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Abstract

At mesoscale, trade wind clouds organize with various spatial arrangements, shaping their effect on Earth’s energy budget.

Representing their fine-scale dynamics even at 1 km scale climate simulations remains challenging. However, geostationary

satellites (GS) offer high-resolution cloud observation for gaining insights into trade wind cumuli from long-term records. To

capture the observed organizational variability, this work proposes an integrated framework using a continuous followed by

discrete self-supervised deep learning approach, which exploits cloud optical depth from GS measurements. We aim to simplify

the entire mesoscale cloud spectrum by reducing the image complexity in the feature space and meaningfully partitioning it

into seven classes whose connection to environmental conditions is illustrated with reanalysis data. Our framework facilitates

comparing human-labeled mesoscale classes with machine-identified ones, addressing uncertainties in both methods. We

highlight the potential to explore transitions between regimes, a challenge for physical simulations, and illustrate a case study

of sugar-to-flower transitions.
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Key Points:7

• Mesoscale cloud organization can be taxonomized by a two-step deep learning ap-8

proach in the feature space continuum9
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Abstract14

At mesoscale, trade wind clouds organize with various spatial arrangements, shap-15

ing their effect on Earth’s energy budget. Representing their fine-scale dynamics even16

at 1 km scale climate simulations remains challenging. However, geostationary satellites17

(GS) offer high-resolution cloud observation for gaining insights into trade wind cumuli18

from long-term records. To capture the observed organizational variability, this work pro-19

poses an integrated framework using a continuous followed by discrete self-supervised20

deep learning approach, which exploits cloud optical depth from GS measurements. We21

aim to simplify the entire mesoscale cloud spectrum by reducing the image complexity22

in the feature space and meaningfully partitioning it into seven classes whose connec-23

tion to environmental conditions is illustrated with reanalysis data. Our framework fa-24

cilitates comparing human-labeled mesoscale classes with machine-identified ones, ad-25

dressing uncertainties in both methods. We highlight the potential to explore transitions26

between regimes, a challenge for physical simulations, and illustrate a case study of sugar-27

to-flower transitions.28

Plain Language Summary29

Clouds are a fundamental player affecting our planet’s energy balance, making their30

accurate representation crucial in climate models. One open question is how they orga-31

nize on a scale of a few 100 km (mesoscale) in the tropical northern Atlantic region east32

of Barbados. Satellite observations can help to categorize these clouds, but previous meth-33

ods had limitations in capturing the full range of cloud arrangements and transitions be-34

tween different cloud forms. We have introduced a novel approach that utilizes machine35

learning and geostationary satellite data to address this issue. Our machine learning model36

autonomously learns to recognize various cloud patterns and distributions. We conducted37

a comparative analysis between the categories generated by the machine and those iden-38

tified by human experts to understand the strengths and weaknesses of both methods.39

Additionally, we explore a case study where clouds undergo a transformation, changing40

from a structure resembling sugar to one resembling flowers. This particular transfor-41

mation was found difficult to capture with physical simulation before. The clear signa-42

tures of the transition identified by our machine learning approach can help to better43

understand cloud evolution, which is crucial for improving climate models and predict-44

ing how cloud behavior may change in a changing climate.45

1 Introduction46

Shallow convective clouds, though individually small (measuring in tens of meters),47

cover large areas of the tropical oceans, forming distinct cloud fields that span hundreds48

of km. They are vital in regulating the Earth’s energy balance, exerting a net cooling49

effect by reflecting more sunlight than retaining outgoing long-wave radiation (Bony et50

al., 2004). However, the representation of these clouds, even in the advanced 1km scale51

climate simulations, is insufficient (Schneider et al., 2019). This contributes to a signif-52

icant inter-model spread in predicted cloud feedback and climate sensitivity (Bony & Dufresne,53

2005; Nuijens & Siebesma, 2019). To address this challenge, Bony et al. (2017) proposed54

the EUREC4A field campaign, organized in January-February 2020, around the Barba-55

dos region of the North Atlantic Trades (NAT) (Stevens et al., 2021). This initiative aimed56

to enhance our understanding of shallow cloud dynamics by leveraging a diverse set of57

observations and thus possibly improving their representation in numerical models.58

During the preparation of the campaign Stevens et al. (2020) identified four shal-59

low convective organization regimes (Sugar, Gravel, Flower, Fish) (SGFF), with frequent60

occurrence on meso-β (20 to 200 km) and meso-α (200 to 2,000 km) spatial scale. These61

regimes exhibit differences in net cloud radiative feedback (Bony et al., 2020) and are62
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related to different environmental conditions (Schulz et al., 2021). Of specific interest63

are transitions between different organizations, e.g., from sugar to flower, which has been64

studied in Large-Eddy-Simulation (LES) to understand the governing processes and prove65

to be difficult (Narenpitak et al., 2021; Dauhut et al., 2023).66

Yet, imposing four distinct classes on the diversity of the observed organization does67

not cover the intermediate cloud patterns or transient states, as highlighted by LES stud-68

ies. Hence, some processes critical for climate feedback may be ignored or neglected. Fur-69

thermore, recent studies trying to quantify these labeled well-organized systems find that70

they occur only around 50% over NAT (Janssens et al., 2021; Schulz et al., 2021; Vial71

et al., 2021) and some ambiguities in agreement from the labeler’s side exist (Schulz, 2022).72

Denby (2020) and Janssens et al. (2021) argue for a continuum of cloud organiza-73

tion where Denby (2020) employs an unsupervised neural network for grouping similar74

cloud structures and demonstrate its effectiveness via hierarchical clustering (HC) and75

associated radiative properties. However, their training approach involved biased, false76

negative sampling (Huynh et al., 2022). Further, employing high-dimensional features77

in HC has performance and scalability issues (Du, 2023; Gilpin et al., 2013). Janssens78

et al. (2021) assumes a linear combination of traditional cloud metrics for describing the79

cloud systems. Utilizing these metric scores and a k-means algorithm, they attempted80

to partition their metric space into seven arbitrary clusters, as finding the optimal clus-81

ters seemed non-trivial.82

The overarching goal of our study is to develop a simplified approach to describe83

cloud organization from high-resolution images. In this way, it should open up new path-84

ways to exploit the information content of existing comprehensive satellite data records.85

Our first objective is to develop a simplified, streamlined representation that captures86

the entire cloud spectrum’s organizational relationships, which we call a continuum. Sec-87

ond, we target the four somewhat arbitrary classes from Stevens et al. (2020) and delve88

deeper into finding the optimal partitions of a meaningful and interpretable continuum.89

We approach our objectives by developing a two-step self-supervised deep learning ap-90

proach (Section 3) applied on GOES – 16 E cloud optical depth (COD) images (Section91

