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Abstract

This paper presents a method to analyze and improve the set of equations constituting a rainfall-runoff model structure based

on a combination of a data assimilation algorithm and polynomial updates to the state equations. The method, which we

have called “Data Assimilation Informed model Structure Improvement” (DAISI) is generic, modular, and demonstrated with

an application to the GR2M model and 201 catchments in South-East Australia. Our results show that the updated model

generated with DAISI generally performed better for all metrics considered included KGE, NSE on log transform flow and flow

duration curve bias. In addition, the modelled elasticity of runoff to rainfall is higher in the updated model, which suggests that

the structural changes could have a significant impact on climate change simulations. Finally, the DAISI diagnostic identified

a reduced number of update configurations in the GR2M structure with distinct regional patterns in three sub-regions of

the modelling domain (Western Victoria, central region, and Northern New South Wales). These configurations correspond

to specific polynomials of the state variables that could be used to improve equations in a revised model. Several potential

improvements of DAISI are proposed including the use of additional observed variables such as actual evapotranspiration to

better constrain the model internal fluxes.
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Abstract 8 

This paper presents a method to analyze and improve the set of equations constituting a rainfall-runoff 9 

model structure based on a combination of a data assimilation algorithm and polynomial updates to the 10 

state equations. The method, which we have called “Data Assimilation Informed model Structure 11 

Improvement” (DAISI) is generic, modular, and demonstrated with an application to the GR2M model 12 

and 201 catchments in South-East Australia. Our results show that the updated model generated with 13 

DAISI generally performed better for all metrics considered included KGE, NSE on log transform 14 

flow and flow duration curve bias. In addition, the elasticity of modelled runoff to rainfall is higher in 15 

the updated model, which suggests that the structural changes could have a significant impact on 16 

climate change simulations. Finally, the DAISI diagnostic identified a reduced number of update 17 

configurations in the GR2M structure with distinct regional patterns in three sub-regions of the 18 

modelling domain (Western Victoria, central region, and Northern New South Wales). These 19 

configurations correspond to specific polynomials of the state variables that could be used to improve 20 

equations in a revised model. Several potential improvements of DAISI are proposed including the use 21 

of additional observed variables such as actual evapotranspiration to better constrain the model internal 22 

fluxes. 23 

 24 

Key words [6 max]: Model structure, Model diagnostic, data assimilation, Ensemble Smoother, 25 

Climate change scenario  26 

 27 

Key points  28 

1. DAISI method diagnoses hydrological model structures by combining data assimilation with a 29 

polynomial update of state equations. 30 

2. The method was applied to the GR2M rainfall-runoff model with significantly improved 31 

streamflow simulations in 201 Australian catchments. 32 
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3. The method identified updates to state equations with marked regional characteristics that 33 

could guide future improvement of GR2M. 34 

 35 

Plain language summary 36 

This paper presents a data-driven method to improve rainfall-runoff models used to generate future 37 

water resources scenario in climate change studies. The method, which we have called “Data 38 

Assimilation Informed model Structure Improvement” (DAISI) is generic, modular, and demonstrated 39 

with an application to monthly streamflow simulations over a large dataset of catchments in South-40 

East Australia. Our results show that DAISI improves model performance for a wide range of metrics 41 

and increases the sensitivity of the model to climate inputs, which is critical in climate change 42 

scenarios. Finally, the improvements identified by DAISI take a simple mathematical form with 43 

distinct regional patterns in three sub-regions of the study domain (Western Victoria, central region, 44 

and Northern New South Wales). Several improvements of DAISI are discussed including the 45 

inclusion of additional observed variables such as evapotranspiration to better constrain model 46 

simulations. 47 

  48 
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Notations 85 

𝑁 Number of rainfall-runoff model state equations. 

𝑃 Number of observed variables. 

𝑅 Number of data assimilation ensembles. 

𝐵 Number of catchments in the study area. 

𝑇 Number of time steps. 

𝑉 Number of components in state vector. 

𝑂 Number of output variables in the state vector. 

𝑉𝑛 Number of variables affecting the 𝑛𝑡ℎ state variable. 

𝑥̃𝑡 State vector at time 𝑡. 

𝑢̃𝑡 Input vector at time 𝑡. 

𝑚̃𝑡 Model output vector at time 𝑡. 

𝑑̃𝑡 Observed data vector at time 𝑡. 

𝑓 Model dynamic equation. 

𝐿𝑛 Number of coefficients in the 𝑛𝑡ℎ update equation.  

𝑋𝑓 Forecast state matrix of dimension 𝑇(∑ 𝑉𝑛𝑛 ) × 𝑅. 

𝑋𝑎 Analysis state matrix of dimension 𝑇(∑ 𝑉𝑛𝑛 ) × 𝑅. 

𝑥̃𝑡[𝑟] 𝑟𝑡ℎ ensemble of the state vector at time step 𝑡 in the assimilated ensemble. 

𝑦̃𝑡 Normalized state vector at time 𝑡. 

𝛿𝑛,𝑡 Update term for the 𝑛𝑡ℎ normalized state variable at time step 𝑡. 

Δ𝑛,𝑡 Assimilated update term for the 𝑛𝑡ℎ state variable at time step 𝑡. 

𝐾𝐺𝐸 KGE performance metric 

𝐹𝐵 Flow duration curve bias performance metric 
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𝜖𝑃 Elasticity of modelled streamflow to rainfall evaluation metric 

𝐶𝑛 Matrix of dimension 2𝐵 × 𝐿𝑛 containing the update coefficients for the 𝑛𝑡ℎ state variable, 

all catchments in the dataset and two calibration periods. 

𝑠𝑛,𝑘 𝑘𝑡ℎ singular value of 𝐶𝑛 

  86 
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1. Introduction 87 

The pressure on water resources is reaching unprecedented levels in many catchments around the 88 

world due to increasing anthropogenic presence and higher variability induced by climate change. In 89 

this tense context, catchment scale rainfall-runoff models are one of the main quantitative tools used 90 

by water managers to translate future climate predictions into water volumes and assess water sharing 91 

scenarios. Estimation of future streamflows like in the study by Chiew, Vaze et al. (2008) is generally 92 

done by selecting a few rainfall-runoff models to generate streamflow projections based on future 93 

climate inputs. Unfortunately, the performance of these models degrades significantly when predicting 94 

values beyond the range of hydro-climate conditions seen during their calibration (Coron, Andréassian 95 

et al. 2012). Of particular worry is the tendency for rainfall-runoff models to over-estimate streamflow 96 

in dry years which are expected to become more common in the future in many regions, for example in 97 

South Eastern Australia (Chiew, Young et al. 2011). This paper presents a method to analyze and 98 

improve the equations constituting a rainfall-runoff model structure in the context of climate change 99 

scenario modelling demonstrated with an application to the GR2M model (Mouelhi, Michel et al. 100 

2006) and a large dataset of catchments in South-East Australia.  101 

Most rainfall-runoff models are empirical and hence require their parameters to be calibrated based on 102 

observed data. Once input and output data of acceptable quality are obtained, improving model 103 

calibration is the first step to obtain defensible simulations of future streamflow. Calibration 104 

algorithms are the topic of a considerable literature including the development of stochastic (see the 105 

review by Arsenault, Poulin et al. 2014), probabilistic (Kuczera and Parent 1998, Beven and Freer 106 

2001, Vrugt and Ter Braak 2011) or multi-objective (see the review by Efstratiadis and Koutsoyiannis 107 

2010) algorithms. These advances have allowed for highly parameterized models to be routinely 108 

calibrated within operational systems. However, there are limits to what a better calibration strategy 109 

can achieve to simulate streamflow in a changing climate. Coron, Andréassian et al. (2014) showed 110 

that models are often incapable of simulating significant changes in rainfall-runoff relationships 111 

regardless of how they are calibrated. Zheng, Chiew et al. (2022) go further by saying that “calibration 112 

can only marginally (if at all) improve the quantification of uncertainty in future runoff projection due 113 

to hydrological nonstationarity”. These studies suggest that improvement in model structures is critical 114 

to obtain more robust streamflow projections. Pursuing this idea, Fowler, Knoben et al. (2020) 115 

identified that most model structures are not able to simulate multi-year processes that are driving 116 

changes in rainfall-runoff relationship during drought periods.  117 

Unfortunately, formulating an efficient rainfall-runoff model structure is not straightforward because 118 

of the difficulty to describe physical processes at the catchment scale (Beven 2001) leading to a certain 119 

level of subjectivity in the process. To overcome these limitations, one can assemble a large collection 120 
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of published models and compare their performance as was done by Perrin, Michel et al. (2001) and 121 

more recently by Knoben, Freer et al. (2020). These studies have laid the foundations for the 122 

development of robust model structures such as the GR4J model (Perrin, Michel et al. 2003). 123 

However, they also concluded that no single structure outperforms the others systematically and that 124 

the difference in performance between structures is not well explained by catchment descriptors. As a 125 

result, it is difficult to define a clear path leading to model structure improvement from these 126 

approaches. To overcome these limitations, flexible software frameworks such as FUSE (Clark, Slater 127 

et al. 2008) or SUPERFLEX (Fenicia, Kavetski et al. 2011) have been proposed to create arbitrary 128 

model structures from selected components and hence allow the comparison of a much larger set of 129 

candidate structures.  These tools remain complex to implement and few authors have applied them 130 

beyond pure research applications in a single catchment. A notable exception is the study by Van Esse, 131 

Perrin et al. (2013) who applied a large number of model structures to 237 catchments in France. Van 132 

Esse, Perrin et al. (2013) concluded on the difficulty to relate model structures with catchment 133 

characteristics. The study named several modelling components that proved generally beneficial (e.g., 134 

parallel routing stores, bypass flows), but did not offer a simple diagnostic to improve a particular 135 

model such as the ones used in climate change studies. 136 

As an alternative to the previous approaches, data itself can guide the identification of model 137 

structures. Machine learning method such as deep learning offers powerful tools to generate purely 138 

data-driven model structures (Nearing, Kratzert et al. 2021). However, as suggested by Wi and 139 

Steinschneider (2022), pure machine learning models may lack the capacity to extrapolate far beyond 140 

historical conditions such as required in climate change studies. In addition, machine learning models 141 

remain complex compared to empirical lumped rainfall-runoff models which does not facilitate their 142 

use in an operational context. Consequently, this paper focuses on classical modelling approaches 143 

based on empirical equations derived from physical system knowledge.  144 

In this context, Lamb and Beven (1997)  and subsequently Kirchner (2009) used data analysis to infer 145 

the form of model equations. Their approach remains limited to specific hydrological processes 146 

(recession for Lamb and Beven 1997) or catchment characteristics (dominant base flow contribution 147 

for Kirchner 2009). This concept was expanded further by Gharari, Gupta et al. (2021) in theoretical 148 

experiments who explored the uncertainty in model structure via randomly generated piecewise linear 149 

functions. Overall, these attempts of data-driven model structure identification are promising but lack 150 

practical and large-scale applications to improve climate projections in the short term. In contrast, the 151 

field of data assimilation has produced firmly established algorithms such as the Ensemble Kalman 152 

Filter (Evensen 2009) to efficiently blend model simulations with observed data over large spatial 153 

domains. These algorithms have been used in hydrology for several decades as reviewed by 154 

Ghorbanidehno, Kokkinaki et al. (2020).  For example, Pathiraja, Marshall et al. (2016) used data 155 
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assimilation to estimate time-varying parameters in synthetic case studies, which is a powerful 156 

approach to remediate model structure deficiencies. However, according to Beck (1985), large time 157 

variations of parameters could also be interpreted as a structural deficiency requiring remediation. To 158 

our knowledge, only Bulygina and Gupta (2009) have demonstrated the use of a data assimilation 159 

algorithm for the identification of a complete set of rainfall-runoff model equations and applied their 160 

model beyond synthetic experiments to observed data. The approach of Bulygina and Gupta (2009) 161 

relies on an iterative algorithm where the particle filter (Doucet, Godsill et al. 2000) is used within 162 

each iteration to generate probabilistic model equations sampled from a mixture of multivariate normal 163 

distributions. This approach is elegant because it allows combining a prior estimate of the model 164 

structure with observed data in a fully Bayesian inference scheme. However, it is significantly more 165 

complex than classical data assimilation algorithms because it requires a repeated application of the 166 

particle filter (hence ensuring that the filter does not degenerate as warned by Moradkhani, DeChant et 167 

al. 2012) and a customized sampling scheme described by Bulygina and Gupta (2011). The method is 168 

promising but was applied to a single catchment in the United States with results qualified as 169 

“preliminary” by Bulygina and Gupta (2011). Consequently, it does not seem applicable to a large 170 

catchment dataset in an operational context. 171 

The previous review of the literature shows important research gaps related to the improvement of 172 

rainfall-runoff model structures:  173 

 Lack of methods to improve model structure beyond trial and error of pre-defined 174 

structures: the most advanced methods currently available to identify model structures are 175 

based on trial and error of pre-defined model structures either collected from published 176 

literature or built from selected components. These approaches often lead to model equifinality 177 

where multiple structures are seen as equally applicable, which provides limited guidance for 178 

the improvement of a specific model. 179 

 Estimation of variable structure remains theoretical: methods have been developed to infer 180 

variable model structures directly from observed data, but they remain essentially theoretical 181 

with limited or no application to real catchments. Data assimilation offers promising avenues in 182 

this field with well-established algorithms to blend models and data.  183 

 Limited research on model structure improvement in a climate change context: Most of 184 

the research done to improve model simulations in a climate change context has focused on 185 

model parameterization and calibration. Methods to perform model structure diagnostic in this 186 

context are emerging but lack quantitative approaches to accelerate progress.   187 

