
P
os
te
d
on

14
N
ov

20
23

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
00
03
48
.8
55
07
97
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Developing an Explainable Variational Autoencoder (VAE)

Framework for Accurate Representation of Local Circulation in

Taiwan

Min-Ken Hsieh1 and Chien-Ming Wu1

1National Taiwan University

November 14, 2023

Abstract

This study develops an explainable variational autoencoder (VAE) framework to efficiently generate high-fidelity local circulation

patterns in Taiwan, ensuring an accurate representation of the physical relationship between generated local circulation and

upstream synoptic flow regimes. Large ensemble semi-realistic simulations were conducted using a high-resolution (2 km) model,

TaiwanVVM, where critical characteristics of various synoptic flow regimes were carefully selected to focus on the effects of local

circulation variations. The VAE was constructed to capture essential representations of local circulation scenarios associated

with the lee vortices by training on the ensemble dataset. The VAE’s latent space effectively captures the synoptic flow regimes

as controlling factors, aligning with the physical understanding of Taiwan’s local circulation dynamics. The critical transition

of flow regimes under the influence of southeasterly synoptic flow regimes is also well represented in the VAE’s latent space.This

indicates that the VAE can learn the nonlinear characteristics of the multiscale interactions involving the lee vortex. The

latent space within VAE can serve as a reduced-order model for predicting local circulation using synoptic wind speed and

direction. This explainable VAE ensures the accurate predictions of the nonlinear characteristics of multiscale interactions

between synoptic flows and the local circulation induced by topography, thereby accelerating the assessments under various

climate change scenarios.
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Abstract 15 

This study develops an explainable variational autoencoder (VAE) framework to efficiently 16 

generate high-fidelity local circulation patterns in Taiwan, ensuring an accurate representation of 17 

the physical relationship between generated local circulation and upstream synoptic flow 18 

regimes. Large ensemble semi-realistic simulations were conducted using a high-resolution (2 19 

km) model, TaiwanVVM, where critical characteristics of various synoptic flow regimes were 20 

carefully selected to focus on the effects of local circulation variations. The VAE was 21 

constructed to capture essential representations of local circulation scenarios associated with the 22 

lee vortices by training on the ensemble dataset. The VAE's latent space effectively captures the 23 

synoptic flow regimes as controlling factors, aligning with the physical understanding of 24 

Taiwan's local circulation dynamics. The critical transition of flow regimes under the influence 25 

of southeasterly synoptic flow regimes is also well represented in the VAE’s latent space.This 26 

indicates that the VAE can learn the nonlinear characteristics of the multiscale interactions 27 

involving the lee vortex. The latent space within VAE can serve as a reduced-order model for 28 

predicting local circulation using synoptic wind speed and direction. This explainable VAE 29 

ensures the accurate predictions of the nonlinear characteristics of multiscale interactions 30 

between synoptic flows and the local circulation induced by topography, thereby accelerating the 31 

assessments under various climate change scenarios. 32 

 33 

Plain Language Summary 34 

This research introduces an advanced neural network framework for generating high-35 

fidelity local flow patterns in Taiwan. This framework, known as an explainable variational 36 

autoencoder, can accurately simulate how wind patterns of synoptic weather conditions interact 37 

in this region. We used detailed simulations to train the variational autoencoder, ensuring it 38 

captures the complex relationships between local flow and larger-scale weather patterns. By 39 

training on the detailed simulations, the variational autoencoder learned and represented these 40 

large-scale weather patterns in a way that helps maintain the physical relationship between local 41 

flow prediction and the large-scale weather patterns. One of the key outcomes of this study is the 42 

development of a reduced-order model. This simplified model takes advantage of what we have 43 

learned about complex weather interactions and can quickly predict local weather under different 44 

conditions. This approach ensures accurate predictions, even in complex situations involving 45 

changing climate conditions. 46 

1 Introduction 47 

The advances in data-driven Artificial intelligence (AI) /Deep Learning (DL) models for 48 

weather forecasting (e.g.Pangu-Weather (Bi et al., 2023), FourCastNet (Pathak et al., 2022) and 49 

GraphCast (Lam et al., 2022)) that significantly lower computational cost, offering a promising 50 

alternative to state-of-the-art numerical weather prediction (NWP) models. As the frequency and 51 

intensity of extreme weather events increase in the warming earth, deep generative models have 52 

garnered significant interest in meeting the demand for accurately assessing the intensity, timing, 53 

and spatial distribution of local extreme weather events, with a particular focus on generative 54 

adversarial networks (GANs) (Goodfellow et al., 2014). The applications of GANs are mostly 55 

gaining traction in the realm of extreme precipitation, such as estimating single-site precipitation 56 

patterns (Zadrozny et al., 2021), generating extreme precipitation (Bhatia et al., 2020), 57 
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reconstructing missing information in microwave precipitation data (Wang et al., 2021), and 58 

generating spatiotemporal weather patterns of extreme events (Klemmer et al., 2021). These 59 

research efforts exemplify the potential of deep generative models in addressing the challenges 60 

associated with extreme weather events and signify a promising direction for enhancing weather 61 

forecasting capabilities. 62 

As an alternative, Variational Autoencoders (VAEs) (Kingma & Welling, 2014; 2019, 63 

hereafter KW2019) offer an encoder-decoder generative model that explicitly learns the 64 

distribution of the training set. By regularizing the latent space to a known distribution, VAEs 65 

enable stochastic synthesis that is primarily controlled by the latent space distribution. This 66 

allows researchers to identify where to sample from to achieve synthesis with specific desired 67 

characteristics. This property enhances the interpretability of VAE-based generative models. 68 

