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Abstract

Weekly to quarterly beach elevation surveys spanning 700-800 m alongshore and 8 years at two beaches were each supplemented

with several months of 100 sub-weekly surveys. These beaches, which have different sediment types (sand vs. sand-cobble mix),

both widen in summer in response to the seasonal wave climate, in agreement with a generic equilibrium model. Results suggest

differences in backshore erodability contribute to differing beach responses in the stormiest (El Niño) year. At both sites, the

time dependence of the equilibrium modeled shoreline resembles the first mode of an EOF decomposition of the observations.

With sufficient training, an equilibrium-informed Extra Tree Regression model, that includes features motivated by equilibrium

modelling, can significantly outperform a generic equilibrium model.
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Key Points:6

• At two beaches, weekly to quarterly elevation surveys spanning 700-800 m along-7

shore and 8 years were supplemented with ∼100 subweekly surveys spanning sev-8

eral months.9

• The Equilibrium-informed Extra Tree (ET) Regression Machine Learning model10

uses features (e.g. 30 day wave energy anomaly) inspired by equilibrium concepts11

• With sufficient training, ET outperforms a generic equilibrium model12
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Abstract13

Weekly to quarterly beach elevation surveys spanning 700-800 m alongshore and 8 years14

at two beaches were each supplemented with several months of ∼100 sub-weekly surveys.15

These beaches, which have different sediment types (sand vs. sand-cobble mix), both widen16

in summer in response to the seasonal wave climate, in agreement with a generic equi-17

librium model. Results suggest differences in backshore erodability contribute to differ-18

ing beach responses in the stormiest (El Niño) year. At both sites, the time dependence19

of the equilibrium modeled shoreline resembles the first mode of an EOF decomposition20

of the observations. With sufficient training, an equilibrium-informed Extra Tree Regres-21

sion model, that includes features motivated by equilibrium modelling, can significantly22

outperform a generic equilibrium model.23

Plain Language Summary24

Beach elevation surveys are compared at two beaches in San Diego County. Both25

beaches narrow during winter as large wave events transport sand offshore and widen26

during summer as gentle waves move sand onshore. The seasonality of such beaches has27

been characterized by simple models that primarily rely on wave energy relative to an28

average state to predict beach width changes, known as equilibrium models. Here, we29

highlight some of the limitations of equilibrium models, such as a tendency to over pre-30

dict winter erosion at a beach backed by non-erodible infrastructure. We demonstrate31

that machine learning models, when trained with sufficient observations, can predict beach32

width changes more accurately than equilibrium models.33

1 Introduction34

Forecasting wave runup and overtopping depends on reliable estimates of future35

waves and nearshore bathymetry. Wave model forecasts are increasingly accurate on time36

scales ranging from several days to seasons. However, changes in beach bathymetry (e.g.37

shoreline location and beach slope) are understood poorly. Many authors emphasize the38

feedback between runup and evolving bathymetry, and the relative lack of comprehen-39

sive (in space and time) bathymetry observations for model validation (e.g. Straub et40

al. (2020); Henderson et al. (2022) and many others).41

Using standardized calibration and test periods, Montaño et al. (2020) compared42

the performance of 12 “Equilibrium” and 7 ML models with designated calibration and43

testing periods at Tairua Beach in New Zealand. As a comparison baseline for errors,44

the data were detrended with no further adjustment. RMSE (root-mean-square-error)45

was never reduced by more than 20% from the baseline RMSE ≈ 5.3 m, and in most46

cases the error reduction was < 10% (Figure 3 in Montaño et al. (2020)). Overall, Equi-47

librium and ML models preformed similarly with low skill. Blossier et al. (2017) report48

shoreline location errors at Tairua between +3.50 m and −4 m, suggesting that noise could49

have limited model skill. More recently, Gomez-de la Pena et al. (2023) compared Tairua50

observations with model results using complex neural network (CNN), hybrid CNN-LSTM,51

and equilibrium models. LSTMs extract sequential information and long-term tempo-52

ral dependencies. Shoreline evolution is strongly seasonal, so the hybrid Gomez-de la Pena53

et al. (2023) model would be expected to outperform the memory-lacking CNN; how-54

ever, CNN and hybrid models yielded similar RMSE. Gomez-de la Pena et al. (2023) re-55

view some of rapidly expanding applications of ML to shoreline change.56

Process-based models, such as XBeach, Cshore, SBeach, and COAWST, often show57

skill in simulating erosion from individual storms when tuned with site-specific obser-58

vations, but optimal parameter values can vary (unpredictably) in space and time (Kalligeris59

et al., 2020). Recovery is not reliably modeled, errors accumulate in long-term simula-60

tions, and process-based models have not been successfully used for years-long simula-61
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tions. Storm erosion is more accurately simulated with a neural network than with SBeach62

or XBeach (Simmons & Splinter, 2022).63

Equilibrium beach models, noteworthy for their numerical simplicity and relatively64

few free parameters, quantify the hypotheses (Wright et al., 1985; Miller & Dean, 2004)65

that for a constant wave field there is an equilibrium beach morphology (the equilibrium66

beach) that would remain constant in time, neither eroding nor accreting. A beach in67

disequilibrium with ambient waves changes towards the equilibrium shape at a rate pro-68

portional to the disequilibrium: dXMHW

dt = C±E1/2∆E, where E is wave energy, and69

C± are change rate coefficients. The energy disequilibrium, ∆E, is the difference between70

the wave energy and an equilibrium energy, Eeq(XMHW ) = aXMHW+b, where a and71

b are fit to observations. The functional forms for dXMHW

dt and Eeq(XMHW ) are some-72

what arbitrary and many variants of these forms have similar skill (Yates, Guza, & O’Reilly,73

2009; Davidson et al., 2013).74

When calibrated with observed waves and shoreline locations, equilibrium mod-75

els qualitatively reproduce shoreline change on seasonal to interannual time scales (Miller76

& Dean, 2004; Yates, Guza, & O’Reilly, 2009; Ruggiero et al., 2010; Davidson et al., 2013;77

Ruggerio et al., 2013; Splinter et al., 2014; Ludka et al., 2015). Equilibrium models are78

often used to simulate beach response to climate change (e.g. sea level rise) because of79

their simplicity (Athanasiou et al., 2020; D’Anna et al., 2021) and lack of viable alter-80

natives. Equilibrium models and ML are both data-driven. Equilibrium models make81

sweeping assumptions that reduce the model complexity to a few (between 2 and 4) con-82

stants in a first order differential equation. ML (as used here) is relatively assumption83

free and allows unlimited model complexity.84

In Section 2, we describe about 8 years of seasonal beach elevation surveys supple-85

mented with ∼100 sub-weekly surveys spanning several months. Seasonal changes are86

reproduced relatively well with an equilibrium model, but sub-weekly observations are87

not. ML models are presented in section 3, and compared with observations and equi-88

librium in section 4. Results are discussed in Section 5.89

2 Study Site90

Sand level observations span almost 8 years (2015-2022) and 600 m at Torrey Pines91

State Beach (TP) and 500 m at north Black’s Beach (BN), separated by approximately92

2.4 km (Figures 1 and 2). Wave buoys and models are used to hindcast and forecast hourly93

waves on transects spaced 100 m, known as MOP lines (O’Reilly et al., 2016). TP con-94

tains 7 MOP lines (578-584) and BN contains 6 (MOP 550-555) (Figure 1 and 2). Dur-95

ing winter storms, the significant wave height, Hs, can reach ∼4 m at both sites (Fig-96

ure 2a,d). The spring tidal range is ∼2 m.97

2.1 Subaerial Sand Elevation98

Subaerial beach surveys before 2017 were approximately quarterly with an ATV99

mounted RTK GPS. Beginning in 2017, surveys collected with a truck mounted LiDAR100

(RIEGL VMZ-2000 laser scanner) are gridded (1 m x 1 m) after removing the swash zone,101

ground filtering, and manual noise removal. TP was usually surveyed on timescales rang-102

ing from weekly to monthly but was surveyed weekly for the entirety of 2019. BN Li-103

DAR surveys were usually quarterly with some monthly surveys (Figure 2, Matsumoto104

and Young (2022)).105

A cart mounted RTK GPS system surveyed along MOP transects from the back106

beach to a target minimum elevation of 0.774 m (NAVD88, MSL) during high frequency107

sampling (colored boxes in Figure 2), even when tides and waves were not low and the108

survey area was in the inner surf zone (Figures 3 and 4). Daily TP (578-584) surveys spanned109
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Figure 1. a) Torrey Pines (TP) and Black’s North (BN) locations and (b,c) aerial photos.