2). Section 4.1 delves deeper into the representations and their characteristics, highlight-92

ing the differences to Denby (2023)’s approach. Our work demonstrates that the pres-93

ence of derived partitions facilitates a comparison of human labels with these partitions94

(Section 4.2). Finally, in Section 5, we illustrate how the partitioning of the continuum95

supported by environmental data allows us to monitor when a particular cloud system96

transitions to another.97

2 Satellite dataset98

We use COD retrieved from GOES-16 E Advanced Baseline Imager (Schmit et al.,99

2005) using the daytime cloud optical and microphysical properties algorithm (DCOMP)100

(Walther & Heidinger, 2012) at 2 km horizontal resolution and 10 – 15 minutes tempo-101

ral resolution. Our domain in NAT (5 - 20◦ N and 40 – 60◦ W) is similar to domains used102

in past studies (Bony et al., 2020; Schulz et al., 2021). The regional climate defines De-103

cember to May as dry and June to November as wet seasons (Stevens et al., 2016). We104

consider November to April 2017 - 2021 as our study period. November is added to the105

typical dry period because we want to see how stronger convective events influence our106

approach.107

We chose COD because it is closely related to the cloud radiative effect and mit-108

igates solar and surface influences. The uncertainty associated with COD retrieval re-109

mains below 10% for all ranges in water clouds (see Figure 4 in Walther and Heidinger110

(2012)). Note that some fine-scale cloud systems, such as sugar and gravel (meso-β scale),111

their individual cloud cells might not be fully resolved with the spatial resolution of this112
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product. However, since our study focuses on the organizational aspects of shallow con-113

vection clouds (spanning hundreds of km), we expect the resolution limit to have a lim-114

ited impact on our study.115

Representation learning, also known as feature learning, is a specialized field within116

machine learning that focuses on extracting meaningful features of a given dataset. To117

better represent the mesoscale cloud distributions, we use six images per timestamp, in-118

cluding an additional fixed image over the Barbados domain (see S1). Although they might119

overlap in some instances, random cropping aims to get mesoscale distributions as di-120

verse as possible without human interference. Note that the Barbados domain enables121

comparison with ground-based measurements in future studies. To have an adequate spa-122

tial scale of typical occurring cloud fields over NAT (as discussed in Section 1), we use123

256 x 256 pixels (roughly 512 square km) as also found in Muller and Held (2012). We124

exclude crops affected by glint or poor retrieval quality using the respective data flags.125

Time stamps are limited to 9 am - 3 pm Barbados local time to avoid sun glinting. We126

use land class data to filter out images with convection over land, specifically over the127

northeast of the South American continent. Finally, to mitigate uncertainties at high COD128

from DCOMP retrieval, COD values above a threshold of 50, already indicating deep clouds,129

are clipped to 50. This results in a sample size of 51,000 satellite images.130

For further analysis, we make use of hourly ERA-5 (Hersbach et al., 2020) large-131

scale environmental parameters (integrated water vapor (IWV), horizontal and vertical132

wind speed, relative humidity) and cloud fraction at a spatial resolution of 0.25◦. Hourly133

cloud amount for four vertical ranges (surface-700 hPa, 700 hPa-500 hPa, 500 hPa-300134

hPa, 300 hPa-tropopause) is used from the Clouds and Earth’s Radiant Energy System135

fourth edition (CERES, Edition - 4A) (Wielicki et al., 1996), characterized by a spatial136

resolution of 1◦.137

3 Methods138

The workflow is as follows: a) A neural network (N1) ingests satellite images to con-139

tinuously sort cloud organizations based on visual similarity, yielding the feature vec-140

tor ’Z’ (384 dimensions) for each image. b) Z is reduced to a 2-dimensional (2D) space141

for visualizing a continuous arrangement of images with respect to their cloud structures142

(continuum). c) The optimal number of clusters is derived from the 2D representation143

(t-SNE), d) A second neural network (N2) of similar architecture as N1 but constrained144

by ’K’ classes ingests the satellite images to finally assign each image to a discrete class.145

a) We develop N1, whose purpose is to let the network identify the structural sim-146

ilarities in the cloud systems and map the learned visual features into the 384-dimensional147

feature space. We use the software package DINO from Facebook Artificial Intelligence148

Research (FAIR) (Caron et al., 2021) based on PyTorch (Paszke et al., 2019) and the149

open-source VISSL computer vision library (Goyal et al., 2021) to adapt the network to150

our requirements. As a backbone neural architecture to process images, we use Vision151

Transformer (ViT), which has a sequence of self-attention (Vaswani et al., 2023) and feed-152

forward layers (Bebis & Georgiopoulos, 1994) paralleled with skip connections. This setup153

helps to identify long-range spatial dependencies by learning relevant information in the154

image (Khan et al., 2022). Eliminating the issue of false negative sampling from (Denby,155

2020) but still focusing on learning similar embeddings of semantically similar mesoscale156

distributions, every epoch, we opt for two random global crops with a 0.75 fraction (192157

x 192 pixels) of the parent satellite image. As the largely overlapping global-crop pair158

has very similar cloud structures, the network learns their essential features and puts the159

pair closer to each other in the high-dimensional feature space. More details are given160

in S2.161
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b) Z includes the continuously sorted representation of cloud organization. We re-162

duce its 384-dimension dimensions to two dimensions using the well-established t-distributed163

Stochastic Neighbor Embedding (t-SNE) algorithm (van der Maaten & Hinton, 2008).164

t-SNE preserves relative local positions by using cosine distance in affinity computation165

and tries to retain global structure by initializing with principal components for map-166

ping to a two-dimensional space. This proves helpful because high-dimensional data when167

directly applied to cluster analysis, face challenges like the curse of dimensionality (Aggarwal168

et al., 2001), where increased dimensions make distances between data points less mean-169

ingful. Also, the presence of noise and outliers can distort clusters, hindering the algo-170

rithm’s ability to identify distinct clusters (Steinbach et al., 2004).171

c) After obtaining the continuously sorted 2D representation of cloud systems (see172

Fig. 1.a), we intend to find optimal boundary conditions within the sorted order to de-173

rive distinct clusters (cloud regimes). Selecting a meaningful and interpretable number174

of clusters is crucial to avoid over-fitting, where excessive clusters can capture noise, and175

also under-fitting, where too few clusters can miss significant patterns in the data. On176

this 2D representation space, we apply a set of three statistical approaches, namely met-177

ric scores of distortion, silhouette (Rousseeuw, 1987), and Calinski-Harabasz (Caliński178