Consequently, the three objectives of this paper are: 188 
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 Define a new approach where data assimilation is used to identify structural improvements of 189 

an existing rainfall-runoff model structure. The method should be robust and computationally 190 

tractable enough to be applicable to a large dataset of catchments offering insight into regional 191 

trends in model structure updates. The method focuses exclusively on model structure 192 

improvement and not on model parameterization by assuming that the model has been 193 

calibrated prior to the structural diagnostic. The rationale behind this choice is to avoid 194 

duplicating existing research on model calibration and leave open the choice of the calibration 195 

process.  196 

 Demonstrate that the improvement can benefit model simulations using a wide range of 197 

metrics and provide a detailed diagnostic on the structural improvement to guide future model 198 

development. 199 

 Present an example of the overall process using the GR2M monthly rainfall-runoff model, 200 

an existing data assimilation scheme (Ensemble Smoother) and a large data set of catchments 201 

in a region experiencing a pronounced climate change signal (South-East Australia). 202 

The proposed method is presented in Section 2 including its objective and principles. Section 3 203 

describes the empirical case study with the description of the GR2M model, the evaluation process, 204 

and the catchment dataset. Application of the method is presented in details for one example catchment 205 

in section 4.1 and then generalized to 201 catchments in section 4.2 and 4.3. The strength and 206 

weaknesses of the method, the knowledge gained on the GR2M structure and potential future 207 

development of the method are discussed in section 5. Section 6 concludes the paper. 208 

 209 

2. Theory 210 

2.1. Objective and Principles of Data Assimilation Informed model Structure 211 

Improvement (DAISI) 212 

The main goal of DAISI is to provide a rapid diagnostic of an existing rainfall-runoff model structure 213 

by analyzing time series of state variables generated by a data assimilation algorithm. DAISI relies on 214 

Bayesian inference but aims at providing simple diagnostics that can be used outside of a probabilistic 215 

framework. The method can be applied to a single catchment or to a large dataset of catchments to 216 

obtain a more robust diagnostic on the model structure.  217 



Page 10 of 54 

 218 

Figure 1: The three steps of the DAISI method 219 

 220 

DAISI is based on three steps outlined in Figure 1. The method starts by assimilating observations 221 

during a calibration period (e.g., observed streamflow data) resulting in an ensemble of state variables. 222 

In a second step, the assimilated states are used to update the model structure. Finally, the new model 223 

structure is run over an independent validation period similarly to a classical rainfall-runoff model 224 

(i.e., without the use of assimilation or structure update) and compared with the original structure in 225 

terms of model behavior and performance. 226 

2.2. Step 1: Data Assimilation 227 

A rainfall-runoff model is a numerical solution to a set of ordinary differential equations describing the 228 

water storages and fluxes at a catchment scale. When integrated over a time step, these equations take 229 

the following form referred to as “state equations” in the rest of the paper: 230 

 𝑥̃ 𝑡+1 = 𝑓(𝑢̃𝑡 , 𝑥̃𝑡, 𝜃̃) Eq. 1 

Where 𝑡 is the time step, 𝑢̃𝑡 is the input vector, 𝑥̃𝑡 the state vector of length 𝑉,  𝑓 is a vector value 231 

function characterizing its dynamic, and 𝜃̃ is a parameter vector assumed to be obtained from a prior 232 

calibration exercise. The state vector includes all variables that affect the dynamic of the model such as 233 

internal stores, fluxes and model outputs denoted as 𝑚̃𝑡 (e.g., streamflow). Observed data 234 

corresponding to 𝑚̃𝑡 are denoted 𝑑̃𝑡. The concatenation of all 𝑥̃𝑡 vectors for 𝑡 = 1, … , 𝑇 is denoted 𝑥̃. 235 

Similar notations are used for vectors 𝑢̃ and 𝑑̃. 236 

The first step of DAISI is a smoothing data assimilation algorithm that aims at estimating the 237 

probability distribution of states 𝑥̃ given 𝑓, inputs 𝑢̃ and observed data 𝑑̃ over the whole calibration 238 
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period (𝑡 = 1: 𝑇). Among the wide range of methods described in the literature (Van Delft, El Serafy 239 

et al. 2009, Moradkhani, DeChant et al. 2012), the linear ensemble smoother (ES) introduced by van 240 

Leeuwen and Evensen (1996) is one of the simplest algorithms where model errors are assumed to be 241 

linearly related to observations and the prior distribution of errors is assumed Gaussian. Despite its 242 

limitations in handling non-linear dynamics, the high computational efficiency of ES, especially its 243 

non-sequential nature, is appealing in a diagnostic tool such as DAISI. Note that the use of smoothing 244 

algorithms remains limited in hydrology, mostly due to their high computing requirements (Li, Ryu et 245 

al. 2014). As this is a well-known algorithm, the presentation of ES is deferred to Appendix A.  Our 246 

implementation of ES relies on a single tuning factor 𝛼𝑒 which relates the covariance of the 247 

perturbations applied to the state and input variables to their covariance in the original model 248 

simulation (see Appendix A, Eq. 24). It is fixed to a value of 0.1 (i.e., covariance perturbation equal to 249 

𝛼𝑒
2=1% of the original covariance) for all instances of ES. The impact of this factor on the performance 250 

of DAISI was found to be small as shown in Supplementary Material S3. Consequently, the fixed 251 

value of 0.1 was adopted throughout this paper. 252 

The outcome of ES is a set of 𝑅 ensemble vectors {𝑥̃[𝑟], 𝑟 = 1, … , 𝑅} denoted as “analyzed states” or 253 

𝑋𝑎 (see Appendix A) containing samples from the posterior distribution 𝑝(𝑥̃|𝑢̃, 𝑑̃, 𝑓, 𝜃̃). It is 254 

highlighted that the choice of ES does not prevent the use of more sophisticated smoothing algorithms 255 

in DAISI. This point is discussed in Section 5. 256 

Data assimilation schemes are notoriously complex to configure with parameters that are difficult to 257 

relate to actual observations. Consequently, it is important to verify that the assimilated ensemble is 258 

statistically consistent with observed data (reliable). This consistency was measured with the 259 

normalized RMSE ratio (Moradkhani, Sorooshian et al. 2005, Fortin, Abaza et al. 2014, Thiboult and 260 

Anctil 2015): 261 

  

𝑁𝑅[𝑘] =
√1

𝑇
∑ (

1
𝑅

∑ 𝑚𝑡[𝑘, 𝑟]𝑟  − 𝑑𝑡[𝑘])𝑡

2

1
𝑅 {∑ √1

𝑇
∑ (𝑚𝑡[𝑘, 𝑟] − 𝑑𝑡[𝑘])2

𝑡𝑟 }

√
2𝑅

𝑅 + 1
  

Eq. 2 

Where 𝑚𝑡[𝑘, 𝑟] is the 𝑟𝑡ℎ ensemble of the 𝑘𝑡ℎ model output corresponding to observation 𝑑𝑡[𝑘]. A 262 

value of 𝑁𝑅 close to one indicates statistical reliability while 𝑁𝑅 substantially smaller or greater than 1 263 

suggests a too wide or narrow ensemble, respectively.   264 

2.3. Step 2: Model Structure Update 265 

In the second step of DAISI, the analyzed states 𝑋𝑎 are used to estimate updates in the state equation 266 

(Eq. 1). A preliminary transformation of the state equations, referred to as “normalization” in the 267 
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remainder of the paper, is undertaken if DAISI is applied to a large number of catchments. This 268 

normalization aims at removing site specific parameters from the state equations to allow the 269 

comparison of structural updates between catchments (see examples in Section 3.1). It is 270 

acknowledged that such normalization is not always possible, which is an important limitation of 271 

DAISI. Let us assume that the normalization of the state and input vectors is given by 272 

 𝑦̃𝑡 = 𝜓𝑥(𝑥̃𝑡, 𝜃̃), 𝑣̃𝑡 = 𝜓𝑢(𝑢̃𝑡, 𝜃̃) Eq. 3 

Where 𝜓𝑥 and 𝜓𝑢 are normalization functions for states and inputs, respectively. Using this 273 

normalization, the state equation becomes: 274 

 𝑦̃𝑡+1 = 𝑓∗(𝑦̃𝑡)  Eq. 4 

Where 𝑓∗ is the normalized function with no dependency on rainfall-runoff model parameters 𝜃̃ as 275 

opposed to 𝑓. Note that if DAISI is applied to a single catchment, the normalization process is not 276 

required and 𝑦̃𝑡 and  𝑓∗ can be replaced by 𝑥̃𝑡 and 𝑓, respectively.  277 

The fundamental concept in DAISI is to alter the state variables with an update term as follows: 278 

 𝑦̂𝑛,𝑡+1 = 𝑦𝑛,𝑡+1 + 𝛿𝑛,𝑡  Eq. 5 

Where 𝑦𝑛,𝑡  is the 𝑛𝑡ℎ component of 𝑦̃𝑡, 𝑦̂𝑛,𝑡 is the updated state and 𝛿𝑛,𝑡 is the update term. Let us 279 

assume that a subset of 𝑉𝑛 variables, noted {𝑦𝑖,𝑡 }𝑖=1,..,𝑉𝑛
, affects 𝑦𝑛,𝑡 among the full set of 𝑉 state 280 

variables. The update term is computed as a quadratic form of 𝑦𝑖,𝑡 written as: 281 

 

𝛿𝑛,𝑡 = 𝜂𝑛[0] + ∑ 𝜂𝑛[𝑖]  𝑦𝑖,𝑡

𝑉𝑛

𝑖=1

 + ∑ 𝜂𝑛[𝑉𝑛 + 𝑖]  𝑦𝑖,𝑡
2

𝑉𝑛

𝑖=1

+ ∑ 𝜂𝑛[𝑘(𝑖, 𝑗)]  𝑦𝑖,𝑡  𝑦𝑗,𝑡

1≤𝑖<𝑗≤𝑉𝑛

 

Eq. 6 

Where is 𝜂𝑛[𝑖] the 𝑖𝑡ℎ update coefficient and 𝑘(𝑖, 𝑗) = 2𝑉𝑛 + 𝑖 + (𝑗 − 1)(𝑗 − 2)/2 is the index for 282 

cross-product terms. The coefficient vector 𝜂̃𝑛 is of length 𝐿𝑛 where 283 

 𝐿𝑛 = 1 + 2𝑉𝑛 + 𝑉𝑛(𝑉𝑛 − 1)/2  Eq. 7 

Eq. 5 is the fundamental equations of DAISI and is referred to as the “update equation” in the rest of the 284 

paper. The form of the update term in Eq. 6 was chosen because it is a non-linear function of the state 285 

variables but a linear function of the coefficients which greatly facilitates their estimation as discussed 286 

below. Eq. 5 provides a simple way to explore alternative model structures continuously (as opposed to 287 

pre-defined or discrete structures) by varying the coefficients 𝜂̃𝑛. Note that Eq. 6 has a similar form to 288 

the second order Taylor series expansion of the 𝑛𝑡ℎ component of 𝑓∗ at the origin. Consequently, the 289 

update coefficients 𝜂̃𝑛 can be interpreted as modifications of its partial derivatives up to order 2 close 290 
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to the origin. Despite these attractive properties, Eq. 6 does not impose any physical constraint on the 291 

update term, which can lead to non-physical values of the updated state 𝑦̂𝑛,𝑡+1 . This is an important 292 

limitation of the method and the price to pay for the flexibility offered by Eq. 6. When running the 293 

updated model structure, the lack of physical constraints requires that checks on their bounds be placed 294 

on the updated state variables to ensure their physical realism. An example of such checks is provided 295 

in Appendix C. 296 

If the normalized states are known, for example via data assimilation as presented in the previous 297 

section, it is possible to compute what is referred to as the “assimilated update”, denoted Δ𝑛,𝑡[𝑟], for 298 

each ensemble member 𝑟: 299 

 Δ𝑛,𝑡[𝑟] = 𝑦𝑛,𝑡+1[𝑟] − 𝑓𝑛
∗(𝑦̃𝑡[𝑟])  Eq. 8 

Where 𝑦̃𝑡[𝑟] is the assimilated normalized state vector from the 𝑟𝑡ℎensemble member and 𝑓𝑛
∗ is the 𝑛𝑡ℎ 300 

component of 𝑓∗. The assimilated update Δ𝑛,𝑡[𝑟] can be subsequently combined with Eq. 5 in a 301 

regression equation: 302 

 Δ𝑛,𝑡[𝑟] = 𝛿𝑛,𝑡[𝑟] + 𝜖𝑛,𝑡[𝑟]  Eq. 9 

Where 𝜖𝑛,𝑡[𝑟] is a residual assumed to follow a normal distribution with mean 0 and standard deviation 303 

𝜎𝑛. Eq. 9 is an ordinary multivariate regression that can be solved easily by Bayesian inference if non-304 

informative priors are assumed (Gelman, Carlin et al. 2013). Consequently, Eq. 9 provides a way to 305 

estimate update coefficients 𝜂̃𝑛 for each ensemble member.  306 

Generalizing the approach described above, DAISI aims at estimating the distribution of 𝜂̃𝑛 for each 307 

state equation given the model structure 𝑓, model parameters 𝜃̃, and input (𝑢̃) and observed data (𝑑̃) 308 

over a calibration period 𝑡 = 1: 𝑇. This probability is noted 𝑃(𝜂̃𝑛|𝑢̃, 𝑑̃, 𝑓, 𝜃̃). Using the posterior 309 

distribution of state variables 𝑥̃ estimated by data assimilation presented in the Section 2.2, the 310 

distribution of 𝜂̃𝑛 can be obtained by introducing 𝑥̃ and integrating as follows: 311 

 
𝑃(𝜂̃𝑛|𝑢̃, 𝑑̃, 𝑓, 𝜃̃) = ∫𝑃(𝜂̃𝑛|𝑥̃, 𝑢̃, 𝑑̃, 𝑓, 𝜃̃)

𝑥̃

𝑃(𝑥̃|𝑢̃, 𝑑̃, 𝑓, 𝜃̃) 𝑑𝑥̃  
Eq. 