Cross-shore transects (solid red lines) are spaced 100 m alongshore. Elevation contours (legend)

show a wide terrace at BN. Steep cliffs and riprap back the narrower TP, where beach cusps ap-

pear as alongshore periodic purple mounds at the cliff base and the 2.5-3.5 m contour location.

110 days from October 11, 2021 − February 3, 2022, with approximately a one week De-110

cember gap. BN (550-555) was surveyed every other day for 180 days from February 8,111

2022 − July 21, 2022 (Figure 3).112

Free parameter values of Yates, Guza, and O’Reilly (2009), tuned at TP, are used113

here for both TP and BN. We use XMHW rather than XMSL (Yates, Guza, & O’Reilly,114

2009) because beach volume is better correlated with XMHW than XMSL (Section 2.2).115

Re-tuning model parameter values does not significantly improve model skill.116

Southern California waves are relatively energetic during winter and calm during117

summer (Figure 2a,d). Both beaches widen during summer and narrow during winter,118

in agreement with a generic equilibrium model (Yates, Guza, and O’Reilly (2009), Fig-119

ure 2b,e, blue line). During summer, both beaches are primarily sandy (median diam-120

eter 0.25 mm (Yates, Guza, O’Reilly, & Seymour, 2009)). At TP, winter erosion often121

exposes cobble, sometimes as extensive cobble berms and cusps. (Matsumoto et al., 2020).122

Shoreline responses in the stormiest year (‘15/‘16 El Niño, Figure 2, green arrows)123

differ. At TP, XMHW plateaus at about the same location every winter, regardless of124

wave conditions. Doria et al. (2016) attributes the plateau to “erosion resistant bound-125

aries,” including cliffs or rip rap and the cobble layer, which become exposed during the126

winter. In contrast, BN is backed by an erodible sand berm (Figure 4). A generic equi-127

librium lacks the complexity to include such details.128

–4–
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Figure 2. Left (Torrey Pines), right (Black’s North) time series (almost 8 years) (a,d) signif-

icant wave height, Hs, in 10 m depth, (b,e) XMHW anomaly (the cross-shore distance between

the MHW contour and the mean (averaged over time and MOP lines at each beach). Equilibrium

model (blue curve) uses constants (except for the mean shoreline location) from (Yates, Guza, &

O’Reilly, 2009). Arrows mark 2016 winter when the BN sandy back beach retreated more than

at cliff-backed TP. (c,f) slope, β, between MHW and MSL contours. Sub-weekly observations

(vertical color bars) are detailed in Figure 3.

Despite the overall similar seasonal response of beach width to the wave conditions,129

the beach slope, β, (defined between XMSL and XMHW ) response is opposite at BN and130

TP (Figure 2c,f). At TP, the summer, accreted profile has a gentle slope, whereas in BN’s131

most accreted state, a prominent, steep-faced terrace forms between 50 m and 100 m from132

the back beach during the summer and spring. As the terrace erodes, the beach face re-133

treats and the slope decreases.134

During daily sampling at TP, two events with Hs > 2.5 m caused limited beach135

narrowing, consistent with an equilibrium model (days 12 and 60, Figure 3a). Between136

wave events, the observed and modeled beach weakly accrete. As winter continues (day137

80), the spread between MOP transects at TP increases possibly owing to composite sand-138

cobble cusps and megacusps. A similar pattern of increasing alongshore complexity over139

the course of the winter is observed with the weekly truck LiDAR (Matsumoto et al.,140

2020). The slope (between XMSL and XMHW ) varied seasonally, but also with 14-day141

(spring-neap) period (Figure 3d,j) (Muñoz-Pérez & Medina, 2000; Phillips et al., 2017).142

Temporal EOF amplitudes of the observed XMHW anomaly, Mode-1 EOF reconstruc-143

tion, and equilibrium model are similar (Figure 3f,l). EOFs are discussed in Appendix144

A.145

2.2 Subaerial Volume and Proxies146

Historically, XMSL, XMHW and XMHHW have all been used as shoreline reference147

contours for beach width (Sallenger et al., 2002; Farris & List, 2007; Yates, Guza, O’Reilly,148

& Seymour, 2009; Harley et al., 2011). Here, subaerial volumes, V ol, at BN and TP are149

more highly correlated with XMHW and XMHHW than with XMSL (Figure 4c,d). XMHW150

is used below (e.g. Figure 7) XMSL is relatively unresponsive to volume changes high151

on the accreted profile. Furthermore, subaerial surveys of XMHW can be measured with152
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Figure 3. (left) TP: 7 transects surveyed daily for approximately 100 days. (right) BN: 6

transects surveyed every other day for approximately 180 days. Colors (legend) correspond to

cross-shore transect line number. Time series of (a,g) significant wave height Hs (m) in 10m

depth, (b,h) XMHW anomaly (m, distance of mean high water contour from the mean). Observa-

tions (dots) and equilibrium model (curves) are colored by transect (c,i) observed XMSL anomaly

(d,j) observed (dots) slope β between XMHW and XMSL. Tide level (grey curves) uses right axis.

β is bandpass filtered via complex demodulation at a 14-day period (black solid) to highlight

the co-variability with the tide. (e,k) Temporal EOF amplitudes (f,l) XMHW anomaly observed

transect mean (dashed line), Mode-1 EOF reconstruction (black dots), and equilibrium model

(red line).

higher shoreline water levels than XMSL. The optimal datum proxy for volume could153

be beach shape and site (including back beach settings) dependent.154

3 Machine Learning Models155

Four types of supervised learning methods (linear, support vector, decision trees,156

and ensemble regressors) are used to predict XMHW anomaly. These methods use dif-157

ferent approaches to identify relationships between input features that minimize a cost158

function and optimize the output prediction. While both linear regression and support159

vector machine regression identify linear relationships, support vector machine regres-160

sion utilizes non-linear kernel transformations to identify such relationships. Learning161

methods are implemented with the scikit-learn Python package (Pedregosa et al., 2011).162

Model predictions, ŷ, are evaluated using the coefficient of determination, r2 = 1−
∑N

i=1(yi−ŷi)
2∑N

i=1(yi−ȳi)2
,163

and root-mean-square error, RMSE(y, ŷ) =
√

1
N

∑N−1
i=0 (yi − ŷi)2 where y is the ob-164

served value, ȳ is the sample mean, and N is the number of samples.165
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a) c)

d)

b)

Figure 4. BN (a) subaerial beach elevation (NAVD88) versus distance from back beach

origin for 250 days (color bar). (b) Subaerial volume (left axis) and maximum daily tidal wa-

ter level (right axis) versus time. Colors correspond to MOP number (Figure 4a) (c) XMSL

anomaly, and (d) XMHHW anomaly versus beach volume at BN and TP. Dot colors indicate

MOP line. For each transect V ol =
∫X0

XMSL
Zdx, where Z is the beach elevation (NAVD88) and

X0=30m is the cross-shore position where sand elevation change is minimal. At both beaches r2

is higher for MHHW (TP=0.80, BN=0.95) than MSL (TP=0.45, BN=0.78). MHW (not shown)

r2 = 0.80, 0.94, almost identical to MHW.