& Harabasz, 1974) to identify the number of optimal classes into which the given fea-179

tures could be clustered. Schubert (2023) suggests taking a collective inference from these180

three methods to best fit the spherical k-means clustering algorithm used during the train-181

ing of N2. S3 illustrates how the three metrics point to an optimal clustering into seven182

classes. Note that the choice of seven classes is robust as illustrated by several sensitiv-183

ity tests (shown in S4), such as the dimensionality-reduction technique, size of the dataset,184

initial weights of the network, and different global crop sizes.185

d) N2 from Chatterjee et al. (2023) learns to put each satellite image into one of186

the seven classes as it progressively improves its feature space’s clustering, minimizing187

the cross entropy between the two global random crops (192 x 192) from the parent satel-188

lite image. Here, the main difference from N1 is that additional augmented image ver-189

sions (random flipping and noise addition by random Gaussian blur) of global random190

crops (see Fig. S2.2.b) are included. Augmentations try to provide auxiliary support to191

the network’s generalizability and better capture the differences in diversity of the shal-192

low cloud systems (Nie et al., 2021; Paletta et al., 2023). After obtaining the label of each193

satellite image, we transfer the assigned class to the continuum space, which proves help-194

ful because N1 has learned the sorting arrangement of keeping similar cloud systems closer.195

Therefore, it helps to visualize how each cluster with distinct characteristics can form196

a separate local region. Additionally, the N2 feature space is i) more sparse than N1 (see197

S2 for explanation) and ii) arranged by closeness to the centroids, which, unlike N1, may198

not be ideal for representing smooth transitions of cloud systems.199

4 Results200

4.1 Continuous and discrete representations201

We now analyze the diversity of cloud systems included in the satellite data record202

within their continuous and discrete representations. Both are visualized in 2D contin-203

uum space using the t-SNE algorithm (Section 3). The organization state captured in204

the satellite images changes smoothly and different cloud organizations can be identi-205

fied in different areas of the continuum (Fig. 1.a). Going anticlockwise from the top, arch-206

shaped cloud systems lie in the top-left, followed by flower-type distributions on the left207

side of the continuum. Close to the flowers in the bottom-left are the flowers spreading208

out into stratocumulus. Note that physically simulating the transition is challenging as209

modeling studies struggle to capture the stratocumulus to cumulus transition (Sarkar210

et al., 2020), although they lie adjacent in the continuum.211
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Figure 1. a) Visualization of four hundred randomly selected satellite images arranged in

the continuum space. b) Same as a), but now, instead of an image, the discrete class determined

by N2 is shown (colored). For each class, statistics on low, mid-low, mid-high, and high cloud

amount (%) obtained from the CERES hourly data set are provided. c) Centroid COD images

belonging to seven clusters as identified by the discrete neural network (N2). The table shows per

class the average of cloud fraction (CF, %) from the GOES retrieval and integrated water vapor

(IWV, kgm−2) from ERA-5.
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The bottom part of the feature space contains long bony skeletons, i.e., fish-type212

cloud systems, and the bottom-right corner shows an extended part of fish-type cloud213

organizations delineated by unusually large cloud-free regions. The top-right region of214

the continuum is a collection of deep convective cells. These primarily occur in the month215

of November. Arc-shaped cloud systems appear on the left and top-left of the contin-216

uum. Vogel et al. (2021) suggest that the horizontal structure of mesoscale arcs is in-217

trinsically linked to gravel, flowers, and fish. In sequence, Figure 1a shows a continuous218

link in the spatial arrangement of cloud systems rather than the distinct classes. This219

demonstrates the good performance of our continuous approach, which is further sup-220

ported by the analysis of attention maps in S5. Note that any newly taken satellite im-221

age can be placed into this continuum using the weights of N1, allowing a quick assess-222

ment of its organizational status. Also, similar trajectories of subsequent images can be223

tracked within the continuum space.224

After training N2, each of the images can be attributed to one of the seven classes225

(refer to Section 3), revealing distinct spaces within the continuum (Fig. 1.b). To help226

investigate how well the seven classes separate, they are evaluated using cloud amounts227

at four different height levels from CERES data. This analysis, on the one hand, reflects228

how each class differs from the others, and on the other hand, it reasons for the under-229

lying closeness of each class with neighbor classes in the feature space. The difference230

between the seven clusters is especially evident when looking at their centroid images231

(Fig. 1.c).232

Deep convective class three has by far the highest cloud fraction of 76% and a third233

more water vapor (47.0 kgm−2) than all other classes (mean = 32.5 kgm−2). We use IWV234

as a fingerprint for the origin of air masses and intend to test it later to investigate the235

connection between cloud regime and air mass origin. Figure 1.b already shows that class236

3, which by far has the highest IWV, is also related to the deepest convection. Neigh-237

boring class six includes less frequent higher-level clouds and has a reduced CF of 59%238

compared to class three. All other classes are dominated by low-level clouds with lower239

than 50% CF. Classes one and four (neighbor to class six) still have some mid to high-240

level cloud amounts (below 10%). Class one can be interpreted as representing arch-shaped241

cloud systems, and four resembles the fish class with a more open sky (also shown by242

reduction in CF).243

Classes two, five, and seven, being close in the continuum, have similar cloud ver-244

tical distributions and IWV ranging from 30 to 32 kgm−2; however, their organization245

is very different, as illustrated by the centroids (Fig. 1.c) and mean CFs (43%, 27%, and246

33%, respectively). Class two primarily comprises shallow cloud cover, corresponding to247

cloud systems resembling fish-type formations. Class five has the lowest cloud fraction248

and is an intermediary class type between classes two and seven. Finally, class seven has249

a presence of low cloud amounts and negligible mid to higher cloud amounts, which vi-250

sually resembles flower-type cloud distributions. Therefore, discretizing the continuum251

helps us visually find three main classes (one, two, and seven) frequently resembling fea-252

tures identified by humans, i.e., sugar, fish, and flower, respectively. However, it also shows253

the remaining diversity and their characteristics in a cohesive approach. Note that in con-254

trast to the challenges faced by Denby (2023) or Janssens et al. (2021) in isolating mean-255

ingful clusters, our N1 + N2 framework excels in efficiently categorizing the continuum256

into seven interpretable classes. This intelligible partitioning not only simplifies cloud257

organization complexities but also allows for the classification of unseen test data within258

the continuum.259

4.2 Machine versus human labels260

While we checked for visual correspondence and class-wise characteristics in Sec-261

tion 4.1, our framework now creates the opportunity to quantify how human labels com-262
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pare to the machine’s seven clusters. For this, we use the dataset from Schulz (2022),263

which is a 1km x 1km resolution manually labeled dataset for the NAT region and EUREC4A264

time period (47 days). Approximately 50 scientists generated the dataset by identify-265

ing mesoscale patterns (SGFF) and marking variable-sized rectangles around homoge-266

neous organization states. Overlapping rectangles allowed a single grid point to be la-267

beled with multiple patterns by a scientist. Individual uncertainty is expressed through268

each pattern’s classification mask (cm) (Schulz, 2022). For example, if a grid point is within269

both gravel and sugar rectangles, the cm would be 0.5 for both and 0 for the other two270

patterns. Mutual agreement among scientists for each pattern at a grid point is deter-271

mined by averaging cm values, ranging from 0 to 100%.272

We hypothesize patterns with higher agreement are most likely attributed to their273

meaningful partitions within the continuum (as discussed in Section 4.1). For each time-274

stamp where at least one of the four patterns was identified within our domain, we se-275

lect a 256 x 256-pixel satellite image centered over the area of highest human agreement.276