VAE applications have showcased their effectiveness in discussing weather fields in extreme 69 

scenarios, as demonstrated by Oliveira et al. (2021) and Behrens et al. (2022). Their results show 70 

that VAEs can skillfully reproduce subgrid cloud processes and reveal key cloud-type features. 71 

In addition, Shamekh et al. (2022) showed improved estimations of precipitation variability 72 

using VAE-learned low-dimensional variables for convection aggregation at the subgrid scale. 73 

While deep generative models show progress in efficiently exploring the physics of 74 

geosciences, there remains a significant concern. Purely data-driven DL models might 75 

sometimes lack consistency in their predictions concerning established laws of physics (Daw et 76 

al., 2017). Additionally, the limited number of labeled instances available for training or cross-77 

validation can often fail to accurately represent the underlying relationships in scientific 78 

problems (Karpatne et al., 2017). This concern becomes even more pronounced when applying 79 

DL models trained with current climate data to infer scenarios in a warming climate. The 80 

changing conditions and unique characteristics of a warming climate can lead to uncertainties 81 

and challenges in model generalization, raising questions about the reliability and robustness of 82 

data-driven approaches in such contexts. 83 

The recent emergence of physics-informed neural networks (PINNs) has provided a 84 

promising approach to addressing the challenges of purely data-driven DL models. In a 85 

pioneering study, Beucler et al. (2021) introduced a climate-invariant machine learning approach 86 

that involves transforming the input/output features of the DL framework into a set of physical 87 

parameters with consistent distributions across different climates. Their findings demonstrated 88 

that incorporating physical considerations, even in the data preprocessing stage, can enhance the 89 

performance of DL models. This highlights the potential for bridging the gap between DL 90 

models and physics knowledge, thereby imposing physical constraints on model outputs and 91 

improving prediction skills for unseen scenarios. 92 

In this study, we aim to utilize the neural network to address the evaluation of the local 93 

circulation induced by complex topography, which remains one of the most challenging aspects 94 

in global general circulation models (GCMs), even under sub-hundred-kilometer resolutions. 95 

Consequently, evaluating local responses to climate change often relies heavily on dynamical 96 

downscaling approaches. These approaches perform high-resolution numerical simulations to 97 

acquire detailed information on local phenomena under specific warming scenarios. However, 98 

the dynamical downscaling approach demands substantial computation resources and can 99 

introduce uncertainties, leading to the "cascade of uncertainty” in assessing the local responses to 100 

the various climate projections (Wilby and Dessai, 2010). 101 
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Taiwan provides a natural laboratory for studying AI downscaling where complex 102 

orography is generally underrepresented in current models even at kilometer scales. With nearly 103 

200 summits surpassing 3000 m within its central mountain range, covering two-thirds of its 104 

total 36000 km
2
 area, the island's complex topography interacts with large-scale synoptic 105 

conditions to induce a diverse array of local circulations. These local circulations control various 106 

weather phenomena, such as air pollution transport, which is well discussed in the literature (Lai 107 

and Lin, 2020; Hsieh et al., 2022, hereafter H2022; Hsu et al., 2023, hereafter H2023). These 108 

studies suggested that the local circulation can be dramatically different under the slight change 109 

of the synoptic flow regimes, and consequently impacts the air pollution scenarios in Taiwan. 110 

Figure 1 depicts the local pollution patterns as an indicator of the local circulation scenarios to 111 

demonstrate the impacts of the synoptic flow regime change on the local flow patterns. By 112 

carefully selecting local-circulation dominated days, which exclude the impact of long-range 113 

pollutant transport by cyclones, cold surges, and strong northeasterly winds in the highly-114 

polluted cold season (Oct. to Apr.), the windrose in Fig. 1a reveals the variation of synoptic near-115 

surface flow regimes near Taiwan (the average wind direction and speed below 925 hPa in the 116 

sounding data at Ishigaki island, Japan). We select the southeasterly flow regimes with a slight 117 

change in wind direction (wind direction veers from 120° to 150°) to display the PM2.5 pollution 118 

scenarios bifurcation as shown in Fig. 1b and Fig. 1c, named as WD120 and WD150 flow 119 

regimes respectively. For each distinct flow regime, we chose cases where the synoptic wind 120 

directions fell within a 30-degree range and the wind speeds were limited to a 2 m s
-1

 range (as 121 

shown in the titles of Fig. 1b and 1c). The dots over Taiwan in Fig. 1b and 1c are color-coded 122 

based on the enhancement index, which considers the historical frequency of observed aerosol 123 

concentration exceeding the 12-year average that can exclude the effects of uneven local 124 

emissions as suggested by H2023. Figure 1b (1c) shows that the PM2.5 pollution deteriorates over 125 

the south (north) Taiwan around Kaohsiung (Taipei) while the pollution on the north (south) 126 

corner near Taipei (Kaohsiung) is alleviated. The contrast between Fig. 1b and Fig. 1c 127 

demonstrates that the local pollution scenarios can be significantly changed by only a 30° 128 

shifting of the synoptic prevailing wind direction. Despite the aforementioned studies confirming 129 

that local circulation plays a crucial role in linking large-scale flow regimes to local pollution 130 

patterns, obtaining detailed information about local circulation requires computationally 131 

intensive physical numerical models, as shown in a case study by Lin et al. (2022). 132 