10 

Introducing the assimilated ensemble, Eq. 10 can be approximated as 312 

 
𝑃(𝜂̃𝑛|𝑢̃, 𝑑̃, 𝑓, 𝜃̃) ≈

1

𝑅
∑ 𝑃(𝜂̃𝑛|𝑥̃[𝑟], 𝑢̃[𝑟], 𝑑̃[𝑟], 𝑓, 𝜃̃)

𝑟

  
Eq. 

11 
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≈

1

𝑅
∑ 𝑃(𝜂̃𝑛|𝑦̃[𝑟], 𝑢̃[𝑟], 𝑑̃[𝑟], 𝑓∗, 𝜃̃)

𝑟

  
Eq. 

12 

This paper aims at producing a deterministic run of the modified model which requires a single 313 

estimate of 𝜂̃𝑛. The choice made here is to compute this estimate as the expected value of 314 

𝑃(𝜂̃𝑛|𝑢̃, 𝑑̃, 𝑓, 𝜃̃), denoted 𝜂̃𝑛
𝑎 and computed as follows: 315 

 
𝜂̃𝑛

𝑎 = ∫ 𝜂̃𝑛 𝑃(𝜂̃𝑛|𝑢̃, 𝑑̃, 𝑓, 𝜃̃) 𝑑𝜂̃𝑛
𝜂̃𝑛

≈
1

𝑅
∑ ∫ 𝜂̃𝑛 𝑃(𝜂̃𝑛|𝑦̃[𝑟], 𝑢̃[𝑟], 𝑑̃[𝑟], 𝑓∗, 𝜃̃)𝑑𝜂̃𝑛 

𝜂̃𝑛𝑟

  
Eq. 

13 

If a noninformative prior on 𝜂̃𝑛 is assumed, the integral on the right-hand side of Eq. 13 is the posterior 316 

mean of the coefficients in a multivariate regression which is equal to the ordinary least square 317 

solution (Box and Tiao 2011): 318 

 
∫ 𝜂̃𝑛 𝑃(𝜂̃𝑛|𝑦̃[𝑟], 𝑢̃[𝑟], 𝑑̃[𝑟], 𝑓∗, 𝜃̃)𝑑𝜂̃𝑛 

𝜂̃𝑛

= (𝑌[𝑟]𝑇𝑌[𝑟])−1𝑦̃[𝑟]𝑇Δ𝑡,𝑛
(𝑟)

 
Eq. 

14 

Where 𝑌[𝑟] is the predictor matrix associated with assimilated ensemble 𝑟 in which the columns are 319 

the 𝐿𝑛 predictor variables in the right-hand side of Eq. 6.   320 

In summary, the second step of DAISI aims at modifying the 𝑁 state equations, and hence the model 321 

structure, using a multivariate polynomial regression parameterized by coefficients 𝜂̃𝑛. Expected 322 

values of these coefficients, denoted 𝜂̃𝑛
𝑎, can be estimated to obtain a single set of update coefficients.  323 

2.4. Step 3: Model Diagnostics 324 

Once the expected coefficients 𝜂̃𝑛
𝑎 are obtained from Step 2, the model can be run using the updated 325 

state equation (Eq. 5), leading to modified simulated variables. It is highlighted that data assimilation 326 

and coefficient fitting are not used at this stage of DAISI and that the updated model runs exactly like 327 

a classical rainfall-runoff model. The last step of DAISI compares the original and updated model by 328 

answering three questions: (1) Is the updated model a robust alternative to the original model? (2) 329 

What is driving the updates? (3) Are there dominant functional forms of the update?  330 

To answer the first question, the simulations produced by both structures are compared over a 331 

validation period using evaluation metrics. Four metrics were selected starting from the KGE 332 

performance metric (Gupta, Kling et al. 2009) which summarize model performance by aggregating 333 

measures of bias in the mean, bias in variance and correlation into a single metric. KGE alone is not 334 

sufficient to assess model performance, especially on low flows (Pushpalatha, Perrin et al. 2012). To 335 

assess low-flow performance, we used the Nash-Stucliffe efficiency computed on log-transform flow 336 

with an offset of 1 mm/month to handle zero values. Furthermore, following the recommendations of 337 
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Refsgaard, Madsen et al. (2014) in the evaluation of climate change scenario, we included the flow 338 

duration curve bias index (Lerat, Thyer et al. 2020):    339 

 

𝐹𝐵(𝑞̃𝑜 , 𝑞̃𝑠) = 1 −
1

100
∑ |1 −

𝑃𝑐𝑡(𝑞̃𝑠, 𝑘)

𝑃𝑐𝑡(𝑞̃𝑜 , 𝑘)
|

100

𝑘=1

 

Eq. 15 

Where 𝑃𝑐𝑡(𝑞̃, 𝑘) is the 𝑘𝑡ℎ percentile of streamflow time series 𝑞̃, and 𝑞̃𝑜 and 𝑞̃𝑠 are the observed and 340 

simulated streamflow series, respectively. 𝐹𝐵 is equal to 1 for a perfect simulation. The fourth metric is 341 

the relative elasticity of modelled streamflow to rainfall computed as: 342 

 
𝜖𝑃 =   

𝐸[𝑝]

𝐸[𝑞̃𝑠(𝑝̃)]
 
𝐸[𝑞̃𝑠(𝑝̃+)] − 𝐸[𝑞̃𝑠(𝑝−)]

𝐸[𝑝+] − 𝐸[𝑝−]
 

Eq. 16 

Where  𝑝+ and 𝑝− are two rainfall scenarios in which historical rainfall series 𝑝 are scaled up and 343 

down by +10% and -10%, respectively. 𝑞̃𝑠(𝑝) is the streamflow simulation obtained when forcing the 344 

model with rainfall scenario 𝑝 and 𝐸[𝑝] is the mean value of 𝑝. The choice of 10% as a scaling factor 345 

was guided by the range of rainfall variability expected in South-East Australia (Charles, Chiew et al. 346 

2020). 𝜖𝑃 is distinct from the three previous metrics because it does not compare the model with an 347 

observed reference. Comparing 𝜖𝑃 between the original and updated model quantifies the impact of the 348 

DAISI structural update on climate change scenarios. This last test is important because better 349 

performance, as measured by the three previous metrics, does not guarantee that the updated model 350 

will yield significantly different climate change scenario when forced with different climatological 351 

inputs (e.g., reduced rainfall scenario). 352 

Additional metrics including absolute bias, NSE, NSE on reciprocal flow (Pushpalatha, Perrin et al. 353 

2012), the recent PMR robustness (Royer-Gaspard, Andreássian et al. 2021) and split KGE (Fowler, 354 

Peel et al. 2018) metrics are included in the Supplementary Material S2. These metrics lead to similar 355 

conclusions than the three described in the previous paragraphs. 356 

The second element of the DAISI diagnostic explores the trends in the update term 𝛿𝑛,𝑡. To visualize 357 

how state variables affect the update term, a scatterplot is generated by plotting 𝛿𝑛,𝑡 on the vertical axis 358 

versus the percentile rank of one of the state variables on the horizontal axis. The percentile rank is 359 

used to allow the plotting of data from multiple sites in a single plot and hence analyze regional trends. 360 

The choice of the state variable on the horizontal axis is subjective and depends on the model and state 361 

equation. All variables were trialed and the one leading to the easiest plot to interpret was retained. 362 

When multiple sites are plotted simultaneously, the update terms are binned based on the state 363 

variable. The median, 25% and 75% quantiles of the update term are computed for each bin and added 364 

to the plot to ease interpretation.     365 
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The third element of the DAISI diagnostic aims to find dominant patterns in the functional form of the 366 

updates. Let us assume that DAISI was applied to 𝐵 sites and 2 calibration periods. A matrix 𝐶𝑛 of size 367 

2𝐵 × 𝐿𝑛 (𝐿𝑛 is the number of update coefficients in Eq. 6)  is constructed for each state variable 𝑛 by 368 

concatenating as rows all the update coefficient vectors 𝜂̃𝑛
𝑎 for each site and calibration period. The 369 

influence of outliers in this matrix is tempered by clipping the values between -1 and 1. These bounds 370 

are subjective and may vary depending on the model. Dominant patterns are identified in 𝐶𝑛 through a 371 

reduced singular value decomposition (Lawson and Hanson 1974):   372 

 𝐶𝑛 = 𝐴𝑛 𝑆𝑛 𝐵𝑛
𝑇 Eq. 17 

Where 𝐴𝑛 and 𝐵𝑛 are orthogonal matrices of size 2𝐵 × 𝐿𝑛 and 𝐿𝑛 × 𝐿𝑛, respectively, and 𝑆𝑛 is a 373 

diagonal matrix of size 𝐿𝑛 × 𝐿𝑛 containing the singular values 𝑠𝑛,1 … 𝑠𝑛,𝐿𝑛
 along its diagonal in 374 

decreasing order by convention. The columns of 𝐵𝑛 are referred to as singular vectors. Eq. 17 provides 375 

important insights into the functional form of the update. First, the components of the singular vectors 376 

are directly related to the predictor variables in the update equation (see Eq. 6). Consequently, each 377 

singular vector corresponds to a set of coefficients and hence to a specific update polynomial. Second, 378 

assume that the weights 𝜔𝑛,𝑘 are defined from the singular values as: 379 

 
𝜔𝑛,𝑘 =

𝑠𝑛,𝑖
2

∑ 𝑠𝑛,𝑖
2𝐿𝑛

𝑖=1

 
Eq. 18 

𝜔𝑛,𝑘 varies between 1/𝐿𝑛 and 1 and represents the total distance between the rows of 𝐶𝑛 and their 380 

projection on the 𝑘𝑡ℎ singular vector as per the inner-product (Hastie, Tibshirani et al. 2009). For 381 

example, a value of 𝜔𝑛,1 close to 1 indicates that the rows of 𝐶𝑛 are nearly colinear with the first 382 

singular vector, suggesting that the update polynomial has a form similar to the first singular vector for 383 

all sites and periods.  Finally, the product 𝑠𝑛,𝑘 × 𝐴𝑛[: , 𝑘], referred to as principal component 𝑘, 384 

contains the projection of each row of 𝐶𝑛 on the 𝑘𝑡ℎ singular vector. These projections can be used to 385 

find groups of sites where the update coefficients are colinear to the 𝑘𝑡ℎ singular vector, and hence 386 

where the update is close to the corresponding polynomial. The uncertainty in the decomposition was 387 

assessed by replicating Eq. 17 whilst bootstrapping the rows of 𝐶𝑛 to obtain confidence intervals on the 388 

singular vectors. 389 

3. Empirical Case Study Methods 390 

3.1. Rainfall-runoff Model 391 

The DAISI method is applied to the GR2M monthly rainfall-runoff model (Makhlouf and Michel 392 

1994, Mouelhi, Michel et al. 2006) presented in detail in Appendix B. The model runs a sequence of 393 

two stores. The first one referred to as the “production” store (𝑆) receives rainfall (𝑃) and potential 394 
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evapotranspiration (𝐸). It generates effective rainfall 𝑃𝑒 which is then transferred to the “routing” store 395 

of fixed capacity 𝜃𝑟 = 60mm which in turn produces streamflow (𝑄). The model has two calibrated 396 

parameters: the capacity of the production store 𝜃1 (mm) and the inter-basin exchange coefficient 𝜃2 (-397 

) which controls the amount of water gained or lost from the surface water catchment (Mouelhi, 398 

Michel et al. 2006). The GR2M model has four state variables listed in Table 1 with more details 399 

provided in Appendix B. In this table, variables corresponding to the end of the time step are marked 400 

with a “+”.  401 

Table 1: GR2M state variables 402 

State 

variable 

Variables 

affecting the 

state variable 

Normalization functions Number of 

update 

coefficients 

Production 

store (𝑆+) 
𝑆, 𝑃, 𝐸 

𝑦𝑠 =
𝑆

𝜃1
 

𝑦𝑝 =
𝑃

 𝜃1
 

𝑦𝑒 =
𝐸

 𝜃1
 

𝑦𝑠+ =
𝑆+

𝜃1
 

10 

Effective 

rainfall (𝑃𝑒) 
𝑆, 𝑃, 𝐸 

𝑦𝑠 =
𝑆

𝜃1
 

𝑦𝑝 =
𝑃

𝜃1
 

𝑦𝑒 =
𝐸

𝜃1
 

𝑦𝑝𝑒
=

𝑃𝑒

𝜃1
 

10 

Routing 

store (𝑅+) 
𝑅, 𝑃𝑒 

𝑦𝑟 = 𝜃2

𝑅

𝜃𝑟
 

𝑦𝑝𝑒
∗ = 𝜃2

𝑃𝑒

𝜃𝑟
 

𝑦𝑟+ =
𝑅+

𝜃𝑟
 

6 

Streamflow 

(𝑄) 
𝑅, 𝑃𝑒 

𝑦𝑟 = 𝜃2

𝑅

𝜃𝑟
 

𝑦𝑝𝑒
∗ = 𝜃2

𝑃𝑒

𝜃𝑟
 

𝑦𝑞 =
𝑄

𝜃𝑟
 

6 

 403 

Note that the notation is modified in the rest of the paper to improve readability by referring to specific 404 

GR2M state variables using the names indicated in Table 1 as a lower-case subscript instead of the 405 

state variable number 𝑛 used in the previous sections (for example 𝑦𝑠+,𝑡 instead of 𝑦1,𝑡). To further 406 

simplify notations, reference to time step is also dropped when possible.  407 

This model was chosen because it has been applied to a wide range of catchments across the world 408 