In this way, we ensure the best possible intercomparison. This leaves us with 52 sam-277

ples of human-labeled satellite images (fish: 19.3%, gravel: 26.9%, flower: 28.8%, sugar:278

25.0%). Note that even with the highest consensus criteria, there’s still diversity in agree-279

ment. The inter-quartile agreement range is 35%, while the minimum and maximum agree-280

ments show consensus levels of 7% and 91%, respectively.281

The framework classifies 40% flower-labeled cloud systems in class seven (see the282

hit rate for each class in Fig. 2.a) while sugar-labeled cloud systems are 31% classified283

in class one and 20% in class four. Gravel has a total of 44% representation in classes284

one and five, whereas fish annotated labels are allocated 30% in class two and 20% each285

in classes four and five. Further, examining example images visually (Fig. 2.a), it be-286

comes apparent that images with lower human agreement notably diverge from the es-287

tablished definitions (provided in Stevens et al. (2020)) of SGFF cloud structures, in con-288

trast to images with high human agreement.289

Within the continuum (Fig. 2.b), flowers detected with high probability mostly oc-290

cur in areas of class seven, which was already well reflected in the centroids. Following291

a similar agreement is sugar (street-type cloud systems), which can be found in areas of292

class one. However, 38% of sugar samples, with a low agreement, lie in classes four and293

five, which are extended fish and flower type classes (Section 4.1). Note that even though294

these samples reside in those regions of the feature space, their confidence is less than295

25%. Similarly, in the gravel pattern, 21% samples belong to class six and exhibit min-296

imal human confidence. In contrast, the rest from the gravel class are positioned between297

classes one and seven, suggesting that gravel cloud cell sizes fall between sugar and flower.298

Rightly, no human-labeled samples are found in class three, which predominantly com-299

prise deep convective cells. Finally, the fish class exhibits relatively higher confidence in300

human labels, aligning well with the feature space characteristics, and lies in class two301

(fish) and four (extended fish-type cloud structures with large cloud-free regions). Hence,302

cloud systems characterized by higher agreement among human observers are situated303

within the designated regions, while those with lesser consensus are positioned within304

the ambiguous regions of the continuum.305

To compensate for the limited number of human label samples, we analyze the 30306

nearest satellite images to each human label as identified by N1 (Fig. 2.c). This anal-307

ysis aims to show the generalization capacity of our approach and further enhance our308

understanding of the connection between organizations. The majority of neighbors in309

human-identified fish-type cloud systems (more than 50%) belong to machine-identified310

classes two and four. The gravel regime includes members of all classes, with notable con-311

tributions from classes one, five, and seven, which exhibit cloud cell characteristics sim-312

ilar to gravel systems. The variability in the spread can be linked to the limited repre-313

sentation of gravel glass in Schulz (2022)’s dataset, as gravel occurrences were sporadic314

during the EUREC4A campaign. Additionally, 75% of gravel labels in our sub-samples315
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Figure 2. a) To enhance visualization and reference for human labels, each column dis-

plays 256 x 256 COD images of a specific class, with the highest and lowest human agreement

shown in two rows. Below, the images in each column show the hit rate, representing the N2-

predicted class for each human label. b) Continuum space colored with different classes (1-7) in

the background, along with Human labels (fish, sugar, flower, gravel) in the foreground. Ascend-

ing symbol sizes with low (0-0.25), mid-low (0.25-0.50), mid-high (0.50-0.75), and high (0.75-1.00)

agreement are shown. c) Relative occurrence of 30 nearest neighbors to human-labeled fish,

gravel, flower, and sugar along the seven machine-labeled classes.
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had agreement levels below 0.25. In contrast, the flower regime mainly belongs to class316

seven (46 %), further aligning with the high confidence of human labels. Regarding sugar-317

type cloud systems, 37 % of the neighbors fall into class one, while those with low hu-318

man agreement are scattered across the remaining classes. Therefore, we find that machine-319

labeled classes of the 30 nearest neighbors encompass the human-labeled ones, especially320

for sugar, flower, and fish, but not so clearly for gravel.321

Further, in S6, using ERA-5 large-scale environmental variables and cloud phys-322

ical properties, we demonstrate that both the neighbors and the human crops share a323

similar, homogeneous distribution of physical properties. Therefore, comparing human324

labels with their nearest neighbors shows that the framework can understand the con-325

nections between different cloud organizations, revealing the potential of representation326

learning.327

5 Transitions328

To showcase an application that highlights the intelligible partitioning of the con-329

tinuum, we explore the ”sugar” to ”flower” (S2F) cloud system transition on February330

2, 2020. Using LES, Narenpitak et al. (2021) showed a strengthening of large-scale up-331

ward wind motion and an increase in total water path and optical depth as the trans-332

formation develops towards the flower. Here, we look at how the transition in COD is333

represented in the feature space. For example, where do the representations of transi-334

tions lie in the feature space? How smooth is the transition in the feature space?335

Covering the temporal developments, 47 COD images were collected (after apply-336

ing quality filter checks (see Section 2)), centered at 12.5◦ N, 50◦ W. They cover the time337

from 10:50 to 19:20 UTC, with a gap between 17:00 to 18:00 UTC likely caused by lo-338

cal sun glint. We ingested the available samples into the trained framework and collected339

their features (from N1) and machine labels (from N2).340

Sugar systems comprise small and shallow clouds with a large spread of individ-341

ual cloud cells in a domain, as evident in the beginning (10:50, Fig. 3.a). In contrast,342

flower systems appear in multiple deeper aggregates surrounded by large dry areas and343

are detected first in the southeast cover at 16:50 before becoming dominated at 19:20344

over the full domain. In general, the transition features lie at the border of well-defined345

clusters one (‘sugar’) and cluster seven (‘flower’) (Fig. 3.a), and the framework is able346

to capture their intermediary nature as they are neither perfect sugar nor flower type.347

