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Abstract

The accurate prediction of the Fire Weather Index (FWI), a multivariate climate index for wildfire risk characterization, is
crucial for both wildfire management and climate-resilient planning. Moreover, consistent multisite fire danger predictions are
key for targeted allocation of resources and early intervention in high-risk areas, as well as for “megafire” risk detection. In
this regard, Convolutional Neural Networks (CNNs) are known to capture complex spatial patterns in climate data. This
study compares different CNN architectures and traditional Statistical Downscaling (SD) methods (regression and analogs) for
predicting daily FWI across diverse locations in Spain, considering marginal, distributional and spatial coherence measures for
validation. Overall, the CNN-Multi-Site-Multi-Gaussian configuration, which explicitly accounts for the inter-site variability in
the output layer structure, showed a superior performance. These insights provide a methodological guidance for the successful
application of CNNs in the context wildfire risk assessment, enhancing wildfire response strategies and climate adaptation

planning.
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Key Points:

+ Convolutional neural networks (CNNs) are compared with classical statistical down-
scaling methods for Fire Weather Index (FWI) prediction.

¢ The best CNN setup provides balanced results for all validation metrics, includ-
ing accuracy, simulation of extremes and spatial consistency.

+ Our findings provide a methodological basis for the development of more robust,
spatially coherent regional future FWI scenarios.
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Abstract

The accurate prediction of the Fire Weather Index (FWI), a multivariate climate
index for wildfire risk characterization, is crucial for both wildfire management and climate-
resilient planning. Moreover, consistent multisite fire danger predictions are key for tar-
geted allocation of resources and early intervention in high-risk areas, as well as for “megafire’
risk detection. In this regard, Convolutional Neural Networks (CNNs) are known to cap-
ture complex spatial patterns in climate data. This study compares different CNN ar-
chitectures and traditional Statistical Downscaling (SD) methods (regression and analogs)
for predicting daily FWI across diverse locations in Spain, considering marginal, distri-
butional and spatial coherence measures for validation. Overall, the CNN-Multi-Site-Multi-
Gaussian configuration, which explicitly accounts for the inter-site variability in the out-
put layer structure, showed a superior performance. These insights provide a method-
ological guidance for the successful application of CNNs in the context wildfire risk as-
sessment, enhancing wildfire response strategies and climate adaptation planning.

i

Keywords: deep learning, statistical downscaling, Generalized Linear Models, analogs,
spatial structure, future wildfire risk assessment.

Plain Language Summary

This study focuses on the Fire Weather Index (FWT), a pivotal climate index for
the assessment of wildfire risk. Accurate FWI predictions are vital for wildfire manage-
ment. This study explores the viability of employing Convolutional Neural Networks (CNNs)
as a Statistical Downscaling (SD) technique for precise FWI prediction across diverse
locations in Spain in comparison with two conventional SD methodologies: Generalized
Linear Models and analogs. Following a cross-validation scheme based on observed daily
FWI data, we find that the CNN-Multi-Site-Multi-Gaussian (CNN-MSMG) configura-
tion exhibits noteworthy proficiency in daily FWI prediction. This model explicitly in-
corporates the covariance structure of the predictands into the CNN architecture, yield-
ing spatially consistent FWI predictions. Furthermore, CNN-MSMG has optimal prop-
erties for use in the context of climate change, providing a robust replication of extreme
events and extrapolation capabilities if applied to novel climate scenarios. These find-
ings have substantial implications for improving regional-to-local FWI scenarios used to
inform vulnerability and impact assessment studies.

1 Introduction

Climate fire danger indices are key to assess and predict the risk of wildfire occur-
rence and severity. They are based on the integration of daily near-surface temperature,
humidity, wind speed and precipitation records (de Groot et al., 2006), and thus provide
more accurate wildfire risk forecasts than their input variables alone (see e.g. Dowdy et
al., 2009; Fugioka et al., 2009). Beyond the near-term prediction horizon, fire danger in-
dices are also useful to monitor changes in wildfire risk over time. As a result, downscaled
fire danger scenarios are essential for vulnerability and adaptation strategies in regional
to local applications, since General Circulation Model (GCM) outputs (Eyring et al., 2016)
can’t provide actionable climate information at these spatial scales (Giorgi et al., 2009).
Given their suitability for most impact studies, statistical downscaling (SD, Maraun &
Widmann, 2018) of future fire weather scenarios is often required, including perfect-prognosis
methods (Bedia et al., 2013, see Sec. 2.1) or bias-adjustment tools (Abatzoglou & Brown,
2012; Casanueva et al., 2018). In this case, there are three key aspects to focus on: (1)
the reproducibility of extremes, as they can substantially increase wildfire impacts (Turco
et al., 2018); (2) extrapolation capability is vital for predicting of out-of-sample values,
since fire danger conditions are expected to change drastically in many regions (Bedia
et al., 2015; Quilcaille et al., 2023), and (3) the ability to keep the predictand’s (FWI)
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spatial consistency is important to identify potentially hazardous fire risk scenarios af-
fecting a wide geographical area, thereby increasing the odds of “fire clusters” with catas-
trophic potential (San-Miguel-Ayanz et al., 2013).

While most standard SD methods show good performance in at least one of these
3 aspects (Maraun et al., 2019), none of them is able to effectively accomplish all of them.
In this context, the classical analog method (Lorenz, 1969; Zorita & von Storch, 1999;
Brands et al., 2011) is still a competitive benchmark due to its ability to model both the
extremes and the spatial structure (Widmann et al., 2019). However, if applied in its orig-
inal form (Zorita & von Storch, 1999), this method fails to extrapolate beyond observed
extremes, limiting its use for climate change applications (Bedia et al., 2013). In this sense,
regression-based models are the better choice since they allow for better extrapolation
(Bafio-Medina et al., 2021; Balmaceda-Huarte et al., 2023) but, on the downside, they
usually underestimate the extremes (Hertig et al., 2019). A further disadvantage of stan-
dard regression models (including Generalized Linear Models, GLMs) is their single-site
structure unable to effectively model the spatial dependencies of the predictand variable(s).
Other proposed alternatives combine the benefits of perfect-prog models and Weather
Generators (PP-WG, see e.g.: Cannon, 2008; Carreau & Vrac, 2011), allowing to esti-
mate the uncertainty of a local predictand variable and even to sample from the condi-
tional distributions to recover the variability of the time series. To date, however, and
with some exceptions (Legasa et al., 2023), most of these studies have focused on the es-
timation of uni-variate, single-site distributions, thereby not taking into account the spa-
tial structure of the predictand nor its relationships with other predictand variables.

In this regard, deep learning methods, and in particular Convolutional Neural Net-
works (CNNs, LeCun et al., 1995) may offer a suitable alternative to meet these require-
ments with an adequate tuning. CNNs perform convolutions with learnable kernels over
the spatial dimensions of atmospheric fields, inferring a non-linear mapping between low-
resolution predictor fields and high-resolution predicand fields that has been shown to
outperform conventional SD methods in many aspects (Bano-Medina et al., 2020). Re-
garding extrapolation ability, CNNs can produce plausible future climate change scenar-
ios (Bano-Medina et al., 2021), comparable to those provided by dynamical downscal-
ing (Bafio-Medina et al., 2022). For a better reproducibility of extremes, parametric-CNNs
(P-CNNs, Sec. 2.3) can estimate the parameters of conditional distributions given cer-
tain atmospheric conditions. As in the PP-WG approach, an adequate CNN architec-
ture is able to estimate the parameters of the whole joint (multi-site) probability struc-
ture of the covariance matrix and can coherently reproduce the spatial structure of the
predicted fire danger series across all predictand locations.

In this study we describe different CNN-based regression models for multi-site ex-
treme fire danger assessment under climate change conditions, based on Canadian Fire
Weather Index (van Wagner, 1987) records at 29 locations in Spain. We deploy three
alternative CNN topologies based on the PP-WG approach that estimate either uni-variate
or multi-variate Gaussian distributions on daily timescale. The validation is based on
specific measures of extreme reproducibility and spatial coherence, using classical SD meth-
ods (analogs and GLMs) as benchmark.

2 Data and Methods
2.1 Predictor set

Perfect-prognosis SD establishes empirical relationships between 1) the variabil-
ity of atmospheric variables operating on large scales, typically derived from a global re-
analysis with a resolution similar to that offered by current global climate models (Eyring
et al., 2016) and 2) the local-scale variability of the predictand of interest (here: FWTI)
as represented by in-situ observations or gridded observational datasets derived there-



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

from. Once the SD model is calibrated, the learnt relationships can be applied to GCM
(instead of reanalysis) predictors in order to derive local climate change projections if,
ideally, the following requirements are fulfilled: The predictor variables should be real-
istically represented by the GCMs (Fernandez-Granja et al., 2021; Brands, 2022; Brands
et al., 2023), should carry the climate change signal and be physically related with the
local variable. In addition, the SD model should be capable to extrapolate the learnt re-
lationships to altered/unobserved climate regimes (Gutiérrez et al., 2013). For the case
of FWI downscaling, the predictor selection under such non-perfect circumstances has
been explored in a previous study we built upon here (Bedia et al., 2013). Namely, we
use daily-mean 2m air temperature, the zonal and meridional wind velocity components
at 10m, as well as temperature and specific humidity a the 850 hPa pressure level, cov-
ering a spatial domain centered on the target region. These data have been retrieved from
ERA-Interim (Dee et al., 2011) for the period 1985-2011 (see Table A2).