3.1 Linear Regression166

Linear regression model (LR) predictions, ŷ, linearly combine p input features, X=xij :167

i = 1, 2, ..., N , j = 1, 2, ..., p:168

ŷi = β0 +

p∑
j=1

βjxij + ϵ, (1)

where ϵ is the error, β is the coefficient for the input xij , and β0 is the trained intercept.169

The vector β minimizes the residual sum of squares.170

3.2 Support Vector Machine Regression171

Support Vector Machine regression models (SVM)(Chang & Lin, 2022) use a sub-172

set of training data to find a hyperplane, f(x):173

f(x) = b+
∑
i

αik(x, xi), (2)

that optimizes αi by minimizing a cost function, Cϵ:174

Cϵ(y) =

{
0, if |f(x)− y| < ϵc

|f(x)− y| − ϵc, otherwise,
(3)
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while allowing an error threshold ϵc (here 0.1). The input features are transformed into175

a higher-dimensional space by a Radial Basis Function (RBF) kernel:176

k(x, xi) = e−γ||x−xi||2 , (4)

where γ is (N ∗var(X))−1, var(X) is the variance of the input features, X, and ||x−177

xi||2 is the squared distance between data points x and xi in the original feature space178

(Rahimi & Recht, 2007). The transformed data is weighted by the RBF kernel based on179

distance between the test point and the data set. Additional kernels were not tested.180

3.3 Decision Trees and Ensemble Tree Regression181

Decision trees (DTs) (Breiman et al., 2017) are non-parametric hierarchical model182

that use multiple decisions based on trained data to make predictions. The initial node183

considers the entire data set. Each subsequent split point, or node, uses a subset of data184

determined by preceding branches. Split points are determined to minimize the mean185

squared error, MSE = 1
n

∑n
i=1(yi − ŷ)2.186

Ensemble methods combine several weak estimators (e.g. DTs) to increase model187

accuracy. Gradient Boosting Regressors (GBRs) use data subsets to build regression trees188

that minimize errors in previous trees and are trained on a new data subset. Extra Trees189

Regressor uses highly randomized trees (Geurts et al., 2006) and data subsets to grow190

randomized regression trees with randomly selected split nodes. Each subsequent tree191

is fit on the negative gradient of the previous cost function. Model predictions are av-192

erages over the 100 (default) regression trees in the forest.193

3.4 Feature Selection194

Extra Tree Regression features are motivated by the equilibrium assumption that195

beach changes are driven by a disequilibrium between wave energy and bathymetry, with196

a time-lagged bathymetry response. Many potential features were explored. The selected197

six features are the preceding 12-hr average radiation stress Sxx, 30-day and 90-day wave198

energy anomaly mean and standard deviation, and previous beach width (Figure 5). Wave199

energy anomaly is wave energy minus the 2015 - 2022 mean. Observed,lagged correla-200

tions between seasonal shoreline change and time-averaged energy (Miller & Dean, 2007;201

Hansen & Barnard, 2010) are reproduced by an equilibrium model (Yates et al., 2011)202

so these features are equilibrium compatible but without the simplistic, arbitrary rules203

specifying the beach response to disequilibrium.204

Wave energy anomaly means and standard deviation with 30- and 90-day windows205

are highly correlated (Figure 5 and Figure 6, r2=0.91 between 30-day mean and 30-day206

standard deviation, and r2=0.94 for the 90-day statistics). These correlations arise be-207

cause in southern California, storminess increases both the energy anomaly mean and208

standard deviation. Summer waves have low and relatively steady energy. During model209

training, the previous beach width is the observed value from the previous survey (Fig-210

ure 5b,f black line). In prediction mode, the trained ML model is initialized with a beach211

width observation and then steps forward in time using wave time series, similar to the212

Equilibrium model (Figure 2,3).213

No single feature is essential to relatively successful ML performance, as all input214

features are highly correlated (or inversely correlated) with beach width (Figure 6). A215

subset of any four features has only a small reduction in skill (not shown). More sophis-216

ticated methods can be used to reduce feature redundancy.217
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Figure 5. Time series of (a,e) Sxx (b,f) previous (black) and current (red) XMHW anomaly

(c,g) 30-day and (d,h) 90-day mean (solid) and standard deviation (dashed) of energy anomaly.

Features (black) are used to predict current XMHW anomaly (red) during the high frequency

prediction period (magenta and orange boxes) at TP (left) and BN (right).

3.5 Machine Learning Performance218

Torrey Pines MOP 581 during high-frequency sampling (Figure 5a-d, magenta box)219

is used to compare equilibrium and several ML models. The relatively large amount of220

training data (N = 185) includes a year of approximately weekly beach surveys (2019,221

Figure 2b,c). The trained ML and equilibrium models are assessed as predictive mod-222

els (Tables 1,2). The input features include time series of wave statistics and an initial223

beach width. As a model steps forward in time, the previous beach width is updated with224

the model prediction.225

Overall, extra tree (ET) slightly out performs the other supervised learning mod-226

els with the lowest error (RMSE) and tied for the highest r2 (Table 1). The Linear Re-227

gression model has an equivalent r2, but a persistent offset increases the bias and RMSE.228

Mean absolute error statistics (not shown) are consistent with RMSE. SVM fails to cap-229

ture the extreme erosion of the initial event (not shown). ET was selected for further230

comparisons with the equilibrium model.231
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Figure 6. Correlation heat map of input features and beach width. Time series shown in Fig-

ure 5.

RMSE, m r2 Bias, m

Linear 3.3 0.63 2.5
Support Vector 2.5 0.46 0.57
Decision Tree 3.0 0.42 0.83
Extra Trees 2.3 0.63 0.85

Gradient Boosting 2.5 0.50 0.35

Table 1. Errors, r2 , and bias of supervised learning models for TP subweekly sampling.
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4 Machine Learning vs. Equilibrium Model232

The capabilities of ET and the equilibrium model are compared during two pre-233

diction periods. The first prediction is the high-frequency sampling periods at TP and234

BN (Figure 5, magenta and orange boxes, respectively). Observations from 2015 to the235

start of high frequency sampling are used for model training. The second prediction pe-236

riod spans the same four years (January 1, 2015 - December 21, 2018) at TP and BN,237

and observations from Jan 2019 - July 2022 are used for training (Figure 5). At TP the238

training data includes about one year of approximately weekly sampling.239

The equilibrium model does not capture the large (15 m) erosion from the first event240

of the ‘21/‘22 winter (day 1-3, Figure 7a) and over-predicts erosion during the winter241

2015-16 at TP (Figure 7b). These results could not be consistently improved with equi-242

librium model parameter tuning, but were improved with ML.243

a)

b)

c)

d)

Figure 7. Time series of XMHW anomaly observed (black line with dots) and modeled using

the equilibrium model (blue dashed line) and Extra Trees Regressor (ET) model (orange dot-

dash curve). (left) TP (MOP 581) and (right) BN (MOP 551). (top) sampled sub-weekly for 160

days at TP and 300 days at BN, and (bottom) roughly monthly for 2015-2018. At both beaches,

ET outperforms equilibrium for the sub-weekly observations (Table 2).