 133 
Fig 1. The local pollution scenarios controlled by the synoptic flow regimes. (a) The 134 

frequency distribution of synoptic flow regimes in the local circulation-dominated days in 135 

the cold season (Oct. to Apr.) from 2008 to 2019. (b) The PM2.5 pollution enhancement 136 

index under WD120 synoptic flow regimes indicated by the blue bracket in subfigure (a). 137 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

(c) The PM2.5 pollution enhancement index under WD150 synoptic flow regimes indicated 138 

by the green bracket in subfigure (a). The yellow asterisks in (b) and (c) indicate Taipei and 139 

Kaohsiung city, Taiwan's major cities. 140 

 141 

In this study, we propose the generation of local circulation using an explainable VAE 142 

framework trained by the large ensemble dataset from the numerical simulation focusing on the 143 

specific pollution weather regime as mentioned above. The physically constrained training 144 

dataset allows the VAE to learn the nonlinear physical relationship between the local circulation 145 

and the upstream synoptic flow regimes. To capture the multiscale interaction between synoptic 146 

conditions and local circulations over complex terrain, we employ the high-resolution physics 147 

model, TaiwanVVM (Wu et al. 2019, hereafter W2019), to generate a physically constrained 148 

dataset. Leveraging the semi-realistic TaiwanVVM simulation framework, we conduct an 149 

ensemble of simulations to generate detailed local circulation scenarios under various synoptic 150 

forcing regimes in observations. The ensemble of high-dimensional simulations serves as an 151 

analogy of the large-eddy-simulation library driven by large-scale forcing that expands the 152 

dataset in various synoptic regimes available for DL approaches learning from (Shen et al., 153 

2022).  154 

By employing this dataset, a VAE model is trained ensuring that the model learns 155 

physically consistent solutions. We show that the 2-dimensional latent space of the VAE well 156 

captures the variability of the local circulations associated with the lee vortices in the training 157 

data, and the trained VAE can generate realistic local circulations. The manifold provided by 158 

VAE is further interpreted as the physical parameters of upstream flow regimes that drive the 159 

variability of the local flows in the training data, which is aligned with understanding of the 160 

leeside local circulation formation mechanism. Consequently, in conjunction with the decoder, 161 

the physically-interpreted manifold can function as a reduced-order model that can generate the 162 

high-fidelity local circulation induced by the topography of Taiwan with high efficiency. 163 

Our approach emphasizes that VAE can learn fluid dynamics through training on a large 164 

ensemble of LES that captures the large-scale variability of the controlling factors on a specific 165 

fluid phenomenon, such as the leeside flow structure in this study. Given the large-scale 166 

conditions, the reduced-order model derived from the VAE can predict high-resolution local 167 

circulation under various climate change scenarios. To demonstrate the capability of this 168 

framework, we apply the reduced order model to downscale the crucial synoptic flow pattern 169 

change at the end of the century in the climate projection from a member of Coupled Model 170 

Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2017), namely Taiwan Earth System 171 

Model Version 1(TaiESM1, Lee et al., 2020). The generated local circulations provide a physical 172 

fundamental to predict the potential pollution deterioration in the major cities of Taiwan. The 173 

manuscript is organized as follows. The TaiwanVVM semi-realistic ensemble dataset and the 174 

construction of the explainable VAE framework are described in section 2. The results and their 175 

physical interpretation are depicted in section 3, followed by the application of the reduced-order 176 

model and discussion in section 4. 177 
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2 Data and Methods 178 

2.1 Semi-Realistic TaiwanVVM Simulation Dataset 179 

To incorporate physical consistent data as the training dataset of the VAE 180 

framework, we employ a physical model known as TaiwanVVM (W2019) to generate 181 

physics-constrained training data. TaiwanVVM is a simulation framework based on the 182 

Vector Vorticity equation cloud-resolving Model (VVM, Jung and Arakawa, 2008), 183 

featuring a realistic representation of Taiwan's topography using the immersed boundary 184 

method (Wu and Arakawa, 2011; Chien and Wu, 2016). This model has been extensively 185 

utilized in studies concerning local precipitation hotspots (Kuo and Wu, 2019; Chang et 186 

al., 2021, hereafter C2021). A series of studies focused on the local pollution distribution 187 

scenarios also suggested that the TaiwanVVM model can evaluate the variability of the 188 

lee vortices flow patterns under various synoptic prevailing wind conditions (H2022; 189 

H2023). These studies have demonstrated the model's capability to capture 190 

comprehensive information about the local circulation and highlighted its reliability and 191 

suitability for generating physics-constrained training data for the VAE framework. The 192 