We use wind speed (vertical and horizontal) to represent changes in atmospheric dynam-348

ics and changes in cloud cover to account for the changes in mesoscale structure from349

the ERA-5 product. A gradual increase in vertical velocity is observed as the system tran-350

sitions from S2F, and consequently, the surface wind speed gradually reduces its strength351

(Fig. 3.b). In addition, as expected, cloud fraction profiles show a gradual decrease as352

the transition progresses with time.353

Sugar-type mesoscale organizations typically occur during the daytime with shal-354

low boundary layers, while flowers occur at night with deeper boundary layers (Vial et355

al., 2021). We use cosine distance between the features to show the gradual development356

of the S2F transition inside the feature space (Fig. 3.c). The transformation appears smooth357

initially, with relatively more significant changes occurring later (post-18:00 UTC) as the358

system approaches the flower state. We link the relatively high changes in cosine distance359

during flower stages, as opposed to initial sugar stages, to the progression of convective360

developments. It becomes more accelerated as the system approaches the well-defined361

flower state.362

Therefore, the framework reveals unbiased relative changes from the point of in-363

terest (in space or time) solely based on changes captured in high-dimensional feature364

space. Also, the intelligible partitioning of the continuum allows us to see when a par-365
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Figure 3. a) Five COD images covering the transition period between sugar and flower on

the second of February 2020. Their position in the continuum is indicated in the center of the

bottom row. b) Individual and standard deviation profiles of 1) vertical, 2) horizontal wind speed

describing the atmospheric dynamics, and 3) cloud cover showing changes in mesoscale structure

of the transition samples. c) Illustration of temporal transition development inside the feature

space: cosine distance of the first daytime image feature obtained at 10:50 UTC compared with

the cloud system evolution features for the rest of the day (blue). The last obtained image at

19:20 UTC towards the first image (orange) and θm represents the increasing cosine distance.

ticular system transitions to another. S7 provides insights into the transition probabil-366

ity of one class transforming to another over the Barbados domain.367
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6 Conclusion368

In this work, we develop a two-step self-supervised learning framework to study shal-369

low convective organization properties and their transitions. By analyzing organization370

in a continuous approach without imposing predefined classes, we include all occurring371

patterns and transitional states in our analysis. Moreover, the approach shows that mesoscale372

cloud organizations in NAT can be partitioned into seven optimal classes for the time373

period considered. Exploiting the cloud amount at different vertical levels from CERES374

measurements, we show how the classes are interlinked with each other within the con-375

tinuous space and thus capture the variability of tropical clouds in more detail.376

We compare human-labeled cloud systems (Schulz, 2022) in the machine-identified377

cluster regions. Cloud systems with higher agreement among humans lie in the ”correct”378

region of the feature space, while the ones with less consensus are in the ”wrong” regions379

of the feature space. Also, the potential and interpretability of the continuum space be-380

come more evident when examining the classification and physical properties between381

human labels and their nearest neighbors. Two of the seven optimal classes are strongly382

related to flower and sugar, respectively. Representing the S2F transition case study (Narenpitak383

et al., 2021) for February 2, 2020, in the continuum illustrates the capability to identify384

and represent the observed transformations smoothly in their clearly interpretable re-385

gions. We evaluate the transition’s large-scale environmental parameters and observe a386

gradual increase in vertical wind speed and a gradual decrease in cloud amount. Finally,387

we demonstrate the framework’s capability to capture the underlying mesoscale visual388

transformations, such as the transition approaching mature flower convective stages through389

quick changes in consecutive cosine distances.390

One of the limitations of this study is that we use only the daytime cloud retrievals,391

and hence, the nocturnal nature of the organizations cannot be captured. Future stud-392

ies will use infrared satellite measurements for 24-hour coverage. We aim to fine-tune393

our framework with the ground-based observations of the EUREC4A campaign and fur-394

ther extend our analysis to a climate scale. Currently, Destination Earth (Hoffmann et395

al., 2023) focuses on simulating high-resolution global digital twins at a 1 km grid scale.396

The developed workflow could be a testing ground for investigating the newly adjusted397

subgrid parameterization effects on mesoscale cloud systems or atmospheric processes398

at different scales.399
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J., . . . Thépaut, J.-N. (2020). The era5 global reanalysis. Quarterly465

Journal of the Royal Meteorological Society , 146 (730), 1999-2049. doi:466

https://doi.org/10.1002/qj.3803467

Hoffmann, J., Bauer, P., Sandu, I., Wedi, N., Geenen, T., & Thiemert, D. (2023).468

–13–



manuscript submitted to Geophysical Research Letters

Destination earth – a digital twin in support of climate services. Climate469

Services, 30 , 100394. Retrieved from https://www.sciencedirect.com/470

science/article/pii/S2405880723000559 doi: https://doi.org/10.1016/471

j.cliser.2023.100394472

Huynh, T., Kornblith, S., Walter, M. R., Maire, M., & Khademi, M. (2022). Boost-473

ing contrastive self-supervised learning with false negative cancellation.474
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S1 Domain description

Figure S1 (Domain). GOES’s COD image on February 2, 2020, at 13:00 UTC with coastal

boundaries (thick yellow) and Barbados Cloud Observatory (red dot). One (out of five) random

and a fixed (Barbados domain) 256 x 256-pixel crop over EUREC4A domain are shown. During

the learning process, each crop is twice randomly sub-cropped (pink and green dashed lines) by

the network, leading to a spatial dimension of 75% (192 x 192 pixels) of the original crop. The

Barbados domain enables comparison with ground-based measurements in future studies.
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S2 Network architectures

1. Continuous network (N1)

1.1 Definition of the network input

N satellite images of COD built the input training data set X = {x1, x2, x3....., xN} of the

deep learning architecture illustrated in Fig. S2.1 (Schematic diagram of N1). The only intuitive

augmentation we opt for here is global random cropping for learning continuous representations.

For random cropping, we opt for two global crops (x1, x2) with a random 0.75 fraction (192 x

192 pixels) of the parent satellite image to focus on the global distribution of the cloud system.

Figure S2.1 (Schematic diagram of N1) shows two random crops (teacher t and student s) are

fed into different branches of the network. Therefore, it becomes challenging for one side of the

network to know what part of the parent satellite image the other is being fed with; therefore,

during the learning process, it focuses on the critical semantics of global cloud distribution.