2.2 Predictand: Fire Weather Index observations

The FWI is a multivariable index, and therefore the downscaling approach must
carefully consider the physical consistency of its input variables. When these are sep-
arately downscaled, inter-variable dependencies may be modified leading to spatio-temporal
inconsistencies in the simulated output fields that would affect the coherence of the out-
put FWI predictions (see e.g.: Vrac & Friederichs, 2015). This uncertainty source is here
circumvented by using the FWI index, rather than its components, as sole predictand
variable. To this end, in-situ observations from 29 weather stations of the Spanish Me-
teorological Agency (AEMET) were obtained, recording the required data for FWT cal-
culation. The AEMET dataset provides instantaneous values of temperature, relative
humidity and wind speed at 13:00 UTC, and last 24-h accumulated precipitation, recorded
at 07:00 UTC. FWI calculation follows the methodology described by Bedia et al. (2013).
For an optimal dataset completeness, we consider the calibration period 1985-2011.

2.3 Convolutional Neural Networks

To identify the key factors of the FWI spatial structure, we deploy three CNN ar-
chitectures of increasing topological complexity (see Fig. 1). The backbone of these topolo-
gies builds on well tested CNNs known to outperform both analogs and GLMs in tem-
perature and precipitation downscaling (Bano-Medina et al., 2020). The hidden struc-
ture consists of 3 convolutional layers followed by two fully-connected ones. The convo-
lutional layers consist of a block of three layers with 50, 25, and 10 (3x3) kernels respec-
tively, while the fully-connected (dense) layers each contain 50 neurons for the CNN-Multi-
Site (CNN-MS) and CNN-Multi-Site-Gaussian (CNN-MSG) configuration, or 200 neu-
rons for the CNN-Multi-Site-Multi-Gaussian (CNN-MSMG) version (see Fig. 1). A non-
linear RelLU activation function is applied between the layers. The output, where we find
the main differences across models, is a dense fully-connected network with a linear ac-
tivation function in CNN-MSG and CNN-MSMG. In the case of CNN-MS, the output
layer consists of 29 neurons, each neuron corresponding to a point location (Table Al),
yielding deterministic FWI predictions at each site.

In order to improve the representation of FWI extremes, we introduce modifica-
tions to the P-CNN structures in CNN-MSG and CNN-MSMG. In CNN-MSG, the out-
put is modeled stochastically using an independent Gaussian distribution to estimate the
parameters of N (i, o) (mean and standard deviation respectively). Thus, for each of the
29 stations, two pairs of neurons are added to the output layer, one for each parameter.
CNN-MSMG, in turn, aims to estimate the parameters of a multivariate Gaussian dis-
tribution A (p, X). In this case, 1 denotes the mean and ¥ represents the covariance ma-
trix. Therefore, the output layer consists of a pair of neuron vectors, with sizes 29 and
464 respectively. The 29 neurons represent the p parameters, while the 464 neurons cor-
respond to the number of unique parameters estimated in the covariance matrix . The
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aim of this multivariate Gaussian setup is to describe the values at each location as a
correlated set, unlike the outcome of an independent Gaussian distribution, where the
predictions at each site are independent of each other. The general architecture scheme
for each P-CNN configuration is outlined in Fig. 1. To avoid model overfitting, ensure
robustness and optimize parameter tuning and CNN architectures, all SD models have
been fit following a cross-validation procedure comprising 4 temporal blocks spanning
the periods 1985-1991, 1992-1998, 1999-2004 and 2005-2011. The loss functions used are
the Mean Square Error (MSE) for CNN-MS, the negative log-likelihood of the indepen-
dent Gaussian distribution for CNN-MSG, and the negative log-likelihood of the mul-
tivariate Gaussian distribution for CNN-MSMG. The benchmark SD methods (analogs
and GLMSs) have been fitted following the same cross-validation scheme (see Appendix
B for additional details on these methods).

2.4 Validation

Here, the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), as
well as the quantile-quantile plot (QQ-plot), are used to validate the similarity of the tem-
poral sequence and empirical distribution between the downscaled and observed daily
FWI time series at a given station (Déqué, 2011). Apart from these classical marginal
validation metrics, the focus is put on spatial coherence, as outlined in the following.

2.4.1 Location Correlogram

To qualitatively evaluate whether the distinct SD methods are able to reproduce
the spatial correlation structure of the observed FWI, we use the location correlogram
(Herdin et al., 2005). Firstly, the n = 29 observed daily in-situ FWI time series from
the complete station network are correlated with each other for all possible combinations
(i.e. nx% pairs) using Spearman’s rank correlation coefficient and the resulting co-
efficients are plotted against the respective pairwise station distances. Then a local 2nd-
order polynomial (“loess”) is fitted to the scatter-plot, resulting in a curve that depicts
the spatial correlation structure of the observed FWI. As a quantitative summary mea-
sure, we use the correlation length (CL), defined as the geographical distance correspond-
ing to the point of intersection of a given correlation threshold with the fitted loess line.
A threshold of p = 0.4 has proven to be most suitable for characterizing the spatial FWI
structure in this study (Table Appendix C), and the overall results are robust to changes
in this choice. After applying the same method to the downscaled time series from each
of the thee SD methods, the CL bias between the simulated and observed spatial struc-
ture is calculated as an overall measure of the methods’ capability to reproduce the spa-

tial coherence of the observed FWI (Widmann et al., 2019).

2.4.2 Mutual information for FWI90

FWI extremes are particularly relevant for fire danger assessment. As a result, from
the spatial consistency point of view, the users of downscaled FWI values will be primar-
ily interested in a realistic representation of joint higher-percentile FWI exceedances among
locations (see e.g. Bedia et al., 2014). To this aim, Mutual Information (M) provides
a suitable measure of the dependence between two random variables X, Y (here, predic-
tions at two locations) that is unaffected by their marginal distributions and quantifies
the amount of mutual information between them (see e.g. Hlinka et al., 2013). For two
discrete random variables X and Y it is defined as:

MIEY) = X 5 o) o (A2 1)

22 pl=) - p(y)

MT is zero if the two events are independent, i.e. if p(X,Y) = p(X)-p(Y), non-negative
(MI(X,Y) > 0) and symmetric (MI(X,Y) = MI(Y, X)).
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CNN-MULTI-SITE Loss function: mean squared error
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Figure 1. Scheme of the convolutional neural network architecture used in this study. The
network includes a first block of three convolutional layers with 50, 25 and 10 (3x3) kernels, re-
spectively, followed by two fully connected dense layers with 50 or 200 neurons each, depending
on the model. For CNN-MSG and CNN-MSMG, the output is modeled through and independent
Gaussian distribution and a multivariate Gaussian distribution respectively, and the correspond-
ing parameters are estimated by the network, obtaining FWT as final product, either determinis-
tically (CNN-MS) or stochastically (CNN-MSG and CNN-MSMG). The output layer is activated

linearly while the previous layers of the network are activated non-linearly.

Here, we consider the binary variables X,Y at each location, stating whether the
FWI values z;, y; lie above or below the 90th percentile for each pair of locations. We
then calculate the MI for each pair of locations following the definition above (eq. 1).
As for the correlograms (Sec. 2.4.1), we plot each MI;; against the distance of the lo-
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cations 4, j and fit a degree-2 loess curve to the resulting scatter-plots. We then define
MI thresholds for calculating the MI lengths (MIL) in observations and for the differ-
ent downscaling methods. We use a MI threshold of 0.05, yielding results comparable
to those obtained from CL analysis , and focusing on the identification of potential new
information about each methods’ performance (Fig. C2). As in CL analysis, the MIL
biases are calculated as the difference between predicted and observed MILs.

3 Results

The results presented correspond to the generic June to September fire season, rep-
resentative of the Iberian Peninsula (JJAS, see e.g.: Bedia et al., 2014). It’s important
to highlight that the models were calibrated using the entire annual dataset. However,
a subset comprising the JJAS season was used to present the results relevant for fire dan-
ger assessment in this region. In the following subsections, we categorized the station
network into three groups based on proximity to the sea and general climate conditions:
Atlantic, Coastal Mediterranean, and Continental Mediterranean (see Table Al). The
suitability of this classification for FWI aggregation is confirmed by the results obtained
with the mutual information measure (Sec. 3.2.2).

3.1 Predictive accuracy and distributional similarity

In agreement with previous studies (Brands et al., 2011), the SD methods’ accu-
racy is generally lower at continental sites than near the coast. Overall, all methods per-
form similarly with regard to predictive accuracy, summarized in terms of the RMSE of
FWIQ0 predictions in Fig. C1 (Appendix C).