(Huard and Mailhot 2008, Ditthakit, Pinthong et al. 2021). It also has a smooth and parsimonious 409 

structure which simplifies the application of DAISI. Finally, GR2M shares its production store with 410 
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the daily GR4J model which has been applied even more widely than GR2M, especially in Australia 411 

(Lerat, Thyer et al. 2020, Hapuarachchi, Bari et al. 2022). The monthly time step further simplifies the 412 

process by reducing time lags between the model variables and corresponding observations that can 413 

penalize certain assimilation schemes significantly (Li, Ryu et al. 2014). 414 

In this paper, the GR2M model is calibrated by maximizing the Kling-Gupta Efficiency (KGE, Gupta, 415 

Kling et al. 2009). The calibration algorithm is a two-step approach where 10,000 random parameter 416 

sets are first generated followed by a Nelder-Mead gradient descent (Nelder and Mead 1965) applied 417 

to the best parameter set. The overall algorithm is detailed in Lerat, Thyer et al. (2020). This 418 

configuration is referred to as “GR2M-kge” in the rest of this paper. 419 

To assess the influence of the objective function on GR2M performance and compare it with the 420 

DAISI performance, a benchmark configuration is obtained by calibrating GR2M using the sum of 421 

squared Box-Cox transformed flows with an exponent of 0.2. McInerney, Thyer et al. (2017) found 422 

that this objective function is a satisfactory compromise between a wide range of performance metrics. 423 

The function is computed as follows: 424 

     𝐵𝐶02(𝑞̃𝑜 , 𝑞̃𝑠) = ∑[𝐵𝐶(𝑞̃𝑡
𝑠, 0.2) − 𝐵𝐶(𝑞̃𝑡

𝑜, 0.2)]2 

𝑡

 
Eq. 19 

Where 𝐵𝐶(𝑞̃𝑡, 𝜆) is the Box-Cox transformation of 𝑞̃𝑡 with exponent 𝜆. In the rest of this paper, the 425 

calibration of GR2M using the BC02 objective function is referred to as “GR2M-bc02”. Several other 426 

benchmarks are presented in Supplementary Material S2. 427 

As part of DAISI Step 1, the linear Ensemble Smoother data assimilation algorithm described in 428 

Appendix A was applied to GR2M using the parameters obtained from the GR2M-kge calibration and 429 

ensemble of 𝑅 = 500 members following the algorithm described in Appendix A. For the DAISI Step 430 

2 (model update), the expected update coefficients introduced in Eq. 13 are computed for the four state 431 

variables described in Table 1.   432 

It is highlighted that the update terms applied to the effective rainfall (𝛿𝑝𝑒
) and the simulated 433 

streamflow (𝛿𝑞) are flux corrections. In other words, these corrections alter the way GR2M computes 434 

effective rainfall and streamflow from its inputs and internal variables. The interpretation of the update 435 

terms corresponding to the production (𝛿𝑠+) and routing store (𝛿𝑟+) is more subtle. Via rearrangement 436 

of the model equations, Appendix C concludes that the opposite of the sum 𝛿𝑝𝑒
+ 𝛿𝑠+  is the update 437 

term for the actual evapotranspiration, hence a correction on the evapotranspiration flux. Similarly, the 438 

opposite of the sum 𝛿𝑞 + 𝛿𝑟+ is the update term for the inter-basin exchange flux, hence a correction 439 

on this flux. 440 
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3.2. Model Evaluation 441 

The GR2M model calibration and application of the DAISI method were implemented within a split-442 

sample cross-validation scheme where the GR2M model parameters, analyzed ensembles and update 443 

coefficients are obtained using half of the total data period. These model parameters and update 444 

coefficients are then applied to the second half of the period without any use of data assimilation. Both 445 

sub-periods are subsequently exchanged. As detailed in the following section, the study region used in 446 

this paper experienced a prolonged dry period during the second half of the period known as the 447 

“Millenium drought” (Chiew, Potter et al. 2014), which leads to significantly different hydro-climate 448 

conditions between the two sub-periods.   449 

Overall, three modelling scenarios are run for each catchment and each validation period: (1) a GR2M 450 

simulation using parameters calibrated over the independent corresponding calibration period with the 451 

KGE objective function (GR2M-kge), (2) GR2M calibrated with BC02 objective function (GR2M-452 

bc02), and (3) the DAISI updated model structure using the GR2M-kge parameters and update 453 

coefficients fitted for the same calibration period.  454 

3.3. Catchment Dataset 455 

The DAISI approach was tested on a set of 201 catchments located in South-Eastern Australia as 456 

shown in Figure 2. The hydro-climatic catchment characteristics are provided in Table 2. The data was 457 

extracted from the datasets collated by Lerat, Thyer et al. (2020) including rainfall and potential-458 

evapotranspiration data obtained from the Bureau of Meteorology Australian Water Outlook website 459 

(Frost, Ramchurn et al. 2016) and streamflow data obtained from the Bureau of Meteorology Water 460 

Data Online website (Bureau of Meteorology 2019). The data was collected over the period from 1980 461 

to 2018, split into the two sub-periods 1980-1999 (Period 1) and 1999-2018 (Period 2). 462 

In addition, two sub-groups of stations including stations located in Western Victoria (WVIC) and 463 

Northern New South Wales (NNSW) are located in Figure 2 to support the presentation of results in 464 

Section 4. 465 

 466 
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 467 

Figure 2: Site locations and relative change in rainfall between the two calibration periods 468 

 469 

Table 2 highlights the predominance of semi-arid conditions in this dataset with median runoff 470 

coefficients of 0.17 and 0.12 for periods 1 and 2, respectively. The table also reveals that Period 1 was 471 

much wetter with median runoff of 160 mm/y against 113 mm/y for Period 2. Figure 2 shows that the 472 

relative reduction of rainfall between periods 1 and 2 reaches -10% for certain catchments located in 473 

the state of Victoria. 474 

Among the 201 study catchments, the Jamieson River at Gerrang Bridge (station id 405218) was 475 

selected as an example to illustrate the DAISI method. This catchment represents 9% of the total 476 

catchment area of lake Eildon, one of the largest reservoirs in Australia with a maximum storage 477 

capacity of 3,334 Mm
3
. Lake Eildon is a key piece of infrastructure which supports irrigation and 478 

environmental flows along the Goulburn and Murray Rivers.  479 

 480 
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Table 2: Hydro-climatic characteristics of the 201 case study catchments 481 

Variable Period Min Q25 Median Q75 Max 
Gerrang 

(405218) 

Catchment area (km2) - 54 180 388 766 34179 364 

Mean annual rainfall (mm/y) 1980-1999 360 765 914 1116 1733 1190 

 1999-2018 341 724 884 1043 1795 1093 

Mean annual PET (mm/y) 1980-1999 1077 1222 1291 1405 1953 1221 

 1999-2018 1079 1232 1292 1394 1982 1211 

Mean annual streamflow (mm/y) 1980-1999 8 84 160 288 899 577 

 1999-2018 3 53 113 213 745 486 

Aridity index rain/PET (-) 1980-1999 0.18 0.56 0.71 0.86 1.58 0.98 

 1999-2018 0.17 0.54 0.69 0.81 1.48 0.9 

Runoff coeff. streamflow/rain (-) 1980-1999 0.02 0.11 0.17 0.25 0.61 0.48 

 1999-2018 0.01 0.07 0.12 0.2 0.53 0.44 

 482 

 483 

4. Results 484 

4.1. Example of DAISI Workflow Applied to the Jamieson River at Gerrang Bridge 485 

This section follows the three steps of the DAISI workflows applied to the example catchment. The 486 

parameters and diagnostic metrics for this catchment are provided in Table 3.  487 
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 488 

Figure 3: DAISI Step 1 – GR2M-kge variables (green dashed line) and assimilated ensembles (orange 489 

lines) for the Jamieson River at Gerrang bridge catchment. The plot covers the last two years of the 490 

calibration period. Plots (b) and (d) use a log scale for the vertical axis. The black dotted line in plot 491 

(d) is the observed streamflow. 492 

 493 

 494 



Page 23 of 54 

 Step 1: Data Assimilation 4.1.1.495 

Figure 3 illustrates Step 1 of DAISI by showing as orange lines the ensemble time series resulting 496 

from the Ensemble Smoother data assimilation algorithm applied to the GR2M model calibrated using 497 

the KGE objective function (GR2M-kge) over the first period (1980-1999). Each plot in this figure 498 

corresponds to the four states listed in Table 1. In addition, the figure shows the original GR2M-kge 499 

simulations in green along with the observed streamflow data as black dotted lines in Figure 3.d.  500 

The comparison between streamflow observations and GR2M-kge simulations in Figure 3.d highlights 501 

the systematic overestimation of low to mid flows by GR2M-kge. This overestimation is particularly 502 

pronounced between the second half of 1997 and the first half of 1998 for which GR2M-kge 503 

simulation stays above 5mm/mth whereas observations are close to cease-to-flow conditions with 504 

values as low as 1 mm/mth. As can be seen in Figure 3.d, assimilation corrects the low-flow bias of 505 

GR2M-kge by bringing the ensemble closer to streamflow observations. During high flow periods, the 506 

assimilation does not affect the simulation significantly as can be seen during the period from July to 507 

October 1998. 508 

Assimilation impacts the GR2M routing store shown in Figure 3.c in a similar way than streamflow by 509 

decreasing the store level by 5 to 10 mm during the low flow periods compared to the original model.  510 

Like the two previous variables, the assimilated effective rainfall (𝑃𝑒, see Figure 3.b) is reduced during 511 

low-flow periods but remains largely unaffected during high flow periods. The assimilated production 512 

store level (𝑆+) shown in Figure 3.a remains close to its value in GR2M-kge throughout the 513 

simulation. Overall, the effect of data assimilation decreases for state variables located further apart 514 

from streamflow within the model structure. This is expected as their correlation with observed 515 

streamflow estimated via the Kalman gain matrix is likely to decrease (see Appendix A). 516 

The RMSE ratio metric 𝑁𝑅 reported in Table 3 measures the statistical reliability of assimilated 517 

streasmflow ensembles and reaches 0.73 and 0.78 for the two calibration periods. These values are 518 

below one, which denotes an ensemble that is slightly too wide. Similar results are obtained across the 519 

whole catchment data set; hence the discussion of this point is deferred to Section 4.2. 520 

  521 
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 522 

Table 3: Model parameters and metrics for the Jamieson River at Gerrang Bridge. Numbers 523 

highlighted in bold correspond to metrics computed over a validation period. 524 

Variable Evaluation 

period 

Calibration over Period 1  

(1980-1999) 

Calibration over Period 2  

(1999-2018) 

  GR2M 

KGE 

GR2M 

BC02 

DAISI GR2M 

KGE 

GR2M 

BC02 

DAISI 

        

𝜽𝟏 (mm) - 238 319 238 212 249 212 

𝜽𝟐 (-) - 1.12 1.01 1.12 1.12 1.01 1.12 

NR (-) P1 - - 0.73 - - - 

NR (-) P2 - - - - - 0.78 

KGE (-) P1 0.86 0.70 0.94 0.86 0.74 0.92 

KGE (-) P2 0.82 0.65 0.87 0.83 0.70 0.88 

NSElog (-) P1 0.84 0.92 0.92 0.83 0.91 0.91 

NSElog (-) P2 0.84 0.90 0.92 0.84 0.91 0.92 

𝑭𝑩 (-) P1 0.61 0.82 0.91 0.60 0.83 0.86 

𝑭𝑩 (-) P2 0.63 0.84 0.93 0.63 0.85 0.88 

𝝐𝑷 (-) P1 1.66 1.82 1.84 1.64 1.76 1.70 

𝝐𝑷 (-) P2 1.75 1.93 1.98 1.73 1.87 1.84 

 525 

 Step 2: Model Structure Update 4.1.2.526 

In Step 2 of DAISI, the update equation (Eq. 5) is fitted for each assimilated ensemble to obtain the 527 

update coefficients 𝜂̃𝑛 for each state variable. The process is illustrated in Figure 4 where the fitting is 528 

undertaken using data from the first calibration period. Figure 4.a and Figure 4.c show time series of 529 

the update terms corresponding to the routing store state (𝑦𝑟+) and the first two ensemble members. 530 

The assimilated updates (i.e., difference between assimilated variables and values computed using 531 

GR2M original equations as defined in Eq. 8) are shown as dashed orange lines while the predicted 532 

updates computed from Eq. 6 are shown as plain blue lines. For both ensemble members, the predicted 533 

update captures the general trends of the assimilated updates: both updates are close to 0 during the 534 

high flow periods from July to October 1998 while being negative during earlier low flow months. 535 

However, the variability of predicted updates appears to be underestimated as can be seen during the 536 

low flow period from October 1997 to June 1998. This result reveals the limitations of the regression 537 

model used in the update equation which can only explain a part of the variability seen in the 538 

assimilated updates. Figure 4.b and Figure 4.d provide a more detailed analysis of the performance of 539 

the update equation by plotting predicted (on the horizontal axis) versus assimilated (on the vertical 540 

axis) updates for the first two ensembles. In these two plots, the points appear scattered around the 1:1 541 

line (dotted line) in the lower left part of the plot which suggests that the predicted updates exhibit 542 

large differences with the assimilated updates for low updates values. The predicted updates are much 543 

closer to assimilated updates for large updates with points clustered along the 1:1 line. Overall, the 544 