TaiwanVVM framework details are presented in Table 1. The simulation starts at 6:00 193 

local time with a 24-hour duration so that the diurnal local flows induced by the heating 194 

difference over the complex topography can develop and further interact with the large-195 

scale prevailing winds. The overall simulation setup follows H2022 while relaxing the 196 

horizontal and vertical resolution to enlarge the simulation domain that better covers the 197 

entire lee side local circulations while remaining to resolve the crucial flow structures we 198 

focus on. 199 

 200 

Table 1. TaiwanVVM simulation framework 201 

Horizontal Resolution 2 km 

Vertical Resolution 
46 m near surface and stretch up to 969 m at model top 

Land Surface Model 
Noah Land Surface Model version 3.4.1 coupled with 

land type and topography of Taiwan 

(Wu et al., 2019) 

Representation of topography 
Immersed boundary method with block mountain in 

height coordinate 

(Wu and Arakawa 2011; Chien and Wu 2016) 

Lateral Boundary Condition 
Double periodic 

 202 

To generate realistic local circulations under various synoptic conditions using 203 

VAE, it is essential to introduce the variability of synoptic conditions into the simulation 204 

of the physics model. To address this, we adopt a semi-realistic simulation framework 205 

proposed in C2021, employing sounding observations as uniform initial conditions across 206 

the entire domain. This approach emphasizes the influence of controlling environmental 207 

factors that govern the development of local circulations. We utilize sounding 208 

observations from Ishigaki Island, Japan, to represent the synoptic conditions in the semi-209 
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realistic simulations. Figure 1a illustrates the variability of synoptic flow regimes on days 210 

dominated by local circulation, showing that prevailing winds are primarily confined to 211 

northeasterly and southeasterly directions. This observation aligns with the assumption 212 

that Ishigaki Island is located upstream of Taiwan. Subsequently, we extend the selection 213 

of local circulation-dominated days from 1980 to 2020, subjectively choosing 197 out of 214 

a total of 2893 days to conduct the large ensemble TaiwanVVM simulations. By 215 

incorporating the variability of the synoptic environment, our semi-realistic simulation 216 

framework accounts for the diverse local circulations resulting from the interaction 217 

between synoptic forcing and the physical effects of topography, including diurnal 218 

heating differences and the blocking of prevailing flow. This physics-constrained 219 

ensemble dataset is then prepared for representation learning using the VAE. 220 

2.2 Variational Autoencoder 221 

Autoencoder (AE) is a specific neural network architecture distinguished by its 222 

unique bottleneck structure. This feature endows AEs with the capability of performing 223 

effective nonlinear dimension reduction, making it a valuable tool in geoscience 224 

applications that often seek the crucial features or coherent structures within patterns in 225 

considerable volumes of data. Operating as an unsupervised representation learning 226 

framework, AEs excel at extracting the essential hidden manifold that optimally captures 227 

the variability present in the input data. However, the pitfall of AEs is that the latent 228 

space is constrained solely by the reconstruction loss. Minimizing reconstruction error 229 

tends to obtain an overfitting AE, in which fair reconstruction results are accompanied by 230 

the latent space that is only partially defined and incomplete. The gaps between the points 231 

representing the training data in the latent space are undefined, which means that the 232 

manifold is not continuous and does not allow interpolation, leading to the incapability of 233 

physical interpretation. The VAE proposed by KW2019 offers a solution to the challenge 234 

of unregulated latent spaces within AEs while also introducing generative capabilities 235 

across the entire space. The VAE's encoder generates parameters for a predefined 236 

distribution within the latent space. Subsequently, the VAE enforces a constraint on this 237 

latent distribution to adhere to a normal distribution. A brief description of VAE 238 

following KW2019 is provided below. 239 
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 240 
Fig. 2 The convolutional variational autoencoder framework. (a) The schematics of 241 

variational autoencoder framework. (b) The design of the convolutional encoder. 242 

 243 

 244 

To replace the deterministic latent variables employed in AEs with latent 245 

distributions, as illustrated in Fig. 2a, the encoder within the VAE is conceptualized as a 246 

probabilistic encoder. Its primary function involves estimating the posterior probability of 247 

latent vectors Z given observed input X and parameterized by θ, denoted as 𝑝𝜃(𝑍|𝑋). 248 

However, as pointed out by KW2019, 𝑝𝜃(𝑍|𝑋)  is usually intractable or excessively 249 

intricate. Consequently, the encoder functions as an inference model, aiming to identify a 250 

surrogate distribution, 𝑞𝜑(𝑍|𝑋) , that effectively approximates the posterior of these 251 

intricate latent distributions parameterized by φ. Thus, to achieve this approximation, the 252 

Gaussian distribution is commonly chosen as the form for the approximate posterior 253 

distribution. By leveraging encoder-derived parameters for mean 𝑍𝜇 and variance 𝑍𝜎 the 254 

approximate posterior distribution 𝒩(𝑍𝜇 , 𝑍𝜎)  is formulated. By introducing the 255 