However, the distributional characteristics of the predictions differ largely among
methods. The quantile-quantile (QQ) plots shown in Fig. 2 compare the observed and
predicted empirical FWI distributions. While all methods perform well in predicting the
mean FWI, disparities emerge at higher percentiles, crucial for fire danger analysis. The
benchmarking analog approach produces best results for the right tail, closely followed
by multivariate CNN-MSMG, showing similar results across regions. Conversely, GLM
and CNN-MS consistently underestimate high percentile FWI events, failing to realis-
tically represent most dangerous situations. CNN-MSG also achieves good results, com-
parable to CNN-MSMG, but is outperformed by the latter in the Coastal Mediterranean
and Atlantic regions. Notably, in the Atlantic region, CNN-MSG unrealistically inflates
the highest FWI percentiles and underestimates most of the FWI distribution. On the
contrary, in the Continental Mediterranean region, CNN-MSG performs slightly better
than CNN-MSMG for higher percentiles.

In order to obtain a quantitative measure of distributional deviance with respect
to the observed distribution, we calculate the RMSE considering the differences between
predicted and observed quantiles of i) the entire FWI times series and ii) the FWI time
series values exceeding the station-specific 90th percentile (FWI90, Fig. 2). Excluding
the results for the analog method, lowest RMSE values for both indicators are obtained
either by CNN-MSG or CNN-MSMG. Regardless of the specific target region, the for-
mer approach demonstrates significantly better performance compared to the latter in
terms of FWI, and only exhibits a slight decrease in performance for FWI90. Specifically,
when emphasizing FWI90, the CNN-MS and GLM models exhibit noticeably poorer per-
formance compared to the analog benchmark. In contrast, the results for CNN-MSG and
CNN-MSMG models are considerably better in this regard.

Overall, the reference analog method performs best in representing the distribu-
tion of the daily FWI in most cases. CNN-MSG and CNN-MSMG perform slightly worse,
with CNN-MSG slightly overemphasizing severe FWI frequencies in the Atlantic region.
The analog method performs best overall, but it’s applicability in climate changes stud-
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ies is limited due to its inability to extrapolate predictions outside the observed range.
Conversely, both CNN-MSG and CNN-MSMG are competitive alternative methods in
terms of distributional similarity. In the Secs. 3.2.1 and 3.2.2, we assess whether these
conclusions hold for the spatial structure of the simulated mean and extreme FWI fields.
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Figure 2. FWI RMSE per station and method (a) and Q-Q plots for the analog method,
GLMs and the distinct CNN models (b - d). The figure is divided into 4 panels. The (a) panel
refers to the RMSE for the simulated FWI per station and method distinguishing the regions by
symbols. The remaining panels refer to the station subsets of (b) the Continental Mediterranean,
(c) Coastal Mediterranean and (d) Atlantic regions. The method-specific distributional RMSE for
the simulated FWI and FWI90 are indicated in the upper left corners of each panel and the best
performing method is marked with an asterisk (excluding the benchmarking analog method).

The dashed vertical line indicates the observed FWI90.

3.2 Spatial validation results
3.2.1 Dependence of inter-station relationships on distance

The temporal correlation coefficients’ dependence on distance, analyzed as described
in Sec. 3, is depicted in Fig. 3. As expected, the observed strength of the relations de-
creases exponentially with increasing distance between the stations and stabilizes around
rho = 0.1, the CL for p = 0.4 being located at 208.30 km (panel a), grey curve). The
corresponding point clouds and polynomials for the SD methods are depicted in red in
panels b) through f), where the respective validation measures are also indicated (see
upper right corners and also Appendix C). The exponential decay seen in the observa-
tions is reproduced more or less successfully by all SD methods except CNN-MSG, that
produces far too weak short distance relationships, failing to reproduce any spatial struc-
ture in the data. The analog method is, as expected, most successful in reproducing the
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observed correlation structure, closely followed by CNN-MSMG, while GLM and CNN-
MS consistently overestimate pairwise correlations. Among the suitable methods (i.e.
excluding CNN-MSG), the medium-to-long-distance correlations are overestimated by
all methods, particularly by GLM and CNN-MS. The stronger short-distance correla-
tions are also generally overestimated, but to a lesser degree, and they are almost per-
fectly met by the analog method and closely approximated by CNN-MSMG.

a) AEMET Observation b) Analogs c) GLM
1.0 . 1.0 . . 1.0 "
Correlation length: 208.298 Correlation length bias: 11.679 Correlation length bias: 211.369
MAE: 0.031 MAE: 0.166
0.8 1 0.8 0.8 1
0.6 0.6 0.6
0.4 o ---mmm=3hemn e e 0.4 4---=--> 0.4+-
0.2 1 0.2 1 0.2 1
0.04 0.04 0.04
-0.2 -0.2 -0.2
s
g 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
©
=
8 d) CNN-Multi-Site e) CNN-Multi-Site-Gaussian f) CNN-Multi-Site-Multi-Gaussian
1.0 . . 1.0 " . 1.0 " .
Correlation length bias: 285.91 Correlation length bias: NA Correlation length bias: 68.63
MAE: 0.213 1 MAE: 0.093 MAE: 0.07

0.8 0.8 1

0.6 0.6 \
L 0.4
0.2 0.2
0.0 0.0 0.0
-02 -02 -02
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

Distance [km]

Figure 3. Correlograms illustrating the daily JJAS FWI dependence of the inter-station re-
lationships, described by the Spearman correlation coefficients among all station pairs (y-axis),
against their respective distances in kilometers (x-axis). The correlograms correspond to the
observations (panel a) and to each SD method tested (panels b to f); the grey loess line of the
observations correlogram is included in all panels for visual comparison. It is also displayed the
observed Correlation Length (CL, panel a)) and the CL bias and MAE for each SD method (in
panels b to f). Here, the MAE is calculated as the difference (in absolute value) between pre-

dicted and observed correlation coefficients for each station pair.

3.2.2 Mutual information for fire weather extremes

In Fig. 4 (upper panel), we present the mutual information (MI) values obtained
from the observational network in the upper triangle (al), compared with those produced
by CNN-MSMG, the best performing SD method for this metric (the benchmarking ana-
log method is excluded), in the lower triangle (a2). The stations are grouped into char-
acteristic climate regimes as described in Sec. 3.1. Geographical proximity translates into
higher MI values, as the case of Vigo and Santiago de Compostela (NW Iberia, M1 =
0.11), Barajas and Retiro (Madrid, central Spain, M1 = 0.14), or Valencia and Valencia-
Airport (SE, Mediterranean coast, M I = 0.13). Furthermore, several climatologically
homogeneous regions can be identified in the matrix, yielding visually discernible clus-
ters of high MI values, e.g. the Soria-Valladolid-Salamanca-Zamora cluster pertaining
to the central-north Iberian high plains. The MI pattern obtained from CNN-MSMG
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is similar to that seen in observations and is thus approximately symmetric (compare
Fig. 4-a2 with al). Nevertheless, CNN-MSMG somewhat overestimates the spatial de-
pendencies, indicated by slightly higher MI values than those obtained from observations,
and also reflected by regional clusters not seen in observations (e.g. Ciudad Real, Bada-
joz and Granada).

In Fig. 4b and c, we illustrate the MI biases relative to the observations for CNN-
MS and CNN-MSG (b1, b2), as well as for CNN-MSMG and GLM (c1, ¢2). We focus
on station pairs with MI values > 0.05 in observations, thus discarding already inde-
pendent station pairs (blank matrix cells). Since the MI bias of the analog method is neg-
ligible for all station pairs, the corresponding results are shown in Appendix Appendix
C. The MI bias of CNN-MSMG is below the 0.05 threshold for most station pairs, with
a few exceptions with both positive or negative values (Fig. 4cl). CNN-MS exhibits a
consistent positive bias, consistently overestimating the spatial dependence of extreme
FWI events (Fig. 4b1l). CNN-MSG, in turn, systematically underestimates these depen-
dencies (Fig. 4b2), yielding a lower bias magnitude than for CNN-MS. The GLM ap-
proach tends to overestimate these dependencies, albeit to a lesser extent than CNN-MS
(compare Fig. 4¢2 with bl).
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Figure 4. MI matrices for FWI90 events during the fire season (JJAS) obtained from observa-

tions (upper triangle in upper panel, al) and from the best performing SD model (CNN-MSMG,

lower triangle in upper panel, a2). Panels b an ¢ show the MI biases for 4 remaining SD methods
with respect to the observations (bl: CNN-MS, b2: CNN-MSG, cl: CNN-MSMG, c¢2: GLM). In

b and ¢ panels, only station pairs with MI > 0.05 in the observations are shown.
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4 Conclusions

We conducted a comprehensive comparison of various Convolutional Neural Net-
work (CNN) architectures in contrast to two established statistical downscaling (SD) meth-
ods, specifically Generalized Linear Models (GLMs) and analogs. Our assessment focused
on evaluating their performance in terms of predictive accuracy, distributional congru-
ence, and spatial coherence for Fire Weather Index (FWI) predictions across 29 locations
in Spain.

Among the diverse CNN architectures scrutinized, CNN-MSMG demonstrated the
most favorable outcomes across these validation criteria. This setup considers the mul-
tivariate nature of the predictions in the output layer yielding a predicted covariance ma-
trix that explicitly accounts for the inter-site variability. It exhibited a notable capac-
ity to accurately represent observed FWI distributions at both single-point and multi-
site scales, closely aligning with the outcomes of the benchmarking analogs method. No-
tably, the analogs method, by design, upholds multisite spatial consistency without al-
teration, at the cost of limitations for extrapolation in climate change conditions that
can be overcome by the rest of methods tested. In contrast CNN-MS (multisite CNN)
and GLMs yielded poorer predictive accuracy and consistently overestimated the spa-
tial dependence among sites. In turn, CNN-MSG (multisite Gaussian) attained good re-
sults in terms of single-site validation, but proved inefficient in modelling the spatial struc-
ture, essentially behaving like a single-site weather generator.