At TP, ET outperforms the equilibrium model both during the 6-9 months of sub-244

weekly sampling and the four years (2015-2018) of less frequent sampling. RMSE with245

ET is reduced by more than 70% during both periods (Figure 6, Table 2). During the246

subweekly sampling, ET more accurately predicts the erosion during wave events, par-247

ticularly during the first wave event (Figure 7a). At Tairua an equilibrium model is also248

relatively unresponsive to modest wave events that are better captured (Milke Index)249

by ML methods. However, ML had larger RMSE than equilibrium (table 3 in Gomez-250

de la Pena et al. (2023). Furthermore, Equilibrium was tuned for minimum rmse and251

ML for optimal Milke index, complicating comparisons. At TP, ML clearly outperforms252

equilibrium independent of the error metric.253

At BN, during sub-weekly sampling the ET model also out performs the equilib-254

rium model with a smaller RMSE and larger r2 (Figure 7c, Table 2). Qualitatively, both255

the ET and equilibrium models do not accrete as rapidly beginning around day 100; how-256

ever, around day 140, ET rapidly accretes, reducing the misfit. In contrast to TP, the257

–11–
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equilibrium model outperforms ML from 2015-2018, with smaller RMSE and larger r2258

(Table 2). The equilibrium model more closely predict the extreme erosion during the259

winter of ‘15-‘16, under predicted by ML by approximately 50%, presumably because260

extreme events are lacking in the training period. Qualitatively, ET and equilibrium mod-261

els correctly predict the most erosion during winter ‘15-‘16 and least erosion during win-262

ter ‘17-‘18. BN illustrates the increased importance of extensive training data to ML per-263

formance, relative to the limited training required by equilibrium models (Yates, Guza,264

& O’Reilly, 2009) and others .265

Torrey Pines Black’s North

RMSE, m r2 RMSE, m r2

ET (HF) 2.2 0.63 3.7 0.66
Equilibrium (HF) 7.9 0.22 6.4 0.55

ET (2015-2018) 3.7 0.72 7.4 0.78
Equilibrium (2015-2018) 13.9 0.62 4.9 0.88

Table 2. Error (RMSE) and r2 of ET and equilibrium models during the high-frequency HF

(sub-weekly) test period (3-6 mo, Figure 3) and the 4-year test period (2015-2018).

4.1 ML Dependence on Training266

The sensitivity of the ET model predictions to training data is assessed during the267

high-frequency sampling period at TP. Five restrictions to the training dataset are con-268

sidered: infrequent (> 30 days) surveys (Figure 8c), approximately weekly surveys for269

a limited time span (one year) (Figure 8d), only winter (Figure 8e), and only summer270

surveys (Figure 8f). Overall, ML performance is degraded when predictions are based271

on less complete training data. The full “all data” training period (Figure 8b) has the272

lowest RMSE and highest r2 (Table 3). Additionally, the “all data” training yields re-273

sults most closely resembles the bi-modal shape of the year of sub-weekly observations.274

The strong performance of a winter training dataset, which includes a winter of weekly275

data, is consistent with the winter prediction period. Using only winter training peri-276

ods, ML produces only narrow beaches (Figure 8e), and thus, a negative bias (Table 3).277

Alternatively, only summer training data results in a large positive bias, although r2 is278

only reduced by 20%

RMSE, m r2 Bias

All data 2.3 0.63 0.85
> 30 days 2.8 0.49 1.9
∼ weekly 2.4 0.59 0.74

Only Winter 2.5 0.60 -0.15
Only Summer 4.1 0.50 3.4

Table 3. ET performance when modified training dataset includes only data observed greater

than 30 days apart (row 2), only weekly data from 2019, during winter only, and during summer

only.

279

–12–



manuscript submitted to JGR: Earth Surface

Despite the limited (one year) time span, the weekly training data performs almost280

as well (similar RMSE, low bias and r2) as the full “all data” training period (Table 3),281

highlighting the importance of high frequency training data. The result that 1 year of282

training suffices may be specific to TP-like beaches that reach the same annual minimum283

beach width due to a non-erodible back beach and/or cobble layer. The more complex284

interannual variability at BN presumably requires a wider variety of wave and beach con-285

ditions for skillful model training.286

Figure 8. Torrey Pines MOP 581 during the sub-weekly prediction period. Histogram of (a)

observations and (b - f) ML predictions trained on different observation subsets. Errors are in

Table 3. Densities sum to 1.0 in each panel. ML predictions mirror the properties of the training

data.
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5 Conclusion287

Changes in Mean High Water (MHW) location are tracked at sub-weekly and weekly288

time scales (Figure 7a,c). A generic equilibrium model replicates observed seasonal vari-289

ations, but does not account for the cliff and rip rap back beach at TP and over predicts290

erosion during the 2016 El Niño (Figure 7b). An Extra Tree Regression (ET) model sig-291

nificantly outperforms the equilibrium model (Figure 7). Several (mutually) correlated292

features characterize the recent wave field (Figure 5), and recent waves are included sim-293

plistically as a 12-hr average Sxx. Future work includes developing ML estimators us-294

ing different training features, sub-weekly training data that can resolve the observed295

14-day slope variation, and new observations during extreme El Niño conditions.296

Appendix A EOF analysis297

Empirical orthogonal functions (EOF) decomposes time-space data into orthog-298

onal basis functions that most efficiently captures the total variance. EOF 1 contains about299

50 % of the total variance at TP and 93% at BN. EOF-1 is positive across the beach face300

at both sites, with a maximum x ∼ 70m at BN (Figure A1) where the terrace builds301

over the summer (Figure 4). At TP, the two largest changes in the mode-1 temporal am-302

plitude coincide with narrowing of the beach and large waves with Hs > 2 m (Figure303

3e). Mode-1 apparently excludes the 14-day tidal signal and provides a less obstructed304

view of beach evolution from the incident waves alone.305

At BN, the temporal amplitude is negative during the winter and spring, when the306

subaerial beach is eroded, and then increases during summer and fall (Figure 3k). Dur-307

ing winter, the equilibrium model and the mode-1 reconstruction show beach erosion re-308

sponse to individual storms (Figure 3l), but the model recovers less than observed.309

At TP, significant variance (20%) is contained in mode-2 (Figure A2). Unlike the310

cross-shore uniform EOF-1, EOF-2 crosses zero between the mean location of MSL and311

MHW (Figure A2a). The temporal amplitude contains the 14-day tidal signal and fluc-312

tuates with the daily max tidal water level (Figure A2b). The mode-2 reconstruction (Fig-313

ure A2c) shows that sand oscillates with 14-day period between the back and fore beach.314

During spring tide, sand moves seaward from the back to the fore beach, decreasing the315

slope. Conversely, during neap tide, sand moves from the fore to the back beach, steep-316

ening the beach.317

Figure A1. Subaerial EOF Mode-1: Spatial weight versus distance from the back beach

origin. TP (blue solid) and BN (red dashed) contain 50% and 93% of the total variance, respec-

tively. Weights are >0.
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Figure A2. TP EOF Mode-2 contains 20% of the total variance. a) Mode-2 spatial weight

versus distance from back beach origin. Spatial weight changes sign between XMSL and XMHW .

(b) Mode-2 temporal EOF amplitude (black) and daily maximum water level (blue, right axis)

versus time. (c) Mode-2 elevation reconstruction (color bar) versus cross-shore location and time.