Pearson correlation between assimilated and predicted updates is close to or above 0.4 (shown in 545 
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bottom right corner of the plots) indicating that the regression captures the main trends of assimilated 546 

updates but does not reach a high predictive power. Note that Figure 4.a to Figure 4.d are limited to the 547 

first two ensembles. Figure 4.e and Figure 4.f expand the analysis by showing both assimilated and 548 

predicted updates for all ensembles. Here again, the predicted updates correlate with the assimilated 549 

updates, but lack a high predictive power.  550 

 551 

Figure 4: DAISI Step 2 - Assimilated (Δ̃𝑟+) and predicted (𝛿𝑟+) update terms for the routing store 552 

level (𝑅+ state variable, see Table 1) and the first two assimilated ensemble members in plots (a) 553 

and (b). Plots (b) and (d) show the predicted versus assimilated update for the same ensembles 554 

along with the Pearson correlation coefficient between assimilated and predicted updates shown in 555 

the lower right corner of each plot. Updates from the 500 ensemble members are shown in plot (e) 556 

and (f). Data relates to the Jamieson River at Gerrang Bridge catchment and the first calibration 557 

period (1980-1999). 558 
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 559 

Figure 4.e also highlights the high uncertainty of assimilated updates during the low-flow period 560 

between October 1997 and June 1998 during which the updates jump from low to high values 561 

following a noisy pattern. This point illustrates the challenge of selecting a suitable update equation 562 

able to capture the important trends of the updates without reproducing its noise which is unavoidable 563 

in the presence of uncertain data and empirical model structures.   564 

    565 

Figure 5: DAISI Step 2 - Distribution of update coefficients 𝜂̃𝑟+ for the 𝑅+ state variables (routing 566 

store) and the Jamieson River at Gerrang Bridge catchment in the first calibration period (1980-1999). 567 

The variable corresponding to the coefficient is given in the top left of each plot. The expected 568 

coefficient is shown as a vertical dark blue line.  569 

 570 

The distribution of the update coefficients for the routing store (𝑦𝑟+) resulting from the fitting of the 571 

update equation is shown in Figure 5. Plots corresponding to the remaining three state variables are 572 

shown in Supplementary Material 1. As indicated in Table 1, variable 𝑦𝑟+ depends on two state 573 

variables (𝑦𝑟 , 𝑦𝑝𝑒
∗), hence requiring 6 coefficients to be fitted. The expected value of each coefficient 574 

(𝜂̃𝑛
𝑎) is represented by a vertical blue line. The predictor variable corresponding to the coefficient in the 575 

update equation is indicated in the top left of each plot. Figure 5 reveals that most coefficients are 576 

statistically significantly different from zero with a majority of the probability mass located on either 577 

side of 0 (black vertical line), which suggests that most predictors play a significant role in the update 578 

equation. There are exceptions: for example, the distribution of coefficient 𝜂𝑟+,4 (Figure 5.e) is 579 

centered around 0, which suggests that the 𝑦𝑝𝑒
∗

2  variable could be excluded from the update equation 580 

without much loss to its predictive power. Such predictor selection could lead to a more parsimonious 581 
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update equation. It was not undertaken in this paper to keep the fitting of the update equation 582 

consistent across all sites and calibration periods.  583 

 584 

Figure 6: DAISI Step 3 – Updated model simulations (blue line) and update terms (dashed blue line 585 

using secondary vertical axis) for the Jamieson River at Gerrang Bridge catchment. The plot covers the 586 

last two years of the first calibration period and the first two years of the second validation period. Plot 587 

(b) and (d) use a log scale for the vertical axis. The black dotted in plot (d) is the observed streamflow. 588 
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 Step 3: Model Diagnostic 4.1.3.589 

Once the expected update coefficients are computed (vertical blue line in Figure 5), the updated model 590 

can be run and DAISI proceeds to Step 3. We highlight that data assimilation and coefficient fitting are 591 

not used in this step and that the updated model runs exactly like GR2M aside from its modified 592 

structure. 593 

Figure 6 shows time series of state variables for the updated model along with the update terms 𝛿𝑛 594 

computed from Eq. 6. The data covers the last two years of the first calibration period and the first two 595 

years of the following validation period. A comparison between Figure 3 and Figure 6 suggests that 596 

the updated model reproduces the behavior of the assimilated ensembles reasonably well. For example, 597 

it corrects the GR2M-kge overestimation of low flows with runoff simulations that are closer to 598 

observations in Figure 6.d. More important, this finding also applies to the validation period, for 599 

example between January 2001 and June 2001 in which the updated model fits the observed flow 600 

particularly well. This result demonstrates that the structural changes introduced by DAISI persist 601 

beyond the calibration period and can improve simulations during an independent validation period as 602 

confirmed by the performance metrics listed in Table 3 and discussed in the following paragraph.  603 

Figure 6 provides further insights on the update terms shown as dotted lines. For example, Figure 6.d 604 

shows that the streamflow updates 𝛿𝑞 are negative during most of the period except around high flow 605 

peaks (e.g., September1998 and August 1999) where the updates become positive. This means that the 606 

updated model reduces low flows and increases high flows compared to GR2M. The updates of the 607 

routing store 𝛿𝑟+ shown in Figure 6.c exhibit a much smaller amplitude than 𝛿𝑞, which indicates that 608 

the sum 𝛿𝑟+ + 𝛿𝑞 is close to 𝛿𝑞. As shown in Appendix C, the opposite of this sum is the update term 609 

for the GR2M inter-basin exchange flux (amount of water leaving the catchment unaccounted). 610 

Consequently, the update of the inter-basin exchange flux is close to −𝛿𝑞. In other words, when the 611 

updated model increases streamflow compared to GR2M, the inter-basin flux is reduced by the same 612 

amount. Considering this explanation, Figure 6.d reveals that the updated model increases the inter-613 

basin flux during low flows (negative 𝛿𝑞), perhaps to increase losses to ground water. Conversely, the 614 

flux is decreased during high flows (positive 𝛿𝑞). A similar analysis is more complex for the updates 615 

related to the production store shown in Figure 6.a and Figure 6.b as the two updates 𝛿𝑠+ and 𝛿𝑝𝑒
 are 616 

of similar magnitude. 617 

Table 3 displays the four evaluation metrics underlying the diagnostic performed in Step 3 of DAISI 618 

computed for the GR2M-kge, GR2M-bc02 and the updated model (DAISI). The three performance 619 

metrics (KGE, NSElog and 𝐹𝐵) indicate a significant performance improvement of DAISI compared to 620 

both GR2M configurations for both calibration and validation periods. For example, KGE increases 621 
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from 0.82 and 0.65 for the two GR2M configurations to 0.87 for DAISI when calibrating on Period 1 622 

and evaluating on Period 2, and from 0.86 and 0.74 to 0.92 when calibrating on Period 2 and 623 

evaluating on Period 1. Similar metric improvements are seen for both NSElog and 𝐹𝐵 metrics with 624 

DAISI reaching systematically higher performance.  625 

These improvements, especially when evaluating the model outside of the calibration period, suggest 626 

that the updated model is a robust alternative to GR2M. At the same time, the modelled rainfall 627 

elasticity 𝜖𝑃 is generally higher for the updated model compared to both GR2M configurations. For 628 

example, 𝜖𝑃 increases from 1.75 for GR2M-kge and 1.93 for GR2M-bc02 to 1.99 for the updated 629 

model when calibrating on Period 1 and evaluating on Period 2. Note that Period 1 was significantly 630 

wetter than Period 2 with a mean annual rainfall of 1190 mm/year compared to 1093 mm/year for 631 

Period 2 as indicated in Table 3, which constitutes a valuable test to explore future climate scenario 632 

that are likely to be drier than present condition in South-East Australia (Charles, Chiew et al. 2020). 633 

Given that the updated model improves all performance metrics compared to both GR2M 634 

configurations, it seems reasonable to assume that these elasticities are closer to the true elasticity, and 635 

hence better suited to evaluate the impact of future climate scenario. The high elasticity computed 636 

from the updated model suggests that the variability of future runoff projections will increase 637 

significantly compared to GR2M-kge, which is an important finding in a catchment contributing to 638 

inflows into one of the largest dams in Australia. 639 

For the sake of brevity, the presentation of other diagnostic tools introduced in Section 2.4 is not done 640 

for the example catchment. Section 4.3 presents the application of these tools to the whole catchment 641 

dataset. 642 

4.2. DAISI Evaluation Metrics Computed for 201 Catchments 643 

Following the application of DAISI Step 1 and 2 to the 201 catchments of our dataset, this section and 644 

the next present the diagnostic obtained from DAISI Step 3.  645 

The distribution of the Normalized RMSE ratio 𝑁𝑅 measuring the statistical reliability of the 646 

assimilated ensembles is presented in Table 4 for the 201 catchments and the two calibration periods. 647 

The 25
th

 percentile, median and 75
th

 percentile are 0.70, 0.81 and 0.95. These values are lower than 1, 648 

indicating that the assimilated ensemble is slightly too wide for most catchments across the dataset. 649 

Supplementary Material S3 suggests that statistical reliability of the assimilated ensemble can be 650 

improved by tuning the variance reduction factor 𝛼𝑒 in the data assimilation algorithm (see Appendix 651 

A). Such tuning was not undertaken here to keep the assimilation scheme as simple as possible and 652 

because it does not have a significant impact on performance metrics (see Supplementary Material S3). 653 

Overall, this result suggests that the Ensemble Smoother algorithm reaches reasonable performance 654 
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but could be improved, which is hardly surprising considering the strong linearity assumption 655 

underlying this data assimilation algorithm. This point will be further discussed in section 5.3.     656 

Table 4: Distribution of Normalized RMSE ratio (𝑁𝑅) computed from assimilated ensembles (DAISI 657 

Step 1) over the 201 test catchments and the two calibration periods. 658 

Statistic Normalized RMSE 

ratio (𝑵𝑹) 

Min 0.42 

Q25 0.70 

Median 0.81 

Q75 0.95 

Max 1.40 

 659 

Figure 7 presents the distribution of the four metrics computed for the 402 catchments/periods over 660 

independent validation periods. The bar plots presented in the right-hand side of each plot show the 661 

percentage of catchments/periods where metrics for the updated model (DAISI) are larger, similar or 662 

lower than GR2M-kge and GR2M-bc02 by more than 0.05. Figure 7 reveals that the median value of 663 

KGE, NSElog and flow duration curve bias index 𝐹𝐵 is systematically higher for the updated model 664 

compared to both GR2M configurations, which confirms the superiority of the former over the later. 665 

With KGE in Figure 7.a, the increase is small between the updated model (median of 0.69) and 666 

GR2M-kge (median of 0.65). However, it is much larger when comparing the updated model against 667 

GR2M-bc02 (median of 0.52). For NSElog in Figure 7.b, the increase is large between the updated 668 

model (median of 0.76) and GR2M-kge (median of 0.68) but insignificant between the updated model 669 

and GR2M-bc02 (median of 0.75). 𝐹𝐵 shown in Figure 7.c follows a similar pattern than NSElog. In 670 

terms of pairwise comparison, the updated model always obtains similar or better performance than the 671 

best of GR2M configuration for a majority of catchments and periods. For example, DAISI reaches a 672 

KGE that is significantly better than GR2M-kge in 43% of catchments/periods and similar to GR2M-673 

kge in 46%. Against GR2M-bc02, these figures reach 65% and 20% of catchments/periods. All other 674 

metrics provided in the supplementary material S2 confirm these results showing that DAISI leads to a 675 

consistent and reliable improvement of performance compared to GR2M across all flow regimes. Even 676 

if the performance improvement is modest for certain metrics (e.g., KGE metric when comparing 677 

against GR2M-kge), the number of catchments where DAISI is worse than GR2M remains limited 678 

which suggests that the updated model does not introduce major structural trade-offs (e.g., favoring a 679 

certain type of catchments against another).  680 

Overall, the updated model combines the strength of both GR2M configurations by equaling or 681 

exceeding their combined maximum for all performance metrics. This is an important result as it 682 

suggests that the DAISI structural updates surpass the performance obtained from alternative objective 683 

functions.  684 
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 685 

Figure 7: DAISI Step 3 evaluation metrics for GR2M calibrated using the KGE objective function 686 

(green), GR2M calibrated using the BC02 objective function (grey) and DAISI updated model (blue) 687 

for the 201 catchments. Metric values are computed for the two validation periods for each catchment. 688 

The bar charts on the right of each plot indicate the percentage of catchments/periods where DAISI is 689 

lower/similar/higher or worse/similar/better than GR2M-kge and GR2M-bc02. 690 

 691 

The fourth evaluation metric is the elasticity of modelled runoff to rainfall shown in Figure 7.d. The 692 

median elasticity is 2.52 for GR2M-kge which increases to 2.74 for the updated model. Pairwise 693 

comparisons confirm this result with updated model elasticity being significantly higher than GR2M-694 

kge in 71% of the site/periods. Comparing the updated model against GR2M-bc02 reveals that both 695 

models reach similar elasticity values with equal proportions of sites/periods where one is greater than 696 

the other. However, Supplementary Material S4 shows that when using BC02 as an objective function, 697 

DAISI obtains a significantly higher elasticity on a majority of sites/periods (median elasticity of 698 

DAISI reaches 2.96 in this case). Consequently, it can be said that DAISI generally leads to higher 699 

elasticity values across the catchment dataset. Considering that the updated model obtains better or 700 

equal performance than GR2M for most performance metrics, the elasticity from the updated model is 701 

very likely to be closer to reality than the GR2M elasticity. 702 

Figure 8 explores the evaluation metrics further by showing the spatial distribution of metric averages 703 

between the two validation periods for each catchment. The first column of the figure shows the 704 

metrics for GR2M-kge, the second the metrics for the updated model and the last column the 705 

difference between the two. Figure 8.a, b and c corresponding to the KGE metric reveal that there are 706 
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strong spatial trends in the performance improvement brought by DAISI which is mostly occurring in 707 

catchments located in the Western part of the state of Victoria (WVIC, see Figure 2 for exact location 708 

of this region) and the North-Eastern part of the state of New South Wales (NNSW). For these two 709 

regions, KGE improvements are greater than +0.10 (dark green triangles in Figure 8.c). Improvement 710 

of rainfall-runoff model performance in the WVIC region is important because this region has been 711 

reported to suffer from strong rainfall-runoff non-stationarity with long lasting effects from recent 712 

drought (Peterson, Saft et al. 2021). Conversely, KGE values for the catchments located in the center 713 

of the domain (Eastern Victoria) are comparable between GR2M and the updated model (white dots). 714 