The results presented emphasize the importance of parameter tuning for CNN de-
velopment in the context of statistical downscaling in order to produce credible predic-
tions. In the particular case of FWI, an adequate tuning is needed in order to ensure ac-
tionable climate information for the prevention of wildfire impacts, and this study pro-
vides a methodological guidance for the successful application of CNNs to this aim.

5 Open Research

We follow the FAIR principles (Findability, Accesibility, Interoperability and Reuse,
Wilkinson et al. (2016)) and publish the code (DOI: 10.5281/zenodo.8387558) and the
data (DOI: 10.5281/zenodo.8381437) required to replicate the results presented in this
manuscript. We build on the R based (R Core Team, 2020) framework climate4R (Itur-
bide et al., 2019) to digest, manipulate, downscale (see also Bedia et al., 2020) and vi-
sualize (Frias et al., 2018) the climate data. For the deep learning models, we lean on
downscaleR.keras, a library that integrates tensorflow (Abadi et al., 2015) and keras (Gulli
& Pal, 2017) into the climate/R framework (Bano-Medina et al., 2020).
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Appendix A Input Data

Table Al is a summary of the AEMET weather station database. We also indicate
their corresponding climatic zone, according to the spatial aggregation summarizing the
results in Sec. 3.1 of the main text. The Short name column indicates the abbreviated
labels used throughout the article figures.

Station name Short name Lon Lat  Altitude Climatic region
REUS-AEROPUERTO REUS 1.18 41.15 71 COASM
SANTIAGO DE COMPOSTELA-LABACOLLA S.COMP -841 42.89 370 ATL
VIGO-PEINADOR VIGO -8.62 42.24 261 ATL
SORIA SORIA -2.48 41.77 1082 CONTM
VALLADOLID VALLADOLID -4.75 41.64 735 CONTM
ZAMORA ZAMORA -5.73 41.52 656 CONTM
LEON-VIRGEN DEL CAMINO LEON -5.65 42.59 916 CONTM
SALAMANCA-MATACAN SALAMANCA -5.50 40.96 790 CONTM
MADRID-BARAJAS BARAJAS -3.56 40.47 609 CONTM
MADRID-RETIRO RETIRO -3.68 40.41 667 CONTM
CIUDAD REAL C.REAL -3.92 3899 628 CONTM
BADAJOZ-TALAVERA LA REAL BADAJOZ -6.81 38.88 185 CONTM
GRANADA-AEROPUERTO GRANADA -3.79 37.19 567 CONTM
SEVILLA-SAN PABLO SEVILLA -5.88 37.42 34 COASM
MORON DE LA FRONTERA MORON -5.61 37.16 87 COASM
JEREZ DE LA FRONTERA-AEROPUERTO JEREZ -6.06 36.75 27 COASM
ALMERIA-AEROPUERTO ALMERIA -2.36 36.85 21 COASM
MURCIA-SAN JAVIER MURCIA -0.80 37.79 4 COASM
ALICANTE-EL ALTET ALTET -057 38.28 43 COASM
ALICANTE ALICANTE -0.49 38.37 81 COASM
CUENCA CUENCA -2.14 40.07 945 CONTM
VALENCIA-AEROPUERTO VAL. AER. -0.47 39.49 69 COASM
VALENCIA VALENCIA -0.37 39.48 11 COASM
LOGRONO-AGONCILLO LOGRONO -2.33 4245 353 CONTM
DAROCA DAROCA -1.41 41.11 779 CONTM
TORTOSA TORTOSA 049 40.82 44 COASM
PALMA DE MALLORCA-SON SAN JUAN MALLORCA 274 39.56 8 COASM
MENORCA-MAO MENORCA  4.22 39.85 91 COASM
IBIZA/ES CODOLA IBIZA 1.38 38.88 6 COASM

Table A1l. Selected stations of the Spanish AEMET network, indicating their position in
decimal degrees and meters above sea level (Datum WGS-84). The abbreviations correspond-
ing to the climatic regions in the column are as follows: ATL for Atlantic, COASM for Coastal
Mediterranean, and CONTM for Continental Mediterranean.

Table A2 provides a summary of the reanalysis fields used as predictors in this study.
The predictor set has been chosen following the methodology for FWI downscaling pre-
sented by Bedia et al. (2013), but replacing relative humidity by specific humidity, the
former being not directly available in some model simulation databases. The spatial ex-
tent of these fields covers a bounding box centered over the Iberian Peninsula, limited
by the geographical coordinates —10°/15°E, 35°/45°N.

Appendix B Benchmarking SD methods

We next provide further methodological details on the standard SD methods used
as benchmarks in this study. Both are implemented in the R package downscaleR (Be-
dia et al., 2020), part of the climate4R framework for climate data analysis and visual-
ization (Iturbide et al., 2019, https://github.com/SantanderMetGroup/climate4R).
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Code Name units

T2M Air Temperature at surface K
T850 Air Temperature at 850 hPa K
HUS850  Specific humidity at 850 hPa gkg!
UA850  U-wind at 850 hPa ms—!
VAS850 V-wind at 850 hPa ms—!

Table A2. Predictor variables used in this study, selected from the predictor combination
proposed for statistical downscaling of FWI in Bedia et al. (2013). Note that for convenience,
relative humidity at 850 hPa has been replaced by specific humidity, more commonly available in
GCM datasets. All fields are daily mean values.

B1 Generalized lineal models

GLMs (Nelder & Wedderburn, 1972) are an extension of the classical linear regres-
sion that models the expected value of a random predictand variable for different types
of probability distributions and link functions. This makes them a versatile tool for mod-
eling a wide range of data types and situations, and therefore extensively used in SD ap-
plications (see e.g.: Chandler & Wheater, 2002; Gutiérrez et al., 2019). Here, the response
variable is assumed to follow a Gaussian distribution. The relationship between the lin-
ear predictor g(u) and the expected value of FWI is defined by the identity link func-
tion, so the linear predictor directly models the mean FWI, where g(u) is defined as g(p) =
X3, where X is the design matrix containing the predictor variables (Sec. 2.1), and 3
is the vector of coefficients, estimated by maximum likelihood based on the probability
density function of the Gaussian distribution using a least-squares iterative algorithm
implemented in the R package stats(R Core Team, 2020). Furthermore, predictor con-
figuration is such that only local information is used for training at each site. Here, an
optimal number of 16 closest grid-points to each predictand point-location are retained
to construct the local predictor set (Bedia et al., 2020), after testing different neighbour-
hood sizes using cross-validation (Sec. 2.3).

B2 Analogs

The analog method is a simple yet powerful downscaling technique which assumes
that similar (or analog) atmospheric patterns (predictor set X) over a region originates
similar local meteorological outcomes (daily FWI) for a particular location or set of lo-
cations (Sec. 2.2). In this study, we use the standard deterministic nearest neighbor method
analog technique based on the Euclidean distance, considering the complete fields to com-
pute distances and only the first closest nearest closest analog for prediction (San-Martin
et al., 2016), similar to the standard ‘ANALOG’ method of the VALUE intercompar-
ison experiment (described in Gutiérrez et al., 2019, A.2), and considering the implemen-
tation described in Bedia et al. (2020). Note that using the complete fields as predictors
ensures the maximum spatial coherence of the predictions among stations, since the same
analog dates are chosen in each case for every point-location (see e.g. Widmann et al.,
2019).
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300 This section contains additional results as indicated in the figure captions.
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Figure C1l. RMSE for the simulated FWI90 per station and method distinguishing the re-
gions by symbols.

CL MIL  CL Bias MIL Bias
AEMET_13UTC_FWI 208.30 168.22

Analogs 11.68 -2.45
CNN-MS 285.91 259.81
CNN-MSG NA NA
CNN-MSMG 68.63 119.67
GLM 211.37 146.92

Table C1. The columns display the CL and MIL values for the reference observations, as well
as the CL and MIL biases for the models, measured in kilometers (km). The lowest CL and MIL
biases (excluding the benchmarking analogs method) are highlighted in boldface.
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Mutual Information diagrams for FWI90 for fire season (JJAS) showing the mu-

tual information of the FWI90 time series for each pair of stations against their geographical

distances. The MI and MI length for the reference observations are shown in the upper left panel.

In the rest of the panels, the MI length bias and the MAE are indicated at the top right of the

panel.
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Key Points:

+ Convolutional neural networks (CNNs) are compared with classical statistical down-
scaling methods for Fire Weather Index (FWI) prediction.