Kullback-Leibler (KL) divergence, a quantification of the closeness between two 256 

distributions, we can gauge the dissimilarity between our normal distribution 257 

characterized by parameters 𝑍𝜇 and 𝑍𝜎, and the prior distribution. Notably, as discussed 258 

by KW2019, the calculation of the KL divergence possesses a closed-form expression 259 

when assuming the standard Gaussian distribution 𝒩(0,1)  as the prior distribution: 260 

𝐷𝐾𝐿[𝒩(𝑍𝜇, 𝑍𝜎)||𝒩(0, I)] = −0.5∑ 1 + log(𝑍𝜎𝑖
2) − 𝑍𝜇𝑖

2 − 𝑍𝜎𝑖
2𝑁

𝑖=1     (1) 261 

In Equation (1), the summation encompasses all N dimensions within the latent 262 

space. Utilizing the logarithm of variance in computing the KL divergence is preferred to 263 

facilitate an output range comprising natural numbers rather than solely positive values. 264 

This choice promotes smoother representations of the latent space. Including the KL 265 
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divergence within the VAE's loss function bestows it with a regularization role, ensuring 266 

alignment of the latent distribution with a normal distribution. Consequently, this 267 

enforces a more structured and well-controlled depiction of the latent space. 268 

Within the VAE framework, as visually depicted in Fig. 2a, the latent variable 269 

vector Z is sampled from the latent distribution. This distribution is parameterized by the 270 

mean and standard deviation outputted from the encoder. Subsequently, the latent 271 

variable vector Z is input into the decoder to generate the desired output. This stochastic 272 

sampling procedure can be described as follows: 273 

Z~𝒩(𝑍𝜇 , 𝑍𝜎)    (2) 274 

In the gradient-based training procedure of VAE, the loss derived from the 275 

outputs necessitates backward propagation across the entire network for parameter 276 

refinement. However, this random sampling process creates a bottleneck as gradients 277 

cannot effectively propagate through the sampling layer. Consequently, this limitation 278 

impedes the learning of parameters 𝑍𝜇  and 𝑍𝜎 . To address this challenge, KW2019 279 

devised a reparameterization trick, which reformulates Equation (2) as follows: 280 

Z = μ + σ⊙ ϵ 

ϵ~𝒩(0,1)    (3) 281 

In Equation (3) the ⊙ donates elementwise multiplication and the latent variable 282 

vector Z is calculated by a fixed mean 𝑍𝜇 plus the fixed standard deviation 𝑍𝜎 scaled by a 283 

random sampled ϵ from unit Gaussian distribution. This rearrangement achieves the same 284 

outcome as the random sampling process described in Equation (2). Importantly, this 285 

reparameterization converts the calculating of Z, involving 𝑍𝜇 and 𝑍𝜎, into deterministic 286 

nodes. Consequently, this adjustment enables the seamless passage of gradients, ensuring 287 

effective gradient backpropagation throughout the network. 288 

As the reparameterization trick adopted to preserve the stochasticity in the 289 

decoder and the KL divergence in Equation (1) introduced as a regularization loss, 290 

KW2019 successfully showcased the feasibility of constructing a VAE framework. This 291 

framework enables the establishment of a continuous end-to-end training process aimed 292 

at extracting the latent distribution from the given data. Within the context of this study, 293 

the loss function for the VAE is formulated as follows: 294 

𝑙𝑜𝑠𝑠𝑉𝐴𝐸 = 𝑙𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝛽𝑙𝑜𝑠𝑠𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 295 

= ∑ ‖𝑥 − �̂�‖𝑥∈Χ + 𝛽𝐷𝐾𝐿[𝒩(𝑍𝜇, 𝑍𝜎)||𝒩(0, I)]    (4) 296 

The first term in Equation (4) is reconstruction loss, aiming to attain high-quality 297 

reconstruction akin to the loss definition in the conventional AE. The reconstruction loss 298 

assesses the fidelity of the reconstructed data, where x represents a sample, and �̂� 299 

represents its corresponding reconstruction. The second term corresponds to the KL 300 

divergence penalty, serving to regularize the latent space, as elaborated earlier. In order to 301 

achieve an optimal equilibrium between the precise reconstruction of the input data and 302 

the acquisition of meaningful representations within the latent space, we introduced a 303 

parameter β governing the weighting applied to the regularization loss. By incorporating 304 

Equation (1) and opting for the mean square difference as the reconstruction loss metric, 305 

we can formulate Equation (4) as follows: 306 

𝑙𝑜𝑠𝑠𝑉𝐴𝐸 =
1

𝑀
∑ (𝑥𝑘 − �̂�𝑘)