A closer inspection of Figure 8.a and Figure 8.b reveals that GR2M reaches its highest KGE values in 715 

these catchments (dark blue points in Figure 8.a). As GR2M simulations are of high quality there, it is 716 

difficult for DAISI to improve performance significantly. Nonetheless, it is important to note that 717 

DAISI does not degrade performance in this region. 718 

The spatial distribution of performance differences for NSElog and FB metrics resembles the one of 719 

KGE as can be seen in Figure 8.f and Figure 8.i. The updated model improves performance over 720 

GR2M in the WVIC and NNSW regions with limited gains in the central region. The rainfall elasticity 721 

follows the same spatial pattern with higher elasticity for the updated model compared to GR2M in 722 

WVIC and NNSW. It is worth noting that the GR2M elasticity in the WVIC and NNSW varies 723 

between 2.50 to 3.25 (light to dark blue points in Figure 7.d) which increases by up to +0.50 with the 724 

updated model (dark green triangles in Figure 8.l). This represents an increase in elasticity of 15% to 725 

20%. 726 
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 727 

Figure 8: Spatial distribution of the four metrics for GR2M (first column) and updated model (DAISI, 728 

second column) over the 201 catchments. Metric values are computed from and averaged over the two 729 

validation periods for each catchment. The difference between DAISI and GR2M metrics is shown in 730 

the third column with green upper pointing (pink lower pointing) triangles showing catchment with 731 

better (worse) performance for DASI versus GR2M. 732 
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 733 

Figure 9: DAISI Step 3 - model structure diagnostic diagrams for four state equations (rows) and for 734 

catchments in the NNSW (first column) and WVIC (second column) regions. Data are from both 735 

calibration periods. The plots show the update term 𝛿𝑛 on the vertical axis. The horizontal axis shows 736 

the percentile rank of 𝑦𝑆 for the first two rows and 𝑦𝑅 for the last two rows. Medians (black line), 25% 737 

and 75% percentiles (dotted lines) of the update term are computed by binning the data according to 738 

the variable on the horizontal axis.  739 
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 740 

4.3. DAISI Model Structure Diagnostic for 201 Catchments 741 

The previous section confirmed the diagnostic undertaken in the example catchment which concluded 742 

that the updated model is a better alternative to GR2M over the catchment data set considered in this 743 

paper. Building on this result, the second part of the DAISI Step 3 diagnostic can be undertaken using 744 

plots described in Section 2.4. Figure 9 shows scatter plots of the update terms on the vertical axis. The 745 

horizontal axis displays percentile ranks of 𝑦𝑠 (production store) for the first two rows (Figure 9.a to 746 

Figure 9.d) and of 𝑦𝑟 (routing store) for the last two rows (Figure 9.e to Figure 9.h). 747 

The streamflow updates (𝛿𝑞) shown in Figure 9.g and Figure 9.h are similar for both regions with an 748 

update that is close to 0 for very low routing store levels, then decreasing to a median value of 749 

approximately -0.01 for percentiles of 𝑦𝑟 up to 0.7. Above this value, the streamflow update increases 750 

rapidly with 𝑦𝑟 reaching a positive median greater than +0.02 close to the maximum of 𝑦𝑟. This pattern 751 

explains why the updated model improves performance on low flows measured by the NSElog metric 752 

discussed in the previous section by lowering simulated flows when the routing store is low, and hence 753 

correcting the tendency of GR2M to overestimate low flows (see example in Figure 3). The positive 754 

update seen for high values of 𝑦𝑟 leads to an increase in streamflow values if 𝑦𝑟 is high, explaining the 755 

modest increase in mid to high flow performance measured by the KGE metric.  756 

The routing store updates (𝛿𝑟+) shown in Figure 9.e and Figure 9.f are of much smaller magnitude than 757 

the streamflow updates. This suggests that the sum 𝛿𝑟+ + 𝛿𝑞 is largely dominated by the latter which, 758 

as explained in section 3.1 and Appendix C,  implies that the update term on the inter-basin exchange 759 

term (water gained or lost from the surface water catchment) is approximately equal to −𝛿𝑞.  In other 760 

words, when the updated model increases streamflow by 𝛿𝑞, it decreases the exchange flux by −𝛿𝑞.  761 

The behavior of the streamflow and routing store updates appears similar in NNSW and WVIC regions 762 

as can be seen by comparing Figure 9.e with Figure 9.f.  Conversely, the updates on the production 763 

store 𝛿𝑠+ and effective rainfall 𝛿𝑝𝑒
 reveal a striking difference between the NNSW and WVIC regions. 764 

In NNSW region, variations of 𝛿𝑠+  (Figure 9.a) are negligible compared to those of 𝛿𝑝𝑒  (Figure 9.c) 765 

but in WVIC region, they are of similar magnitude (Figure 9.b and Figure 9.d). Based on section 3.1 766 

and Appendix C, this suggests that 𝛿𝑠+ + 𝛿𝑝𝑒
≈ 𝛿𝑝𝑒 in NNSW , and hence that the update on actual 767 

evapotranspiration is close to −𝛿𝑝𝑒
. In WVIC we can assume that 𝛿𝑠+ ≈ 𝛿𝑝𝑒

 hence that the update on 768 

the actual evapotranspiration is approximately −2𝛿𝑝𝑒
. Consequently, the structural update affects the 769 

actual evapotranspiration twice as much in WVIC as NNSW. This is an important finding to improve 770 

the representation of evapotranspiration in the model depending on the modelling region. 771 
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To go beyond the previous qualitative analysis of the structural updates, Figure 10 presents the 772 

singular value decomposition of the update coefficient matrix introduced in Eq. 18. The results for 773 

streamflow (last row in Figure 10) are the easiest to interpret and are commented first. Figure 10.j 774 

shows the component of the first two singular vectors along with their confidence intervals and 775 

weights (see Eq. 18) in the legend. The total weight for these two vectors is 0.93 (sum of 0.73 and 0.20), 776 

which is close to the maximum of 1 and indicates that the update coefficients are well approximated by 777 

linear combinations of these two vectors. This is an important result because it suggests that the 778 

polynomial used to correct streamflow variable in the update equation (Eq. 5) can be described 779 

accurately across the whole dataset with two degrees of freedom only instead of the 6 coefficients used 780 

in Eq. 6.  Furthermore, the singular vectors show narrow confidence intervals in Figure 10.j which 781 

suggests that they are not influenced by the catchment selection and potentially applicable to a wider 782 

range of catchments. As seen in Figure 10.j, the components of these vectors are significant for 𝑦𝑟 (-783 

0.24 for vectors #1 and -0.52 for vector #2), 𝑦𝑟
2 (0.76 and 0.41) and 𝑦𝑟 × 𝑦𝑝𝑒

 (-0.60 and 0.73) and close 784 

to 0 for the intercept (0.06 and 0.12),  𝑦𝑝𝑒
 (0.07 and -0.10)  and 𝑦𝑝𝑒

2  (0.04 and -0.03).  More precisely, 785 

if we neglect the smallest coefficients, the first singular vector corresponds to the following update 786 

polynomial for the streamflow state variable:  787 

 𝛿𝑞 = −0.24𝑦𝑟 + 0.76𝑦𝑟
2 − 0.60𝑦𝑟𝑦𝑝𝑒

 Eq. 20 

For a fixed value of 𝑦𝑝𝑒
, this polynomial is equal to 0 when 𝑦𝑟 = 0, then decreases with 𝑦𝑟 to reach a 788 

minimum and finally increases with 𝑦𝑟. This analysis explains the patterns seen in Figure 9 and allows 789 

precising the structural diagnostic by clarifying the role of 𝑦𝑝𝑒
 which was not apparent in Figure 9. In 790 

this discussion, the precise numerical values of the coefficients in Eq. 20 are less important than the 791 

functional form of the update which narrows considerably the type of form to be considered for future 792 

model improvement. In addition, Figure 10.k  shows that the first principal component exhibits strong 793 

regional trends. This component is negative for catchments in the WVIC and NNSW regions (dark 794 

purple triangles) which implies that the update for these catchments has a form similar to the opposite 795 

of Eq. 20. The second principal component shown in Figure 10.l is strongly positive for catchments 796 

located in the central region (dark green triangles). Consequently, the update equation in these 797 

catchments is similar to an equation like  Eq. 20 with coefficients taken from the second component. 798 

Such information could be used to define different state equations in these regions.  799 

The singular value decomposition of the update coefficient matrix for the 𝑅+ state variable follows 800 

similar patterns than 𝑄. The sum of the weights for the first two singular vectors is 0.95 (sum of 0.77 801 

and 0.18, see legend in Figure 10.g) which means that the update equation can be represented 802 

accurately by linear combinations of two vectors only in most catchment across the dataset. The 803 
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polynomial and regional trends (see figures Figure 10.h and Figure 10.i) associated with the singular 804 

vectors are similar to the ones for 𝑄.  805 

The singular value decomposition corresponding to 𝑆+(Figure 10.a, b, c) and 𝑃𝑒 (Figure 10.d, e, f) is 806 

more complex because the weights associated with the first two singular vectors are significantly lower 807 

than 1 (sum of 045+0.22=0.67 in Figure 10.a and 0.40+0.32=0.72 in Figure 10.c). For these two states, 808 

the low values of the weights reveal that the functional form of the update is more complex than linear 809 

combinations of the first two singular vectors in most catchments. In addition, the confidence intervals 810 

of the singular vector shown in Figure 10.a and Figure 10.c are relatively wide, suggesting that the 811 

component are affected by the catchment selection, and hence less likely to generalize beyond our 812 

dataset. The most striking element visible in in Figure 10.b is the strong regional trends shown by the 813 

first principal component for 𝑆+. The component clearly differentiates the catchments located in the 814 

WVIC (positive component) from the ones in the NNSW region (negative component). Here again, 815 

these conclusions suggest that the improvement in state equations are region specific. 816 

Overall, the DAISI diagnostic identified several directions to guide future improvement of the GR2M 817 

model including elements related to parameterization of the update and its regional trends. A summary 818 

of these directions is provided in section 5.2.  819 
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 820 

Figure 10: DAISI Step 3 - Reduced singular value decomposition of update coefficient matrices (see 821 

Eq. 18) for the four state equations (rows) and for the 201 catchments with data pooled from the two 822 

calibration periods. The plots in the first column show the components of the first two singular vectors 823 

along with their 90% bootstrap confidence intervals. The plots in the second and third columns show 824 

the projection of the update coefficient vectors for each site and calibration period on the first (second 825 

column) and second (third column) principal component, respectively.  826 
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 827 

5. Discussion 828 

5.1. Advantages and Limitations of DAISI 829 

Most existing methods used to improve model structures are based on trial and error using a finite set 830 

of structures that is arbitrarily selected by the modeler. Compared to this discrete approach, the first 831 

advantage of DAISI is that the exploration of alternative model structures is driven by data through 832 

data assimilation (DAISI Step 1) and fitting of the update equation (DAISI Step 2). This process can 833 

identify modelling solutions that were not considered a priori due to the complexity of formulating 834 

multi-dimensional state equations to represent physical processes that are often poorly quantified at the 835 

catchment scale  (for example see discussion about the difficulty to close mass balance by Safeeq, Bart 836 

et al. 2021, Huang, Wang et al. 2023). DAISI also offers an alternative to trial and error by considering 837 

a continuum of model structures generated via the update equation (Eq. 5). The results presented in 838 

Sections 4.2 and 4.3 show that the updated equation improves performance significantly compared to 839 

the original model including for the simulation of contrasting hydro-climatic conditions, and converges 840 

to a reduced number of update configurations with clear regional patterns. At the same time, DAISI 841 

does not lose the potential for interpreting model equations based on a physical system understanding, 842 

which is the main issue with most machine learning approaches. 843 

The second advantage of DAISI is its generic nature. The first two steps of DAISI, i.e., data 844 

assimilation and fitting algorithms, are mostly independent from the model structure and observed 845 

data. The only model specific element in DAISI is the normalization of state equations used to remove 846 

the influence of model parameters. This normalization is needed to compare the structural updates 847 

across different sites as is done in Section 4.3. However, we point out that it is not compulsory if the 848 

focus is on a single site or if the model parameters are identical across sites (for example when using a 849 

landscape model with same parameter values across a region). Consequently, DAISI is a general 850 

method that could be used to guide improvement for a wide range of models. This opens opportunities 851 

for applying DAISI to models outside the field of hydrology, for example ecology where state 852 

equations are often harder to identify than in hydrology due to the spatial variability and non-linearity 853 

of ecological processes (Cressie, Calder et al. 2009). It also allows DAISI to incorporate observed data 854 

beyond the traditional climate inputs used in empirical rainfall-runoff models. This has been attempted 855 

(for example accounting for artificial storage in the GR4J lumped model by Payan, Perrin et al. 2008) 856 

but remains a difficult exercise because model states in this type of model rarely correspond to 857 

observed data. In contrast, DAISI can incorporate additional data seamlessly via either the data 858 

assimilation algorithm by expanding the observed data vector 𝑑̃ (see appendix A) or by adding a 859 

predictor to the update equation. This point is further discussed in Section 5.3. 860 
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Finally, DAISI is a flexible and modular method where each step is independent from the others. For 861 

example, the aim of data assimilation in Step 1 is to evaluate the conditional probability of states given 862 

input and observation data via an ensemble. In this paper, the linear Ensemble Smoother described in 863 

