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Abstract

The Mediterranean region is experiencing pronounced aridification and in certain areas higher occurrence of intense precipitation.

In this work, we analyze the evolution of the rainfall probability distribution in terms of precipitating days (or “wet-days”) and

all-days quantile trends, in Europe and the Mediterranean, using the ERA5 reanalysis.

Looking at the form of wet-days quantile trends curves, we identify four regimes.

Two are predominant: in most of Northern Europe the rainfall quantiles all intensify, while in the Mediterranean the low-

medium quantiles are mostly decreasing as extremes intensify.

The wet-days distribution is then modeled by a Weibull law with two parameters, whose changes capture the four regimes.

Assessing the significance of the parameter changes over 1950–2020 shows that a signal on wet-days distribution has already

emerged in Northern Europe (where the distribution shifts to more intense rainfall), but not yet in the Mediterranean, where

the natural variability is stronger.

We extend the results by describing the all-days distribution change as the wet-days’, plus a contribution from the dry-days

frequency change, and study their relative contribution.

In Northern Europe, the wet-days distribution change is the dominant driver, and the contribution of dry-days frequency change

can be neglected for wet-days percentiles above about 50\%.

In the Mediterranean, however, the contribution to all-days change of wet-days distribution change is much smaller than the

one of dry-days frequency.

Therefore, in the Mediterranean the increase of dry-days frequency is crucial for all-days trends, even when looking at heavy

precipitations.
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Abstract

The Mediterranean region is experiencing pronounced aridification and in certain areas higher
occurrence of intense precipitation. In this work, we analyze the evolution of the rainfall probability
distribution in terms of precipitating days (or “wet-days”) and all-days quantile trends, in Europe
and the Mediterranean, using the ERA5 reanalysis. Looking at the form of wet-days quantile trends
curves, we identify four regimes. Two are predominant: in most of Northern Europe the rainfall
quantiles all intensify, while in the Mediterranean the low-medium quantiles are mostly decreasing as
extremes intensify. The wet-days distribution is then modeled by a Weibull law with two parameters,
whose changes capture the four regimes. Assessing the significance of the parameter changes over
1950–2020 shows that a signal on wet-days distribution has already emerged in Northern Europe
(where the distribution shifts to more intense rainfall), but not yet in the Mediterranean, where the
natural variability is stronger. We extend the results by describing the all-days distribution change
as the wet-days’, plus a contribution from the dry-days frequency change, and study their relative
contribution. In Northern Europe, the wet-days distribution change is the dominant driver, and the
contribution of dry-days frequency change can be neglected for wet-days percentiles above about 50%.
In the Mediterranean, however, the contribution to all-days change of wet-days distribution change
is much smaller than the one of dry-days frequency. Therefore, in the Mediterranean the increase of
dry-days frequency is crucial for all-days trends, even when looking at heavy precipitations.

Key points :

• Four regimes of change for daily rainfall distribution are identified, and are captured by a two
parameter analytical model.

• In Northern Europe, a signal of increasing mean and extreme precipitations has emerged.

• In the Mediterranean, the changes of rainfall appears dominated by changes in dry-days frequency.

1 Introduction

Climate change is known to impact the global water cycle, and to have consequences on total rainfall and1

extreme of precipitations. The changes expected on total precipitations are of about +2-3% per degree2

Celsius of global warming, while for the extreme rainfalls, estimates from thermodynamics give at first3

order a rise in intensity of about 7%/°C (Trenberth, 1999; Allen and Ingram, 2002; Held and Soden,4

2006). However, on regional scales the changes in mean and extreme precipitation can vary substantially5

from the global mean, due both to dynamical aspects and natural variability (Trenberth, 2011; Fischer6

et al., 2013; Pendergrass and Hartmann, 2014; Fischer and Knutti, 2014; Pfahl et al., 2017).7

The Mediterranean region, due to its unique position as a transition zone between the wetter Europe8

and the dryer desert of the Sahara, is a climate change hotspot in terms of temperature and precipitation9

changes (Giorgi, 2006). Climate simulations predict that the Mediterranean will get drier (more evapora-10

tion and decreased mean precipitation) with global warming (D’Agostino and Lionello, 2020; Drobinski11

et al., 2020) and will experience more extreme rainfalls, at least on the northern shore (Vautard et al.,12

2014; Giorgi et al., 2014; Drobinski et al., 2018; Myhre et al., 2019; Pichelli et al., 2021; Ali et al., 2022).13
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This simultaneous decrease in mean precipitations and increase in extreme rainfalls is sometimes called14

a “paradox in the water cycle change” (Brunetti et al., 2000; Alpert et al., 2002; Brunetti, 2004). North-15

ern Western and Central Europe, on the contrary, are expected to undergo an increase of both total16

precipitations and extreme rainfalls (Intergovernmental Panel On Climate Change, 2023, chapter 8).17

Still, the long-term water cycle changes on the Mediterranean are unclear when looking at historical18

observations. In observations, previous studies find a strong and significant signature of increasing evap-19

oration and of drier conditions, such as droughts or dry spells (Hoerling et al., 2012; Sheffield and Wood,20

2012; Raymond et al., 2016; Caloiero et al., 2018), associated to an increase of dry-days frequency over21

the Mediterranean and an increase over Europe (Brunetti et al., 2000; Brunetti, 2004; Benestad et al.,22

2019), but the trends of the mean precipitations are subject to more debate. The 6th IPCC assessment23

report (Intergovernmental Panel On Climate Change, 2023, chapter 8) concludes that there is no long-24

term trend of the mean precipitation in the Mediterranean since the pre-industrial era. Only on shorter25

time periods of the order of a few decades or on sub-regions can some significant trends be derived (Sousa26

et al., 2011; Tanarhte et al., 2012; Mariotti et al., 2015; Zittis, 2018), but they may be driven mainly by27

natural variability and not by climate change (Peña-Angulo et al., 2020).28

In this paper, we want to study the whole rain distribution over the Mediterranean region. Compared29

to droughts and extreme precipitations which have been extensively studied, the research on the whole30

rain distribution is relatively less developed. In the few papers that do study the whole range of the rain31

distribution, two main approaches can be distinguished: non-parametric and parametric studies. Non-32

parametric studies focus on the changes of frequency of fixed rain intensity amounts or on the changes of33

intensity for fixed percentile rank or on the change of contribution from given rain amounts to the total34

precipitation (Alpert et al., 2002; Brunetti, 2004; Klingaman et al., 2017; Berthou et al., 2019, 2020).35

These methods are interesting, but when one wants to allow diagnostics or interpretation in terms of a36

few key parameters, parametric studies are needed.37

Still, very few parametric studies do not focus only on the extreme precipitations. Some of them have38

taken a simple exponential law (Benestad et al., 2019) or a gamma law which performs quite well for39

the low to medium precipitations (Ben-Gai et al., 1998; Groisman et al., 1999), or a Generalized Pareto40

Distribution from generalized extreme values theory, which is known to be suited for high amounts but41

not necessarily for the medium amounts. A more complex model, tailored for wet-days precipitation, has42

been recently proposed by Naveau et al. (2016) and gives very good results for both the low rainfall and43

the extremes (Tencaliec et al., 2020; Rivoire et al., 2022), still with a little more complexity (it has three44

parameters compared to two for the gamma law or one for the exponential). In this paper, we choose the45

intermediate approach of a Weibull law with two parameters, which, as will be shown below, represents46

a minimal framework to model wet-days distribution and its quantile trends regimes.47

In this work, we propose a framework which describes the change over time of the whole distribution of48

precipitation: from absence of rain to low and moderate rainfall, up to extreme events. We first perform49

a description of the wet-days trends, quantile by quantile. As underlined by Schär et al. (2016), such50

a method should consider the change in frequency of precipitating days (or “wet-days”). Therefore, we51

also study how the wet-days quantile trends can be influenced by the change in dry-days frequency. We52

illustrate this methodological framework on the recent past in Europe and the Mediterranean. The main53

question addressed here is the following: how does the whole precipitation distribution change across54

Europe and the Mediterranean region?55

The outline of the paper is as follows: Section 2 presents the dataset used, then Section 3 presents56

the different kinds of regimes that can be observed over Europe and the Mediterranean concerning the57

wet-days quantile trends. Section 4 proposes the Weibull law as a wet-days distribution to represent the58

observed regimes, and analyze them more thoroughly. Section 5 extends this parametric model to the59

all-days distribution, with an application on the trends of the total precipitation and of all-days quantiles.60

2 Precipitation dataset61

The choice of the data set was driven by the need for a homogeneous data over the Mediterranean region,62

as well as long-term time series to help detect small changes in the precipitation distribution.63

We choose not to use EOBS gridded data, although it is considered as the reference of its kind for64

Europe and covers a long enough period (since 1950) at 0.25° resolution, because it suffers temporal65

and spatial inconsistencies (Cornes et al., 2018). Indeed, EOBS rainfall dataset is based on the spatial66

interpolation of rain gauge data from stations which number and density have changed significantly over67

time, therefore one is advised not to use it for the analysis of long-term trends.68
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Since most of the over available observational data sets cover either a smaller domain (IBERIA01 in69

Portugal and Spain (Herrera et al., 2019), or CARPATCLIM covering the Carpathians), a shorter period70

of time (the IMERG reanalysis product starts in 2000, the FROGS product in the 1970s), or have a71

coarser temporal or spatial resolution (CRU starts is a monthly dataset, while REGEN is daily but at72

1°), we turned to ERA5 reanalysis.73

We used ERA5, the latest global reanalysis provided by the European Center for Medium-Range74

Weather Forecasts (Hersbach et al., 2020), at a resolution of 0.25°, on the period 1950-2020. We computed75

the daily accumulated rainfall from ERA5 hourly variable “total precipitation”, which incorporates both76

convective and large-scale precipitation.77

Note that if microwave radiances and ground radar rain rates are assimilated in ERA5, rain gauges78

data are not assimilated for the rainfall product. Rivoire et al. (2021) showed that ERA5 tends to79

overestimate precipitation occurrence (for 1 mm/day threshold) over European lands by about 10 to 20%80

compared to EOBS gridded data set, and even more over sea surface (when compared with CMORPH81

global data set). Therefore, we must keep in mind ERA5 general bias on precipitations. Still, ERA582

precipitation wet-days intensity has been shown to be in very good agreement with EOBS gridded data83

set over European lands, where the station density is high (especially Germany, Ireland, Sweden, and84

Finland), and over the mid-latitude seas, compared with CMORPH.85

Our domain covers the area between 25°W and 45°E in longitude, and between 25°N and 71°N in86

latitude, enabling the study of both the Mediterranean and Europe.87

Finally, we would like to highlight that the methodology we present in this paper can be applied to88

any other rainfall data sets.89

3 Observed regimes for the change of the wet-days distribution90

One way to study the distribution changes of precipitation is to look at the cumulative density function91

(CDF) or equivalently at the quantile curve (i.e., the inverse of the CDF). To see their evolution with92

time, we can choose two periods of time, subtract their quantile curves, and obtain the curve of the93

intensities of the quantile trends for all percentiles. In the following, we designate as trend the absolute94

change of a given variable between two periods of 31 years, 1950–1980 and 1990–2020, divided by the95

time interval between the two periods, four decades here. We choose to take periods of three decades to96

smooth out the natural variability within those periods when taking the mean statistics. The impact on97

our results of the choice of the dates is negligible (see Section 7.1).98

A rainfall distribution usually has a high probability of the event 0 mm, corresponding to the many99

dry-days, i.e. days with no to low rainfall accumulation. In this paper, we will look at both the change100

of rainfall occurrence and intensity of rain (i.e. wet-days distribution) but also the all-days distribution.101

For methodological issues, it is indeed handy to set aside the dry-days and fit a model on the wet-days102

distribution only (which will be done in the next section). We are conscious that a quantile trend defined103

on a wet-days distribution may be influenced by a change in the fraction of dry-days, fd, as discussed in104

detail in Schär et al. (2016): this aspect will be further developed in the next section.105

The work from Expert Team on Climate Change Detection and Indices recommends the use of 1 mm/-106

day as the threshold for the definition of dry and wet-days: this value enables to better deal with both the107

issues of under-reporting of small rainfall amounts in observations and the “drizzle problem” of models108

and reanalyses - which usually have too many days with weak rain (Karl et al., 1999; Zhang et al., 2011).109

The fraction of dry-days (less than 1 mm/day) is far from being negligible in our domain, and can vary110

from 20% in Northern Europe up to 90% in the Maghreb (and almost 100% in the desert). Note that by111

construction, the trend of the 0% wet-days percentile will always be zero, as its intensity is by definition112

fixed to 1 mm/day.113

Figure 1 illustrates four main qualitatively different shapes that can be found on the domain. They114

depend on the evolution of the CDF :115

• all quantiles increasing (for ex. in the UK),116

• all quantiles decreasing (for ex. in the North of Portugal),117

• a U-shape regime, consisting in negative trends for low to medium quantiles but positive trends on118

extremes, with a certain inversion percentile in between (for ex. in the North of Italy),119

• a reversed U-shape regime, with increasing low to medium percentiles with decreasing extremes (for120

ex. in the Mediterranean Sea, North of Libyan coast).121
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Figure 1: Top: illustration of the four types of behaviors for wet-days quantile trend curve (between
1950–1980 and 1990–2020), at four chosen locations. The quantile trends ∆Q(p) are plotted in mm/-
day/decades. Bottom left: category map obtained from the classification algorithm, applied on the trends
between 1950–1980 and 1990–2020, with a sliding window of 9 grid-points. Green corresponds to “all
quantiles intensify” category, red to “all quantiles decrease”, orange to “U-shape” and blue to “reverse
U-shape”. Gray means the category is unclear. White designates desert location (less than 2% of wet-

days). Bottom right: relative change of Weibull parameters
(

∆β
β , ∆α

α2

)
for the whole domain. Colors

indicate as before the category detected by the classification algorithm. The black thick lines are the
theoretic limits between the influence zones of the two Weibull parameters.
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Note that a regime comparable to this “U-shape”, with an “inversion percentile” or “crossover”, was122

already mentioned in literature for the Mediterranean region (Boberg et al., 2010; Colin, 2011).123

