2pKi∆h

L2
p

,

a vital, but poorly constrained parameter. Finally, the scales identi�ed also con�rm the critical charac-
teristics that make for ideal mineralization: su�cient aquifer conductivity to allow injected CO2 to access
the target formation, moderate reactivity such that mineralization occurs quickly without rapid clogging,
and su�cient pore space such that meaningful amounts of carbon can be stored. In light of those aquifer
characteristics, the scalings suggest parameters that can be controlled (e.g., injection head and reactant
concentrations) to engineer a desired domain size (length) and process time for a mineralization operation.
Altogether, this study provides a powerful tool for understanding and optimizing in-situ carbon mineraliza-
tion.
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1 Introduction

We provide additional discussion of the theoretical choices made for the mineral carbonation scaling model,
as well as discussion of various parameter values. All data is sourced from the relevant references as indicated
throughout the text.

1.1 Derivation of First-Order Reaction Rate Law

There are a few notable cases where a precipitation reaction with two species can result in �rst-order reaction
kinetics with respect to a single concentration. We develop these two cases here to indicate the value of
these �rst-order laws for the purposes of developing the scalings discussed in the main text, which could be
extended if additional complexity is needed.

Denoting the concentration of species A and B as CA and CB [mol/m3], respectively, we can formally
express the reaction rate [mol/m3/s] of either reactant per unit volume of the medium (both the solid and
liquid phases) as

r = k∗S

(
1−

(
CACB

Keq

)n)
(1)

where k∗ is a rate constant [mol/m2/s], n is the reaction order, S the solid surface area per unit volume
of porous media [1/m] and Keq is the equilibrium constant for the reaction [Morse et al., 2007, Lasaga,
1995, 1997]. In the case of pseudo-�rst-order reaction as in the main text, there are two cases which we can
consider. The �rst is if CA = CB and the order term, n = 0.5. In this case, eq. 1 simpli�es to

r =
k∗S

Ceq
(Ceq − C) (2)

where C = CA = CB , and Ceq =
√
Keq.

The second case is where CB(x, t) = CB,0 >> CA (or vice versa), such that the concentration of the
abundant species is e�ectively constant and n = 1. Eq. (1) can alternatively be simpli�ed to

r =
k∗S

Ceq,lim
(Ceq,lim − C) (3)

where Ceq,lim = Keq/CB,0.
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Both equations have the same form, but with a di�erent de�nition for the Ceq value. To �rst-order, the
speci�c surface area is given by S = Sigsϕ, thus we can de�ne a �rst-order rate term k = k∗Si/Ceq [1/s].
This gives the �nal rate equation used in the main text:

r = kgs(ϕ)(Ceq − C). (4)

1.2 Characteristic Parameter Values for Non-Dimensionalization

Many of the parameters in the equations in the main text are either removed by the non-dimensionalization,
or during the simpli�cation of the equations by ignoring terms containing the yield Y . We consider the
values of the relevant parameters here, as a reference.

The equilibrium concentration: This will depend on the main mineralization reactions occurring, which
will de�ne Keq, as well as the initial concentrations of reactants, as discussed in the SI section 1.1. Keq is
thermodynamically de�ned as a function of temperature, and is well known for many minerals of interest in
carbon mineralization. As an example, the equilibrium constant for calcite formation is 10−8.54 at 35 ◦C, and
is relatively close to that of other metal carbonates (siderite, magnesite, etc.), though determining an e�ective
equilibrium constant may prove more di�cult [Snæbjörnsdóttir et al., 2018, Gysi and Stefánsson, 2011].
Uncertainty in the relative concentrations of the reactants (i.e. carbonate and cation) in �eld conditions,
however, will create signi�cant uncertainty in this value should the limiting reactant case apply, as Ceq will
also become dependent on initial conditions. Considering calcite equilibria at 35 ◦C and equal concentrations
gives a value around 0.05 mol/m3, however, calcite equilibria at 35 ◦C and an abundant cation concentration
of 1 mol/m3 will give a value of 0.003 mol/m3. The key point in exploring these values are not necessarily
to derive an exact �eld concentration, which may vary depending on the mineral, but that the precipitation
is de�ned relative to some equilibrium state, and quantifying a reasonable approximation of that state is
necessary to constrain the other parameters, notably R and k.

The initial supersaturation: For precipitation to occur, R > 1, however, more practically, the speci�c
value of R will depend on both Ceq and C0. As is emphasized in the main text, it is worthwhile to reiterate
that the initial concentration when precipitation initiates, C0, is not necessarily the concentration at the
injection well. This is because the injected waters are signi�cantly acidic, and precipitation will be preceded
by a region where the injected water dissolves the rock and liberates cations. The result is that the amount
of cation and carbonate driving the reaction may be signi�cantly smaller than the injected value, depending
on the ambient water conditions. This will also be a�ected by mixing of the injected waters with the
formation waters, which will further reduce the concentration from the injected value. The result is that
the concentration when precipitation initiates (i.e. t = 0 in the model) may be signi�cantly lower than the
concentration injected. Snæbjörnsdóttir et al. [2018] state that CarbFix 1, for example, had an injected CO2

of 840 mol/m3, and the authors note signi�cant dilution of the injected water with the formation waters.
The maximum divalent cation concentration observed, in contrast, was around 0.5 mol/m3, though these
values are after some precipitation has occurred. Relative to calcite equilibria (see Ceq discussion above),
these value ranges give R < 10, the value limit considered in the main text.

The porosity yield: This factor comprises the product of the initial concentrations of solute, as well as
the molar volume of the precipitate Y = νSC0. The molar volume for minerals is strictly de�ned, and are
typically O(10−5) for carbonate minerals such as calcite, siderite, magnesite, etc. [Parkhurst and Appelo,
2013]. As discussed for R, the value of C0 depends on the actual concentration of the reactants when
precipitation initiates. The values considered above, 0.5 < C0 < 840 mol/m3, give, therefore, Y < 0.01, with
the possibility of Y << 0.01.

The initial porosity: Here we focus on higher permeability ma�c rocks (as opposed to much lower porosity
olivines), similar in nature to those used in the CarbFix project, though we note that the host rock need not
strictly be basalt [Snæbjörnsdóttir et al., 2020, 2018, Clark et al., 2020]. In this setting a reasonable initial
porosity value is 0.1 < ϕi < 0.3. In general, larger porosities will favor longer operation times, and likely
larger storage capacities.

The dispersivity coe�cient: This term typically scales with the domain length αL = βLL. In the analysis
of multiple �eld sites, Gelhar et al. [1992] noted that dimensionless longitudinal dispersivity ranged from
10−2 to 104 m for domain scales ranging from 10−1 to 105 m. Thus, in the absence of any speci�c information
on a given potential reservoir, a reasonable range is to set 0 < βL < 0.1, with the βL = 0 case speci�cally
considered as a limiting case with no dispersion.
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The ratio of the precipitate to liquid density: We would expect the precipitate to be denser than the
liquid, for precipitates of interest somewhere in the range 1 < ρr < 3. As an example, for calcite and water
at 25 ◦C, ρr ≈ 2.71 [Parkhurst and Appelo, 2013]. Hence, it is reasonable to presume that ρr ≈ O(1).
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