Appendix A is used because of its limited computing requirements. However, any algorithm 864 

generating similar outputs more accurately could be used, which is discussed further in Section 5.3. 865 

Once an ensemble of states is generated, DAISI Step 2 fits the update equation to each assimilated 866 

ensemble. Here again the approach presented in the paper was chosen because of its parsimony and 867 

closed form solution but could be replaced with more powerful fitting techniques.  868 

Despite the qualities highlighted above, the first obvious limitation of DAISI is that it requires an 869 

existing model structure to apply the update equation. Early attempts (not shown) of removing the 870 

existing state equation (𝑓𝑛
∗) from Eq. 5 and creating a fully data-driven model structure led to poorer 871 

performance than the original model, which highlighted the difficulty of producing a model structure 872 

without a strong prior knowledge. However, relying on an existing model has benefits including the 873 

possibility to remove the structural update completely and revert to the original model if needed. Such 874 

a case is discussed in Section 4.2 where the GR2M model was seen to perform well in the central 875 

region of our modelling domain leading to structural update becoming negligible (see Figure 8.c, f, i 876 

and l). In other words, the updated model identified by DAISI is unlikely to suffer from large reduction 877 

of performance against the original structure. 878 

The second limitation of DAISI is the reliance on fixed model parameters obtained from a previous 879 

calibration exercise. A simple solution to overcome this limitation is to include parameters in the 880 

assimilated variables using the “state augmentation” technique (Vrugt, Diks et al. 2005, Pathiraja, 881 

Marshall et al. 2016). This approach was investigated (not shown) but did not lead to significant 882 

differences in both performance and diagnostic. Another more radical approach would be to repeat the 883 

whole DAISI process using parameters calibrated with different objective functions. This is done in 884 

Supplementary Material S4 where the GR2M model is calibrated using a box-cox transformed sum of 885 

squared errors following McInerney, Thyer et al. (2017). This exercise confirms that DAISI improves 886 

average performance for all metrics considered compared to GR2M but reveals that the largest 887 

improvements are obtained for different metrics compared to the ones identified in Section 4.2. This 888 

can be explained by the fact that the choice of objective function specializes the model in the 889 

simulation of a particular streamflow regime (for example KGE focuses on mid to high flows). Within 890 

DAISI, data assimilation and structural updates correct the largest errors, most likely outside of this 891 

streamflow range, and consequently improve the corresponding performance metrics (for example low 892 

flow metrics in when calibrating the model against KGE). Despite these performance differences, the 893 

results shown in Supplementary Material S4 suggest that a change in objective function did not affect 894 
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most DAISI diagnostic plots, especially the singular value decomposition shown in Figure 10, 895 

revealing that the choice of objective function may not be a critical factor in the DAISI diagnostic. 896 

These results are encouraging but it is acknowledged that more research is needed to formally 897 

incorporate parameter uncertainty in DAISI. 898 

The simplicity of both the data assimilation and fitting algorithms used in this paper is another 899 

limitation of DAISI which may constrain the performance of the method in its current form. As shown 900 

above, the data assimilation algorithm could be replaced with more flexible approaches. Regarding the 901 

fitting algorithm, the lack of physical constraints is an important issue because it leads to update terms 902 

that are potentially non-physical (e.g. negative streamflow) and requires truncation when running the 903 

updated model as shown in Appendix C. Extensive checks on modelled time series such as the ones 904 

presented in Figure 6 along with the computation of multiple performance metrics reported in Section 905 

4.2 did not reveal any obvious non-physical behavior of the updated model. This is likely to be due to 906 

the small amplitude of the updates compared to original model values which rarely leads to exceeding 907 

physical constraints.        908 

5.2. What have we learnt about the GR2M model? 909 

The DAISI method applied to GR2M, and more specifically the diagnostic conducted in Step 3, 910 

identified several elements to guide further improvement of this model. First, extensive analysis of 911 

performance metrics computed over a period independent from the calibration period concluded that 912 

the updated model improves all metrics, especially the ones related to low flow simulations. The 913 

updated model also increases the elasticity of modelled streamflow to rainfall significantly compared 914 

to GR2M-kge, which suggests that structural updates produce a more robust model for modelling 915 

future streamflow under climate change. 916 

Second, clearly defined structural updates are found for the lower parts of the model including the 917 

routing store (𝑅+) and simulated streamflow (𝑄). Streamflow values are altered in the updated 918 

structure by reducing mid-range values (negative update) while increasing high values (positive 919 

update) following a form similar to the polynomial of Eq. 20. The update for the routing store resembles 920 

the ones for streamflow but is of much lower magnitude, which lead to the conclusion that the updated 921 

model redistributes fluxes between streamflow and the inter-basin exchange (flux entering or leaving 922 

the surface water catchment). More precisely, the exchange flux is increased for low to mid-levels of 923 

the routing store and decreased for high levels of the routing store. Overall, these findings point to the 924 

need to modify the partition between streamflow and exchange flux in GR2M and relate this partition 925 

to the routing store level. 926 
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Third, the structural updates are less pronounced for the upper parts of the model including the 927 

production store (𝑆+) and effective rainfall (𝑃𝑒). The updates reduce both variables for mid-range 928 

levels of the production store while leaving them unaffected for very low and very high values of the 929 

store.  930 

Fourth, there are two regions where the structural updates in the production store differ significantly. 931 

In the Northern part of the state of New South Wales (NNSW), the updates of the effective rainfall are 932 

of much larger magnitude than updates of the production store level, which suggests that the updated 933 

structure introduced an equal redistribution of flux between effective rainfall and actual 934 

evapotranspiration compared to GR2M. In the Western part of the state of Victoria (WVIC), a similar 935 

flux redistribution is observed, but the modification in actual evapotranspiration is found to be 936 

approximately twice the change in effective rainfall. This more aggressive redistribution is likely to 937 

reduce production store level in this region, which is a recommendation formulated by Fowler, Knoben 938 

et al. (2020) while investigating the cause for poor performance of rainfall-runoff models in this 939 

region. 940 

Despite all these findings, it is acknowledged that the updated model generated by DAISI remains 941 

heavily parameterized as it depends on the two original GR2M parameters and 32 update coefficients 942 

(see Table 1). Incorporating the finding identified above into a compact structure constitutes a logical 943 

follow-up of the work presented in this paper.  944 

5.3. How can DAISI be improved? 945 

This paper presented a first version of the DAISI method. As mentioned in the previous sections, it is 946 

currently limited by the simplicity of the data assimilation in Step 1 and fitting algorithm used in Step 947 

2. More flexible assimilation algorithms, such as ensemble particle filter (Moradkhani, Sorooshian et 948 

al. 2005, Van Delft, El Serafy et al. 2009), could improve the quality of assimilated ensembles and 949 

allow the identification of more robust structural updates. In addition, the Ensemble Smoother (ES) 950 

data assimilation algorithm used in this paper is applied independently in each catchment, hence 951 

neglecting spatial correlation that is likely to exist between observation errors in neighboring 952 

catchments. Such an extension is relatively straightforward because ES was originally designed by van 953 

Leeuwen and Evensen (1996)  to assimilated observations in large spatially explicit models.  954 

The main issue related to the fitting algorithm was raised in section 5.1 with the lack of physical 955 

constraints in the fitting of update coefficients. This could be addressed by replacing the ordinary least 956 

squares solution introduced in Eq. 14 by a Bayesian regression with a censored predictand defined 957 

according to physical constraints (see for example the model developed by Wang, Robertson et al. 958 

2009). However, such statistical models generally lack a closed form solution and rely on sampling 959 
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methods, which would increase the computing time of DAISI significantly (the fit must be repeated for 960 

each assimilated ensemble).  961 

Improving the current algorithms in DAISI as described above is important, but we believe that greater 962 

benefits would come from including more observed data. As mentioned in section 5.1, DAISI is 963 

flexible enough to incorporate additional observed data in the assimilation algorithm or in the fitting of 964 

the update coefficients. In South-East Australia, evapotranspiration has a significant impact on runoff 965 

which is expected to grow in future climate (Fowler, Knoben et al. 2020). Adding in-situ or remotely 966 

sensed actual evapotranspiration data to DAISI is possible and could lead to improvement in rainfall-967 

runoff model structures for simulating both runoff and evapotranspiration.  968 

Finally, it would be useful to extend the application of DAISI to daily models (for example GR4J) to 969 

confirm that the method can be applied to more complex structures and in the presence of delayed 970 

response. 971 

6. Conclusion 972 

This paper introduced the Data Assimilation Informed model Structure Improvement (DAISI) method 973 

which aims at analyzing and improving a hydrological model structure by combining the Ensemble 974 

Smoother data assimilation algorithm with polynomial updates applied to the model state equations. 975 

The method is generic, modular and was demonstrated with an application to the GR2M monthly 976 

rainfall-runoff model and a dataset of 201 catchments in South-East Australia. 977 

The results show that the updated model generated with DAISI reaches higher median performance 978 

across the catchment data set for all metrics considered including KGE, NSE on log transform flow 979 

and flow duration curve bias. Performance improvement is largest for metrics measuring low flow 980 

performance such as log NSE where the updated model produced significantly higher performance 981 

score. In addition, the elasticity of modelled runoff to rainfall was shown to increase from a median of 982 

2.51 for GR2M to 2.80 for the updated model, which is closer to the observed data, suggesting that the 983 

structural changes will lead to more robust modelling of future streamflow under climate change. 984 

Finally, the DAISI diagnostic identified a reduced number of update configurations in the GR2M 985 

structure with clear regional patterns. These configurations correspond to specific polynomials of the 986 

inputs to the state equations that could form the basis for the definition of improved equations in a 987 

revised model. The regional patterns suggest that the structural updates correspond to distinct functions 988 

in three sub-regions of the modelling domain (Western Victoria, central region, and Northern New 989 

South Wales). 990 

Several avenues for improvement were proposed starting with the incorporation of additional observed 991 

data in DAISI (for example actual evapotranspiration) to better constrain internal model variables. 992 
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Other proposed improvements include the incorporation of parameter uncertainty and the testing of 993 

DAISI for more complex model structures or shorter simulation time steps. 994 
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Appendix A: Ensemble Smoother algorithm 1182 

The linear Ensemble Smoother (ES, van Leeuwen and Evensen 1996, Evensen 2009)  implemented in 1183 

this paper starts by transforming model and input variables so that their distribution becomes closer to 1184 

normal following Clark, Rupp et al. (2008). The transformation adopted are the log transform for 1185 

rainfall and 𝐵𝐶02 transform for streamflow (similar to what was used in Eq. 19) with other variables 1186 

left untransformed. Subsequently, ES perturbs observed data, input and state variables to obtain 𝑅 1187 

ensembles for each time step 𝑡, noted 𝑑̃𝑡[𝑟], 𝑢̃𝑡[𝑟] and 𝑥̃𝑡[𝑟], respectively, where 𝑟 = 1, . . , 𝑅. In this 1188 

paper, independent perturbations are added to transformed data and input vectors as follows 1189 

(Moradkhani, Sorooshian et al. 2005, Pathiraja, Marshall et al. 2016):  1190 

 𝑑̃𝑡[𝑟] = 𝑑̃𝑡 + 𝑒̃𝑡
𝑑[𝑟] Eq. 

21 

 𝑢̃𝑡[𝑟] = 𝑢̃𝑡 + 𝑒̃𝑡
𝑢[𝑟] Eq. 

22 

Where 𝑒̃𝑡
𝑑[𝑟] and 𝑒̃𝑡

𝑢[𝑟] are sampled from multivariate normal distributions. The perturbed observed 1191 

vectors 𝑑̃[𝑟] are then collated into a matrix 𝐷 of dimension 𝑂𝑇 × 𝑅. Subsequently, the original model 1192 

is run using perturbed inputs 𝑢̃[𝑟] as forcings to the state equations (see Eq. 1) combined with. another 1193 

perturbation to represent the model error. The perturbed states 𝑥̃𝑡
𝑓

[𝑟] (or “forecast” states to follow the 1194 

data assimilation terminology) are computed as follows: 1195 

 𝑥̃𝑡+1
𝑓

[𝑟] = 𝑓(𝑢̃𝑡
𝑓

[𝑟], 𝑥̃𝑡
𝑓

[𝑟], 𝜃̃) + 𝑒̃𝑡
𝑥[𝑟]  Eq. 

23 

Where 𝑒̃𝑡
𝑥[𝑟] is the state error (also referred to as “model” error in data assimilation terminology) 1196 

sampled from a multivariate normal distribution. Finally, the perturbed ensembles 𝑥̃𝑓[𝑟] are collated 1197 

into matrix 𝑋𝑓 of dimension 𝑉𝑇 × 𝑅. A subset of this matrix of dimension 𝑂𝑇 × 𝑅, referred to as 𝐻𝑋𝑓, 1198 

contains the model outputs.  1199 

The perturbation scheme presented above has been the subject of a numerous studies (Lei, Huang et al. 1200 

2014, Gong, Weerts et al. 2023) with potentially complex parameterization. A pragmatic approach is 1201 

adopted here by using perturbations with mean 0 and covariance defined similarly for the three vectors 1202 

𝑒̃𝑡
𝑑[𝑟], 𝑒̃𝑡

𝑢[𝑟] and 𝑒̃𝑡
𝑥[𝑟] as follows: 1203 

 Σ𝑒
𝑣 = 𝛼𝑒

2Σ𝑣 Eq. 