In order to quantitatively distinguish between those regimes of trends, we developed a simple classi-124

fication algorithm, which takes in input a list of percentiles and associated quantile trends, looks at the125

shape of the trend curve and assesses in which of the four categories it falls into. It uses both the signs126

of the trends and of the trends slope, for low to medium ranks as well as for extreme high ranks. The127

full definition of the algorithm is in Section 7.1.128

This classification algorithm was applied over the whole Mediterranean and European domain, be-129

tween 1950–1980 and 1990–2020, giving the category map shown in Figure 1. We added a category130

“unknown” (in gray) for the points whose category was unclear. Note that this map was obtained by131

applying the algorithm on a sliding window of 9 pixels (which for each grid-point merges together the132

time series of its 8 neighboring grid-points) to smooth out very local irregularities.133

The first thing that becomes manifest on the category map in Figure 1 is a clear North/South pattern:134

a large majority of North-West Europe as well as subtropical Atlantic Ocean belongs to the same category135

(“all rain quantiles intensify”), while the Mediterranean region is mainly in the “U-shape” category (i.e.,136

decreasing low to medium quantiles but increasing extremes) with also a certain amount of “all rain137

quantiles decrease” category. This is consistent with what one would expect from a Mediterranean138

type behavior, with both drying and extreme rain events intensification. In the southern part of the139

Mediterranean basin, the “all decrease” regime is more predominant. We remind that the differences140

between the “all-decrease” and “U-shape” categories are mainly due to their opposite trend signs for very141

heavy precipitations. We can also observe that for the Mediterranean Sea waters far from the land coasts142

(about 200 km away), the dominant category is the “all rain quantiles intensify” one. As for African land143

equatorward of 30°N, the category map becomes extremely spotty, which could be due to a higher natural144

variability in the wet-days distribution, mainly due to the very small number of wet-days. Therefore, we145

won’t look at desert regions, where there is less than 2% of rainy days.146

We also note that the map of categories is much spottier within the Mediterranean region than in147

Northern Europe. This spottiness seems to be mainly due to a strong natural variability, from which a148

long-term climate change signal in the Mediterranean on the wet-day distribution has not yet emerged.149

Indeed, as shown in Section 7.1, the agreement between wet-days category maps computed for different150

time periods (of 20 to 35 years) is much lower for the Mediterranean than Northern Europe. The151

spottiness of the category map in the Mediterranean is probably an illustration of the sampling error.152

As a sum up, the signal of an intensification in the wet-day distribution is clear in Northern Europe,153

while the Mediterranean region does not seem to have a strong signal yet, at least not strong enough154

to overcome the noise of natural variability. This is a motivation to try to improve the significance of a155

signal by taking a parametric approach.156

4 Analytical model for the wet-days rain distribution157

In order to synthesize the information on each and every quantile trends into a smaller number of pa-158

rameters, we turn to a parametric approach.159

We first focus on finding a model for the wet-days distribution. Then in Section 5 we will see how160

all-days quantiles trends can be influenced by the changes of both the wet-days distribution and the161

dry-days frequency.162

Benestad et al. (2019) used an exponential law for the wet-days rain distribution, which works well on163

the observational data and gives a good “rule of thumbs” to relate extremes probability or quantile trends164

to the wet-days mean. However, since this wet-days model has a single parameter (the wet-days mean),165

this model can only represent a shift of all quantiles to higher (resp. lower) intensities if the parameter166

increase (resp. decrease). Thus it can not represent the two other quantile trends behaviors we observe,167

the “U-shape” and “reversed U-shape”, which have an opposite trend for low and high percentile. We168

need at least two parameters in the wet-days distribution in order to represent the four observed regimes.169

We compared different models having two or three parameters, among usually-used models for rain170

distribution (Gamma, Weibull, Lognormal, Pearson, etc.) on our precipitation dataset, using the max-171

imum likelihood estimation method. We used Kolmogorov-Smirnov and Cramer von Mises metrics as172

goodness of fit estimators. More details about the fit, the comparison of the different models and the173

adjustment tests are given in Section 7.1. The comparison indicates that a Weibull model with two174

parameters is a good option for ERA5 wet-days distribution, with only a small number of parameters.175
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Figure 2: Results for the Weibull parameters fitted on ERA5 wet-days rain distribution. Top row:
Weibull shape parameter α and scale parameter β on the period 1950–1980. Bottom row: absolute
changes between 1950–1980 and 1990–2020. The hatches denote the location where the change is not
significant through a bootstrap test, at a confidence level of 90%.

A Weibull distribution is defined by two parameters: a shape parameter (called α) and a scale176

parameter (called β). The cumulative density function of a Weibull law is expressed as:177

g(x) = 1− e−(x/β)α

where x is the intensity of rainfall, and p = g(x) ∈ [0, 1] is the probability to have a wet-days with a178

rainfall inferior to x. Note that p is also the percentile rank corresponding to an event of intensity x.179

Note that α and β are both positive, and α ≤ 1. β can be thought of as representative of the distribution180

median and has a unit of mm/day, while α is linked to the variance but is dimensionless. For a given181

percentile p, the quantile intensity Q(p) in mm/day is obtained as the inverse of the cumulative density182

function:183

Q(p) = x = β

[
ln

(
1

1− p

)]1/α
(1)

In Equation (1) it becomes clear that β is the quantile of rank p = 1− e−1, thus β ≈ Q(63%) and we can184

think of β as quite close to the wet-days rain median. When α → 1, the Weibull model simplifies to an185

exponential distribution, giving the same expressions as in Benestad et al. (2019), with the parameter β186

becoming the wet-days mean.187

Quantile trend curves like the ones shown in Figure 1 can be expressed analytically as ∆Q(p), ∆188

denoting the change between two periods of time:189

∆Q(p) = Q2(p)−Q1(p) = β2

[
ln

(
1

1− p

)]1/α2

− β1

[
ln

(
1

1− p

)]1/α1

(2)

using the subscripts 1 and 2 to denote two periods of time. This expression is simple and depends on only190

four parameters: (α1, β1, α2, β2), or equivalently (α1, β1,∆α,∆β). The values of those parameters for191

ERA5 rain data are displayed on Figure 2, along with the statistical significance of the changes (computed192

by a bootstrap test, as explained in Section 7.1).193

We observed (not shown here) that a change in the scale parameter β, keeping α fixed, gives the194

category “all rain quantiles intensify” (for ∆β > 0) or “all rain quantiles decrease” (for ∆β < 0). In195

opposition, a change in the shape parameter α keeping β fixed gives either a U-shape (for ∆α < 0) or a196
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reversed U-shape category (for ∆α > 0). Note that when β, which is the quantile of rank approximately197

63%, is constant, then the percentile of inversion is fixed at this precise rank: pinv = 63%.198

When both parameters change at the same time, their two effects will add up, with a weight depending199

on the relative change of α and β. Considering small relative changes, i.e. ∆α
α ≪ 1 and ∆β

β ≪ 1, the200

quantile trends for a Weibull law can be written, at the first order, as:201

∀p ∈ (0, 1), ∆Q(p) ≈ ∂Q

∂α
(p) ∆α+

∂Q

∂β
(p) ∆β (3)

with the following expressions for the partial derivatives:

∂Q

∂α
(p) = − β

α2
ln

(
ln

1

1− p

)(
ln

1

1− p

)1/α

∂Q

∂β
(p) =

(
ln

1

1− p

)1/α

The sensitivity of the trend curve to the two parameters α and β can be expressed as a simple ratio:202 ∣∣∣∣∣ ∂Q∂α (p)∆α∂Q
∂β (p)∆β

∣∣∣∣∣ = β

α2

∣∣∣∣∆α∆β

∣∣∣∣ ∣∣∣∣ln(ln 1

1− p

)∣∣∣∣ (4)

The change in α dominates the trend curve if it dominates the trends of at least the low percentiles203

and the tail. When plotting the logarithmic term with regard to the percentile p, we realize that this204

term has magnitude of order unity (except in the very near vicinity of p = 0, 1 − e−1, 1). Thus, we will205

take the approximation that the logarithmic term is of order unity on the ranks that are of interest for206

distinguishing between the different regimes. Finally, we come to the following result: the change in α207

dominates over β in the trend curve when:208 ∣∣∣∣∆αα2

∣∣∣∣≫ ∣∣∣∣∆ββ
∣∣∣∣ (5)

i.e. knowing which of the change of the parameter α or β dominates the trend curve boils down to209

comparing their normalized changes. Therefore, in the space
(

∆β
β , ∆α

α2

)
, the two diagonals (

∣∣∣∆β
β

∣∣∣ = ∣∣∆α
α2

∣∣)210

theoretically set the approximate limits between the four rain quantile trend regimes:211

• a U-shape for
∣∣∣∆β

β

∣∣∣≪ ∣∣∆α
α2

∣∣ and ∆α < 0212

• a reversed U-shape for
∣∣∣∆β

β

∣∣∣≪ ∣∣∆α
α2

∣∣ and ∆α > 0213

• all quantiles intensify for
∣∣∣∆β

β

∣∣∣≫ ∣∣∆α
α2

∣∣ and ∆β > 0214

• all quantiles decrease for
∣∣∣∆β

β

∣∣∣≫ ∣∣∆α
α2

∣∣ and ∆β < 0215

We can compare these theoretical limits with the four categories obtained by the detection algorithm216

(which makes no assumption on a distribution model). In Figure 1, we plotted all grid-points of the217

domain in the normalized Weibull phase space, and colored them by their category as detected by the218

classification algorithm. We see that indeed, the bottom part of the plot is mainly occupied by “U-219

shape” gridpoints (orange), the left part mainly “all decrease” category (red) and the right part mainly220

“All quantiles intensify” (green) points. Thus, the Weibull analytical limits are in very good agreement221

with the empirical categories.222

On this figure, we can furthermore get an estimation of the rank of the inversion percentile pinv, when223

it exists, from the angle a point makes in this normalized Weibull phase space. As explained in more224

details in Section 7.1, we have a direct link between the wet-days inversion percentile and the normalized225

changes of α and β, at first order:226

pinv ≈ 1− exp

(
− exp(

∆β

β

α2

∆α
)

)
. (6)

In summary, we have used a Weibull model on the wet-days rainfall distribution to reduce the information227

of the quantile trend curve to two parameters and their change (α, β,∆α,∆β). These parameters are228

enough to separate between the four observed wet-days regimes, and even to estimate the percentile of229

inversion pinv when it exists.230
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5 Influence of the changes of both the wet-days distribution and231

dry-days frequency232

5.1 Impact on annual mean233

In order to illustrate the importance of taking into account not only the wet-days distribution but also the234

change of the dry-days frequency, we study their relative contributions to the all-days mean precipitation235

(i.e., total annual precipitation), which is one of the most studied parameters in climate change studies.236

The all-days mean x̄ is the mean of the daily rainfall intensity, and can be equivalently computed as237

the product of the wet-days frequency fw = 1− fd with the wet-days precipitation mean µ:238

x̄ = (1− fd) µ

The change of the all-days mean is due both to the change of dry-days frequency fd = 1− fw and to the239

change of wet-days mean:240

∆x̄

x̄
= − ∆fd

(1− fd)
+

∆µ

µ
(7)

Those two terms can either be of the same sign and add up to each other, or be of opposite signs and241

tend to cancel each other out. Indeed, there could be more wet-days but with less intense rain, which242

could result in an almost zero trend on the mean precipitation. Conversely, there could be regions with243

fewer wet-days but higher rain intensity when it rains, as was shown in future projection by Pierce et al.244

(2013) for California and by Polade et al. (2014) for Mediterranean type climates. The relative weight245

of the two terms is also important to study. For future projection, Polade et al. (2014) showed that the246

change in the occurrence term will dominate the change in intensity for the all-days mean, in most of the247

subtropics. However, there is very little literature on the behavior of these two terms in past data.248

For a Weibull distribution, we can further detail the dependency of the wet-days mean on the shape249

and scale parameters. The expression of the Weibull mean is µ = β Γ (1 + 1/α), where Γ denotes the250

Gamma function. Taking the logarithmic derivative of the mean, and using the definition of the Digamma251

function (usually noted ψ) as the derivative of the log of the Gamma function, we get:252

∆µ

µ
≈ ∆β

β
− ∆α

α2

(
d ln Γ

dz

)
z=1+1/α

=
∆β

β
− ∆α

α2
ψ(1 + 1/α) (8)

Note that the Digamma function is strictly positive for the typical range of the shape parameter for ERA5253

precipitation, thus the sign of the shape parameter contribution is given by −∆α. Its typical values are254

ψ(1 + 1/α) ∈ [0.4, 1] for α ∈ [0.5, 1] which is the typical range for Europe and the Mediterranean. Thus,255

even in regions with a U-shape categories, where ∆α dominates the wet-days trend curve as |∆β|
β < |∆α|

α2 ,256

the change in wet-days mean is not necessarily dominated by ∆α, since the Digamma factor is smaller257

than 1.258

Finally, we conclude that the relative change of the all-days mean can be decomposed in three con-259

tributions, from the relative changes of fd, α and β:260

∆x̄

x̄
≈ − ∆fd

(1− fd)
+

∆β

β
− ∆α

α2
ψ(1 + 1/α) (9)

Figure 3 shows the relative contributions of those terms to the all-days mean. For Northern Europe, the261

two terms are of the same sign (decrease of dry-days frequency and more intense rainfall in average), but262

the all-days mean change is mainly due to the increase of the wet-days mean (the latter being mainly due263

to the increase of the Weibull scale parameter β). In a central European band between East France and264

Poland, the change of occurrence is close to zero, and the change in wet-days mean is the sole contributor265

to the all-days mean. For the Mediterranean region on the contrary, the two terms can have the same266

or opposite signs, but the increase of dry-days frequency is largely dominant, leading to a decrease of267

all-days mean.268

Both in Northern Europe and in the Mediterranean (even in U-shape regions), the changes of the269

wet-days mean are mainly due to the scale parameter β, while the term due to the change of the scale270

parameter α is smaller in intensity.271

We can check how well this first order approximation and Weibull model enable to capture the change272

in all-days means. We compare in Figure 4 the all-days mean (computed directly from data) to the sum273

8



Figure 3: The different contributions to the all-days mean change, between 1950–1980 and 1990–2020,
from the dry days frequency and the wet-days mean, the latter decomposed into contributions from its
two parameters. Every map has the same scale for the color-map (given at the bottom of the figure).
The green and red boxes highlight the difference between Northern Europe and the Mediterranean.