¢ The best CNN setup provides balanced results for all validation metrics, includ-
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+ Our findings provide a methodological basis for the development of more robust,
spatially coherent regional future FWI scenarios.
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Abstract

The accurate prediction of the Fire Weather Index (FWI), a multivariate climate
index for wildfire risk characterization, is crucial for both wildfire management and climate-
resilient planning. Moreover, consistent multisite fire danger predictions are key for tar-
geted allocation of resources and early intervention in high-risk areas, as well as for “megafire’
risk detection. In this regard, Convolutional Neural Networks (CNNs) are known to cap-
ture complex spatial patterns in climate data. This study compares different CNN ar-
chitectures and traditional Statistical Downscaling (SD) methods (regression and analogs)
for predicting daily FWI across diverse locations in Spain, considering marginal, distri-
butional and spatial coherence measures for validation. Overall, the CNN-Multi-Site-Multi-
Gaussian configuration, which explicitly accounts for the inter-site variability in the out-
put layer structure, showed a superior performance. These insights provide a method-
ological guidance for the successful application of CNNs in the context wildfire risk as-
sessment, enhancing wildfire response strategies and climate adaptation planning.

i

Keywords: deep learning, statistical downscaling, Generalized Linear Models, analogs,
spatial structure, future wildfire risk assessment.

Plain Language Summary

This study focuses on the Fire Weather Index (FWT), a pivotal climate index for
the assessment of wildfire risk. Accurate FWI predictions are vital for wildfire manage-
ment. This study explores the viability of employing Convolutional Neural Networks (CNNs)
as a Statistical Downscaling (SD) technique for precise FWI prediction across diverse
locations in Spain in comparison with two conventional SD methodologies: Generalized
Linear Models and analogs. Following a cross-validation scheme based on observed daily
FWI data, we find that the CNN-Multi-Site-Multi-Gaussian (CNN-MSMG) configura-
tion exhibits noteworthy proficiency in daily FWI prediction. This model explicitly in-
corporates the covariance structure of the predictands into the CNN architecture, yield-
ing spatially consistent FWI predictions. Furthermore, CNN-MSMG has optimal prop-
erties for use in the context of climate change, providing a robust replication of extreme
events and extrapolation capabilities if applied to novel climate scenarios. These find-
ings have substantial implications for improving regional-to-local FWI scenarios used to
inform vulnerability and impact assessment studies.

1 Introduction

Climate fire danger indices are key to assess and predict the risk of wildfire occur-
rence and severity. They are based on the integration of daily near-surface temperature,
humidity, wind speed and precipitation records (de Groot et al., 2006), and thus provide
more accurate wildfire risk forecasts than their input variables alone (see e.g. Dowdy et
al., 2009; Fugioka et al., 2009). Beyond the near-term prediction horizon, fire danger in-
dices are also useful to monitor changes in wildfire risk over time. As a result, downscaled
fire danger scenarios are essential for vulnerability and adaptation strategies in regional
to local applications, since General Circulation Model (GCM) outputs (Eyring et al., 2016)
can’t provide actionable climate information at these spatial scales (Giorgi et al., 2009).
Given their suitability for most impact studies, statistical downscaling (SD, Maraun &
Widmann, 2018) of future fire weather scenarios is often required, including perfect-prognosis
methods (Bedia et al., 2013, see Sec. 2.1) or bias-adjustment tools (Abatzoglou & Brown,
2012; Casanueva et al., 2018). In this case, there are three key aspects to focus on: (1)
the reproducibility of extremes, as they can substantially increase wildfire impacts (Turco
et al., 2018); (2) extrapolation capability is vital for predicting of out-of-sample values,
since fire danger conditions are expected to change drastically in many regions (Bedia
et al., 2015; Quilcaille et al., 2023), and (3) the ability to keep the predictand’s (FWI)
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spatial consistency is important to identify potentially hazardous fire risk scenarios af-
fecting a wide geographical area, thereby increasing the odds of “fire clusters” with catas-
trophic potential (San-Miguel-Ayanz et al., 2013).

While most standard SD methods show good performance in at least one of these
3 aspects (Maraun et al., 2019), none of them is able to effectively accomplish all of them.
In this context, the classical analog method (Lorenz, 1969; Zorita & von Storch, 1999;
Brands et al., 2011) is still a competitive benchmark due to its ability to model both the
extremes and the spatial structure (Widmann et al., 2019). However, if applied in its orig-
inal form (Zorita & von Storch, 1999), this method fails to extrapolate beyond observed
extremes, limiting its use for climate change applications (Bedia et al., 2013). In this sense,
regression-based models are the better choice since they allow for better extrapolation
(Bafio-Medina et al., 2021; Balmaceda-Huarte et al., 2023) but, on the downside, they
usually underestimate the extremes (Hertig et al., 2019). A further disadvantage of stan-
dard regression models (including Generalized Linear Models, GLMs) is their single-site
structure unable to effectively model the spatial dependencies of the predictand variable(s).
Other proposed alternatives combine the benefits of perfect-prog models and Weather
Generators (PP-WG, see e.g.: Cannon, 2008; Carreau & Vrac, 2011), allowing to esti-
mate the uncertainty of a local predictand variable and even to sample from the condi-
tional distributions to recover the variability of the time series. To date, however, and
with some exceptions (Legasa et al., 2023), most of these studies have focused on the es-
timation of uni-variate, single-site distributions, thereby not taking into account the spa-
tial structure of the predictand nor its relationships with other predictand variables.

In this regard, deep learning methods, and in particular Convolutional Neural Net-
works (CNNs, LeCun et al., 1995) may offer a suitable alternative to meet these require-
ments with an adequate tuning. CNNs perform convolutions with learnable kernels over
the spatial dimensions of atmospheric fields, inferring a non-linear mapping between low-
resolution predictor fields and high-resolution predicand fields that has been shown to
outperform conventional SD methods in many aspects (Bano-Medina et al., 2020). Re-
garding extrapolation ability, CNNs can produce plausible future climate change scenar-
ios (Bano-Medina et al., 2021), comparable to those provided by dynamical downscal-
ing (Bafio-Medina et al., 2022). For a better reproducibility of extremes, parametric-CNNs
(P-CNNs, Sec. 2.3) can estimate the parameters of conditional distributions given cer-
tain atmospheric conditions. As in the PP-WG approach, an adequate CNN architec-
ture is able to estimate the parameters of the whole joint (multi-site) probability struc-
ture of the covariance matrix and can coherently reproduce the spatial structure of the
predicted fire danger series across all predictand locations.

In this study we describe different CNN-based regression models for multi-site ex-
treme fire danger assessment under climate change conditions, based on Canadian Fire
Weather Index (van Wagner, 1987) records at 29 locations in Spain. We deploy three
alternative CNN topologies based on the PP-WG approach that estimate either uni-variate
or multi-variate Gaussian distributions on daily timescale. The validation is based on
specific measures of extreme reproducibility and spatial coherence, using classical SD meth-
ods (analogs and GLMs) as benchmark.

2 Data and Methods
2.1 Predictor set

Perfect-prognosis SD establishes empirical relationships between 1) the variabil-
ity of atmospheric variables operating on large scales, typically derived from a global re-
analysis with a resolution similar to that offered by current global climate models (Eyring
et al., 2016) and 2) the local-scale variability of the predictand of interest (here: FWTI)
as represented by in-situ observations or gridded observational datasets derived there-
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from. Once the SD model is calibrated, the learnt relationships can be applied to GCM
(instead of reanalysis) predictors in order to derive local climate change projections if,
ideally, the following requirements are fulfilled: The predictor variables should be real-
istically represented by the GCMs (Fernandez-Granja et al., 2021; Brands, 2022; Brands
et al., 2023), should carry the climate change signal and be physically related with the
local variable. In addition, the SD model should be capable to extrapolate the learnt re-
lationships to altered/unobserved climate regimes (Gutiérrez et al., 2013). For the case
of FWI downscaling, the predictor selection under such non-perfect circumstances has
been explored in a previous study we built upon here (Bedia et al., 2013). Namely, we
use daily-mean 2m air temperature, the zonal and meridional wind velocity components
at 10m, as well as temperature and specific humidity a the 850 hPa pressure level, cov-
ering a spatial domain centered on the target region. These data have been retrieved from
ERA-Interim (Dee et al., 2011) for the period 1985-2011 (see Table A2).

2.2 Predictand: Fire Weather Index observations

The FWI is a multivariable index, and therefore the downscaling approach must
carefully consider the physical consistency of its input variables. When these are sep-
arately downscaled, inter-variable dependencies may be modified leading to spatio-temporal
inconsistencies in the simulated output fields that would affect the coherence of the out-
put FWI predictions (see e.g.: Vrac & Friederichs, 2015). This uncertainty source is here
circumvented by using the FWI index, rather than its components, as sole predictand
variable. To this end, in-situ observations from 29 weather stations of the Spanish Me-
teorological Agency (AEMET) were obtained, recording the required data for FWT cal-
culation. The AEMET dataset provides instantaneous values of temperature, relative
humidity and wind speed at 13:00 UTC, and last 24-h accumulated precipitation, recorded
at 07:00 UTC. FWI calculation follows the methodology described by Bedia et al. (2013).
For an optimal dataset completeness, we consider the calibration period 1985-2011.