24 

Where 𝑣 is either 𝑑 (observations), 𝑢 (inputs) or 𝑥 (state variables), 𝛼𝑒 is a scaling factor set to 0.1 and 1204 

Σ𝑣 is the sample covariance matrix of variable 𝑣 computed from the original model simulation run 1205 

over the calibration period. The value chosen for 𝛼𝑒 remains subjective and based on values generally 1206 

reported for the uncertainty in hydrological data (Vrugt, Diks et al. 2005, Seo, Cajina et al. 2009) 1207 
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where an error rate of ±10% is common. Alternative values of 𝛼𝑒 have been tested with results 1208 

reported in supplementary material S3.  1209 

The ensemble smoother updates the perturbed ensemble 𝑋𝑓 to produce what is referred to as 1210 

“analysed” states 𝑋𝑎 computed as (see Section 9.5 in Evensen 2009): 1211 

 𝑋𝑎 =  𝑋𝑓 + 𝐾(𝐷 − 𝐻𝑋𝑓)  Eq. 

25 

Where 𝐾 is the Kalman gain matrix defined as 1212 

 𝐾 = Σ𝑋𝐻𝑋(Σ𝐷 + Σ𝐻𝑋)−1  Eq. 

26 

with Σ𝐷 and Σ𝐻𝑋 the sample covariances of the perturbed observations 𝐷 and model outputs 𝐻𝑋, 1213 

respectively, and Σ𝐻𝑋𝐻 the sample covariance between perturbed states and model outputs. These three 1214 

matrices are computed from ensemble data as  1215 

 𝐸𝐴 = 𝐴 − 𝜇𝐴 𝟏𝑅
𝑇    for 𝐴 = 𝐷, 𝑋𝑓 , 𝐻𝑋𝑓 Eq. 

27 

 
Σ𝐷 =

𝐸𝐷𝐸𝐷
𝑇

𝑅 − 1
, Σ𝐻𝑋 =

𝐸𝐻𝑋𝐸𝐻𝑋
𝑇

𝑅 − 1
, Σ𝐻𝑋𝐻 =

𝐸𝐻𝑋𝐸𝑋
𝑇

𝑅 − 1
 

Eq. 

28 

Where 𝜇𝐴 is the column mean of matrix 𝐴 of dimension 𝑅 × 1 and 𝟏𝑅 is the unity vector of same 1216 

dimension.  1217 

It is important to note that the updating process of Eq. 25 is only done once as opposed to what is done 1218 

in the Ensemble Kalman Smoother in which the update is recomputed sequentially for every 1219 

observation (Evensen and van Leeuwen 2000).  1220 

Appendix B: GR2M Model Structure 1221 

The GR2M model was introduced by Mouelhi et al. (2006). In this appendix, the reference to a 1222 

particular time 𝑡 is dropped to simplify notations. Using the notations introduced in Section 3.1, the 1223 

model runs as follow (Mouelhi, Michel et al. 2006): 1224 

 
𝑆1 =

tanh (𝑃/𝜃1) 𝜃1 + 𝑆

1 + tanh (𝑃/𝜃1)
𝑆
𝜃1

 
Eq. 29 

 𝑆2 =
𝑆1(1 − tanh (𝐸/𝜃1))

1 + (1 −  
𝑆1

𝜃1
) tanh (𝐸/𝜃1)

 
Eq. 30 
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𝑆+ =

𝑆2

(1 + (
𝑆2

𝜃1
)

3

)

1/3
 

Eq. 31 

     𝑃𝑒 = 𝑃 + 𝑆 − 𝑆1 + 𝑆2 − 𝑆+ Eq. 32 

     𝑅2 = 𝜃2 (𝑅 + 𝑃𝑒) Eq. 33 

     𝑄 =
𝑅2

2

𝑅2 + 𝜃𝑟
 Eq. 34 

     𝑅+ = 𝑅2 − 𝑄 Eq. 35 

The four state equations listed in Table 1 correspond to equations Eq. 31 (production store), Eq. 32 1225 

(effective rainfall), Eq. 34 (routing store) and Eq. 35 (streamflow). Dividing both sides of Eq. 29 by 𝑋1 1226 

leads to a form of the production store equation that is independent of 𝜃1: 1227 

 
𝑦𝑠1

=
tanh (𝑦𝑝) + 𝑦𝑠

1 + tanh(𝑦𝑝) 𝑦𝑠

 
Eq. 36 

Where 𝑦𝑠1
= 𝑆1/𝜃1, 𝑦𝑠 = 𝑆/𝜃1, 𝑦𝑝 = 𝑃/𝜃1. The same approach can be applied to equations Eq. 30 to 1228 

Eq. 32, suggesting that one can obtain transformed state equations for states 𝑆+ and 𝑃𝑒 that are 1229 

independent of 𝜃1 when introducing the normalized variables  𝑦𝑠 = 𝑆/𝜃1, 𝑦𝑠+ = 𝑆+/𝜃1, 𝑦𝑝𝑒
=1230 

𝑃𝑒/𝜃1, 𝑦𝑒 = 𝐸/𝜃1. Using such variables leads to the first two transform state equations: 1231 

     𝑦𝑠+ =
𝑦𝑠2

√1 + 𝑦𝑠2
33

 
Eq. 37 

     𝑦𝑝𝑒
= 𝑦𝑝 + 𝑦𝑠 − 𝑦𝑠1

+ 𝑦𝑠2
− 𝑦𝑠+  

Eq. 38 

Where  1232 

     𝑦𝑠2
=

𝑦𝑠1
(1 − tanh (𝑦𝑒))

1 + (1 − 𝑦𝑠1
) tanh (𝑦𝑒)

 
Eq. 39 

Similar approach can be used for equations Eq. 33 to Eq. 35 by introducing 𝑦𝑟 = 𝑅
𝜃2

𝜃𝑟
,  𝑦𝑟+ =

𝑅+

𝜃𝑟
, 𝑦𝑝𝑒

∗ =1233 

𝑃𝑒
𝜃2

𝜃𝑟
, 𝑦𝑞 =

𝑄

𝜃𝑟
. Using these variables, the two states equations Eq. 34 and Eq. 35 become independent 1234 

from parameter 𝜃2 and constant 𝜃𝑟 as follows: 1235 
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𝑦𝑟+ =

𝑦𝑟 + 𝑦𝑝𝑒
∗

1 + 𝑦𝑟 + 𝑦𝑝𝑒
∗
 

Eq. 40 

     𝑦𝑞 =
(𝑦𝑟 + 𝑦𝑝𝑒

∗ )
2

1 + 𝑦𝑟 + 𝑦𝑝𝑒
∗
 Eq. 41 

Overall, Equations Eq. 37, Eq. 38, Eq. 40 and Eq. 41 constitute the four normalized state equations of 1236 

GR2M.  1237 

It is worth noting that the state variables mentioned in Eq. 29 to Eq. 35 do not include actual 1238 

evapotranspiration and inter-basin exchange (flux gained from or lost to neighboring catchments, see 1239 

extensive discussion about this flux by Mouelhi, Michel et al. (2006)). The reason for this omission is 1240 

that the variables listed above are sufficient to describe the model dynamic completely. In the case of 1241 

the production store for example, once the store level at the start (𝑆) and end (𝑆+) of the time step are 1242 

known along with the effective rainfall (𝑃𝑒), the actual evapotranspiration 𝐴𝐸 can be computed as a 1243 

mass balance residual equal to 1244 

     𝐴𝐸 =  𝑆 + 𝑃 − 𝑆+ − 𝑃𝑒  Eq. 42 

A similar approach applied to the routing store leads to the computation of the inter-basin exchange 𝐹 1245 

counted positively if water leaves the catchment as   1246 

     𝐹 = 𝑅 + 𝑃𝑒 − 𝑅+ − 𝑄 Eq. 43 

Appendix C: GR2M Updated Model Structure 1247 

The updated GR2M model structure operates similarly to the original structure except that update 1248 

terms are added to states equations as per Eq. 5. Mass balance constraints are also included to avoid 1249 

non-physical values. In the following equations, the four state functions 𝑓𝑠, 𝑓𝑝𝑒
, 𝑓𝑟 and 𝑓𝑞 represent the 1250 

right-hand side of equations Eq. 37, Eq. 38, Eq. 40 and Eq. 41, respectively.  1251 

Introducing the notation 𝑐𝑙𝑖𝑝(𝑥0, 𝑥1, 𝑥) = max (𝑥0, min(𝑥1, 𝑥)) and dropping the reference to a 1252 

particular time step 𝑡 like in Appendix B, the updated model structure becomes:   1253 

     𝑦̂𝑠+ = 𝑓𝑠(𝑦𝑠, 𝑦𝑝, 𝑦𝑒) + 𝛿𝑠+  Eq. 44 

     𝑆+ = 𝑐𝑙𝑖𝑝(0, min (𝑆 + 𝑃, 𝜃1), 𝜃1𝑦̂𝑠+) Eq. 45 

     𝑦̂𝑝𝑒
= 𝑓𝑝𝑒

(𝑦𝑠, 𝑦𝑝, 𝑦𝑒) + 𝛿𝑝𝑒
 Eq. 46 

     𝑃𝑒 = 𝑐𝑙𝑖𝑝(0, 𝑆 + 𝑃 − 𝑆+, 𝜃1𝑦̂𝑝𝑒
) Eq. 47 
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𝑦̂𝑝𝑒

∗ = 𝑃𝑒

𝜃2

𝜃𝑟
 

Eq. 48 

     𝑦̂𝑟+ = 𝑓𝑟(𝑦𝑟 , 𝑦̂𝑝𝑒
∗ ) + 𝛿𝑟 Eq. 49 

     𝑅+ = 𝑐𝑙𝑖𝑝(0, 𝜃𝑟 , 𝜃𝑟𝑦̂𝑟+) Eq. 50 

     𝑦̂𝑞 = 𝑓𝑞(𝑦𝑟 , 𝑦̂𝑝𝑒
∗ ) + 𝛿𝑞 Eq. 51 

     𝑄 = 𝑚𝑎𝑥(0, 𝜃𝑟𝑦̂𝑞) Eq. 52 

Where 𝛿𝑛 stands for the update term for state variable 𝑛 computed from Eq. 6. For example, 𝛿𝑠+ is 1254 

computed as follows in Eq. 44: 1255 

     𝛿𝑠+ = 𝜂𝑠,0 + 𝜂𝑠,1 𝑦𝑠 + 𝜂𝑠,2 𝑦𝑝 + 𝜂𝑠,3 𝑦𝑒 + 𝜂𝑠,4𝑦𝑠
2 + 𝜂𝑠,5𝑦𝑝

2 + 𝜂𝑠,6𝑦𝑒
2 + 𝜂𝑠,7 𝑦𝑠𝑦𝑝

+ 𝜂𝑠,8 𝑦𝑠𝑦𝑒 + 𝜂𝑠,9 𝑦𝑝𝑦𝑒 

Eq. 53 

The mass balance constraints introduced in Eq. 44 and Eq. 47 ensure that the store level is bounded 1256 

within [0, 𝜃1], and that the effective rainfall and actual evapotranspiration (see Eq. 43) remain positive. 1257 

Consequently, the maximum imposed to 𝑆+ in Eq. 45 is the lowest of the store capacity 𝜃1 and the sum 1258 

of 𝑆 with precipitation 𝑃. This maximum is reached if actual evapotranspiration and effective rainfall 1259 

becomes 0. In turn, Eq. 47 ensures that the effective rainfall 𝑃𝑒 remains below the sum of the change in 1260 

store level (𝑆 − 𝑆+) with 𝑃, which is reached if actual evapotranpiration is 0. The mass balance 1261 

constraints associated with the routing store are simpler to obtain because GR2M allows for water to 1262 

leave or enter the catchment via the inter-basin exchange term computed from Eq. 43 (Mouelhi, Michel 1263 

et al. 2006). Consequently, the only constraints required are that the routing store level is bounded 1264 

within [0, 𝜃𝑟] (Eq. 50),  and that simulated streamflow remains positive (Eq. 51).  1265 

Additional comments can be made on Eq. 42 and Eq. 43 to better understand the nature of the update 1266 

terms for 𝑆+ and 𝑅+. Starting with 𝑆+ by combining Eq. 42 with Eq. 45 and Eq. 47 while ignoring mass 1267 

balance constraints, we obtain: 1268 

     𝐴𝐸 =  𝑆 + 𝑃 − 𝜃1𝑦̂𝑠+ − 𝜃1𝑦̂𝑝𝑒
 

Eq. 54 

Combining this equation further with Eq. 44 and Eq. 46 and rearranging leads to 1269 

      𝐴𝐸 =  𝑆 + 𝑃 − 𝜃1 (𝑓𝑠(𝑦̂𝑠, 𝑦𝑝, 𝑦𝑒) + 𝑓𝑝𝑒
(𝑦̂𝑠, 𝑦𝑝, 𝑦𝑒)) + 𝜃1(−𝛿𝑠+ − 𝛿𝑝𝑒

) Eq. 55 

In the right-hand side of this equation, all terms except the last one are derived from the GR2M 1270 

structure while the last term is related to the update terms. Consequently, the opposite of the sum 1271 
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𝛿𝑠+ + 𝛿𝑝𝑒
 can be considered as the update term for actual evapotranspiration. Similar manipulations 1272 

for the routing store equations lead to  1273 

      𝐹 = 𝑅 + 𝑃𝑒 − 𝜃𝑟 (𝑓𝑟(𝑦̂𝑟 , 𝑦̂𝑝𝑒
∗ ) + 𝑓𝑞(𝑦̂𝑟 , 𝑦̂𝑝𝑒

∗ )) + 𝜃𝑟(−𝛿𝑟 − 𝛿𝑞) 
Eq. 56 

As a result, the opposite of the sum 𝛿𝑟 + 𝛿𝑞 can be considered as the update term for the inter-basin 1274 

exchange flux. The findings derived from Eq. 54 and Eq. 56 provide a way to relate the four update 1275 

terms to actual evapotranspiration and inter-basin exchange flux.  1276 

 1277 