Figure 4: Relative change of all-days mean ∆x̄
x̄ , between 1950–1980 and 1990–2020, computed directly

on data, compared to estimated from the Weibull model, i.e the three contributions from fd, α and β.
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of the fd, α and β terms in Equation (9). This figure shows that the Weibull model for the intensity plus274

the rainfall occurrence capture most of the features of the all-days mean. Except for the lower latitudes275

where the error can reach 10%, the difference between the direct computation and the sum term is indeed276

only of a few percent, in Europe and the Mediterranean.277

5.2 Influence on all-days quantiles trends of the dry-days frequency278

In this section, we investigate in more detail the link between all- and wet-days precipitation quantiles.279

In order to understand and quantify how looking at wet-days only can impact the values of the trends for280

all-days quantiles, we follow the framework proposed by Schär et al. (2016), more precisely the derivation281

made in their first appendix.282

The all-days rainfall distribution is linked to the wet-days’ one by the dry-days frequency fd. More283

precisely, the wet-days percentile p, which denotes the probability of having an event of intensity smaller284

or equal than x mm/day, and the all-days percentile pa for the same rainfall intensity, are linearly linked285

by fd :286

pa = (1− fd)p+ fd (10)

Note that this formula is valid for any percentile rank as far as pa ≥ fd. It gives indeed that for p = 0287

we have pa = fd and that the probability of the maximum rain value is the same (p = 1 when pa = 1).288

This simple formula shows that a wet-days percentile p is linearly linked to the all-days percentiles pa.289

By definition, the wet-days quantile Q is equal to the all-days quantile Qa for percentiles where they290

are both defined:291

∀pa ∈ [fd, 1], Q(p) = Qa(pa) (11)

We now consider a change between periods 1 and 2 of the wet-days rain distribution and its quantiles292

Q: ∆Q = Q2 −Q1, where ∆ denotes again the change. For a fixed wet-days percentile p, ∆Q is related293

to the change of the all-days rank and quantile intensity, but also to the change in dry-days frequency.294

Rewriting with our notations the equation A7 from the appendix of Schär et al. (2016) gives:295

∆Q(p) = ∆Qa(pa) +
∆fd
1− fd

(1− pa)
∂Qa,2

∂pa
(12)

We would like to express analytically the slope of the quantile curve
∂Qa,2

∂p , with the Weibull model296

developed earlier. Thus, we come back to the slope of the wet-days quantiles, by using Equation (11)297

and the chain rule:298

∂Qa,2(pa)

∂pa
=
∂Q2(p)

∂pa
=
∂Q2(p)

∂p

∂p

∂pa

Since the percentiles p and pa are linearly linked, ∂p
∂pa

= 1
1−fd

= 1−p
1−pa

, we get the following relationship299

between the two quantiles slopes:300

(1− pa)
∂Qa,2

∂pa
= (1− p)

∂Q2

∂p

Thus, Equation (12) becomes:301

∆Q(p) = ∆Qa(pa) +
∆fd
1− fd

(1− p)
∂Q2

∂p
(13)

Finally, we can apply the general formula in Equation (13) to a Weibull distribution of shape parameter302

α and scale parameter β. Putting all the terms depending on the wet-days percentile p on the same side,303

it yields:304

∆Qa(pa) = ∆Q(p)− ∆fd
(1− fd)

β2
α2

[ln(
1

1− p
)]1/α2−1︸ ︷︷ ︸

distorting term

(14)

This equation shows that the quantile trends in all-days can differ from the wet-days trends due to the305

change of rainfall occurrence, which acts as a weight in front of a distorting term (underlined by a curly306

brace in equation Equation (14)). Note that the distorting term is growing with p and its form changes307

with the shape parameter α, giving even larger additive trends for the heavy rain percentiles as α is308

small. Note that in the limit case where α → 1, this distorting term becomes a shift of constant value309

β2: it is not anymore distorting the wet-days trend curve.310
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5.3 Modified regimes for all-days quantile trends311

On historical data, it is important to quantify when and where the change of occurrence is large enough,312

compared to the wet-days quantile trends, to create relevant changes on the all-days quantile curves. We313

also want to analyze which percentiles will see their all-days trends the most impacted by ∆fd. We thus314

need to compare the ∆fd term to the ∆Q(p) term, in Equation (13).315

The all-days trend is given by the wet-days trend if and only if, ∆Qa(pa) ≈ ∆Q(p) i.e. |∆Q(p)| ≫316 ∣∣∣∣ ∆fd
1−fd

β2

α2

[
ln
(

1
1−p

)]1/α2−1
∣∣∣∣ At the first order, it is true if and only if :317

∣∣∣∣∂Q∂α (p)∆α+
∂Q

∂β
(p)∆β

∣∣∣∣≫
∣∣∣∣∣ ∆fd
1− fd

β2
α2

[
ln

(
1

1− p

)]1/α2−1
∣∣∣∣∣

Let’s look whether at least one of the two left-hand side terms is dominant over the term in ∆fd. The318

term due to the change of the scale parameter of the wet-days distribution dominates over the change of319

occurrence term for percentiles p such as:320 ∣∣∣∣ln( 1

1− p

)∣∣∣∣≫ ∣∣∣∣ ∆fd
1− fd

β2
∆β

1

α2

∣∣∣∣ . (15)

This is verified at least for ranks approaching 1 since limp→1 ln
(

1
1−p

)
= +∞. This independence of321

the maximum rainfall event trend from the rainfall occurrence was to be expected from Equation (10):322

p = 1 and pa = 1 both describe the same event in wet-days and all-days. In addition, since the function323

p → ln
(

1
1−p

)
is strictly growing on [0, 1] up to infinity, there exists a percentile plim,∆β above which324

the function becomes larger than | ∆fd
1−fd

β2

∆β |
1
α2

. Thus, quantiles of ranks between plim,∆β and p = 1 (the325

maximum rain event) will not be impacted by the change of dry-days.326

As for the term due to the change of the shape of the wet-days distribution, it is dominant over the327

change of occurrence term only for percentiles p such as:328 ∣∣∣∣ln( 1

1− p

)
ln

(
ln

1

1− p

)∣∣∣∣≫ ∣∣∣∣ ∆fd
1− fd

α2

∆α

∣∣∣∣ . (16)

The left-hand side function is strictly growing on [1 − e−1, 1] and tends to infinity at 1, thus there also329

exist a percentile rank plim,∆α above which the function becomes larger than | ∆fd
1−fd

α2

∆α |.330

These two limit percentiles, plim,∆α and plim,∆β , can be inverted either analytically or numerically331

(using the classic segment or tangent methods). The maps of the factors | ∆fd
1−fd

β2

∆β
1
α2

| and | ∆fd
1−fd

α2

∆α | for332

ERA5 rain data are shown on the left column of Figure 5, followed by an illustration of the graphical333

inversion. The resulting maps for the limit percentiles are given at the bottom of the figure.334

The figures show that plim,∆β is close to 100% for the Mediterranean, but much lower for most of335

Central and North Europe: its median on North-Central Europe (NCE) and West Central Europe (WCE)336

is respectively 46% and 40%. Thus, NCE and WCE, the terms depending on the change of dry-days337

frequency can be neglected compared to the change of wet-days scale parameter for wet-days percentiles338

larger than plim,∆β ≈ 50% (Figure 5).339

We see that the percentile plim,∆α is very high in Europe and the Mediterranean, usually above 90%,340

which signifies that the term in ∆α is almost never dominant compared to the one in ∆fd for the all-days341

trend ∆Qa(pa). It means that in the Mediterranean, for the great majority of percentile ranks, their342

all-days trends are mainly due to the decrease of wet-days and not to a change of intensity when it rains.343

This is consistent with the low statistical significance of ∆α over the domain on ERA5 data.344

In summary, in most of the Mediterranean the all-days quantile trend curves will be largely impacted345

by the increase of dry-days frequency, leading to mostly “U-shape” and “all-decrease” categories. For346

most of Northern Europe in opposition, all-days quantile trend curves will be very similar to the wet-days’,347

as the influence of ∆β is dominant in this region over the change of dry-days.348

Figure 6 illustrates what the four wet-days categories trend can become in all-days trends, when the349

change of occurrence is not negligible.350

In regions where the rainfall occurrence increases strongly enough, some locations with U-shape wet-351

days regime will become “all-increase” all-days regime (provided that the ∆fd term is large enough),352
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Figure 5: Left, top and middle figure: maps of the two factors determining the relative weight of the
change of wet-days terms compared to the change of occurrence term for all-days trends. Middle top and
middle figures: their histograms for the three IPCC regions (NCE = North Central Europe, WCE = West
Central Europe, MED = Mediterranean). Right, top and middle figures: an example of the graphical
inversion to find the limit percentile for the NCE median value. Bottom row: resulting maps for the limit
percentiles plim,∆α and plim,∆β (same color-bar). Like before, ∆ denotes the changes between 1950–1980
and 1990–2020.
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(a) ∆fd < 0

(b) ∆fd = 0

(c) ∆fd > 0

Figure 6: Illustration of the influence of the dry-days frequency term on the all-days quantile trend
curves, for the four categories, for different values of the dry-days frequency change ∆fd. The values of
the wet-days Weibull parameters (α, β,∆α and ∆β) are the same for all the subplots and are given on
the top row. These values are synthetic.
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(a) Wet-days category map (b) All-days category map

Figure 7: Category maps for the 1950–1980 and 1990–2020 periods. As before, green corresponds to “all
quantiles intensify” category, red to “all quantiles decrease”, orange to “U-shape” and blue to “reverse
U-shape”, while points whose category was unclear are in gray. White designates desert location (less
than 2% of wet-days). The gray hatches denote places where the category detection is not very robust
with regard to changes in the periods considered (cf Section 7.1).

while the wet-days “all-increase” trends will be more intense in all-days. Similarly, wet-days all-decrease353

will merge with inverse U-shape to give a new all-days “inverse U-shape”. Thus, only two main regimes354

could exist for such regions in all-days distribution: “all-increase” and “reverse U-shape”.355

In regions where the rainfall occurrence decreases strongly, like in the Mediterranean, the opposite356

occurs: the “all-increase” wet-days regime will disappear in favor of an all-days “U-shape” regime, while357

wet-days U-shape’s inversion percentile will become even larger in all-days. Similarly, the “reverse U-358

shape” will merge with the “all-decrease” category. Thus in all-days only, in regions with a strong decrease359

of fd, only two regimes would be expected, “U-shape” and “all-decrease”.360

Figure 7 shows the resulting all-days categories, defined as explained in Section 7.1. It is put side361

by side with the wet-days categories map, to highlight the differences which are due to the change of362

dry-days frequency.363

Note that gray hatches show the non robustness with the choice of the time period (cf Section 7.1). We364

see that both the wet-days and all-days category map are very robust over the northern part of Europe,365

while in the Mediterranean, most places’ categories are not as robust, especially when at the frontier366

between different categories. Overall, the North-South pattern of all-days and wet-days categories is367

robust to the time periods considered.368

In terms of spatial pattern, the overall North-South pattern of all-days category map is quite similar369

to the wet-days category map (Figure 1). We see that the all-days categories are generally smoother than370

the wet-days trends: there is a more continuous transition in latitude, with “all increase” in the North,371

“all decrease” in the South, and “U-shape” in between. Besides, the so called Mediterranean paradox, i.e.372

“U-shape” regime in all-days, is found in a transitional zone between wetting and drying, along Southern373

continental Europe, as well as in the Eastern part of the Mediterranean basin, but not the whole region374

as it was in wet-days. This is consistent with the fact that in the Mediterranean, the signal has been375

dominated by the increase of dry days, instead of the distortion of the wet-days distribution.376

6 Conclusion377

Climate change is known to impact greatly the Mediterranean region, which overall becomes warmer and378

drier, while the effects on extreme precipitations is still quite debated on historical data (Ali et al., 2022).379

In this study we aimed at better understanding how the strong trends of drying of the Mediterranean can380

influence the distribution of rain, all-together with the change of the whole wet-days distribution itself381

(from the low and medium percentiles to the most extreme rainfalls).382

Using the ERA5 reanalysis, we studied the evolution of the wet-days rain distribution in the recent383

past, since the 1950s. We showed that it could evolve in four different regimes, defined on the quantiles384

trends curves: “all rain quantiles intensify”, “all rain quantiles decrease”, “U-shape” and “reversed U-385

shape”. The map of the four regimes computed over Europe and the Mediterranean shows a strong386
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contrast between these two regions. While in Northern Europe all quantiles are intensifying with a clear387

and robust signal, the Mediterranean’s regimes are shared between a dominant “U-shape” regime mixed388

with “all quantiles decrease”, but are overall more spotty due to strong natural variability. This suggests389

that a climate change signal and its impact on the wet-days precipitation distribution, shift or distortion,390

have not (or not yet) emerged in the Mediterranean region, contrary to Northern Europe.391