2𝑀
𝑘=1 + 𝛽(−0.5∑ 1 + log(𝑍𝜎𝑖

2) − 𝑍𝜇𝑖
2 − 𝑍𝜎𝑖

2𝑁
𝑖=1 )   (5) 307 
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In Equation (5), M refers to the amount of the training samples and N represents 308 

the latent dimensions. By minimizing this loss metric during the training process, the 309 

regularized latent distribution can be taken as a complete and continuous representation 310 

of the variability in the training dataset with only N dimensions. It is always desired to 311 

gain a representation of the variability in atmospheric data with only a few dimensions 312 

since the spatial-temporal variations of atmospheric phenomena are usually displayed by 313 

data with hundreds or thousands of dimensions. The complete and continuous 314 

representation can also be elaborated in a more physical sense. Moreover, the  VAE as a 315 

generative model can generate new high-dimensional data by sampling the learned latent 316 

distribution. This functionality creates an opportunity for constructing a reduced-order 317 

model for predicting local circulation with high efficiency. In the next subsection, we 318 

elaborate on the construction of the explainable VAE framework that binds the semi-319 

realistic ensemble simulations to the VAE. 320 

2.3 Explainable VAE Framework 321 

In this study, we aim to construct a DL generative model that can physically 322 

evaluate the local circulation of Taiwan. While the idealized tracer transport simulation 323 

study confirmed that the synoptic prevailing flow regime is crucial in controlling the 324 

local circulation patterns of Taiwan (H2022), the nonlinear critical transition of the local 325 

circulation scenarios under the synoptic conditions in the real world, as depicted in Fig. 1, 326 

still needs further evaluation. We conducted the semi-realistic TaiwanVVM ensemble 327 

simulations as depicted in 2.1 to encompass the variability of the local circulation 328 

scenarios under various synoptic conditions. By taking the ensemble dataset as the 329 

training data, we incorporate the underlying physics from the TaiwanVVM model into 330 

the representation learning process  of the VAE. 331 

From a total of 197 simulations, we collected output wind field snapshots within 332 

an 18-hour span starting from 8:00 local time with a 20-minute frequency as the VAE 333 

training data. This selection enables the inclusion of the local circulation’s diurnal 334 

evolution while excluding the first two hours for model spinning-up. The snapshot of 335 

simulated 3-dimensional wind fields is a massive volume, making it a challenge as a 336 

single training example. To address this issue, we strategically focused on the near-337 

surface horizontal winds at the lowest level over the west plain of Taiwan in the 338 

simulation (160 m above sea level) as a surrogate of the local circulations. These 339 

horizontal wind fields exhibit distinct scenarios under various synoptic flow regimes. To 340 

further manage the data size, we trimmed the horizontal spans of the 2-dimensional wind 341 

fields to a subspace of the entire domain and downsampled them to a 10-km resolution 342 

where the wake of the prevailing synoptic flow is present. The 10-km resolution 343 

horizontal wind field from the ensemble simulation results serves as the training data for 344 

the VAE. This dataset comprises u-wind and v-wind components in a 61×61 horizontal 345 

grid with a total of 9456 samples for the representation learning in VAE as displayed in 346 

Fig. 2. 347 

Utilizing a dataset comprising 9456 physically constrained samples, we construct 348 

the encoder and decoder of the VAE employing five convolutional layers. The 349 

convolutional architecture of the encoder is displayed in Fig. 2b, while the decoder is the 350 

reverse setup with deconvolution layers. The convolutional layers are designed to 351 

effectively capture spatial features inherent in the local circulation patterns present within 352 
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the training data. The hyperbolic tangent function was employed as the activation 353 

function across all layers, ensuring the output of each layer is confined within -1 to 1. By 354 

testing the effects of the scaling parameter of the regularization KL divergence β in 355 

Equation (5), we found that the VAE cannot reconstruct the various input local 356 

circulations when β exceeds 0.2. We select the β as 0.1 to gain the fair reconstruction 357 

under a mild regularization. For the choice of latent dimension N, a 3-dimensional latent 358 

space of AE shows that most of the projected points of the training data are gathered on a 359 

plane, indicating that a 2-dimensional latent space is sufficient to capture the variability 360 

of the training samples. As a result, we set the latent dimensions N as 2 to conduct the 361 

training procedure. We used the Adam optimizer with a learning rate of 0.001, We 362 

trained the models for 1000 epochs. All experiments were carried out using Nvidia 363 

GP100 GPUs. 364 

 365 
Fig. 3 The training results of the VAE. (a) The decrease of loss in the training process in the 366 

first 200 epochs. (b) The comparison of local circulations reconstructed by VAE and the 367 

original input data in 6 samples. The local circulations are displayed as the streamlines, 368 

and the color represents the wind speed (m/s). The green shedding area indicates the 369 

mountain areas of Taiwan where the ground level is above 200 m. The upper row displays 370 

the input training data in these 6 samples, the corresponding reconstruction outputs are 371 

shown in the same column of the lower row. 372 

 373 

The training results are summarized in Fig. 3. Figure 3a illustrates the progressive 374 

decrease of the total loss in the first 200 epochs of the training procedure. These training 375 

iterations exhibit an initial rapid reduction of the loss within the first 100 epochs, 376 

followed by a slight decline to levels below 0.0012 with fluctuations to the end of 377 

training. By meticulously minimizing the loss, the VAE undergoes training to accurately 378 

reconstruct diverse local circulation training samples, as shown in Fig. 3b. The subfigure 379 
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columns, ranging from “a” to “f” in Fig. 3b, showcase distinct local flow patterns 380 

corresponding to the shifting synoptic flow regimes. As the prevailing wind direction 381 

changes from northeasterly to southeasterly, the local flow structure over Taiwan’s 382 

western region undergoes a transition from a pronounced northerly pattern with a reverse 383 

flow located at the southwest of Taiwan (column “a” in Fig. 3b) to a dipole configuration 384 

of lee vortices (column “d” in Fig. 3b), and ultimately to a more prominent southerly 385 

accompanied with the reverse flow near northern Taiwan scenario (column “f” in Fig. 3b). 386 