The distance between XMHW (black) and XMSL (red) contours vary with 14 day period. (d)

beach slope β (colored dots correspond to different transects, see Figure 3 legend). Grey curve

(right axis) is hourly tidal water level.
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Machine Learning2

M. N. Siegelman1, R. A. McCarthy1, A. P. Young1, W. O’Reilly1, H.3

Matsumoto1, M. Johnson1, C. Mack1, and R. T. Guza14

1Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92037 USA5

Key Points:6

• At two beaches, weekly to quarterly elevation surveys spanning 700-800 m along-7

shore and 8 years were supplemented with ∼100 subweekly surveys spanning sev-8

eral months.9

• The Equilibrium-informed Extra Tree (ET) Regression Machine Learning model10

uses features (e.g. 30 day wave energy anomaly) inspired by equilibrium concepts11

• With sufficient training, ET outperforms a generic equilibrium model12
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Abstract13

Weekly to quarterly beach elevation surveys spanning 700-800 m alongshore and 8 years14

at two beaches were each supplemented with several months of ∼100 sub-weekly surveys.15

These beaches, which have different sediment types (sand vs. sand-cobble mix), both widen16

in summer in response to the seasonal wave climate, in agreement with a generic equi-17

librium model. Results suggest differences in backshore erodability contribute to differ-18

ing beach responses in the stormiest (El Niño) year. At both sites, the time dependence19

of the equilibrium modeled shoreline resembles the first mode of an EOF decomposition20

of the observations. With sufficient training, an equilibrium-informed Extra Tree Regres-21

sion model, that includes features motivated by equilibrium modelling, can significantly22

outperform a generic equilibrium model.23

Plain Language Summary24

Beach elevation surveys are compared at two beaches in San Diego County. Both25

beaches narrow during winter as large wave events transport sand offshore and widen26

during summer as gentle waves move sand onshore. The seasonality of such beaches has27

been characterized by simple models that primarily rely on wave energy relative to an28

average state to predict beach width changes, known as equilibrium models. Here, we29

highlight some of the limitations of equilibrium models, such as a tendency to over pre-30

dict winter erosion at a beach backed by non-erodible infrastructure. We demonstrate31

that machine learning models, when trained with sufficient observations, can predict beach32

width changes more accurately than equilibrium models.33

1 Introduction34

Forecasting wave runup and overtopping depends on reliable estimates of future35

waves and nearshore bathymetry. Wave model forecasts are increasingly accurate on time36

scales ranging from several days to seasons. However, changes in beach bathymetry (e.g.37

shoreline location and beach slope) are understood poorly. Many authors emphasize the38

feedback between runup and evolving bathymetry, and the relative lack of comprehen-39

sive (in space and time) bathymetry observations for model validation (e.g. Straub et40

al. (2020); Henderson et al. (2022) and many others).41

Using standardized calibration and test periods, Montaño et al. (2020) compared42

the performance of 12 “Equilibrium” and 7 ML models with designated calibration and43

testing periods at Tairua Beach in New Zealand. As a comparison baseline for errors,44

the data were detrended with no further adjustment. RMSE (root-mean-square-error)45

was never reduced by more than 20% from the baseline RMSE ≈ 5.3 m, and in most46

cases the error reduction was < 10% (Figure 3 in Montaño et al. (2020)). Overall, Equi-47

librium and ML models preformed similarly with low skill. Blossier et al. (2017) report48

shoreline location errors at Tairua between +3.50 m and −4 m, suggesting that noise could49

have limited model skill. More recently, Gomez-de la Pena et al. (2023) compared Tairua50

observations with model results using complex neural network (CNN), hybrid CNN-LSTM,51

and equilibrium models. LSTMs extract sequential information and long-term tempo-52

ral dependencies. Shoreline evolution is strongly seasonal, so the hybrid Gomez-de la Pena53

et al. (2023) model would be expected to outperform the memory-lacking CNN; how-54

ever, CNN and hybrid models yielded similar RMSE. Gomez-de la Pena et al. (2023) re-55

view some of rapidly expanding applications of ML to shoreline change.56

Process-based models, such as XBeach, Cshore, SBeach, and COAWST, often show57

skill in simulating erosion from individual storms when tuned with site-specific obser-58

vations, but optimal parameter values can vary (unpredictably) in space and time (Kalligeris59

et al., 2020). Recovery is not reliably modeled, errors accumulate in long-term simula-60

tions, and process-based models have not been successfully used for years-long simula-61
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tions. Storm erosion is more accurately simulated with a neural network than with SBeach62

or XBeach (Simmons & Splinter, 2022).63

Equilibrium beach models, noteworthy for their numerical simplicity and relatively64

few free parameters, quantify the hypotheses (Wright et al., 1985; Miller & Dean, 2004)65

that for a constant wave field there is an equilibrium beach morphology (the equilibrium66

beach) that would remain constant in time, neither eroding nor accreting. A beach in67

disequilibrium with ambient waves changes towards the equilibrium shape at a rate pro-68

portional to the disequilibrium: dXMHW

dt = C±E1/2∆E, where E is wave energy, and69

C± are change rate coefficients. The energy disequilibrium, ∆E, is the difference between70

the wave energy and an equilibrium energy, Eeq(XMHW ) = aXMHW+b, where a and71

b are fit to observations. The functional forms for dXMHW

dt and Eeq(XMHW ) are some-72

what arbitrary and many variants of these forms have similar skill (Yates, Guza, & O’Reilly,73

2009; Davidson et al., 2013).74

When calibrated with observed waves and shoreline locations, equilibrium mod-75

els qualitatively reproduce shoreline change on seasonal to interannual time scales (Miller76

& Dean, 2004; Yates, Guza, & O’Reilly, 2009; Ruggiero et al., 2010; Davidson et al., 2013;77

Ruggerio et al., 2013; Splinter et al., 2014; Ludka et al., 2015). Equilibrium models are78

often used to simulate beach response to climate change (e.g. sea level rise) because of79

their simplicity (Athanasiou et al., 2020; D’Anna et al., 2021) and lack of viable alter-80

natives. Equilibrium models and ML are both data-driven. Equilibrium models make81

sweeping assumptions that reduce the model complexity to a few (between 2 and 4) con-82

stants in a first order differential equation. ML (as used here) is relatively assumption83

free and allows unlimited model complexity.84

In Section 2, we describe about 8 years of seasonal beach elevation surveys supple-85

mented with ∼100 sub-weekly surveys spanning several months. Seasonal changes are86

reproduced relatively well with an equilibrium model, but sub-weekly observations are87

not. ML models are presented in section 3, and compared with observations and equi-88

librium in section 4. Results are discussed in Section 5.89

2 Study Site90

Sand level observations span almost 8 years (2015-2022) and 600 m at Torrey Pines91

State Beach (TP) and 500 m at north Black’s Beach (BN), separated by approximately92

2.4 km (Figures 1 and 2). Wave buoys and models are used to hindcast and forecast hourly93

waves on transects spaced 100 m, known as MOP lines (O’Reilly et al., 2016). TP con-94

tains 7 MOP lines (578-584) and BN contains 6 (MOP 550-555) (Figure 1 and 2). Dur-95

ing winter storms, the significant wave height, Hs, can reach ∼4 m at both sites (Fig-96

ure 2a,d). The spring tidal range is ∼2 m.97

2.1 Subaerial Sand Elevation98

Subaerial beach surveys before 2017 were approximately quarterly with an ATV99

mounted RTK GPS. Beginning in 2017, surveys collected with a truck mounted LiDAR100

(RIEGL VMZ-2000 laser scanner) are gridded (1 m x 1 m) after removing the swash zone,101

ground filtering, and manual noise removal. TP was usually surveyed on timescales rang-102

ing from weekly to monthly but was surveyed weekly for the entirety of 2019. BN Li-103

DAR surveys were usually quarterly with some monthly surveys (Figure 2, Matsumoto104

and Young (2022)).105

A cart mounted RTK GPS system surveyed along MOP transects from the back106

beach to a target minimum elevation of 0.774 m (NAVD88, MSL) during high frequency107

sampling (colored boxes in Figure 2), even when tides and waves were not low and the108

survey area was in the inner surf zone (Figures 3 and 4). Daily TP (578-584) surveys spanned109
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Figure 1. a) Torrey Pines (TP) and Black’s North (BN) locations and (b,c) aerial photos.