As for the map of regimes for the all-days distribution, it shows a clearer signal with latitude, from392

the Mediterranean (“all decrease”) with a smooth transition (through a “U-shape” regime) to Northern393

Europe (“all increase” regime). The greater spatial uniformity of the all-day regime map in the Mediter-394

ranean comes from the stronger and more robust signal of dry-days frequency change, which dominates395

the all-day distribution trends.396

By modeling the wet-days distribution with a Weibull law, we were able to reduce the information of397

the quantile trends to just two parameters, a scale and shape parameters, and their changes (representative398

of the precipitation distribution shift and distortion respectively). The categorization in four regimes can399

be estimated directly from the ratio and signs of the relative changes of the two Weibull parameters, as400

can be done for the percentile of inversion, when it exists. A statistical significance test on the change401

of the Weibull parameters confirms that a signal has emerged in Europe, with a strong increase of the402

scale parameter, i.e a shift of the whole distribution to more intense rainfall, without distortion. In the403

Mediterranean, only a few small regions have significant change of scale or shape parameter, reinforcing404

the argument that a climate change signal on wet-days has not yet emerged from natural variability.405

Coming back to the whole distribution (including dry-days), we quantified how much some all-days406

important variables, such as the trends of the annual mean or of quantiles, are influenced by both407

the change of wet-days distribution and of dry-days frequency (the latter significantly increases in the408

Mediterranean but decreases in Northern Europe). The two effects can add up (as for the all-days mean409

in most of Northern Europe) or counterbalance each other (as in Southern Italy or in Poland).410

The resulting all-days category map shows a clearer signal in latitude than the wet-days one: there is411

mostly “all rain quantiles intensify” in Northern Europe, then a transition with “U-shape” in a thin band412

of Central Europe, and finally the“all rain quantiles decrease” regime in most of the Mediterranean. Note413

that the so called Mediterranean paradox, i.e. “U-shape” regime in all-days, is thus not present in most414

of Mediterranean region, while it was dominant over this region when only wet-days were considered.415

One of the key findings of the paper is that the change of dry-days frequency is predominant for416

the all-days trends of most quantiles in the Mediterranean, while in Northern Europe its effect can be417

neglected compared to the strong increase of the Weibull scale parameter, for all quantiles with wet-days418

rank above about 50%.419

In a nutshell, the framework developed in this study establishes a connection between changes in wet-420

days precipitation and a few critical parameters that capture the shift and distortion of the precipitation421

distribution, as well as changes in precipitation occurrence. It has the potential to be employed in different422

geographical regions and time spans. In an upcoming publication, we intend to apply this framework to423

the future climate projections for the 21st century, in order to have a stronger and more robust signal424

over the Mediterranean. It would also enable to detect the year of emergence of the signal. Another425

potential application of this framework is the study of the physical processes that cause the observed426

changes, both from large-scale and local effects.427
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Toulouse) and Juliette Blanchet (Institut des Géosciences de l’Environnement, Grenoble) for their fruitful438

discussions on the project.439

15



References440

Ali, E., Cramer, W., Carnicer, J., Georgopoulou, E., Hilmi, N., Cozannet, G. L., and Piero, L. (2022).441

Cross-chapter paper 4: Mediterranean region. Climate Change 2022: Impacts, Adaptation and Vulner-442

ability, pages 2233–2272.443

Allen, M. R. and Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic444

cycle. Nature, 419(6903):224–232.445

Alpert, P., Ben-Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato, L., Ramis,446

C., Homar, V., Romero, R., Michaelides, S., and Manes, A. (2002). The paradoxical increase of447

Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters,448

29(11):31–1–31–4.449

Ben-Gai, T., Bitan, A., Manes, A., Alpert, P., and Rubin, S. (1998). Spatial and temporal changes in450

rainfall frequency distribution patterns in israel. Theoretical and Applied Climatology, 61:177–190.451

Benestad, R. E., Parding, K. M., Erlandsen, H. B., and Mezghani, A. (2019). A simple equation to study452

changes in rainfall statistics. Environmental Research Letters, 14(8):084017.453

Berthou, S., Kendon, E. J., Chan, S. C., Ban, N., Leutwyler, D., Schär, C., and Fosser, G. (2020). Pan-454

European climate at convection-permitting scale: A model intercomparison study. Climate Dynamics,455

55(1):35–59.456

Berthou, S., Rowell, D. P., Kendon, E. J., Roberts, M. J., Stratton, R. A., Crook, J. A., and Wilcox, C.457

(2019). Improved climatological precipitation characteristics over west africa at convection-permitting458

scales. Climate Dynamics, 53:1991–2011.459

Boberg, F., Berg, P., Thejll, P., Gutowski, W. J., and Christensen, J. H. (2010). Improved confidence in460

climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES461

models. Climate Dynamics, 35(7):1509–1520.462

Brunetti, M. (2004). Changes in daily precipitation frequency and distribution in Italy over the last 120463

years. Journal of Geophysical Research, 109(D5):D05102.464

Brunetti, M., Buffoni, L., Maugeri, M., and Nanni, T. (2000). Precipitation intensity trends in northern465

Italy. International Journal of Climatology, 20(9):1017–1031.466

Caloiero, T., Caloiero, P., and Frustaci, F. (2018). Long-term precipitation trend analysis in Europe and467

in the Mediterranean basin. Water and Environment Journal, 32(3):433–445.468
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Burguera, M., and Kenawy, A. E. (2020). Long-term precipitation in Southwestern Europe reveals no531

clear trend attributable to anthropogenic forcing. Environmental Research Letters, 15(9):094070.532

Pendergrass, A. G. and Hartmann, D. L. (2014). The atmospheric energy constraint on global-mean533

precipitation change. Journal of climate, 27(2):757–768.534

17



Pfahl, S., O’Gorman, P. A., and Fischer, E. M. (2017). Understanding the regional pattern of projected535

future changes in extreme precipitation. Nature Climate Change, 7(6):423–427.536

Pichelli, E., Coppola, E., Sobolowski, S., Ban, N., Giorgi, F., Stocchi, P., Alias, A., Belušić, D., Berthou,537

S., Caillaud, C., Cardoso, R. M., Chan, S., Christensen, O. B., Dobler, A., de Vries, H., Goergen,538

K., Kendon, E. J., Keuler, K., Lenderink, G., Lorenz, T., Mishra, A. N., Panitz, H.-J., Schär, C.,539

Soares, P. M. M., Truhetz, H., and Vergara-Temprado, J. (2021). The first multi-model ensemble of540

regional climate simulations at kilometer-scale resolution part 2: Historical and future simulations of541

precipitation. Climate Dynamics, 56(11):3581–3602.542

Pierce, D. W., Cayan, D. R., Das, T., Maurer, E. P., Miller, N. L., Bao, Y., Kanamitsu, M., Yoshimura,543

K., Snyder, M. A., Sloan, L. C., Franco, G., and Tyree, M. (2013). The Key Role of Heavy Precipitation544

Events in Climate Model Disagreements of Future Annual Precipitation Changes in California. Journal545

of Climate, 26.546

Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A., and Dettinger, M. D. (2014). The key role of547

dry days in changing regional climate and precipitation regimes. Scientific Reports, 4(1):4364.548

Raymond, F., Ullmann, A., Camberlin, P., Drobinski, P., and Smith, C. C. (2016). Extreme dry spell549

detection and climatology over the Mediterranean Basin during the wet season. Geophysical Research550

Letters, 43(13):9.551

Rivoire, P., Le Gall, P., Favre, A.-C., Naveau, P., and Martius, O. (2022). High return level estimates of552

daily era-5 precipitation in europe estimated using regionalized extreme value distributions. Weather553

and climate extremes, 38:100500.554

Rivoire, P., Martius, O., and Naveau, P. (2021). A Comparison of Moderate and Extreme ERA-5 Daily555

Precipitation With Two Observational Data Sets. Earth and Space Science, 8(4):e2020EA001633.556

Schär, C., Ban, N., Fischer, E. M., Rajczak, J., Schmidli, J., Frei, C., Giorgi, F., Karl, T. R., Kendon,557

E. J., Tank, A. M. G. K., O’Gorman, P. A., Sillmann, J., Zhang, X., and Zwiers, F. W. (2016). Percentile558

indices for assessing changes in heavy precipitation events. Climatic Change, 137(1):201–216.559

Sheffield, J. and Wood, E. F. (2012). Drought: Past Problems and Future Scenarios. Routledge.560

Sousa, P. M., Trigo, R. M., Aizpurua, P., Nieto, R., Gimeno, L., and Garćıa Herrera, R. (2011). Trends561
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Figure 8: Category maps for wet-days quantile trends computed for different couples of time periods over
1950-2020. The quantile trends values leading to this map have been processed by a smoothing window
of 9 points. As before, green color corresponds to “all quantiles intensify” category, red to “all quantiles
decrease”, orange to “U-shape” and blue to “reverse U-shape”.

Appendix A: Influence of the time period581

In Figure 8, we can see the wet-days category maps computed for different time periods, covering the582

1950–2020 periods:583

• 1950-1970 vs 2000-2020584

• 1950-1975 vs 1995-2020585

• 1950-1980 vs 1990-2020586

• 1950-1985 vs 1985-2020587

At a given location, the category of the reference period is considered as robust if at least 3 or the 4588

pairs of periods give the same category. This criterion is used to define both for wet-days and all-days589

category’s robustness, which is represented by the gray hatches on Figure 7.590

Appendix B: Algorithm for detection of regimes591

In order to quantitatively distinguish between the different regimes of trends, we developed a classification592

algorithm, which takes in a list of percentiles and the associated quantile trends (previously computed593

between two times periods), looks at the shape of the trend curve and assesses in which of the four594

categories it falls into.595

For wet-days percentiles, we define the belly of the curve as the part of the curve between the 10th596

and the 60th percentiles, and the tail as the part of the curve between the 85th and the 99th quantiles.597

We also define the slope of the tail as the slope of the linear regression of the curve between the 60th and598

the 99th quantiles. The algorithm is the following:599

1. If the means of both the belly and the tail are positive and that the slope of the tail is positive,600

then the category is defined as “all quantiles intensify”.601
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2. If the mean of the belly is negative, but the tail has a positive mean and slope, then the category602

is defined as “U-shape”.603

3. If the mean of the belly is negative and the tail has a negative mean and slope, then the category604

is defined as “all quantiles decrease”.605

4. If the mean of the belly is positive while the tail has a negative mean and a negative slope, then606

the category is defined as “reversed U-shape”.607

Finally, if the curve doesn’t fall into any of these four categories, it is set into the “unknown” category.608

For all-days category, the definition is slightly different. It consists in computing the all-days quantile609

trends (from percentiles pa ∈ [0, 1]) and then applying the above algorithm only on the equivalent wet-610

days percentiles pw, corresponding to pa ∈ [fd, 1]. For this, we have chosen to use the value of dry-days611

frequency fd of the reference period (1950–1980).612

Appendix C: Comparison of distribution models for ERA5 rain-613

fall614

There is no a priory clear choice for a parametric model for the whole wet-days distribution of daily rain615

(rain above threshold, here 1 mm/day). The choice of a particular model may depend a lot on the region616

considered, on the origin of the data (station data, spatial interpolation from stations, satellite data,617

reanalysis, or climate projections), on its spatial and temporal resolution, . . .We have therefore tested618

on ERA5 daily rain data, a list of the most common models (as well as the distribution from (Naveau619

et al., 2016), called Naveau in the following). To compare the quality of the different models, we used620

two goodness of fit estimators, computed on cumulative density functions: Kolmogorov-Smirnov (a L1621

distance) and Cramer von Mises (a L2 distance). When a location parameter was needed, we set it at622

the wet-days threshold (1 mm/day).623

We found that in average, the best distribution for the Mediterranean region was the Naveau law,624

followed by the Weibull law and the Gamma law (Figure 9). As the Naveau model has more complexity625

(three parameters) than what we need to capture the quantile trends regimes, we decided not to select this626

model. We compared Weibull and Gamma laws pixel-wise across the whole Europe and Mediterranean.627

The ratio of the fitting error of Weibull vs. Gamma laws shows that the Weibull model is more suitable628

than Gamma law, in most of the Mediterranean domain. We therefore choose the Weibull law for our629

model.630

Once we fitted the Weibull law on a time serie and that we got its optimal fit parameters, we used the631

usual Kolmogorov-Smirnov distance as an adjustment test: if this distance is “small enough”, the fit is632

accepted. According to empirical tables, for a confidence level of 95%, the Kolmogorov-Smirnov distance633

is considered small enough if falling below 1.36/
√
N , where N is the number of data points, as far as634

N > 35 (which is largely the case since we fit Weibull on daily data on several decades). The mask of635

where the Weibull fit doesn’t pass the adjustment test is shown by hatches on Figure 9. It shows that636

Weibull is indeed an acceptable model for most of the domain (except for some Mediterranean coastal637

areas and sea area in the Atlantic west of Portugal).638

Appendix D: Statistical significance test639

We are interested in their statistical significance of different statistics computed on the data, such as the640

quantile trends or the Weibull parameters trends. As the rainfall data on the Mediterranean region is641

spatially and temporally correlated, we perform a bootstrap test. It consists in comparing the trend of642

the real data with the trends that would be obtained on a large number (typically a hundred) of artificial643

samples presenting a spatial and temporal variability similar to our original data. Each sample is an644

artificial time serie created by pulling random days from our 1950–2020 original data (with replacement).645