1.2 General network architecture

The neural network’s task is to learn visual features from each satellite image. A function g

represents the transformations performed by the network’s vision Transformer (ViT) as g(xi) = hj

with i = 1...N, j = 1....M that maps the image xi into the array of features h ={h1, h2, h3....., hM},

where M is the output dimension of ViT feature arrays. The selected dimension of M is equal

to 384, which means the information contained in the 192 x 192 satellite observation space is

being non-linearly dimensionally reduced to 384 vector space. ViT is a sequence of self-attention

(Vaswani et al., 2023), and feed-forward layers paralleled with skip connections. The mechanism

of ViT (Dosovitskiy et al., 2021) takes non-overlapping contiguous image patches of resolution

NxN pixels, where N=16 for this work, along with their positional encoding as an input. Without

February 16, 2024, 12:06pm
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the positional encoding, the output feature vector from ViT is invariant to the arrangement of

these NxN patches. Meanwhile, with positional encoding, it learns the relative position of the

objects in the image. Therefore, the model learns the relationship between the patches, and thus,
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Figure S2.1 (Schematic diagram of N1). This work adopts a deep learning architecture

from Caron et al. (2021), where x1 and x2 are 75% random crops of the parent satellite image x.

The student and teacher vision transformers (gθs/t) have the same number of trainable parame-

ters (weights and biases) θ. The feature output hxi from gθ subsequently connects to Proj(hxi),

a 3-layer multilayer perceptron. Softmax (Bridle, 1989) normalizes MLP’s raw activation (Zs/t),

and centering maintains teacher activations (Zt) near batch mean properties. Ps and Pt repre-

sent normalized student distribution of Zs and centered and normalized distribution of teacher

activation Zt. Back propagation in student network optimizes its parameters through stochastic

gradient descent (SGD), minimizing cross-entropy between Pt and Ps. Teacher parameters (gθt)

are exponential moving averages (EMA) of students (gθs), aligning the networks.
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it learns how a particular arrangement of cloud distribution usually occurs. The ViT architecture

can identify long-range spatial dependencies (Khan et al., 2022) by learning relevant information

in the image. The activation function used in the ViT is Gaussian error linear units (Hendrycks &

Gimpel, 2023) (GELU), as the GELU function behaves smoother than other activation functions

when values are closer to zero and thus is more effective at learning complex patterns in the data.

Further, hj is non-linearly projected to Zl with l = 1....L using a three-layer multilayer per-

ception (MLP) (Rumelhart et al., 1986) activated by GELU followed by l2 normalization and

a linear layer. Here Z ={Z1, Z2, Z3....., ZL} is the final output dimension of the pipeline. The

feature space dimensions are decided based on input dimensions, the complexity of information

context, and neural network complexity. Caron et al. (2021) suggest that if the training dataset

size is much less than 1.3 million, then the final dimensions of Zl should be reduced compared to

the default dimensions L = 65536. We tested rather two different values (L = 128 and L = 8192)

and found a much better suitability of the larger value from visual inspection. Our aim here is

not to find the optimal feature vector size but a functional size that can optimize the network

and smoothly converge the training. Therefore, the optimal dimension size of the dimensionally

reduced images in self-supervised learning is not the focus of this work. Figure S2.1 (Schematic

diagram of N1) shows two different branches in the network: student and teacher. The point

to note here is that they have the same general architecture and pipeline, but the parameters

(weights and biases) learned during training are different.

1.3 Upper branch of the network (Student)

The upper branch of the network, represented in Figure S2.1 (Schematic diagram of N1), by

the student transformer gs and further projected by MLP, ingests one random augmented global
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crop of the parent satellite image and outputs feature vector Zs. Softmax normalizes Zs such that

all values are between 0 and 1, and the integration over all L = 8192 elements of its probability

distribution yields 1. This probability distribution of the feature vector Zs is input to the cross

entropy loss function described later. The soft-max probability for an input xi of the student

network can be described as

p(i)s =
exp(1

ζ s
Z(i)

s )∑k
m=0 exp(

1
ζ s
Z

(m)
s )

(1)

where ζs is the temperature parameter for the student network and is set to 0.1. The ζ parameter

controls the sharpening of the probability distribution. A higher value of ζ implies smoothed

probability.

1.4 Lower branch of the network (Teacher)

The lower branch of the network represented in Figure S2.1 (Schematic diagram of N1) by

the teacher transformer applies function gt to the other remaining global crop of the parent

satellite image, and the MLP projects outputs feature vector Zt. Unlike Ps, before normalizing

Pt individually with soft-max, vector Zt is centered around the mean properties of all images in

a batch. A batch refers to the number of samples propagating through the neural network before

updating the model parameters. Centering is done to prevent any feature from dominating, as

the mean will be somewhere in the middle of the batch sample properties. While applying the

temperature ζt parameter for the teacher, it is kept lower (ζt= 0.05) to sharpen the probability of

Zt artificially. Therefore, the feature vector Zt of the teacher branch is centered and sharpened

before it becomes input for the loss function.

February 16, 2024, 12:06pm



X - 8 CHATTERJEE ET AL. 2023: CAPTURING THE DIVERSITY OF TRADE WIND CUMULUS

1.5 Cross entropy loss of the network

When the feature vectors of the two branches capture similar information from the global crops

of the satellite parent image, the loss becomes lower and vice-versa. That’s how the network

branches are encouraged to focus on the common image characteristics, progressively making the

feature vectors similar.

min
θs

∑
x∈(x1,x2)

Pt(x)log(Ps(x)) (2)

This is achieved through the cross-entropy loss function applied on the centered and sharpened

probability distribution of the teacher branch Pt and smoothened distribution of the student

branch Ps. As shown in equation 2, the loss function minimizes θs, i.e., the student network’s

parameters (weights and biases). Teacher network parameters or Pt guide the student network

during the training phase, as discussed in Subsection 1.6.

1.6 Optimization for convergence

The loss function minimization happens progressively layer by layer, derivating the loss function

with respect to θs parameters and adjusting parameter values in each layer by backpropagation.

At the end of the minimization, we obtain a configuration of parameters for the student network

that will be ready for the next iteration with a new batch of images. Stochastic gradient descent

(Bottou, 2012) (SGD) is only applied to the student network parameters θs, and the teacher

parameters θt are built through past iterations of the student network (Caron et al., 2021). As

shown in equation 3, θt is the exponential moving average (EMA) of θs with λ following a cosine

scheduled from 0.996 to 1 during training.

θt = λθt + (1− λ)θs (3)
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During optimization, a collapse can occur regardless of the input provided to the model; the

output becomes constant or is predominantly influenced by a single dimension. In other words,

the model’s predictions across different dimensions or features become uniform, leading to zero

ideal loss value. Therefore, centering and sharpening introduced in Subsection 1.3 and 1.4 and

EMA (Subsection 1.6) are the easiest acceptable ways to prevent collapsing in the described

teacher-student framework.