2.3 Convolutional Neural Networks

To identify the key factors of the FWI spatial structure, we deploy three CNN ar-
chitectures of increasing topological complexity (see Fig. 1). The backbone of these topolo-
gies builds on well tested CNNs known to outperform both analogs and GLMs in tem-
perature and precipitation downscaling (Bano-Medina et al., 2020). The hidden struc-
ture consists of 3 convolutional layers followed by two fully-connected ones. The convo-
lutional layers consist of a block of three layers with 50, 25, and 10 (3x3) kernels respec-
tively, while the fully-connected (dense) layers each contain 50 neurons for the CNN-Multi-
Site (CNN-MS) and CNN-Multi-Site-Gaussian (CNN-MSG) configuration, or 200 neu-
rons for the CNN-Multi-Site-Multi-Gaussian (CNN-MSMG) version (see Fig. 1). A non-
linear RelLU activation function is applied between the layers. The output, where we find
the main differences across models, is a dense fully-connected network with a linear ac-
tivation function in CNN-MSG and CNN-MSMG. In the case of CNN-MS, the output
layer consists of 29 neurons, each neuron corresponding to a point location (Table Al),
yielding deterministic FWI predictions at each site.

In order to improve the representation of FWI extremes, we introduce modifica-
tions to the P-CNN structures in CNN-MSG and CNN-MSMG. In CNN-MSG, the out-
put is modeled stochastically using an independent Gaussian distribution to estimate the
parameters of N (i, o) (mean and standard deviation respectively). Thus, for each of the
29 stations, two pairs of neurons are added to the output layer, one for each parameter.
CNN-MSMG, in turn, aims to estimate the parameters of a multivariate Gaussian dis-
tribution A (p, X). In this case, 1 denotes the mean and ¥ represents the covariance ma-
trix. Therefore, the output layer consists of a pair of neuron vectors, with sizes 29 and
464 respectively. The 29 neurons represent the p parameters, while the 464 neurons cor-
respond to the number of unique parameters estimated in the covariance matrix . The
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aim of this multivariate Gaussian setup is to describe the values at each location as a
correlated set, unlike the outcome of an independent Gaussian distribution, where the
predictions at each site are independent of each other. The general architecture scheme
for each P-CNN configuration is outlined in Fig. 1. To avoid model overfitting, ensure
robustness and optimize parameter tuning and CNN architectures, all SD models have
been fit following a cross-validation procedure comprising 4 temporal blocks spanning
the periods 1985-1991, 1992-1998, 1999-2004 and 2005-2011. The loss functions used are
the Mean Square Error (MSE) for CNN-MS, the negative log-likelihood of the indepen-
dent Gaussian distribution for CNN-MSG, and the negative log-likelihood of the mul-
tivariate Gaussian distribution for CNN-MSMG. The benchmark SD methods (analogs
and GLMSs) have been fitted following the same cross-validation scheme (see Appendix
B for additional details on these methods).

2.4 Validation

Here, the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), as
well as the quantile-quantile plot (QQ-plot), are used to validate the similarity of the tem-
poral sequence and empirical distribution between the downscaled and observed daily
FWI time series at a given station (Déqué, 2011). Apart from these classical marginal
validation metrics, the focus is put on spatial coherence, as outlined in the following.

2.4.1 Location Correlogram

To qualitatively evaluate whether the distinct SD methods are able to reproduce
the spatial correlation structure of the observed FWI, we use the location correlogram
(Herdin et al., 2005). Firstly, the n = 29 observed daily in-situ FWI time series from
the complete station network are correlated with each other for all possible combinations
(i.e. nx% pairs) using Spearman’s rank correlation coefficient and the resulting co-
efficients are plotted against the respective pairwise station distances. Then a local 2nd-
order polynomial (“loess”) is fitted to the scatter-plot, resulting in a curve that depicts
the spatial correlation structure of the observed FWI. As a quantitative summary mea-
sure, we use the correlation length (CL), defined as the geographical distance correspond-
ing to the point of intersection of a given correlation threshold with the fitted loess line.
A threshold of p = 0.4 has proven to be most suitable for characterizing the spatial FWI
structure in this study (Table Appendix C), and the overall results are robust to changes
in this choice. After applying the same method to the downscaled time series from each
of the thee SD methods, the CL bias between the simulated and observed spatial struc-
ture is calculated as an overall measure of the methods’ capability to reproduce the spa-

tial coherence of the observed FWI (Widmann et al., 2019).

2.4.2 Mutual information for FWI90

FWI extremes are particularly relevant for fire danger assessment. As a result, from
the spatial consistency point of view, the users of downscaled FWI values will be primar-
ily interested in a realistic representation of joint higher-percentile FWI exceedances among
locations (see e.g. Bedia et al., 2014). To this aim, Mutual Information (M) provides
a suitable measure of the dependence between two random variables X, Y (here, predic-
tions at two locations) that is unaffected by their marginal distributions and quantifies
the amount of mutual information between them (see e.g. Hlinka et al., 2013). For two
discrete random variables X and Y it is defined as:

MIEY) = X 5 o) o (A2 1)

22 pl=) - p(y)

MT is zero if the two events are independent, i.e. if p(X,Y) = p(X)-p(Y), non-negative
(MI(X,Y) > 0) and symmetric (MI(X,Y) = MI(Y, X)).



214

215

216

217
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Figure 1. Scheme of the convolutional neural network architecture used in this study. The
network includes a first block of three convolutional layers with 50, 25 and 10 (3x3) kernels, re-
spectively, followed by two fully connected dense layers with 50 or 200 neurons each, depending
on the model. For CNN-MSG and CNN-MSMG, the output is modeled through and independent
Gaussian distribution and a multivariate Gaussian distribution respectively, and the correspond-
ing parameters are estimated by the network, obtaining FWT as final product, either determinis-
tically (CNN-MS) or stochastically (CNN-MSG and CNN-MSMG). The output layer is activated

linearly while the previous layers of the network are activated non-linearly.

Here, we consider the binary variables X,Y at each location, stating whether the
FWI values z;, y; lie above or below the 90th percentile for each pair of locations. We
then calculate the MI for each pair of locations following the definition above (eq. 1).
As for the correlograms (Sec. 2.4.1), we plot each MI;; against the distance of the lo-
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cations 4, j and fit a degree-2 loess curve to the resulting scatter-plots. We then define
MI thresholds for calculating the MI lengths (MIL) in observations and for the differ-
ent downscaling methods. We use a MI threshold of 0.05, yielding results comparable
to those obtained from CL analysis , and focusing on the identification of potential new
information about each methods’ performance (Fig. C2). As in CL analysis, the MIL
biases are calculated as the difference between predicted and observed MILs.

3 Results

The results presented correspond to the generic June to September fire season, rep-
resentative of the Iberian Peninsula (JJAS, see e.g.: Bedia et al., 2014). It’s important
to highlight that the models were calibrated using the entire annual dataset. However,
a subset comprising the JJAS season was used to present the results relevant for fire dan-
ger assessment in this region. In the following subsections, we categorized the station
network into three groups based on proximity to the sea and general climate conditions:
Atlantic, Coastal Mediterranean, and Continental Mediterranean (see Table Al). The
suitability of this classification for FWI aggregation is confirmed by the results obtained
with the mutual information measure (Sec. 3.2.2).

3.1 Predictive accuracy and distributional similarity

In agreement with previous studies (Brands et al., 2011), the SD methods’ accu-
racy is generally lower at continental sites than near the coast. Overall, all methods per-
form similarly with regard to predictive accuracy, summarized in terms of the RMSE of
FWIQ0 predictions in Fig. C1 (Appendix C).

However, the distributional characteristics of the predictions differ largely among
methods. The quantile-quantile (QQ) plots shown in Fig. 2 compare the observed and
predicted empirical FWI distributions. While all methods perform well in predicting the
mean FWI, disparities emerge at higher percentiles, crucial for fire danger analysis. The
benchmarking analog approach produces best results for the right tail, closely followed
by multivariate CNN-MSMG, showing similar results across regions. Conversely, GLM
and CNN-MS consistently underestimate high percentile FWI events, failing to realis-
tically represent most dangerous situations. CNN-MSG also achieves good results, com-
parable to CNN-MSMG, but is outperformed by the latter in the Coastal Mediterranean
and Atlantic regions. Notably, in the Atlantic region, CNN-MSG unrealistically inflates
the highest FWI percentiles and underestimates most of the FWI distribution. On the
contrary, in the Continental Mediterranean region, CNN-MSG performs slightly better
than CNN-MSMG for higher percentiles.

In order to obtain a quantitative measure of distributional deviance with respect
to the observed distribution, we calculate the RMSE considering the differences between
predicted and observed quantiles of i) the entire FWI times series and ii) the FWI time
series values exceeding the station-specific 90th percentile (FWI90, Fig. 2). Excluding
the results for the analog method, lowest RMSE values for both indicators are obtained
either by CNN-MSG or CNN-MSMG. Regardless of the specific target region, the for-
mer approach demonstrates significantly better performance compared to the latter in
terms of FWI, and only exhibits a slight decrease in performance for FWI90. Specifically,
when emphasizing FWI90, the CNN-MS and GLM models exhibit noticeably poorer per-
formance compared to the analog benchmark. In contrast, the results for CNN-MSG and
CNN-MSMG models are considerably better in this regard.