The artificial time series have the same length as the original one.646

Since the dates have been mixed in the artificial samples, their average linear trends are zero, but647

their variability gives us an estimation of the noise in our original data. The trend of the original data is648

said significant at a given level, for example 90%, if the original data lies within the 10% more extreme649
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Figure 9: Left: goodness of fit estimator for different wet-days distribution models on the Mediterranean
region (as defined by the IPCC) with a smoothing window of 9 points. Note that we used a scale factor
for the Kolmogorov–Smirnov estimator, which was much smaller than Cramer von Mises estimator. In
the x-axis, the number in parentheses is the number of parameters of the fit. Right: Map of the ratio
of errors (Cramer von Mises goodness of fit) between Gamma and models, across the whole domain. In
green are all the location where Weibull model is better suited for the data than Gamma. Black hatches
show the locations where the adjustment test of the Weibull model fails, with a confidence level of 95%.

values of the bootstrap distribution, meaning that we could have the original data “by chance” from this650

random distribution only with low probability (less than 10%).651

Appendix E: Inversion percentile652

When the regime is a “U-shape”, the quantile curve has negative trends up to a certain percentile rank,653

which we will define as the “inversion percentile”. After that rank, almost all the following percentiles654

have positive trends. We can get an analytical expression for the inversion percentile pinv with the Weibull655

model, by solving the equations ∆Q(pinv) = 0 for pinv > 0. This results in the following expression:656

pinv = 1− exp

(
−
(
β2
β1

) α1α2
α2−α1

)
(17)

Since the changes of α and β are small for rainfall in ERA5 data (about a few percents), we can simplify657

this expression. Let’s write ∆α = α2 − α1 and α = (α2 + α1)/2, and similarly for β, then we have658

β2

β1
≈ 1 + ∆β

β and α1α2

α2−α1
≈ α2

∆α , and we can simplify the exponent:659

ln

(
β2
β1

α1α2
α2−α1

)
=

α1α2

α2 − α1
ln

(
β2
β1

)
≈ α2

∆α
ln

(
1 +

∆β

β

)
≈ α2

∆α

∆β

β

where the last approximation is done by taking the development at the first order in ∆β/β. We finally660

get this expression for the inversion percentile:661

pinv ≈ 1− exp

(
− exp(

∆β

β

α2

∆α
)

)
(18)

Geometrically speaking, this means that at first approximation, the angle in the Weibull parameter space662

(X,Y ) =
(

∆β
β , ∆α

α2

)
gives the value for the inversion percentile pinv.663

We can also derive a lower and upper limit for the inversion percentile. Indeed, the inversion percentile664

is properly defined only in the case where the change of α dominates (U-shape or reversed U-shape), i.e.665

when
∣∣∆α
α2

β
∆β

∣∣≫ 1. The limit cases for this to be true would be when the change in α doesn’t dominate666

anymore, i.e. when ∆α
α2

β
∆β is close to−1 or 1. Those two cases give the minimal and maximal values of pinv667

for a U-shape according to the Weibull law are: p0,min ≈ 1− e−e−1 ≈ 30% and p0,max ≈ 1− e−e1 ≈ 93%.668

These values are consistent with the range of inversion percentile observed on the reanalysis (not shown).669
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Abstract

The Mediterranean region is experiencing pronounced aridification and in certain areas higher
occurrence of intense precipitation. In this work, we analyze the evolution of the rainfall probability
distribution in terms of precipitating days (or “wet-days”) and all-days quantile trends, in Europe
and the Mediterranean, using the ERA5 reanalysis. Looking at the form of wet-days quantile trends
curves, we identify four regimes. Two are predominant: in most of Northern Europe the rainfall
quantiles all intensify, while in the Mediterranean the low-medium quantiles are mostly decreasing as
extremes intensify. The wet-days distribution is then modeled by a Weibull law with two parameters,
whose changes capture the four regimes. Assessing the significance of the parameter changes over
1950–2020 shows that a signal on wet-days distribution has already emerged in Northern Europe
(where the distribution shifts to more intense rainfall), but not yet in the Mediterranean, where the
natural variability is stronger. We extend the results by describing the all-days distribution change
as the wet-days’, plus a contribution from the dry-days frequency change, and study their relative
contribution. In Northern Europe, the wet-days distribution change is the dominant driver, and the
contribution of dry-days frequency change can be neglected for wet-days percentiles above about 50%.
In the Mediterranean, however, the contribution to all-days change of wet-days distribution change
is much smaller than the one of dry-days frequency. Therefore, in the Mediterranean the increase of
dry-days frequency is crucial for all-days trends, even when looking at heavy precipitations.

Key points :

• Four regimes of change for daily rainfall distribution are identified, and are captured by a two
parameter analytical model.

• In Northern Europe, a signal of increasing mean and extreme precipitations has emerged.

• In the Mediterranean, the changes of rainfall appears dominated by changes in dry-days frequency.

1 Introduction

Climate change is known to impact the global water cycle, and to have consequences on total rainfall and1

extreme of precipitations. The changes expected on total precipitations are of about +2-3% per degree2

Celsius of global warming, while for the extreme rainfalls, estimates from thermodynamics give at first3

order a rise in intensity of about 7%/°C (Trenberth, 1999; Allen and Ingram, 2002; Held and Soden,4

2006). However, on regional scales the changes in mean and extreme precipitation can vary substantially5

from the global mean, due both to dynamical aspects and natural variability (Trenberth, 2011; Fischer6

et al., 2013; Pendergrass and Hartmann, 2014; Fischer and Knutti, 2014; Pfahl et al., 2017).7

The Mediterranean region, due to its unique position as a transition zone between the wetter Europe8

and the dryer desert of the Sahara, is a climate change hotspot in terms of temperature and precipitation9

changes (Giorgi, 2006). Climate simulations predict that the Mediterranean will get drier (more evapora-10

tion and decreased mean precipitation) with global warming (D’Agostino and Lionello, 2020; Drobinski11

et al., 2020) and will experience more extreme rainfalls, at least on the northern shore (Vautard et al.,12

2014; Giorgi et al., 2014; Drobinski et al., 2018; Myhre et al., 2019; Pichelli et al., 2021; Ali et al., 2022).13
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This simultaneous decrease in mean precipitations and increase in extreme rainfalls is sometimes called14

a “paradox in the water cycle change” (Brunetti et al., 2000; Alpert et al., 2002; Brunetti, 2004). North-15

ern Western and Central Europe, on the contrary, are expected to undergo an increase of both total16

precipitations and extreme rainfalls (Intergovernmental Panel On Climate Change, 2023, chapter 8).17

Still, the long-term water cycle changes on the Mediterranean are unclear when looking at historical18

observations. In observations, previous studies find a strong and significant signature of increasing evap-19

oration and of drier conditions, such as droughts or dry spells (Hoerling et al., 2012; Sheffield and Wood,20

2012; Raymond et al., 2016; Caloiero et al., 2018), associated to an increase of dry-days frequency over21

the Mediterranean and an increase over Europe (Brunetti et al., 2000; Brunetti, 2004; Benestad et al.,22

2019), but the trends of the mean precipitations are subject to more debate. The 6th IPCC assessment23

report (Intergovernmental Panel On Climate Change, 2023, chapter 8) concludes that there is no long-24

term trend of the mean precipitation in the Mediterranean since the pre-industrial era. Only on shorter25

time periods of the order of a few decades or on sub-regions can some significant trends be derived (Sousa26

et al., 2011; Tanarhte et al., 2012; Mariotti et al., 2015; Zittis, 2018), but they may be driven mainly by27

natural variability and not by climate change (Peña-Angulo et al., 2020).28

In this paper, we want to study the whole rain distribution over the Mediterranean region. Compared29

to droughts and extreme precipitations which have been extensively studied, the research on the whole30

rain distribution is relatively less developed. In the few papers that do study the whole range of the rain31

distribution, two main approaches can be distinguished: non-parametric and parametric studies. Non-32

parametric studies focus on the changes of frequency of fixed rain intensity amounts or on the changes of33

intensity for fixed percentile rank or on the change of contribution from given rain amounts to the total34

precipitation (Alpert et al., 2002; Brunetti, 2004; Klingaman et al., 2017; Berthou et al., 2019, 2020).35

These methods are interesting, but when one wants to allow diagnostics or interpretation in terms of a36

few key parameters, parametric studies are needed.37

Still, very few parametric studies do not focus only on the extreme precipitations. Some of them have38

taken a simple exponential law (Benestad et al., 2019) or a gamma law which performs quite well for39

the low to medium precipitations (Ben-Gai et al., 1998; Groisman et al., 1999), or a Generalized Pareto40

Distribution from generalized extreme values theory, which is known to be suited for high amounts but41

not necessarily for the medium amounts. A more complex model, tailored for wet-days precipitation, has42

been recently proposed by Naveau et al. (2016) and gives very good results for both the low rainfall and43

the extremes (Tencaliec et al., 2020; Rivoire et al., 2022), still with a little more complexity (it has three44

parameters compared to two for the gamma law or one for the exponential). In this paper, we choose the45

intermediate approach of a Weibull law with two parameters, which, as will be shown below, represents46

a minimal framework to model wet-days distribution and its quantile trends regimes.47

In this work, we propose a framework which describes the change over time of the whole distribution of48

precipitation: from absence of rain to low and moderate rainfall, up to extreme events. We first perform49

a description of the wet-days trends, quantile by quantile. As underlined by Schär et al. (2016), such50

a method should consider the change in frequency of precipitating days (or “wet-days”). Therefore, we51

also study how the wet-days quantile trends can be influenced by the change in dry-days frequency. We52

illustrate this methodological framework on the recent past in Europe and the Mediterranean. The main53

question addressed here is the following: how does the whole precipitation distribution change across54

Europe and the Mediterranean region?55

The outline of the paper is as follows: Section 2 presents the dataset used, then Section 3 presents56

the different kinds of regimes that can be observed over Europe and the Mediterranean concerning the57

wet-days quantile trends. Section 4 proposes the Weibull law as a wet-days distribution to represent the58

observed regimes, and analyze them more thoroughly. Section 5 extends this parametric model to the59

all-days distribution, with an application on the trends of the total precipitation and of all-days quantiles.60

2 Precipitation dataset61

The choice of the data set was driven by the need for a homogeneous data over the Mediterranean region,62

as well as long-term time series to help detect small changes in the precipitation distribution.63

We choose not to use EOBS gridded data, although it is considered as the reference of its kind for64

Europe and covers a long enough period (since 1950) at 0.25° resolution, because it suffers temporal65

and spatial inconsistencies (Cornes et al., 2018). Indeed, EOBS rainfall dataset is based on the spatial66

interpolation of rain gauge data from stations which number and density have changed significantly over67

time, therefore one is advised not to use it for the analysis of long-term trends.68
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Since most of the over available observational data sets cover either a smaller domain (IBERIA01 in69

Portugal and Spain (Herrera et al., 2019), or CARPATCLIM covering the Carpathians), a shorter period70

of time (the IMERG reanalysis product starts in 2000, the FROGS product in the 1970s), or have a71

coarser temporal or spatial resolution (CRU starts is a monthly dataset, while REGEN is daily but at72

1°), we turned to ERA5 reanalysis.73

We used ERA5, the latest global reanalysis provided by the European Center for Medium-Range74

Weather Forecasts (Hersbach et al., 2020), at a resolution of 0.25°, on the period 1950-2020. We computed75

the daily accumulated rainfall from ERA5 hourly variable “total precipitation”, which incorporates both76

convective and large-scale precipitation.77

Note that if microwave radiances and ground radar rain rates are assimilated in ERA5, rain gauges78

data are not assimilated for the rainfall product. Rivoire et al. (2021) showed that ERA5 tends to79

overestimate precipitation occurrence (for 1 mm/day threshold) over European lands by about 10 to 20%80

compared to EOBS gridded data set, and even more over sea surface (when compared with CMORPH81

global data set). Therefore, we must keep in mind ERA5 general bias on precipitations. Still, ERA582

precipitation wet-days intensity has been shown to be in very good agreement with EOBS gridded data83

set over European lands, where the station density is high (especially Germany, Ireland, Sweden, and84

Finland), and over the mid-latitude seas, compared with CMORPH.85

Our domain covers the area between 25°W and 45°E in longitude, and between 25°N and 71°N in86

latitude, enabling the study of both the Mediterranean and Europe.87

Finally, we would like to highlight that the methodology we present in this paper can be applied to88

any other rainfall data sets.89

3 Observed regimes for the change of the wet-days distribution90

One way to study the distribution changes of precipitation is to look at the cumulative density function91

(CDF) or equivalently at the quantile curve (i.e., the inverse of the CDF). To see their evolution with92

time, we can choose two periods of time, subtract their quantile curves, and obtain the curve of the93

intensities of the quantile trends for all percentiles. In the following, we designate as trend the absolute94

change of a given variable between two periods of 31 years, 1950–1980 and 1990–2020, divided by the95

time interval between the two periods, four decades here. We choose to take periods of three decades to96

smooth out the natural variability within those periods when taking the mean statistics. The impact on97

our results of the choice of the dates is negligible (see Section 7.1).98

A rainfall distribution usually has a high probability of the event 0 mm, corresponding to the many99

dry-days, i.e. days with no to low rainfall accumulation. In this paper, we will look at both the change100

of rainfall occurrence and intensity of rain (i.e. wet-days distribution) but also the all-days distribution.101

For methodological issues, it is indeed handy to set aside the dry-days and fit a model on the wet-days102

distribution only (which will be done in the next section). We are conscious that a quantile trend defined103

on a wet-days distribution may be influenced by a change in the fraction of dry-days, fd, as discussed in104

detail in Schär et al. (2016): this aspect will be further developed in the next section.105