1.7 Training and libraries

To set up this architecture, we use the software package DINO from Facebook Artificial Intelli-

gence Research (FAIR) (Caron et al., 2021) based on PyTorch. The open-source VISSL computer

vision library (Goyal et al., 2021) adapted the DINO neural network to our requirements. Based

on sensitivity tests on training loss, visualization of dimensionally reduced feature space, and

ablation study of the original network on longer training showing improving performance, we

train the model up to 800 epochs. Training the neural network for 800 epochs on 4 V100 GPUs

took 16.5 hours or 66 core hours.

2 Discrete network (N2)

We briefly describe the functional mechanism of the discrete neural network (N2) and its learn-

ing scheme. Refer to Section 3 from (Chatterjee et al., 2023) for a detailed network description.

The data loading nature of N2 remains the same as of N1 (Subsection 1.1 of S2). The general

architecture has a pipeline similar to the continuous approach set up, with the image processing

backbone here being a convolutional residual network with 50 layers of depth (ResNet-50, (He

et al., 2015)), followed by a projection head of MLP with ReLU activations (Fukushima, 1975)

and a linear layer.
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Figure S2.2 (N2 outputs). a) Sparse 2D feature space obtained from N2 by applying the

tSNE algorithm on zx features of 51,000 satellite images. The perplexity and epsilon derived

from auto-configuration for t-SNE runs are 30 and 1150, respectively. b) Same as Figure 1.b in

the main text, this uses direct clustering on satellite images with N2, overlaying labels on the

continuous feature space from N1 for comparison.

Therefore, similar to Figure S2.1 (Schematic diagram of N1), for the upper branch, the features

obtained at the end of the pipeline (like Zs in the continuous approach) are clustered using

spherical k-means (where k=7), and features are allocated a pseudo-label (T) according to their

closest centroid. Further, the features obtained from the lower branch are compared with the

calculated upper branch centroids using cosine distance (DT ). Finally, T from the upper branch

and DT from the lower branch are inputs of the cross-entropy loss function as discussed in

Subsection 1.5 of S2 and are progressively minimized during training. We call the labels pseudo-

labels during the training stage as they can change to minimize the loss function better. Finally,

at the end of the training, we collect the labels for each satellite image and further evaluate their

separation using auxiliary datasets.
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S3 Determination of optimal cluster number

We apply the following metrics to two-dimensionally reduced representations (using tSNE) on

hj from N1 to identify the best optimal cluster:

Distortion metric: The distortion metric considers the cluster’s tightness by computing the

sum of squared distances (SSD) from each point to its assigned center, which tends to decrease

toward 0 as we increase the number of clusters (K). This shows an exponential shape leveling

off such that the shape of the curve results in an elbow, but the optimal cluster or the point of

inflection represents the point where adding additional clusters stops adding useful information.

Also, adding clusters beyond the inflection point also makes the clusters harder to separate; thus,

we start to observe diminishing returns by increasing k. The elbow blue line curve in figure S3

(Metric scores) shows k = 7 as the sweet spot of optimal clustering.

Silhouette metric: Apart from taking cluster closeness into account, this metric also considers

distances between points of one cluster and the nearest other cluster center. This means that

in order to have a good silhouette score, clusters generally need to be tighter and farther apart

from each other. If the Silhouette coefficient for each point is close to 0, it means that the point

is between two clusters; if it is close to -1, then that point is in the wrong cluster, and if it is

close to +1, it is in the correct cluster. The average silhouette coefficient calculated for all 51,000

samples shows two local maxima at values of 0.37 (k=3) and 0.36 (k=7), as shown in Figure S3

(Metric scores). Note that the values are not close to one, meaning the cluster doesn’t lie very

far from each other, further suggesting the continuous nature of cloud organizations.
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Figure S3 (Metric scores). Results of three different metric scores of distortion, silhou-

ette, and Calinski-Harabasz, shown along with varying cluster numbers along the abscissa. The

vertical-dashed line is drawn at cluster 7, which shows the chosen inflection point for the optimal

cluster.

Calinski-Harabasz metric: In comparison, the Calinski-Harabasz metric assesses the separa-

tion and compactness of the clusters. It denotes the ratio of the sum of inter-cluster dispersion

and the sum of intra-cluster dispersion for all clusters. A good clustering result has a high

Calinski-Harabasz Index value. The maximum lies at cluster 7, having a score of 43000.

In summary, the two metrics directs towards k=7, and the difference between the two maxima

(k=3 and 7) in silhouette is insignificant. Therefore, we take the common agreement of k=7 as

the optimal cluster number and train N2 (Section 2 of S2) from scratch using 7 clusters.
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S4 sensitivity tests

Here, we show that the choice of seven classes has passed several sensitivity tests, such as

the dimensionality-reduction technique, size of the dataset, initial weights of the network, and

different global crop sizes.

S4.1 Different data sample size

Figure S4.1 (Different data sample size). t-SNE initialized by PCA and using cosine

distance as a unit of distance while constructing the two-dimensional space, on a sample size of

a) 10,000, b) 20,000, c) 30,000 d) 40,000 data points.

Text S4.2 Dimensionality reduction techniques Manifold extraction algorithm is a generic

term used for nonlinear dimensional reduction, or we can call them generalized PCA, which is

sensitive to nonlinear structures in the data.

(Denby, 2020) train their neural network using ‘Euclidean distance’ as a metric in the loss func-

tion. However, for dimensionality reduction, use Isometric feature mapping (Isomap, (Tenenbaum

et al., 2000)), an extension of kernel PCA. Isomap uses ‘geodesic distance’ as a measure of dis-
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tance while reducing the dimensions. The geodesic distance looks for the shortest curve in the

high dimensional space. Therefore, there are some limitations here:

1. Euclidean distance and high dimensions: First, we would like to point out that Euclidean

distance breaks down in high dimensions (Aggarwal et al., 2001). Euclidean distance is sensitive

to sparse data distribution in high dimensions. The direction becomes more critical since we

normalize our feature vectors (the magnitude becomes one). Therefore, cosine distance (used in

N1 and N2) is far more suitable for training.

2. Global versus local structures in the data: Second, we would like to mention that the

Isomap algorithm considers maintaining the global pairwise distance (Gao et al., 2021). In other

words, it neglects the local structure but only considers the global one.

Overcoming the limitations: t-SNE (van der Maaten & Hinton, 2008) preserves the neighboring

local distances better.

1. We inject the global structure into our initialization of tSNE through PCA, which dictates

which regions of the 2D space the points will appear.

2. Second, while reducing the dimensions, we keep cosine distance as a distance measurement

criterion in t-SNE.
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Figure S4.2 (Dimensionality reduction techniques). Different dimensionality reduction

techniques applied on our high dimensional feature space for cluster number optimization, which

is constructed using cosine distance (as unit of measuring distance between two feature vectors).

See the main text for an explanation of the distortion, Silhouette, and Calinski-Harabasz algo-

rithms. We can see the consensus between t-SNE and MDS, while Isomap and LLE could not

come to a logical conclusion.