Overall, the reference analog method performs best in representing the distribu-
tion of the daily FWI in most cases. CNN-MSG and CNN-MSMG perform slightly worse,
with CNN-MSG slightly overemphasizing severe FWI frequencies in the Atlantic region.
The analog method performs best overall, but it’s applicability in climate changes stud-
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ies is limited due to its inability to extrapolate predictions outside the observed range.
Conversely, both CNN-MSG and CNN-MSMG are competitive alternative methods in
terms of distributional similarity. In the Secs. 3.2.1 and 3.2.2, we assess whether these
conclusions hold for the spatial structure of the simulated mean and extreme FWI fields.
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Figure 2. FWI RMSE per station and method (a) and Q-Q plots for the analog method,
GLMs and the distinct CNN models (b - d). The figure is divided into 4 panels. The (a) panel
refers to the RMSE for the simulated FWI per station and method distinguishing the regions by
symbols. The remaining panels refer to the station subsets of (b) the Continental Mediterranean,
(c) Coastal Mediterranean and (d) Atlantic regions. The method-specific distributional RMSE for
the simulated FWI and FWI90 are indicated in the upper left corners of each panel and the best
performing method is marked with an asterisk (excluding the benchmarking analog method).

The dashed vertical line indicates the observed FWI90.

3.2 Spatial validation results
3.2.1 Dependence of inter-station relationships on distance

The temporal correlation coefficients’ dependence on distance, analyzed as described
in Sec. 3, is depicted in Fig. 3. As expected, the observed strength of the relations de-
creases exponentially with increasing distance between the stations and stabilizes around
rho = 0.1, the CL for p = 0.4 being located at 208.30 km (panel a), grey curve). The
corresponding point clouds and polynomials for the SD methods are depicted in red in
panels b) through f), where the respective validation measures are also indicated (see
upper right corners and also Appendix C). The exponential decay seen in the observa-
tions is reproduced more or less successfully by all SD methods except CNN-MSG, that
produces far too weak short distance relationships, failing to reproduce any spatial struc-
ture in the data. The analog method is, as expected, most successful in reproducing the
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observed correlation structure, closely followed by CNN-MSMG, while GLM and CNN-
MS consistently overestimate pairwise correlations. Among the suitable methods (i.e.
excluding CNN-MSG), the medium-to-long-distance correlations are overestimated by
all methods, particularly by GLM and CNN-MS. The stronger short-distance correla-
tions are also generally overestimated, but to a lesser degree, and they are almost per-
fectly met by the analog method and closely approximated by CNN-MSMG.

a) AEMET Observation b) Analogs c) GLM
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Figure 3. Correlograms illustrating the daily JJAS FWI dependence of the inter-station re-
lationships, described by the Spearman correlation coefficients among all station pairs (y-axis),
against their respective distances in kilometers (x-axis). The correlograms correspond to the
observations (panel a) and to each SD method tested (panels b to f); the grey loess line of the
observations correlogram is included in all panels for visual comparison. It is also displayed the
observed Correlation Length (CL, panel a)) and the CL bias and MAE for each SD method (in
panels b to f). Here, the MAE is calculated as the difference (in absolute value) between pre-

dicted and observed correlation coefficients for each station pair.

3.2.2 Mutual information for fire weather extremes

In Fig. 4 (upper panel), we present the mutual information (MI) values obtained
from the observational network in the upper triangle (al), compared with those produced
by CNN-MSMG, the best performing SD method for this metric (the benchmarking ana-
log method is excluded), in the lower triangle (a2). The stations are grouped into char-
acteristic climate regimes as described in Sec. 3.1. Geographical proximity translates into
higher MI values, as the case of Vigo and Santiago de Compostela (NW Iberia, M1 =
0.11), Barajas and Retiro (Madrid, central Spain, M1 = 0.14), or Valencia and Valencia-
Airport (SE, Mediterranean coast, M I = 0.13). Furthermore, several climatologically
homogeneous regions can be identified in the matrix, yielding visually discernible clus-
ters of high MI values, e.g. the Soria-Valladolid-Salamanca-Zamora cluster pertaining
to the central-north Iberian high plains. The MI pattern obtained from CNN-MSMG
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is similar to that seen in observations and is thus approximately symmetric (compare
Fig. 4-a2 with al). Nevertheless, CNN-MSMG somewhat overestimates the spatial de-
pendencies, indicated by slightly higher MI values than those obtained from observations,
and also reflected by regional clusters not seen in observations (e.g. Ciudad Real, Bada-
joz and Granada).

In Fig. 4b and c, we illustrate the MI biases relative to the observations for CNN-
MS and CNN-MSG (b1, b2), as well as for CNN-MSMG and GLM (c1, ¢2). We focus
on station pairs with MI values > 0.05 in observations, thus discarding already inde-
pendent station pairs (blank matrix cells). Since the MI bias of the analog method is neg-
ligible for all station pairs, the corresponding results are shown in Appendix Appendix
C. The MI bias of CNN-MSMG is below the 0.05 threshold for most station pairs, with
a few exceptions with both positive or negative values (Fig. 4cl). CNN-MS exhibits a
consistent positive bias, consistently overestimating the spatial dependence of extreme
FWI events (Fig. 4b1l). CNN-MSG, in turn, systematically underestimates these depen-
dencies (Fig. 4b2), yielding a lower bias magnitude than for CNN-MS. The GLM ap-
proach tends to overestimate these dependencies, albeit to a lesser extent than CNN-MS
(compare Fig. 4¢2 with bl).

—10—



a <
5 o <
= O< oS W<
O« 29 «28N « $O == <
e Aax << o3 Ex < ZwoRSz =
= <=25,328992 %305 Or-Z<=0- 5N
QIS5 UGIarEoOIZ IO HrSIrs
OO0z TnIIWIOL T WIS 22owOnS
1 NSDSNINOTXOICHOAXSZEASIISSFNZES<
a
)
: - ALMERIA
s - JEREZ
B .‘ - MORO
. - SEVILLA
N || ~ TORTO:
. l.l - VALENCIA
s - VAL, AE
s - ALICANTE
5 1 - ACTET
o ~ MURCIA
£ A - IBIZA
S - MENORCA
: La Lo
@ I - DAROCA
S - . - C. REAL
— - BADAJOZ
o - GRANADA
s - LOGRONO
. l‘ [© W | CUENCA
. I - BARAJAS
. - SALAMANCA
N - LEON
. - ZAMORA
s - VALLADOLID
s - SORIA
- VIGO
- S.COMP
rrrrrrrrrrrrrrrrTrTTTT T T TTTT
CNN-MULTI-SITE-MULTI-GAUSSIAN a2
000 002 004 006 008 010 012 014 0.16
[a) < [a) <
3 9 O« < W a. 2 2g 55 [=a
O« 29 _<«za8N <« 20 Erls < O< 29 428N <« $0 Erls <
e ax << o € < Swol<sz = o ax << o3l Lx < ZwoR<z =
£ <25 53900930 OF & 242835.¢ £ <25 53900930 OF & 242835.¢
S e e SR o ot Ch N R s
bl o> narodonoarss0s22SIPHRsEZ cl > earodonosr S S0s22SIPHRsEE
1111111111111111lllllllllli_L N Y v
g I ALMERIA B I ALMERIA
: B | JEREZ - [ JEREZ
u [ MORON u [ MORON
. [ SEVILLA . [ SEVILLA
7 | F TORTOSA Z A r TORTOSA
: n [ VALENCIA < [ VALENCIA
1 I VAL, AER. &4 ] I VAL, AER.
. [ ALIGANTE 8 [ ALIGANTE
- L ALTET % A L ALTET
wo I MURCIA S EE I MURCIA
E A L IBizA I L IBizA
o [ MENORCA E A [ MENORCA
I [ MALLORCA 3 [ MALLORCA
E oA [ REUS s [ REUS
S ] Wy = I DAROCA T [ DAROCA
2 [ G REAL w4 [ G REAL
T [ BADAJOZ E [ BADAJOZ
z A [ GRANADA @ 4 [ GRANADA
z I LOGRONO £ 4 I LOGRONO
O 4 L .l - CUENC 5 - CUENG
. L RETIRO > L RETIRO
- [ BARAJAS s [ BARAJAS
u L SALAMANCA 1 A [ SALAMANCA
. I LEON Z I LEON
- [ ZAMORA 5 - [ ZAMORA
u [ VALLADOLID . [ [ VALLADOLID
. [ SORIA . [ SORIA
- L VIGO . L VIGO
I s.comp 1m I s.comp
rrrrrrrrrrrrrrrrrrrrrrrrrrrorT TrrrrrrrrrrrrrrrrrrrrrrrrorT
CNN-MULTI-SITE-GAUSSIAN b2 GLM c2
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
Figure 4. MI matrices for FWI90 events during the fire season (JJAS) obtained from observa-

tions (upper triangle in upper panel, al) and from the best performing SD model (CNN-MSMG,

lower triangle in upper panel, a2). Panels b an ¢ show the MI biases for 4 remaining SD methods
with respect to the observations (bl: CNN-MS, b2: CNN-MSG, cl: CNN-MSMG, c¢2: GLM). In

b and ¢ panels, only station pairs with MI > 0.05 in the observations are shown.
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4 Conclusions

We conducted a comprehensive comparison of various Convolutional Neural Net-
work (CNN) architectures in contrast to two established statistical downscaling (SD) meth-
ods, specifically Generalized Linear Models (GLMs) and analogs. Our assessment focused
on evaluating their performance in terms of predictive accuracy, distributional congru-
ence, and spatial coherence for Fire Weather Index (FWI) predictions across 29 locations
in Spain.