The work from Expert Team on Climate Change Detection and Indices recommends the use of 1 mm/-106

day as the threshold for the definition of dry and wet-days: this value enables to better deal with both the107

issues of under-reporting of small rainfall amounts in observations and the “drizzle problem” of models108

and reanalyses - which usually have too many days with weak rain (Karl et al., 1999; Zhang et al., 2011).109

The fraction of dry-days (less than 1 mm/day) is far from being negligible in our domain, and can vary110

from 20% in Northern Europe up to 90% in the Maghreb (and almost 100% in the desert). Note that by111

construction, the trend of the 0% wet-days percentile will always be zero, as its intensity is by definition112

fixed to 1 mm/day.113

Figure 1 illustrates four main qualitatively different shapes that can be found on the domain. They114

depend on the evolution of the CDF :115

• all quantiles increasing (for ex. in the UK),116

• all quantiles decreasing (for ex. in the North of Portugal),117

• a U-shape regime, consisting in negative trends for low to medium quantiles but positive trends on118

extremes, with a certain inversion percentile in between (for ex. in the North of Italy),119

• a reversed U-shape regime, with increasing low to medium percentiles with decreasing extremes (for120

ex. in the Mediterranean Sea, North of Libyan coast).121
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Figure 1: Top: illustration of the four types of behaviors for wet-days quantile trend curve (between
1950–1980 and 1990–2020), at four chosen locations. The quantile trends ∆Q(p) are plotted in mm/-
day/decades. Bottom left: category map obtained from the classification algorithm, applied on the trends
between 1950–1980 and 1990–2020, with a sliding window of 9 grid-points. Green corresponds to “all
quantiles intensify” category, red to “all quantiles decrease”, orange to “U-shape” and blue to “reverse
U-shape”. Gray means the category is unclear. White designates desert location (less than 2% of wet-

days). Bottom right: relative change of Weibull parameters
(

∆β
β , ∆α

α2

)
for the whole domain. Colors

indicate as before the category detected by the classification algorithm. The black thick lines are the
theoretic limits between the influence zones of the two Weibull parameters.
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Note that a regime comparable to this “U-shape”, with an “inversion percentile” or “crossover”, was122

already mentioned in literature for the Mediterranean region (Boberg et al., 2010; Colin, 2011).123

In order to quantitatively distinguish between those regimes of trends, we developed a simple classi-124

fication algorithm, which takes in input a list of percentiles and associated quantile trends, looks at the125

shape of the trend curve and assesses in which of the four categories it falls into. It uses both the signs126

of the trends and of the trends slope, for low to medium ranks as well as for extreme high ranks. The127

full definition of the algorithm is in Section 7.1.128

This classification algorithm was applied over the whole Mediterranean and European domain, be-129

tween 1950–1980 and 1990–2020, giving the category map shown in Figure 1. We added a category130

“unknown” (in gray) for the points whose category was unclear. Note that this map was obtained by131

applying the algorithm on a sliding window of 9 pixels (which for each grid-point merges together the132

time series of its 8 neighboring grid-points) to smooth out very local irregularities.133

The first thing that becomes manifest on the category map in Figure 1 is a clear North/South pattern:134

a large majority of North-West Europe as well as subtropical Atlantic Ocean belongs to the same category135

(“all rain quantiles intensify”), while the Mediterranean region is mainly in the “U-shape” category (i.e.,136

decreasing low to medium quantiles but increasing extremes) with also a certain amount of “all rain137

quantiles decrease” category. This is consistent with what one would expect from a Mediterranean138

type behavior, with both drying and extreme rain events intensification. In the southern part of the139

Mediterranean basin, the “all decrease” regime is more predominant. We remind that the differences140

between the “all-decrease” and “U-shape” categories are mainly due to their opposite trend signs for very141

heavy precipitations. We can also observe that for the Mediterranean Sea waters far from the land coasts142

(about 200 km away), the dominant category is the “all rain quantiles intensify” one. As for African land143

equatorward of 30°N, the category map becomes extremely spotty, which could be due to a higher natural144

variability in the wet-days distribution, mainly due to the very small number of wet-days. Therefore, we145

won’t look at desert regions, where there is less than 2% of rainy days.146

We also note that the map of categories is much spottier within the Mediterranean region than in147

Northern Europe. This spottiness seems to be mainly due to a strong natural variability, from which a148

long-term climate change signal in the Mediterranean on the wet-day distribution has not yet emerged.149

Indeed, as shown in Section 7.1, the agreement between wet-days category maps computed for different150

time periods (of 20 to 35 years) is much lower for the Mediterranean than Northern Europe. The151

spottiness of the category map in the Mediterranean is probably an illustration of the sampling error.152

As a sum up, the signal of an intensification in the wet-day distribution is clear in Northern Europe,153

while the Mediterranean region does not seem to have a strong signal yet, at least not strong enough154

to overcome the noise of natural variability. This is a motivation to try to improve the significance of a155

signal by taking a parametric approach.156

4 Analytical model for the wet-days rain distribution157

In order to synthesize the information on each and every quantile trends into a smaller number of pa-158

rameters, we turn to a parametric approach.159

We first focus on finding a model for the wet-days distribution. Then in Section 5 we will see how160

all-days quantiles trends can be influenced by the changes of both the wet-days distribution and the161

dry-days frequency.162

Benestad et al. (2019) used an exponential law for the wet-days rain distribution, which works well on163

the observational data and gives a good “rule of thumbs” to relate extremes probability or quantile trends164

to the wet-days mean. However, since this wet-days model has a single parameter (the wet-days mean),165

this model can only represent a shift of all quantiles to higher (resp. lower) intensities if the parameter166

increase (resp. decrease). Thus it can not represent the two other quantile trends behaviors we observe,167

the “U-shape” and “reversed U-shape”, which have an opposite trend for low and high percentile. We168

need at least two parameters in the wet-days distribution in order to represent the four observed regimes.169

We compared different models having two or three parameters, among usually-used models for rain170

distribution (Gamma, Weibull, Lognormal, Pearson, etc.) on our precipitation dataset, using the max-171

imum likelihood estimation method. We used Kolmogorov-Smirnov and Cramer von Mises metrics as172

goodness of fit estimators. More details about the fit, the comparison of the different models and the173

adjustment tests are given in Section 7.1. The comparison indicates that a Weibull model with two174

parameters is a good option for ERA5 wet-days distribution, with only a small number of parameters.175
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Figure 2: Results for the Weibull parameters fitted on ERA5 wet-days rain distribution. Top row:
Weibull shape parameter α and scale parameter β on the period 1950–1980. Bottom row: absolute
changes between 1950–1980 and 1990–2020. The hatches denote the location where the change is not
significant through a bootstrap test, at a confidence level of 90%.

A Weibull distribution is defined by two parameters: a shape parameter (called α) and a scale176

parameter (called β). The cumulative density function of a Weibull law is expressed as:177

g(x) = 1− e−(x/β)α

where x is the intensity of rainfall, and p = g(x) ∈ [0, 1] is the probability to have a wet-days with a178

rainfall inferior to x. Note that p is also the percentile rank corresponding to an event of intensity x.179

Note that α and β are both positive, and α ≤ 1. β can be thought of as representative of the distribution180

median and has a unit of mm/day, while α is linked to the variance but is dimensionless. For a given181

percentile p, the quantile intensity Q(p) in mm/day is obtained as the inverse of the cumulative density182

function:183

Q(p) = x = β

[
ln

(
1

1− p

)]1/α
(1)

In Equation (1) it becomes clear that β is the quantile of rank p = 1− e−1, thus β ≈ Q(63%) and we can184

think of β as quite close to the wet-days rain median. When α → 1, the Weibull model simplifies to an185

exponential distribution, giving the same expressions as in Benestad et al. (2019), with the parameter β186

becoming the wet-days mean.187

Quantile trend curves like the ones shown in Figure 1 can be expressed analytically as ∆Q(p), ∆188

denoting the change between two periods of time:189

∆Q(p) = Q2(p)−Q1(p) = β2

[
ln

(
1

1− p

)]1/α2

− β1

[
ln

(
1

1− p

)]1/α1

(2)

using the subscripts 1 and 2 to denote two periods of time. This expression is simple and depends on only190

four parameters: (α1, β1, α2, β2), or equivalently (α1, β1,∆α,∆β). The values of those parameters for191

ERA5 rain data are displayed on Figure 2, along with the statistical significance of the changes (computed192

by a bootstrap test, as explained in Section 7.1).193

We observed (not shown here) that a change in the scale parameter β, keeping α fixed, gives the194

category “all rain quantiles intensify” (for ∆β > 0) or “all rain quantiles decrease” (for ∆β < 0). In195

opposition, a change in the shape parameter α keeping β fixed gives either a U-shape (for ∆α < 0) or a196
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reversed U-shape category (for ∆α > 0). Note that when β, which is the quantile of rank approximately197

63%, is constant, then the percentile of inversion is fixed at this precise rank: pinv = 63%.198

When both parameters change at the same time, their two effects will add up, with a weight depending199

on the relative change of α and β. Considering small relative changes, i.e. ∆α
α ≪ 1 and ∆β

β ≪ 1, the200

quantile trends for a Weibull law can be written, at the first order, as:201

∀p ∈ (0, 1), ∆Q(p) ≈ ∂Q

∂α
(p) ∆α+

∂Q

∂β
(p) ∆β (3)

with the following expressions for the partial derivatives:

∂Q

∂α
(p) = − β

α2
ln

(
ln

1

1− p

)(
ln

1

1− p

)1/α

∂Q

∂β
(p) =

(
ln

1

1− p

)1/α

The sensitivity of the trend curve to the two parameters α and β can be expressed as a simple ratio:202 ∣∣∣∣∣ ∂Q∂α (p)∆α∂Q
∂β (p)∆β

∣∣∣∣∣ = β

α2

∣∣∣∣∆α∆β

∣∣∣∣ ∣∣∣∣ln(ln 1

1− p

)∣∣∣∣ (4)

The change in α dominates the trend curve if it dominates the trends of at least the low percentiles203

and the tail. When plotting the logarithmic term with regard to the percentile p, we realize that this204

term has magnitude of order unity (except in the very near vicinity of p = 0, 1 − e−1, 1). Thus, we will205

take the approximation that the logarithmic term is of order unity on the ranks that are of interest for206

distinguishing between the different regimes. Finally, we come to the following result: the change in α207

dominates over β in the trend curve when:208 ∣∣∣∣∆αα2

∣∣∣∣≫ ∣∣∣∣∆ββ
∣∣∣∣ (5)

i.e. knowing which of the change of the parameter α or β dominates the trend curve boils down to209

comparing their normalized changes. Therefore, in the space
(

∆β
β , ∆α

α2

)
, the two diagonals (

∣∣∣∆β
β

∣∣∣ = ∣∣∆α
α2

∣∣)210

theoretically set the approximate limits between the four rain quantile trend regimes:211

• a U-shape for
∣∣∣∆β

β

∣∣∣≪ ∣∣∆α
α2

∣∣ and ∆α < 0212

• a reversed U-shape for
∣∣∣∆β

β

∣∣∣≪ ∣∣∆α
α2

∣∣ and ∆α > 0213

• all quantiles intensify for
∣∣∣∆β

β

∣∣∣≫ ∣∣∆α
α2

∣∣ and ∆β > 0214

• all quantiles decrease for
∣∣∣∆β

β

∣∣∣≫ ∣∣∆α
α2

∣∣ and ∆β < 0215

We can compare these theoretical limits with the four categories obtained by the detection algorithm216

(which makes no assumption on a distribution model). In Figure 1, we plotted all grid-points of the217

domain in the normalized Weibull phase space, and colored them by their category as detected by the218

classification algorithm. We see that indeed, the bottom part of the plot is mainly occupied by “U-219

shape” gridpoints (orange), the left part mainly “all decrease” category (red) and the right part mainly220

“All quantiles intensify” (green) points. Thus, the Weibull analytical limits are in very good agreement221

with the empirical categories.222

On this figure, we can furthermore get an estimation of the rank of the inversion percentile pinv, when223

it exists, from the angle a point makes in this normalized Weibull phase space. As explained in more224

details in Section 7.1, we have a direct link between the wet-days inversion percentile and the normalized225

changes of α and β, at first order:226

pinv ≈ 1− exp

(
− exp(

∆β

β

α2

∆α
)

)
. (6)

In summary, we have used a Weibull model on the wet-days rainfall distribution to reduce the information227

of the quantile trend curve to two parameters and their change (α, β,∆α,∆β). These parameters are228

enough to separate between the four observed wet-days regimes, and even to estimate the percentile of229

inversion pinv when it exists.230
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5 Influence of the changes of both the wet-days distribution and231

dry-days frequency232

5.1 Impact on annual mean233

In order to illustrate the importance of taking into account not only the wet-days distribution but also the234

change of the dry-days frequency, we study their relative contributions to the all-days mean precipitation235

(i.e., total annual precipitation), which is one of the most studied parameters in climate change studies.236

The all-days mean x̄ is the mean of the daily rainfall intensity, and can be equivalently computed as237

the product of the wet-days frequency fw = 1− fd with the wet-days precipitation mean µ:238

x̄ = (1− fd) µ

The change of the all-days mean is due both to the change of dry-days frequency fd = 1− fw and to the239

change of wet-days mean:240

∆x̄

x̄
= − ∆fd

(1− fd)
+

∆µ

µ
(7)

Those two terms can either be of the same sign and add up to each other, or be of opposite signs and241

tend to cancel each other out. Indeed, there could be more wet-days but with less intense rain, which242

could result in an almost zero trend on the mean precipitation. Conversely, there could be regions with243

fewer wet-days but higher rain intensity when it rains, as was shown in future projection by Pierce et al.244