This sequence of evolving scenarios highlights the dynamic multiscale interaction 387 

between synoptic conditions and local flow patterns. Importantly, the training samples 388 

(the upper row of Fig. 3b) distinctly display the flow structure of lee vortices with these 389 

varying scenarios, affirming the effectiveness of our training data extraction methodology 390 

in addressing the challenge of high-dimensional data, while successfully preserving the 391 

fundamental attributes of the local circulation patterns as derived from the physical model. 392 

In addition, the comparison between input samples (the upper row of Fig. 3b) and 393 

their corresponding reconstructed local circulations (the lower row of Fig. 3b) indicates 394 

that the VAE adeptly encompasses the coherent structures of the local circulations which 395 

are presented within the input data. Given that the core attributes of the local circulation 396 

remain intact in the reconstruction outputs, it can be inferred that the latent space derived 397 

from the VAE captures the essential representation of the local circulation. Notably, the 398 

assessment of the reconstruction also underscores the distinctive aspect of the VAE as a 399 

deep generative model. While other deep generative models such as GAN can produce a 400 

synthetic output through the random sampling process, their sampling distribution often 401 

comprises pre-defined Gaussian noise that is irrelevant to the generating performance. 402 

For example, the training process of GAN is reinforced through the competition between 403 

the discriminator and generator, yielding improved results while incapable of exploring 404 

the hidden structures of the training data. In contrast, VAEs are explicitly designed to 405 

uncover hidden manifolds through the training data. The success of reconstruction can be 406 

attributed to the VAE’s ability to capture the training samples via latent distributions. To 407 

explore the capability of VAE to infer the physical meaning of the training data, we 408 

inspect the latent space of the trained VAE in the next section. 409 

3 Results 410 

As the VAE is capable of reconstructing realistic local circulations akin to the input data, 411 

we further examine the robustness of the VAE by inspecting the various local circulations 412 

generated from the latent space. As 88.5% of the latent vectors of the training data are gathered 413 

within the x∈[-2,2],y∈[-2,2] subspace in the latent space, we focus on this area of latent space for 414 

further examination. By evenly sampling this subspace, we generate a matrix of the local 415 

circulation as displayed in Fig. 4. The sampling locations in the latent space are indicated in the 416 

titles of subfigures in Fig. 4. The entire local circulation matrix shows the continuous variations 417 

of the various local circulations, which is attributed to the normal distribution of the latent 418 

vectors regularized in VAE. As the latent vectors sampling locations near the left edge of the 419 

x∈[-2,2],y∈[-2,2] subspace (Figs. 4a, e, i, m), the decoder can generate distinct local circulation 420 

associated with the lee vortices accompanied by different prevailing flows from southeasterly to 421 

northeasterly. For example, the generative local flow from point (x=-1.5, y=1.5) of the latent 422 

space shows that the signature of the local flow under the prevailing southeasterly is the presence 423 

of circular flow patterns associated with lee vortices in the wake of mountains and the 424 
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acceleration zones on the rear of the north and south capes of the topography (Fig. 4a). As the 425 

sampling point moves toward the lower left corner (x=-1.5, y=-1.5) of the latent space, the 426 

generating local flows turn into a profound northeasterly with lee vortex circulation located on 427 

the southwest of Taiwan (Fig. 4m). Furthermore, upon comparing the upper row (Figs. 4a to 4d) 428 

with the lower row (Figs. 4m to 4p) of the local circulation array, it becomes evident that the 429 

local circulations in the lower row exhibit a notably consistent pattern, while the upper row 430 

displays a distinct transition. This transition manifests as a shift from a dipole pattern of lee 431 

vortices under prevailing southeasterly conditions (Fig. 4a) to a milder anti-cyclonic curved flow 432 

pattern in a southerly environment (Fig. 4d). These findings illustrate that the generation process, 433 

using evenly sampled locations in the latent space, can effectively reproduce the nonlinear 434 

transitions observed in local circulations. 435 

 436 
Fig. 4 The local circulations generated by evenly sampling the latent space. The sampling 437 

points of the latent space are titled in the subfigures. 438 

 439 
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Examining the variability in the generated local flows suggests that the VAE can produce 440 

reasonable local circulations under various specific prevailing winds. The essential low-441 

dimensional latent distributions well capture the change in the prevailing flow regimes and the 442 

subsequent local circulations. It implies that the variability in local flows corresponding to 443 

different flow regimes embedded in the training data has been learned by the VAE through the 444 

training process. As we constrain the training data as the semi-realistic ensemble simulation 445 

results, the ensemble spread could be crucial clues for interpreting the latent space. In the 446 