Among the diverse CNN architectures scrutinized, CNN-MSMG demonstrated the
most favorable outcomes across these validation criteria. This setup considers the mul-
tivariate nature of the predictions in the output layer yielding a predicted covariance ma-
trix that explicitly accounts for the inter-site variability. It exhibited a notable capac-
ity to accurately represent observed FWI distributions at both single-point and multi-
site scales, closely aligning with the outcomes of the benchmarking analogs method. No-
tably, the analogs method, by design, upholds multisite spatial consistency without al-
teration, at the cost of limitations for extrapolation in climate change conditions that
can be overcome by the rest of methods tested. In contrast CNN-MS (multisite CNN)
and GLMs yielded poorer predictive accuracy and consistently overestimated the spa-
tial dependence among sites. In turn, CNN-MSG (multisite Gaussian) attained good re-
sults in terms of single-site validation, but proved inefficient in modelling the spatial struc-
ture, essentially behaving like a single-site weather generator.

The results presented emphasize the importance of parameter tuning for CNN de-
velopment in the context of statistical downscaling in order to produce credible predic-
tions. In the particular case of FWI, an adequate tuning is needed in order to ensure ac-
tionable climate information for the prevention of wildfire impacts, and this study pro-
vides a methodological guidance for the successful application of CNNs to this aim.

5 Open Research

We follow the FAIR principles (Findability, Accesibility, Interoperability and Reuse,
Wilkinson et al. (2016)) and publish the code (DOI: 10.5281/zenodo.8387558) and the
data (DOI: 10.5281/zenodo.8381437) required to replicate the results presented in this
manuscript. We build on the R based (R Core Team, 2020) framework climate4R (Itur-
bide et al., 2019) to digest, manipulate, downscale (see also Bedia et al., 2020) and vi-
sualize (Frias et al., 2018) the climate data. For the deep learning models, we lean on
downscaleR.keras, a library that integrates tensorflow (Abadi et al., 2015) and keras (Gulli
& Pal, 2017) into the climate/R framework (Bano-Medina et al., 2020).
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Appendix A Input Data

Table Al is a summary of the AEMET weather station database. We also indicate
their corresponding climatic zone, according to the spatial aggregation summarizing the
results in Sec. 3.1 of the main text. The Short name column indicates the abbreviated
labels used throughout the article figures.

Station name Short name Lon Lat  Altitude Climatic region
REUS-AEROPUERTO REUS 1.18 41.15 71 COASM
SANTIAGO DE COMPOSTELA-LABACOLLA S.COMP -841 42.89 370 ATL
VIGO-PEINADOR VIGO -8.62 42.24 261 ATL
SORIA SORIA -2.48 41.77 1082 CONTM
VALLADOLID VALLADOLID -4.75 41.64 735 CONTM
ZAMORA ZAMORA -5.73 41.52 656 CONTM
LEON-VIRGEN DEL CAMINO LEON -5.65 42.59 916 CONTM
SALAMANCA-MATACAN SALAMANCA -5.50 40.96 790 CONTM
MADRID-BARAJAS BARAJAS -3.56 40.47 609 CONTM
MADRID-RETIRO RETIRO -3.68 40.41 667 CONTM
CIUDAD REAL C.REAL -3.92 3899 628 CONTM
BADAJOZ-TALAVERA LA REAL BADAJOZ -6.81 38.88 185 CONTM
GRANADA-AEROPUERTO GRANADA -3.79 37.19 567 CONTM
SEVILLA-SAN PABLO SEVILLA -5.88 37.42 34 COASM
MORON DE LA FRONTERA MORON -5.61 37.16 87 COASM
JEREZ DE LA FRONTERA-AEROPUERTO JEREZ -6.06 36.75 27 COASM
ALMERIA-AEROPUERTO ALMERIA -2.36 36.85 21 COASM
MURCIA-SAN JAVIER MURCIA -0.80 37.79 4 COASM
ALICANTE-EL ALTET ALTET -057 38.28 43 COASM
ALICANTE ALICANTE -0.49 38.37 81 COASM
CUENCA CUENCA -2.14 40.07 945 CONTM
VALENCIA-AEROPUERTO VAL. AER. -0.47 39.49 69 COASM
VALENCIA VALENCIA -0.37 39.48 11 COASM
LOGRONO-AGONCILLO LOGRONO -2.33 4245 353 CONTM
DAROCA DAROCA -1.41 41.11 779 CONTM
TORTOSA TORTOSA 049 40.82 44 COASM
PALMA DE MALLORCA-SON SAN JUAN MALLORCA 274 39.56 8 COASM
MENORCA-MAO MENORCA  4.22 39.85 91 COASM
IBIZA/ES CODOLA IBIZA 1.38 38.88 6 COASM

Table A1l. Selected stations of the Spanish AEMET network, indicating their position in
decimal degrees and meters above sea level (Datum WGS-84). The abbreviations correspond-
ing to the climatic regions in the column are as follows: ATL for Atlantic, COASM for Coastal
Mediterranean, and CONTM for Continental Mediterranean.

Table A2 provides a summary of the reanalysis fields used as predictors in this study.
The predictor set has been chosen following the methodology for FWI downscaling pre-
sented by Bedia et al. (2013), but replacing relative humidity by specific humidity, the
former being not directly available in some model simulation databases. The spatial ex-
tent of these fields covers a bounding box centered over the Iberian Peninsula, limited
by the geographical coordinates —10°/15°E, 35°/45°N.

Appendix B Benchmarking SD methods

We next provide further methodological details on the standard SD methods used
as benchmarks in this study. Both are implemented in the R package downscaleR (Be-
dia et al., 2020), part of the climate4R framework for climate data analysis and visual-
ization (Iturbide et al., 2019, https://github.com/SantanderMetGroup/climate4R).
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Code Name units

T2M Air Temperature at surface K
T850 Air Temperature at 850 hPa K
HUS850  Specific humidity at 850 hPa gkg!
UA850  U-wind at 850 hPa ms—!
VAS850 V-wind at 850 hPa ms—!

Table A2. Predictor variables used in this study, selected from the predictor combination
proposed for statistical downscaling of FWI in Bedia et al. (2013). Note that for convenience,
relative humidity at 850 hPa has been replaced by specific humidity, more commonly available in
GCM datasets. All fields are daily mean values.

B1 Generalized lineal models

GLMs (Nelder & Wedderburn, 1972) are an extension of the classical linear regres-
sion that models the expected value of a random predictand variable for different types
of probability distributions and link functions. This makes them a versatile tool for mod-
eling a wide range of data types and situations, and therefore extensively used in SD ap-
plications (see e.g.: Chandler & Wheater, 2002; Gutiérrez et al., 2019). Here, the response
variable is assumed to follow a Gaussian distribution. The relationship between the lin-
ear predictor g(u) and the expected value of FWI is defined by the identity link func-
tion, so the linear predictor directly models the mean FWI, where g(u) is defined as g(p) =
X3, where X is the design matrix containing the predictor variables (Sec. 2.1), and 3
is the vector of coefficients, estimated by maximum likelihood based on the probability
density function of the Gaussian distribution using a least-squares iterative algorithm
implemented in the R package stats(R Core Team, 2020). Furthermore, predictor con-
figuration is such that only local information is used for training at each site. Here, an
optimal number of 16 closest grid-points to each predictand point-location are retained
to construct the local predictor set (Bedia et al., 2020), after testing different neighbour-
hood sizes using cross-validation (Sec. 2.3).

B2 Analogs

The analog method is a simple yet powerful downscaling technique which assumes
that similar (or analog) atmospheric patterns (predictor set X) over a region originates
similar local meteorological outcomes (daily FWI) for a particular location or set of lo-
cations (Sec. 2.2). In this study, we use the standard deterministic nearest neighbor method
analog technique based on the Euclidean distance, considering the complete fields to com-
pute distances and only the first closest nearest closest analog for prediction (San-Martin
et al., 2016), similar to the standard ‘ANALOG’ method of the VALUE intercompar-
ison experiment (described in Gutiérrez et al., 2019, A.2), and considering the implemen-
tation described in Bedia et al. (2020). Note that using the complete fields as predictors
ensures the maximum spatial coherence of the predictions among stations, since the same
analog dates are chosen in each case for every point-location (see e.g. Widmann et al.,
2019).
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300 This section contains additional results as indicated in the figure captions.
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Figure C1l. RMSE for the simulated FWI90 per station and method distinguishing the re-
gions by symbols.

CL MIL  CL Bias MIL Bias
AEMET_13UTC_FWI 208.30 168.22

Analogs 11.68 -2.45
CNN-MS 285.91 259.81
CNN-MSG NA NA
CNN-MSMG 68.63 119.67
GLM 211.37 146.92

Table C1. The columns display the CL and MIL values for the reference observations, as well
as the CL and MIL biases for the models, measured in kilometers (km). The lowest CL and MIL
biases (excluding the benchmarking analogs method) are highlighted in boldface.
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Mutual Information diagrams for FWI90 for fire season (JJAS) showing the mu-

tual information of the FWI90 time series for each pair of stations against their geographical

distances. The MI and MI length for the reference observations are shown in the upper left panel.

In the rest of the panels, the MI length bias and the MAE are indicated at the top right of the

panel.
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