Cross-shore transects (solid red lines) are spaced 100 m alongshore. Elevation contours (legend)

show a wide terrace at BN. Steep cliffs and riprap back the narrower TP, where beach cusps ap-

pear as alongshore periodic purple mounds at the cliff base and the 2.5-3.5 m contour location.

110 days from October 11, 2021 − February 3, 2022, with approximately a one week De-110

cember gap. BN (550-555) was surveyed every other day for 180 days from February 8,111

2022 − July 21, 2022 (Figure 3).112

Free parameter values of Yates, Guza, and O’Reilly (2009), tuned at TP, are used113

here for both TP and BN. We use XMHW rather than XMSL (Yates, Guza, & O’Reilly,114

2009) because beach volume is better correlated with XMHW than XMSL (Section 2.2).115

Re-tuning model parameter values does not significantly improve model skill.116

Southern California waves are relatively energetic during winter and calm during117

summer (Figure 2a,d). Both beaches widen during summer and narrow during winter,118

in agreement with a generic equilibrium model (Yates, Guza, and O’Reilly (2009), Fig-119

ure 2b,e, blue line). During summer, both beaches are primarily sandy (median diam-120

eter 0.25 mm (Yates, Guza, O’Reilly, & Seymour, 2009)). At TP, winter erosion often121

exposes cobble, sometimes as extensive cobble berms and cusps. (Matsumoto et al., 2020).122

Shoreline responses in the stormiest year (‘15/‘16 El Niño, Figure 2, green arrows)123

differ. At TP, XMHW plateaus at about the same location every winter, regardless of124

wave conditions. Doria et al. (2016) attributes the plateau to “erosion resistant bound-125

aries,” including cliffs or rip rap and the cobble layer, which become exposed during the126

winter. In contrast, BN is backed by an erodible sand berm (Figure 4). A generic equi-127

librium lacks the complexity to include such details.128
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Figure 2. Left (Torrey Pines), right (Black’s North) time series (almost 8 years) (a,d) signif-

icant wave height, Hs, in 10 m depth, (b,e) XMHW anomaly (the cross-shore distance between

the MHW contour and the mean (averaged over time and MOP lines at each beach). Equilibrium

model (blue curve) uses constants (except for the mean shoreline location) from (Yates, Guza, &

O’Reilly, 2009). Arrows mark 2016 winter when the BN sandy back beach retreated more than

at cliff-backed TP. (c,f) slope, β, between MHW and MSL contours. Sub-weekly observations

(vertical color bars) are detailed in Figure 3.

Despite the overall similar seasonal response of beach width to the wave conditions,129

the beach slope, β, (defined between XMSL and XMHW ) response is opposite at BN and130

TP (Figure 2c,f). At TP, the summer, accreted profile has a gentle slope, whereas in BN’s131

most accreted state, a prominent, steep-faced terrace forms between 50 m and 100 m from132

the back beach during the summer and spring. As the terrace erodes, the beach face re-133

treats and the slope decreases.134

During daily sampling at TP, two events with Hs > 2.5 m caused limited beach135

narrowing, consistent with an equilibrium model (days 12 and 60, Figure 3a). Between136

wave events, the observed and modeled beach weakly accrete. As winter continues (day137

80), the spread between MOP transects at TP increases possibly owing to composite sand-138

cobble cusps and megacusps. A similar pattern of increasing alongshore complexity over139

the course of the winter is observed with the weekly truck LiDAR (Matsumoto et al.,140

2020). The slope (between XMSL and XMHW ) varied seasonally, but also with 14-day141

(spring-neap) period (Figure 3d,j) (Muñoz-Pérez & Medina, 2000; Phillips et al., 2017).142

Temporal EOF amplitudes of the observed XMHW anomaly, Mode-1 EOF reconstruc-143

tion, and equilibrium model are similar (Figure 3f,l). EOFs are discussed in Appendix144

A.145

2.2 Subaerial Volume and Proxies146

Historically, XMSL, XMHW and XMHHW have all been used as shoreline reference147

contours for beach width (Sallenger et al., 2002; Farris & List, 2007; Yates, Guza, O’Reilly,148

& Seymour, 2009; Harley et al., 2011). Here, subaerial volumes, V ol, at BN and TP are149

more highly correlated with XMHW and XMHHW than with XMSL (Figure 4c,d). XMHW150

is used below (e.g. Figure 7) XMSL is relatively unresponsive to volume changes high151

on the accreted profile. Furthermore, subaerial surveys of XMHW can be measured with152
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Figure 3. (left) TP: 7 transects surveyed daily for approximately 100 days. (right) BN: 6

transects surveyed every other day for approximately 180 days. Colors (legend) correspond to

cross-shore transect line number. Time series of (a,g) significant wave height Hs (m) in 10m

depth, (b,h) XMHW anomaly (m, distance of mean high water contour from the mean). Observa-

tions (dots) and equilibrium model (curves) are colored by transect (c,i) observed XMSL anomaly

(d,j) observed (dots) slope β between XMHW and XMSL. Tide level (grey curves) uses right axis.

β is bandpass filtered via complex demodulation at a 14-day period (black solid) to highlight

the co-variability with the tide. (e,k) Temporal EOF amplitudes (f,l) XMHW anomaly observed

transect mean (dashed line), Mode-1 EOF reconstruction (black dots), and equilibrium model

(red line).

higher shoreline water levels than XMSL. The optimal datum proxy for volume could153

be beach shape and site (including back beach settings) dependent.154

3 Machine Learning Models155

Four types of supervised learning methods (linear, support vector, decision trees,156

and ensemble regressors) are used to predict XMHW anomaly. These methods use dif-157

ferent approaches to identify relationships between input features that minimize a cost158

function and optimize the output prediction. While both linear regression and support159

vector machine regression identify linear relationships, support vector machine regres-160

sion utilizes non-linear kernel transformations to identify such relationships. Learning161

methods are implemented with the scikit-learn Python package (Pedregosa et al., 2011).162

Model predictions, ŷ, are evaluated using the coefficient of determination, r2 = 1−
∑N

i=1(yi−ŷi)
2∑N

i=1(yi−ȳi)2
,163

and root-mean-square error, RMSE(y, ŷ) =
√

1
N

∑N−1
i=0 (yi − ŷi)2 where y is the ob-164

served value, ȳ is the sample mean, and N is the number of samples.165
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a) c)

d)

b)

Figure 4. BN (a) subaerial beach elevation (NAVD88) versus distance from back beach

origin for 250 days (color bar). (b) Subaerial volume (left axis) and maximum daily tidal wa-

ter level (right axis) versus time. Colors correspond to MOP number (Figure 4a) (c) XMSL

anomaly, and (d) XMHHW anomaly versus beach volume at BN and TP. Dot colors indicate

MOP line. For each transect V ol =
∫X0

XMSL
Zdx, where Z is the beach elevation (NAVD88) and

X0=30m is the cross-shore position where sand elevation change is minimal. At both beaches r2

is higher for MHHW (TP=0.80, BN=0.95) than MSL (TP=0.45, BN=0.78). MHW (not shown)

r2 = 0.80, 0.94, almost identical to MHW.