(2013) for California and by Polade et al. (2014) for Mediterranean type climates. The relative weight245

of the two terms is also important to study. For future projection, Polade et al. (2014) showed that the246

change in the occurrence term will dominate the change in intensity for the all-days mean, in most of the247

subtropics. However, there is very little literature on the behavior of these two terms in past data.248

For a Weibull distribution, we can further detail the dependency of the wet-days mean on the shape249

and scale parameters. The expression of the Weibull mean is µ = β Γ (1 + 1/α), where Γ denotes the250

Gamma function. Taking the logarithmic derivative of the mean, and using the definition of the Digamma251

function (usually noted ψ) as the derivative of the log of the Gamma function, we get:252

∆µ

µ
≈ ∆β

β
− ∆α

α2

(
d ln Γ

dz

)
z=1+1/α

=
∆β

β
− ∆α

α2
ψ(1 + 1/α) (8)

Note that the Digamma function is strictly positive for the typical range of the shape parameter for ERA5253

precipitation, thus the sign of the shape parameter contribution is given by −∆α. Its typical values are254

ψ(1 + 1/α) ∈ [0.4, 1] for α ∈ [0.5, 1] which is the typical range for Europe and the Mediterranean. Thus,255

even in regions with a U-shape categories, where ∆α dominates the wet-days trend curve as |∆β|
β < |∆α|

α2 ,256

the change in wet-days mean is not necessarily dominated by ∆α, since the Digamma factor is smaller257

than 1.258

Finally, we conclude that the relative change of the all-days mean can be decomposed in three con-259

tributions, from the relative changes of fd, α and β:260

∆x̄

x̄
≈ − ∆fd

(1− fd)
+

∆β

β
− ∆α

α2
ψ(1 + 1/α) (9)

Figure 3 shows the relative contributions of those terms to the all-days mean. For Northern Europe, the261

two terms are of the same sign (decrease of dry-days frequency and more intense rainfall in average), but262

the all-days mean change is mainly due to the increase of the wet-days mean (the latter being mainly due263

to the increase of the Weibull scale parameter β). In a central European band between East France and264

Poland, the change of occurrence is close to zero, and the change in wet-days mean is the sole contributor265

to the all-days mean. For the Mediterranean region on the contrary, the two terms can have the same266

or opposite signs, but the increase of dry-days frequency is largely dominant, leading to a decrease of267

all-days mean.268

Both in Northern Europe and in the Mediterranean (even in U-shape regions), the changes of the269

wet-days mean are mainly due to the scale parameter β, while the term due to the change of the scale270

parameter α is smaller in intensity.271

We can check how well this first order approximation and Weibull model enable to capture the change272

in all-days means. We compare in Figure 4 the all-days mean (computed directly from data) to the sum273
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Figure 3: The different contributions to the all-days mean change, between 1950–1980 and 1990–2020,
from the dry days frequency and the wet-days mean, the latter decomposed into contributions from its
two parameters. Every map has the same scale for the color-map (given at the bottom of the figure).
The green and red boxes highlight the difference between Northern Europe and the Mediterranean.

Figure 4: Relative change of all-days mean ∆x̄
x̄ , between 1950–1980 and 1990–2020, computed directly

on data, compared to estimated from the Weibull model, i.e the three contributions from fd, α and β.
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of the fd, α and β terms in Equation (9). This figure shows that the Weibull model for the intensity plus274

the rainfall occurrence capture most of the features of the all-days mean. Except for the lower latitudes275

where the error can reach 10%, the difference between the direct computation and the sum term is indeed276

only of a few percent, in Europe and the Mediterranean.277

5.2 Influence on all-days quantiles trends of the dry-days frequency278

In this section, we investigate in more detail the link between all- and wet-days precipitation quantiles.279

In order to understand and quantify how looking at wet-days only can impact the values of the trends for280

all-days quantiles, we follow the framework proposed by Schär et al. (2016), more precisely the derivation281

made in their first appendix.282

The all-days rainfall distribution is linked to the wet-days’ one by the dry-days frequency fd. More283

precisely, the wet-days percentile p, which denotes the probability of having an event of intensity smaller284

or equal than x mm/day, and the all-days percentile pa for the same rainfall intensity, are linearly linked285

by fd :286

pa = (1− fd)p+ fd (10)

Note that this formula is valid for any percentile rank as far as pa ≥ fd. It gives indeed that for p = 0287

we have pa = fd and that the probability of the maximum rain value is the same (p = 1 when pa = 1).288

This simple formula shows that a wet-days percentile p is linearly linked to the all-days percentiles pa.289

By definition, the wet-days quantile Q is equal to the all-days quantile Qa for percentiles where they290

are both defined:291

∀pa ∈ [fd, 1], Q(p) = Qa(pa) (11)

We now consider a change between periods 1 and 2 of the wet-days rain distribution and its quantiles292

Q: ∆Q = Q2 −Q1, where ∆ denotes again the change. For a fixed wet-days percentile p, ∆Q is related293

to the change of the all-days rank and quantile intensity, but also to the change in dry-days frequency.294

Rewriting with our notations the equation A7 from the appendix of Schär et al. (2016) gives:295

∆Q(p) = ∆Qa(pa) +
∆fd
1− fd

(1− pa)
∂Qa,2

∂pa
(12)

We would like to express analytically the slope of the quantile curve
∂Qa,2

∂p , with the Weibull model296

developed earlier. Thus, we come back to the slope of the wet-days quantiles, by using Equation (11)297

and the chain rule:298

∂Qa,2(pa)

∂pa
=
∂Q2(p)

∂pa
=
∂Q2(p)

∂p

∂p

∂pa

Since the percentiles p and pa are linearly linked, ∂p
∂pa

= 1
1−fd

= 1−p
1−pa

, we get the following relationship299

between the two quantiles slopes:300

(1− pa)
∂Qa,2

∂pa
= (1− p)

∂Q2

∂p

Thus, Equation (12) becomes:301

∆Q(p) = ∆Qa(pa) +
∆fd
1− fd

(1− p)
∂Q2

∂p
(13)

Finally, we can apply the general formula in Equation (13) to a Weibull distribution of shape parameter302

α and scale parameter β. Putting all the terms depending on the wet-days percentile p on the same side,303

it yields:304

∆Qa(pa) = ∆Q(p)− ∆fd
(1− fd)

β2
α2

[ln(
1

1− p
)]1/α2−1︸ ︷︷ ︸

distorting term

(14)

This equation shows that the quantile trends in all-days can differ from the wet-days trends due to the305

change of rainfall occurrence, which acts as a weight in front of a distorting term (underlined by a curly306

brace in equation Equation (14)). Note that the distorting term is growing with p and its form changes307

with the shape parameter α, giving even larger additive trends for the heavy rain percentiles as α is308

small. Note that in the limit case where α → 1, this distorting term becomes a shift of constant value309

β2: it is not anymore distorting the wet-days trend curve.310
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5.3 Modified regimes for all-days quantile trends311

On historical data, it is important to quantify when and where the change of occurrence is large enough,312

compared to the wet-days quantile trends, to create relevant changes on the all-days quantile curves. We313

also want to analyze which percentiles will see their all-days trends the most impacted by ∆fd. We thus314

need to compare the ∆fd term to the ∆Q(p) term, in Equation (13).315

The all-days trend is given by the wet-days trend if and only if, ∆Qa(pa) ≈ ∆Q(p) i.e. |∆Q(p)| ≫316 ∣∣∣∣ ∆fd
1−fd

β2

α2

[
ln
(

1
1−p

)]1/α2−1
∣∣∣∣ At the first order, it is true if and only if :317

∣∣∣∣∂Q∂α (p)∆α+
∂Q

∂β
(p)∆β

∣∣∣∣≫
∣∣∣∣∣ ∆fd
1− fd

β2
α2

[
ln

(
1

1− p

)]1/α2−1
∣∣∣∣∣

Let’s look whether at least one of the two left-hand side terms is dominant over the term in ∆fd. The318

term due to the change of the scale parameter of the wet-days distribution dominates over the change of319

occurrence term for percentiles p such as:320 ∣∣∣∣ln( 1

1− p

)∣∣∣∣≫ ∣∣∣∣ ∆fd
1− fd

β2
∆β

1

α2

∣∣∣∣ . (15)

This is verified at least for ranks approaching 1 since limp→1 ln
(

1
1−p

)
= +∞. This independence of321

the maximum rainfall event trend from the rainfall occurrence was to be expected from Equation (10):322

p = 1 and pa = 1 both describe the same event in wet-days and all-days. In addition, since the function323

p → ln
(

1
1−p

)
is strictly growing on [0, 1] up to infinity, there exists a percentile plim,∆β above which324

the function becomes larger than | ∆fd
1−fd

β2

∆β |
1
α2

. Thus, quantiles of ranks between plim,∆β and p = 1 (the325

maximum rain event) will not be impacted by the change of dry-days.326

As for the term due to the change of the shape of the wet-days distribution, it is dominant over the327

change of occurrence term only for percentiles p such as:328 ∣∣∣∣ln( 1

1− p

)
ln

(
ln

1

1− p

)∣∣∣∣≫ ∣∣∣∣ ∆fd
1− fd

α2

∆α

∣∣∣∣ . (16)

The left-hand side function is strictly growing on [1 − e−1, 1] and tends to infinity at 1, thus there also329

exist a percentile rank plim,∆α above which the function becomes larger than | ∆fd
1−fd

α2

∆α |.330

These two limit percentiles, plim,∆α and plim,∆β , can be inverted either analytically or numerically331

(using the classic segment or tangent methods). The maps of the factors | ∆fd
1−fd

β2

∆β
1
α2

| and | ∆fd
1−fd

α2

∆α | for332

ERA5 rain data are shown on the left column of Figure 5, followed by an illustration of the graphical333

inversion. The resulting maps for the limit percentiles are given at the bottom of the figure.334

The figures show that plim,∆β is close to 100% for the Mediterranean, but much lower for most of335

Central and North Europe: its median on North-Central Europe (NCE) and West Central Europe (WCE)336

is respectively 46% and 40%. Thus, NCE and WCE, the terms depending on the change of dry-days337

frequency can be neglected compared to the change of wet-days scale parameter for wet-days percentiles338

larger than plim,∆β ≈ 50% (Figure 5).339

We see that the percentile plim,∆α is very high in Europe and the Mediterranean, usually above 90%,340

which signifies that the term in ∆α is almost never dominant compared to the one in ∆fd for the all-days341

trend ∆Qa(pa). It means that in the Mediterranean, for the great majority of percentile ranks, their342

all-days trends are mainly due to the decrease of wet-days and not to a change of intensity when it rains.343

This is consistent with the low statistical significance of ∆α over the domain on ERA5 data.344

In summary, in most of the Mediterranean the all-days quantile trend curves will be largely impacted345

by the increase of dry-days frequency, leading to mostly “U-shape” and “all-decrease” categories. For346

most of Northern Europe in opposition, all-days quantile trend curves will be very similar to the wet-days’,347

as the influence of ∆β is dominant in this region over the change of dry-days.348

Figure 6 illustrates what the four wet-days categories trend can become in all-days trends, when the349

change of occurrence is not negligible.350

In regions where the rainfall occurrence increases strongly enough, some locations with U-shape wet-351

days regime will become “all-increase” all-days regime (provided that the ∆fd term is large enough),352
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Figure 5: Left, top and middle figure: maps of the two factors determining the relative weight of the
change of wet-days terms compared to the change of occurrence term for all-days trends. Middle top and
middle figures: their histograms for the three IPCC regions (NCE = North Central Europe, WCE = West
Central Europe, MED = Mediterranean). Right, top and middle figures: an example of the graphical
inversion to find the limit percentile for the NCE median value. Bottom row: resulting maps for the limit
percentiles plim,∆α and plim,∆β (same color-bar). Like before, ∆ denotes the changes between 1950–1980
and 1990–2020.
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(a) ∆fd < 0

(b) ∆fd = 0

(c) ∆fd > 0

Figure 6: Illustration of the influence of the dry-days frequency term on the all-days quantile trend
curves, for the four categories, for different values of the dry-days frequency change ∆fd. The values of
the wet-days Weibull parameters (α, β,∆α and ∆β) are the same for all the subplots and are given on
the top row. These values are synthetic.
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(a) Wet-days category map (b) All-days category map

Figure 7: Category maps for the 1950–1980 and 1990–2020 periods. As before, green corresponds to “all
quantiles intensify” category, red to “all quantiles decrease”, orange to “U-shape” and blue to “reverse
U-shape”, while points whose category was unclear are in gray. White designates desert location (less
than 2% of wet-days). The gray hatches denote places where the category detection is not very robust
with regard to changes in the periods considered (cf Section 7.1).

while the wet-days “all-increase” trends will be more intense in all-days. Similarly, wet-days all-decrease353

will merge with inverse U-shape to give a new all-days “inverse U-shape”. Thus, only two main regimes354

could exist for such regions in all-days distribution: “all-increase” and “reverse U-shape”.355

In regions where the rainfall occurrence decreases strongly, like in the Mediterranean, the opposite356

occurs: the “all-increase” wet-days regime will disappear in favor of an all-days “U-shape” regime, while357

wet-days U-shape’s inversion percentile will become even larger in all-days. Similarly, the “reverse U-358

shape” will merge with the “all-decrease” category. Thus in all-days only, in regions with a strong decrease359

of fd, only two regimes would be expected, “U-shape” and “all-decrease”.360

Figure 7 shows the resulting all-days categories, defined as explained in Section 7.1. It is put side361

by side with the wet-days categories map, to highlight the differences which are due to the change of362

dry-days frequency.363

Note that gray hatches show the non robustness with the choice of the time period (cf Section 7.1). We364

see that both the wet-days and all-days category map are very robust over the northern part of Europe,365

while in the Mediterranean, most places’ categories are not as robust, especially when at the frontier366

between different categories. Overall, the North-South pattern of all-days and wet-days categories is367

robust to the time periods considered.368

In terms of spatial pattern, the overall North-South pattern of all-days category map is quite similar369

to the wet-days category map (Figure 1). We see that the all-days categories are generally smoother than370

the wet-days trends: there is a more continuous transition in latitude, with “all increase” in the North,371