For our high dimensional feature space, we demonstrate optimal cluster number sensitivi-

ties to different dimensionality reduction techniques in Figure S4.2 (Dimensionality reduction

techniques). In addition to t-SNE and Isomap, we also show multi-dimensional scaling (MDS)

and local linear embedding (LLE) methods.

1. MDS, distance-wise, is more geometrically aware as it tries to preserve the inner products

between the feature vectors.
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2. LLE pays attention to only the local structure of the data. LLE also assumes that the high

dimensional data is locally linear and a sample can be represented linearly by several samples in

the neighborhood.

S4.3 Different initial weights of the network

Figure S4.3 (Initial weights of the network). N1 and N2 initialized with different random

seeds. As compared to main figure 1.b, we find only the orientation of the low dimensional

projection to change where the black dashed line is the original location of class 1 and the blue

dashed line is with a different random seed. The rest (sorting order and classification) remains

the same.
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S4.4 Different overlap threshold

Figure S4.4 (overlap thresholds). Selecting different global crop size (65%, 75%, 85%) and

training N1. t-SNE is intialized by PCA, and using cosine distance as a unit of distance, we find

k =7 as the common consensus among the three.

Therefore, Figure S4 (1-4) mainly argues about four things:

1. While reducing dimensions, it is important to consider how the original high-dimensional

space was constructed. What distance was used while computing affinities? Then, use the same

distance while constructing the lower dimensions.

2. It is important to consider a dimensionality reduction technique that considers both the

local and global structure of the high dimensional data.

3. Varying number of samples from (10,000 to 50,000) still shows k = 7 as the most expressive

optimal cluster number

4. Varying the Global crops from the 65th to 85th fraction shows crop size might not be a

strong influencing factor in finding the optimal cluster number.
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S5 Attention maps of N1

From a human perspective, cloud system distributions may appear to be relatively chaotic and

noisy, and while trying to decide their visual characteristics, we may pay attention to some or

all of the following: the organizational semantics of convective organization, the semantics of the

clear sky regions, deep convective cell distributions, open and closed cells, and shallow convection

distributions.

Figure S5 (Visualization of different layers). Four cloud systems with different organi-

zations are selected as examples. Their respective self-attention maps from the final head of the

teacher ViT (Figure S2.1 (Schematic diagram of N1)) show for the 6 layers of the self-attention

head. The color bar indicates the range of the Gaussian error linear units (GELU) activation

function for the activation maps. Higher values indicate more important features. All experi-

ments are run with a default of six self-attention heads.
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To better understand N1’s decision and to build trust in the network’s performance, it is crucial

to see what the trained N1 architecture has learned to pay attention to when deciding the features

of cloud system distributions.

Given a satellite image, the activation space in a neural network allows us to visualize whether a

neuron should be activated, indicating what part of the image is important for the network. The

self-attention layers in ViT try to decompose the input samples and learn relatively independent

features. Thus, this experiment aims to see whether the activation space reveals the abstract

patterns that we, as humans, can make sense of while deciding the feature’s importance. In this

setup, we use a single satellite image sample and pass it through the trained model, freezing the

weights. The granularity (N x N), or the number of pixels in a single patch, is controlled by the

patch size, which is 8 x 8 pixels in this experiment. This is just for convenience and does not

change the result compared to the 16x16 setting used for the main experiment.

Figure S5 (Visualization of different layers) shows that layer 1 activates at the dominant con-

vective cells and deactivates at thin spread-out convection while layer 2 activates the thin spread

convection. Layer 3 seems to try to learn and activate the clear sky features. In contrast to layer

one, layer 4 activates the rest of the prominent convections. Like layer 2, layer 5 tries to look

at the rest of the thin-spread convection. Layer 6 is uncertain and is not obvious to our eyes,

and it may somehow try to deactivate for all the clear sky regions in the majority of cases and

look for boundary semantics in the satellite image. Examining other example cases shows the

same consistency, and therefore, it can be concluded that although the cloud system distributions

are different, each attention map has learned to pay attention to relatively different, consistent,
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sensible semantics of the cloud systems distribution and further indicates that we can trust the

embedding space of the network.
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S6 Environmental characteristics

Figure 2.c in Section 4.2 of the main manuscript showed the occurrences of 30 nearest neighbors

of human-labeled satellite images (mentioned as human crops below) with machine-identified

seven classes. Here, we aim to assess their existing environmental conditions.

Figure S6. Comparison of 52 human labels (hl) environmental conditions with their nearest

30 neighbors (nn) using ERA-5. The top to bottom rows shows weighted-average and standard

deviation profiles of cloud water content (clwc, kg kg −1), cloud cover (cc), and relative humidity

(rh, %) with the exception of cc variability shown in the interquartile range.

This complementary experiment can further help to trust human crops’ relative positions in

the feature space. If the human crops and the neighbors have a similar homogenous distribution

of their physical properties, this implies that the human crops are in the consistent region of the

feature space. Here, we take the ERA-5 vertical profile of cloud water content, cloud cover, and
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relative humidity (Fig. S6) to compare the weighted averaged vertical profiles between human

labels and their 30 nearest neighbors. When calculating these properties for human-labeled

scenes, we weigh them with the level of agreement In this way, the contribution of well-agreed

organizations will contribute more than less agreed cloud organizations. We observe that there

is hardly any difference in the vertical profiles except for the relative humidity of sugar and cloud

cover for flowers. This may be due to quantitatively using 30 times more data.
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S7 Transition probability

Based on our collected satellite imagery derived over Barbados cloud observatory (BCO, see

Figure S1 (Domain)), we performed a transition probability analysis for all machine-identified

cloud regimes. Here, we exploit the 10-minute temporal resolution of the data set to observe the

transformation of cloud systems with time. Note that some of the temporal consecutive satellite

imagery could be missing because of the pre-processing step.

Figure S7. Matrix representing the probability of transition of each machine identified cloud

regime to another over the Barbados cloud observatory. The total number of samples for this

analysis are 5,470.

The goal is to understand how close classes should be in the feature space to make a transition

and derive a transition probability from one cloud regime to another. We observe that sugar has

the highest possibility (62%) of transforming to flower-type cloud systems (Figure reviewer-2:3).

A mature developed fish could become a fish with more open sky with 68% probability (possibly
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due to cold pool downdraft effect). The deep convective systems follow their neighboring class in

the continuum, i.e., class six. Fish with more open sky is followed by mature fish-type structures.

Class five, which has cloud cells typically found in sugar, gravel, and flower, has 49% chance of

a follow-up by fish with more open sky. Finally, the flower class has 36% chance of a transition

to class 5 or 30% chance to sugar type distributions.
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