3.1 Linear Regression166

Linear regression model (LR) predictions, ŷ, linearly combine p input features, X=xij :167

i = 1, 2, ..., N , j = 1, 2, ..., p:168

ŷi = β0 +

p∑
j=1

βjxij + ϵ, (1)

where ϵ is the error, β is the coefficient for the input xij , and β0 is the trained intercept.169

The vector β minimizes the residual sum of squares.170

3.2 Support Vector Machine Regression171

Support Vector Machine regression models (SVM)(Chang & Lin, 2022) use a sub-172

set of training data to find a hyperplane, f(x):173

f(x) = b+
∑
i

αik(x, xi), (2)

that optimizes αi by minimizing a cost function, Cϵ:174

Cϵ(y) =

{
0, if |f(x)− y| < ϵc

|f(x)− y| − ϵc, otherwise,
(3)
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while allowing an error threshold ϵc (here 0.1). The input features are transformed into175

a higher-dimensional space by a Radial Basis Function (RBF) kernel:176

k(x, xi) = e−γ||x−xi||2 , (4)

where γ is (N ∗var(X))−1, var(X) is the variance of the input features, X, and ||x−177

xi||2 is the squared distance between data points x and xi in the original feature space178

(Rahimi & Recht, 2007). The transformed data is weighted by the RBF kernel based on179

distance between the test point and the data set. Additional kernels were not tested.180

3.3 Decision Trees and Ensemble Tree Regression181

Decision trees (DTs) (Breiman et al., 2017) are non-parametric hierarchical model182

that use multiple decisions based on trained data to make predictions. The initial node183

considers the entire data set. Each subsequent split point, or node, uses a subset of data184

determined by preceding branches. Split points are determined to minimize the mean185

squared error, MSE = 1
n

∑n
i=1(yi − ŷ)2.186

Ensemble methods combine several weak estimators (e.g. DTs) to increase model187

accuracy. Gradient Boosting Regressors (GBRs) use data subsets to build regression trees188

that minimize errors in previous trees and are trained on a new data subset. Extra Trees189

Regressor uses highly randomized trees (Geurts et al., 2006) and data subsets to grow190

randomized regression trees with randomly selected split nodes. Each subsequent tree191

is fit on the negative gradient of the previous cost function. Model predictions are av-192

erages over the 100 (default) regression trees in the forest.193

3.4 Feature Selection194

Extra Tree Regression features are motivated by the equilibrium assumption that195

beach changes are driven by a disequilibrium between wave energy and bathymetry, with196

a time-lagged bathymetry response. Many potential features were explored. The selected197

six features are the preceding 12-hr average radiation stress Sxx, 30-day and 90-day wave198

energy anomaly mean and standard deviation, and previous beach width (Figure 5). Wave199

energy anomaly is wave energy minus the 2015 - 2022 mean. Observed,lagged correla-200

tions between seasonal shoreline change and time-averaged energy (Miller & Dean, 2007;201

Hansen & Barnard, 2010) are reproduced by an equilibrium model (Yates et al., 2011)202

so these features are equilibrium compatible but without the simplistic, arbitrary rules203

specifying the beach response to disequilibrium.204

Wave energy anomaly means and standard deviation with 30- and 90-day windows205

are highly correlated (Figure 5 and Figure 6, r2=0.91 between 30-day mean and 30-day206

standard deviation, and r2=0.94 for the 90-day statistics). These correlations arise be-207

cause in southern California, storminess increases both the energy anomaly mean and208

standard deviation. Summer waves have low and relatively steady energy. During model209

training, the previous beach width is the observed value from the previous survey (Fig-210

ure 5b,f black line). In prediction mode, the trained ML model is initialized with a beach211

width observation and then steps forward in time using wave time series, similar to the212

Equilibrium model (Figure 2,3).213

No single feature is essential to relatively successful ML performance, as all input214

features are highly correlated (or inversely correlated) with beach width (Figure 6). A215

subset of any four features has only a small reduction in skill (not shown). More sophis-216

ticated methods can be used to reduce feature redundancy.217
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Figure 5. Time series of (a,e) Sxx (b,f) previous (black) and current (red) XMHW anomaly

(c,g) 30-day and (d,h) 90-day mean (solid) and standard deviation (dashed) of energy anomaly.

Features (black) are used to predict current XMHW anomaly (red) during the high frequency

prediction period (magenta and orange boxes) at TP (left) and BN (right).

3.5 Machine Learning Performance218

Torrey Pines MOP 581 during high-frequency sampling (Figure 5a-d, magenta box)219

is used to compare equilibrium and several ML models. The relatively large amount of220

training data (N = 185) includes a year of approximately weekly beach surveys (2019,221

Figure 2b,c). The trained ML and equilibrium models are assessed as predictive mod-222

els (Tables 1,2). The input features include time series of wave statistics and an initial223

beach width. As a model steps forward in time, the previous beach width is updated with224

the model prediction.225

Overall, extra tree (ET) slightly out performs the other supervised learning mod-226

els with the lowest error (RMSE) and tied for the highest r2 (Table 1). The Linear Re-227

gression model has an equivalent r2, but a persistent offset increases the bias and RMSE.228

Mean absolute error statistics (not shown) are consistent with RMSE. SVM fails to cap-229

ture the extreme erosion of the initial event (not shown). ET was selected for further230

comparisons with the equilibrium model.231
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Figure 6. Correlation heat map of input features and beach width. Time series shown in Fig-

ure 5.

RMSE, m r2 Bias, m

Linear 3.3 0.63 2.5
Support Vector 2.5 0.46 0.57
Decision Tree 3.0 0.42 0.83
Extra Trees 2.3 0.63 0.85

Gradient Boosting 2.5 0.50 0.35

Table 1. Errors, r2 , and bias of supervised learning models for TP subweekly sampling.
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4 Machine Learning vs. Equilibrium Model232

The capabilities of ET and the equilibrium model are compared during two pre-233

diction periods. The first prediction is the high-frequency sampling periods at TP and234

BN (Figure 5, magenta and orange boxes, respectively). Observations from 2015 to the235

start of high frequency sampling are used for model training. The second prediction pe-236

riod spans the same four years (January 1, 2015 - December 21, 2018) at TP and BN,237

and observations from Jan 2019 - July 2022 are used for training (Figure 5). At TP the238

training data includes about one year of approximately weekly sampling.239

The equilibrium model does not capture the large (15 m) erosion from the first event240

of the ‘21/‘22 winter (day 1-3, Figure 7a) and over-predicts erosion during the winter241

2015-16 at TP (Figure 7b). These results could not be consistently improved with equi-242

librium model parameter tuning, but were improved with ML.243

a)

b)

c)

d)

Figure 7. Time series of XMHW anomaly observed (black line with dots) and modeled using

the equilibrium model (blue dashed line) and Extra Trees Regressor (ET) model (orange dot-

dash curve). (left) TP (MOP 581) and (right) BN (MOP 551). (top) sampled sub-weekly for 160

days at TP and 300 days at BN, and (bottom) roughly monthly for 2015-2018. At both beaches,

ET outperforms equilibrium for the sub-weekly observations (Table 2).