“all decrease” in the South, and “U-shape” in between. Besides, the so called Mediterranean paradox, i.e.372

“U-shape” regime in all-days, is found in a transitional zone between wetting and drying, along Southern373

continental Europe, as well as in the Eastern part of the Mediterranean basin, but not the whole region374

as it was in wet-days. This is consistent with the fact that in the Mediterranean, the signal has been375

dominated by the increase of dry days, instead of the distortion of the wet-days distribution.376

6 Conclusion377

Climate change is known to impact greatly the Mediterranean region, which overall becomes warmer and378

drier, while the effects on extreme precipitations is still quite debated on historical data (Ali et al., 2022).379

In this study we aimed at better understanding how the strong trends of drying of the Mediterranean can380

influence the distribution of rain, all-together with the change of the whole wet-days distribution itself381

(from the low and medium percentiles to the most extreme rainfalls).382

Using the ERA5 reanalysis, we studied the evolution of the wet-days rain distribution in the recent383

past, since the 1950s. We showed that it could evolve in four different regimes, defined on the quantiles384

trends curves: “all rain quantiles intensify”, “all rain quantiles decrease”, “U-shape” and “reversed U-385

shape”. The map of the four regimes computed over Europe and the Mediterranean shows a strong386
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contrast between these two regions. While in Northern Europe all quantiles are intensifying with a clear387

and robust signal, the Mediterranean’s regimes are shared between a dominant “U-shape” regime mixed388

with “all quantiles decrease”, but are overall more spotty due to strong natural variability. This suggests389

that a climate change signal and its impact on the wet-days precipitation distribution, shift or distortion,390

have not (or not yet) emerged in the Mediterranean region, contrary to Northern Europe.391

As for the map of regimes for the all-days distribution, it shows a clearer signal with latitude, from392

the Mediterranean (“all decrease”) with a smooth transition (through a “U-shape” regime) to Northern393

Europe (“all increase” regime). The greater spatial uniformity of the all-day regime map in the Mediter-394

ranean comes from the stronger and more robust signal of dry-days frequency change, which dominates395

the all-day distribution trends.396

By modeling the wet-days distribution with a Weibull law, we were able to reduce the information of397

the quantile trends to just two parameters, a scale and shape parameters, and their changes (representative398

of the precipitation distribution shift and distortion respectively). The categorization in four regimes can399

be estimated directly from the ratio and signs of the relative changes of the two Weibull parameters, as400

can be done for the percentile of inversion, when it exists. A statistical significance test on the change401

of the Weibull parameters confirms that a signal has emerged in Europe, with a strong increase of the402

scale parameter, i.e a shift of the whole distribution to more intense rainfall, without distortion. In the403

Mediterranean, only a few small regions have significant change of scale or shape parameter, reinforcing404

the argument that a climate change signal on wet-days has not yet emerged from natural variability.405

Coming back to the whole distribution (including dry-days), we quantified how much some all-days406

important variables, such as the trends of the annual mean or of quantiles, are influenced by both407

the change of wet-days distribution and of dry-days frequency (the latter significantly increases in the408

Mediterranean but decreases in Northern Europe). The two effects can add up (as for the all-days mean409

in most of Northern Europe) or counterbalance each other (as in Southern Italy or in Poland).410

The resulting all-days category map shows a clearer signal in latitude than the wet-days one: there is411

mostly “all rain quantiles intensify” in Northern Europe, then a transition with “U-shape” in a thin band412

of Central Europe, and finally the“all rain quantiles decrease” regime in most of the Mediterranean. Note413

that the so called Mediterranean paradox, i.e. “U-shape” regime in all-days, is thus not present in most414

of Mediterranean region, while it was dominant over this region when only wet-days were considered.415

One of the key findings of the paper is that the change of dry-days frequency is predominant for416

the all-days trends of most quantiles in the Mediterranean, while in Northern Europe its effect can be417

neglected compared to the strong increase of the Weibull scale parameter, for all quantiles with wet-days418

rank above about 50%.419

In a nutshell, the framework developed in this study establishes a connection between changes in wet-420

days precipitation and a few critical parameters that capture the shift and distortion of the precipitation421

distribution, as well as changes in precipitation occurrence. It has the potential to be employed in different422

geographical regions and time spans. In an upcoming publication, we intend to apply this framework to423

the future climate projections for the 21st century, in order to have a stronger and more robust signal424

over the Mediterranean. It would also enable to detect the year of emergence of the signal. Another425

potential application of this framework is the study of the physical processes that cause the observed426

changes, both from large-scale and local effects.427

7 Open Research Section428
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was downloaded from the Copernicus Climate Change Service (C3S) accessed in July 2022. It is freely430

available on C3S website. The results contain modified Copernicus Climate Change Service information431

2020. Neither the European Commission nor ECMWF is responsible for any use that may be made of432

the Copernicus information or data it contains.433

7.1 Acknowledgements434

CJM gratefully acknowledge funding from the European Research Council (ERC) under the Euro-435

pean Union’s Horizon 2020 research and innovation program (Project CLUSTER, Grant Agreement436

No. 805041). The authors also thank Samuel Somot (Centre National de Recherches Météorologiques,437
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Figure 8: Category maps for wet-days quantile trends computed for different couples of time periods over
1950-2020. The quantile trends values leading to this map have been processed by a smoothing window
of 9 points. As before, green color corresponds to “all quantiles intensify” category, red to “all quantiles
decrease”, orange to “U-shape” and blue to “reverse U-shape”.

Appendix A: Influence of the time period581

In Figure 8, we can see the wet-days category maps computed for different time periods, covering the582

1950–2020 periods:583

• 1950-1970 vs 2000-2020584

• 1950-1975 vs 1995-2020585

• 1950-1980 vs 1990-2020586

• 1950-1985 vs 1985-2020587

At a given location, the category of the reference period is considered as robust if at least 3 or the 4588

pairs of periods give the same category. This criterion is used to define both for wet-days and all-days589

category’s robustness, which is represented by the gray hatches on Figure 7.590

Appendix B: Algorithm for detection of regimes591

In order to quantitatively distinguish between the different regimes of trends, we developed a classification592

algorithm, which takes in a list of percentiles and the associated quantile trends (previously computed593

between two times periods), looks at the shape of the trend curve and assesses in which of the four594

categories it falls into.595

For wet-days percentiles, we define the belly of the curve as the part of the curve between the 10th596

and the 60th percentiles, and the tail as the part of the curve between the 85th and the 99th quantiles.597

We also define the slope of the tail as the slope of the linear regression of the curve between the 60th and598

the 99th quantiles. The algorithm is the following:599

1. If the means of both the belly and the tail are positive and that the slope of the tail is positive,600

then the category is defined as “all quantiles intensify”.601

19



2. If the mean of the belly is negative, but the tail has a positive mean and slope, then the category602

is defined as “U-shape”.603

3. If the mean of the belly is negative and the tail has a negative mean and slope, then the category604

is defined as “all quantiles decrease”.605

4. If the mean of the belly is positive while the tail has a negative mean and a negative slope, then606

the category is defined as “reversed U-shape”.607

Finally, if the curve doesn’t fall into any of these four categories, it is set into the “unknown” category.608

For all-days category, the definition is slightly different. It consists in computing the all-days quantile609

trends (from percentiles pa ∈ [0, 1]) and then applying the above algorithm only on the equivalent wet-610

days percentiles pw, corresponding to pa ∈ [fd, 1]. For this, we have chosen to use the value of dry-days611

frequency fd of the reference period (1950–1980).612

Appendix C: Comparison of distribution models for ERA5 rain-613

fall614

There is no a priory clear choice for a parametric model for the whole wet-days distribution of daily rain615

(rain above threshold, here 1 mm/day). The choice of a particular model may depend a lot on the region616

considered, on the origin of the data (station data, spatial interpolation from stations, satellite data,617

reanalysis, or climate projections), on its spatial and temporal resolution, . . .We have therefore tested618

on ERA5 daily rain data, a list of the most common models (as well as the distribution from (Naveau619

et al., 2016), called Naveau in the following). To compare the quality of the different models, we used620

two goodness of fit estimators, computed on cumulative density functions: Kolmogorov-Smirnov (a L1621

distance) and Cramer von Mises (a L2 distance). When a location parameter was needed, we set it at622

the wet-days threshold (1 mm/day).623

We found that in average, the best distribution for the Mediterranean region was the Naveau law,624

followed by the Weibull law and the Gamma law (Figure 9). As the Naveau model has more complexity625

(three parameters) than what we need to capture the quantile trends regimes, we decided not to select this626

model. We compared Weibull and Gamma laws pixel-wise across the whole Europe and Mediterranean.627

The ratio of the fitting error of Weibull vs. Gamma laws shows that the Weibull model is more suitable628

than Gamma law, in most of the Mediterranean domain. We therefore choose the Weibull law for our629

model.630

Once we fitted the Weibull law on a time serie and that we got its optimal fit parameters, we used the631

usual Kolmogorov-Smirnov distance as an adjustment test: if this distance is “small enough”, the fit is632

accepted. According to empirical tables, for a confidence level of 95%, the Kolmogorov-Smirnov distance633

is considered small enough if falling below 1.36/
√
N , where N is the number of data points, as far as634

N > 35 (which is largely the case since we fit Weibull on daily data on several decades). The mask of635

where the Weibull fit doesn’t pass the adjustment test is shown by hatches on Figure 9. It shows that636

Weibull is indeed an acceptable model for most of the domain (except for some Mediterranean coastal637

areas and sea area in the Atlantic west of Portugal).638

Appendix D: Statistical significance test639

We are interested in their statistical significance of different statistics computed on the data, such as the640

quantile trends or the Weibull parameters trends. As the rainfall data on the Mediterranean region is641

spatially and temporally correlated, we perform a bootstrap test. It consists in comparing the trend of642

the real data with the trends that would be obtained on a large number (typically a hundred) of artificial643

samples presenting a spatial and temporal variability similar to our original data. Each sample is an644

artificial time serie created by pulling random days from our 1950–2020 original data (with replacement).645

The artificial time series have the same length as the original one.646

Since the dates have been mixed in the artificial samples, their average linear trends are zero, but647

their variability gives us an estimation of the noise in our original data. The trend of the original data is648

said significant at a given level, for example 90%, if the original data lies within the 10% more extreme649
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Figure 9: Left: goodness of fit estimator for different wet-days distribution models on the Mediterranean
region (as defined by the IPCC) with a smoothing window of 9 points. Note that we used a scale factor
for the Kolmogorov–Smirnov estimator, which was much smaller than Cramer von Mises estimator. In
the x-axis, the number in parentheses is the number of parameters of the fit. Right: Map of the ratio
of errors (Cramer von Mises goodness of fit) between Gamma and models, across the whole domain. In
green are all the location where Weibull model is better suited for the data than Gamma. Black hatches
show the locations where the adjustment test of the Weibull model fails, with a confidence level of 95%.

values of the bootstrap distribution, meaning that we could have the original data “by chance” from this650

random distribution only with low probability (less than 10%).651

Appendix E: Inversion percentile652

When the regime is a “U-shape”, the quantile curve has negative trends up to a certain percentile rank,653

which we will define as the “inversion percentile”. After that rank, almost all the following percentiles654

have positive trends. We can get an analytical expression for the inversion percentile pinv with the Weibull655

model, by solving the equations ∆Q(pinv) = 0 for pinv > 0. This results in the following expression:656

pinv = 1− exp

(
−
(
β2
β1

) α1α2
α2−α1

)
(17)

Since the changes of α and β are small for rainfall in ERA5 data (about a few percents), we can simplify657

this expression. Let’s write ∆α = α2 − α1 and α = (α2 + α1)/2, and similarly for β, then we have658

β2

β1
≈ 1 + ∆β

β and α1α2

α2−α1
≈ α2

∆α , and we can simplify the exponent:659

ln

(
β2
β1

α1α2
α2−α1

)
=

α1α2

α2 − α1
ln

(
β2
β1

)
≈ α2

∆α
ln

(
1 +

∆β

β

)
≈ α2

∆α

∆β

β

where the last approximation is done by taking the development at the first order in ∆β/β. We finally660

get this expression for the inversion percentile:661

pinv ≈ 1− exp

(
− exp(

∆β

β

α2

∆α
)

)
(18)

Geometrically speaking, this means that at first approximation, the angle in the Weibull parameter space662

(X,Y ) =
(

∆β
β , ∆α

α2

)
gives the value for the inversion percentile pinv.663

We can also derive a lower and upper limit for the inversion percentile. Indeed, the inversion percentile664

is properly defined only in the case where the change of α dominates (U-shape or reversed U-shape), i.e.665

when
∣∣∆α
α2

β
∆β

∣∣≫ 1. The limit cases for this to be true would be when the change in α doesn’t dominate666

anymore, i.e. when ∆α
α2

β
∆β is close to−1 or 1. Those two cases give the minimal and maximal values of pinv667

for a U-shape according to the Weibull law are: p0,min ≈ 1− e−e−1 ≈ 30% and p0,max ≈ 1− e−e1 ≈ 93%.668

These values are consistent with the range of inversion percentile observed on the reanalysis (not shown).669
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