At TP, ET outperforms the equilibrium model both during the 6-9 months of sub-244

weekly sampling and the four years (2015-2018) of less frequent sampling. RMSE with245

ET is reduced by more than 70% during both periods (Figure 6, Table 2). During the246

subweekly sampling, ET more accurately predicts the erosion during wave events, par-247

ticularly during the first wave event (Figure 7a). At Tairua an equilibrium model is also248

relatively unresponsive to modest wave events that are better captured (Milke Index)249

by ML methods. However, ML had larger RMSE than equilibrium (table 3 in Gomez-250

de la Pena et al. (2023). Furthermore, Equilibrium was tuned for minimum rmse and251

ML for optimal Milke index, complicating comparisons. At TP, ML clearly outperforms252

equilibrium independent of the error metric.253

At BN, during sub-weekly sampling the ET model also out performs the equilib-254

rium model with a smaller RMSE and larger r2 (Figure 7c, Table 2). Qualitatively, both255

the ET and equilibrium models do not accrete as rapidly beginning around day 100; how-256

ever, around day 140, ET rapidly accretes, reducing the misfit. In contrast to TP, the257
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equilibrium model outperforms ML from 2015-2018, with smaller RMSE and larger r2258

(Table 2). The equilibrium model more closely predict the extreme erosion during the259

winter of ‘15-‘16, under predicted by ML by approximately 50%, presumably because260

extreme events are lacking in the training period. Qualitatively, ET and equilibrium mod-261

els correctly predict the most erosion during winter ‘15-‘16 and least erosion during win-262

ter ‘17-‘18. BN illustrates the increased importance of extensive training data to ML per-263

formance, relative to the limited training required by equilibrium models (Yates, Guza,264

& O’Reilly, 2009) and others .265

Torrey Pines Black’s North

RMSE, m r2 RMSE, m r2

ET (HF) 2.2 0.63 3.7 0.66
Equilibrium (HF) 7.9 0.22 6.4 0.55

ET (2015-2018) 3.7 0.72 7.4 0.78
Equilibrium (2015-2018) 13.9 0.62 4.9 0.88

Table 2. Error (RMSE) and r2 of ET and equilibrium models during the high-frequency HF

(sub-weekly) test period (3-6 mo, Figure 3) and the 4-year test period (2015-2018).

4.1 ML Dependence on Training266

The sensitivity of the ET model predictions to training data is assessed during the267

high-frequency sampling period at TP. Five restrictions to the training dataset are con-268

sidered: infrequent (> 30 days) surveys (Figure 8c), approximately weekly surveys for269

a limited time span (one year) (Figure 8d), only winter (Figure 8e), and only summer270

surveys (Figure 8f). Overall, ML performance is degraded when predictions are based271

on less complete training data. The full “all data” training period (Figure 8b) has the272

lowest RMSE and highest r2 (Table 3). Additionally, the “all data” training yields re-273

sults most closely resembles the bi-modal shape of the year of sub-weekly observations.274

The strong performance of a winter training dataset, which includes a winter of weekly275

data, is consistent with the winter prediction period. Using only winter training peri-276

ods, ML produces only narrow beaches (Figure 8e), and thus, a negative bias (Table 3).277

Alternatively, only summer training data results in a large positive bias, although r2 is278

only reduced by 20%

RMSE, m r2 Bias

All data 2.3 0.63 0.85
> 30 days 2.8 0.49 1.9
∼ weekly 2.4 0.59 0.74

Only Winter 2.5 0.60 -0.15
Only Summer 4.1 0.50 3.4

Table 3. ET performance when modified training dataset includes only data observed greater

than 30 days apart (row 2), only weekly data from 2019, during winter only, and during summer

only.

279
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Despite the limited (one year) time span, the weekly training data performs almost280

as well (similar RMSE, low bias and r2) as the full “all data” training period (Table 3),281

highlighting the importance of high frequency training data. The result that 1 year of282

training suffices may be specific to TP-like beaches that reach the same annual minimum283

beach width due to a non-erodible back beach and/or cobble layer. The more complex284

interannual variability at BN presumably requires a wider variety of wave and beach con-285

ditions for skillful model training.286

Figure 8. Torrey Pines MOP 581 during the sub-weekly prediction period. Histogram of (a)

observations and (b - f) ML predictions trained on different observation subsets. Errors are in

Table 3. Densities sum to 1.0 in each panel. ML predictions mirror the properties of the training

data.
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5 Conclusion287

Changes in Mean High Water (MHW) location are tracked at sub-weekly and weekly288

time scales (Figure 7a,c). A generic equilibrium model replicates observed seasonal vari-289

ations, but does not account for the cliff and rip rap back beach at TP and over predicts290

erosion during the 2016 El Niño (Figure 7b). An Extra Tree Regression (ET) model sig-291

nificantly outperforms the equilibrium model (Figure 7). Several (mutually) correlated292

features characterize the recent wave field (Figure 5), and recent waves are included sim-293

plistically as a 12-hr average Sxx. Future work includes developing ML estimators us-294

ing different training features, sub-weekly training data that can resolve the observed295

14-day slope variation, and new observations during extreme El Niño conditions.296

Appendix A EOF analysis297

Empirical orthogonal functions (EOF) decomposes time-space data into orthog-298

onal basis functions that most efficiently captures the total variance. EOF 1 contains about299

50 % of the total variance at TP and 93% at BN. EOF-1 is positive across the beach face300

at both sites, with a maximum x ∼ 70m at BN (Figure A1) where the terrace builds301

over the summer (Figure 4). At TP, the two largest changes in the mode-1 temporal am-302

plitude coincide with narrowing of the beach and large waves with Hs > 2 m (Figure303

3e). Mode-1 apparently excludes the 14-day tidal signal and provides a less obstructed304

view of beach evolution from the incident waves alone.305

At BN, the temporal amplitude is negative during the winter and spring, when the306

subaerial beach is eroded, and then increases during summer and fall (Figure 3k). Dur-307

ing winter, the equilibrium model and the mode-1 reconstruction show beach erosion re-308

sponse to individual storms (Figure 3l), but the model recovers less than observed.309

At TP, significant variance (20%) is contained in mode-2 (Figure A2). Unlike the310

cross-shore uniform EOF-1, EOF-2 crosses zero between the mean location of MSL and311

MHW (Figure A2a). The temporal amplitude contains the 14-day tidal signal and fluc-312

tuates with the daily max tidal water level (Figure A2b). The mode-2 reconstruction (Fig-313

ure A2c) shows that sand oscillates with 14-day period between the back and fore beach.314

During spring tide, sand moves seaward from the back to the fore beach, decreasing the315

slope. Conversely, during neap tide, sand moves from the fore to the back beach, steep-316

ening the beach.317

Figure A1. Subaerial EOF Mode-1: Spatial weight versus distance from the back beach

origin. TP (blue solid) and BN (red dashed) contain 50% and 93% of the total variance, respec-

tively. Weights are >0.
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Figure A2. TP EOF Mode-2 contains 20% of the total variance. a) Mode-2 spatial weight

versus distance from back beach origin. Spatial weight changes sign between XMSL and XMHW .

(b) Mode-2 temporal EOF amplitude (black) and daily maximum water level (blue, right axis)

versus time. (c) Mode-2 elevation reconstruction (color bar) versus cross-shore location and time.

The distance between XMHW (black) and XMSL (red) contours vary with 14 day period. (d)

beach slope β (colored dots correspond to different transects, see Figure 3 legend). Grey curve

(right axis) is hourly tidal water level.
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