TaiwanVVM simulation procedures, we prescribed the sounding observations as the initial 447 

conditions in the selected 197 local circulation-dominated cases to conduct the semi-realistic 448 

ensemble simulations. We take the near-surface (below 925 hPa) prevailing mean wind speeds 449 

and directions as the physical parameters of these simulations to discuss the physical implication 450 

of the latent space since the variability of the local circulations is controlled by the synoptic low-451 

level flow regimes, as evidenced by the idealized simulations in H2022. The latent vectors of the 452 

training samples color-coded by the physical flow regimes are displayed in Fig. 5. The latent 453 

vectors spanned in the two-dimensional latent space, after being colored by corresponding initial 454 

synoptic wind speeds and directions of individual semi-realistic simulations, demonstrate that the 455 

lower-dimensional representations of the various local circulations are generally associated to 456 

their synoptic flow regimes. The latent vectors of the training samples induced by the synoptic 457 

southerly (darker colors in Fig. 5a) are projected in the upper right corner of the latent space, as 458 

shown in Fig. 5a. The lower half of the latent space is clustered of the latent vectors that 459 

represent the local circulations under the prevailing synoptic northerly to northeasterly (from 20° 460 

to 80° roughly) in the TaiwanVVM simulations. The training samples of the local circulations 461 

associated with the easterly synoptic winds occupy the middle and left parts of the latent space. 462 

As the various synoptic wind directions can be identified in the latent space, Fig. 5b also displays 463 

that the latent vectors resulting from different synoptic wind speeds are clearly separated., The 464 

latent vectors in the area of x∈[1,2], y∈[-0.5,0.5] are compressed from the local circulations 465 

induced by weak wind conditions (synoptic wind speed is less than 4 m s
-1

), whereas the latent 466 

vectors projected to the upper-right or lower-right corner represent the local circulations in the 467 

simulations of stronger synoptic wind conditions. 468 

The results show that different characteristics of the prescribed synoptic winds of the 469 

simulations are separated in the latent space of VAE, highlighting the role of synoptic variability 470 

on the local circulations. The shift in the latent space could be depicted as the gradual changes in 471 

synoptic flow regimes. We take advantage of the VAE that constrains the latent space as a 472 

continuous space to depict the variability of the local circulation in the semi-realistic ensemble 473 

dataset. As the various responses of the local circulation scenarios controlled by the different 474 

synoptic controlling factors are captured in the semi-realistic ensemble simulations, the VAE 475 

successfully learned this physical representation of the variability of local circulations in Taiwan 476 

and consequently secures the transparency of this framework through the interpretable latent 477 

space. 478 

Within the physically-interpreted latent space, it is worth noting that the sharp transition 479 

of the generated local circulations, as shown in the top row of Fig. 4, can be attributed to the 480 

synoptic southeasterly flow regime, which is displayed as the dots near the top boundary with 481 

darker colors in Fig. 5. The sharp transition of the generated local circulations (Figs. 4a to 4d) by 482 

moving the sampling point from point (x=-1.5, y=1.5) to point (x=1.5, y=1.5) in the latent space 483 

can be elaborated as the shifting of the synoptic prevailing wind direction from about 120° to 484 

160°. It shows that the VAE learned from the semi-realistic ensemble simulation dataset is 485 
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capable of generating a critical transition of local circulations under the gradual varying of the 486 

synoptic flow regimes. 487 

 488 
Fig. 5 The latent vectors of the training samples color-coded by (a) the synoptic wind 489 

directions and (b) the synoptic wind speeds. 490 

 491 

As we constrain the training dataset of VAE through the physical simulations with the 492 

semi-realistic experiment design focusing on the topographically induced local circulation of 493 

Taiwan, the nonlinear compression functionality of the VAE can greatly reduce the complexity 494 

of multiscale interaction phenomena in atmospheric fluid dynamics. The resulting latent space 495 

with physical meaning, along with the decoder as a generative model, can serve as a reduced-496 

order model that elaborates the pattern of the local circulation under a specific synoptic flow 497 

regime. To achieve this goal, we quantify the distribution of the representative synoptic flow 498 

regimes in the latent space using linear interpolation and simple least square curve fitting. The 499 

selection of fitting function forms is inspired by the visualization of the interpolated parameters 500 

in the latent space, as shown in Fig. 5. As the wind speeds of the latent vectors are distributed 501 

radially, and the wind directions vary along the y-axis, we select the elliptical and linear function 502 

forms to transform the orthogonal coordinates of latent space to the synoptic wind speed and 503 

direction, as follows: 504 

𝑊𝐷 = 𝑎 + 𝑏 tan−1(
𝑐𝑦

𝑥−𝑑
)    (6) 505 

𝑊𝑆 = 𝑎(𝑥 − 𝛼)2 + 𝑏(𝑦 − 𝛽)2    (7) 506 

where x and y denote the cartesian coordinates of the 2-dimensional latent space, and a, b, 507 

c, d in Equation (6), and a, b, α, β in Equation (7) are the fitting parameters. 508 

Figure 6a illustrates the contours of the fitting functions of synoptic wind directions and 509 

speeds within x∈[-2,4],y∈[-3,3] subspace in the latent space (details of the fitting parameters are 510 

depicted in the figure captions of Fig. 6a). With the mean absolute errors of the transformation 511 

confined to 0.71 m s
-1

 in wind speed and 5.76° in wind direction, the 2-dimensional latent space 512 

is spanned by synoptic flow regimes. The weak wind regime is located near the center of the 513 

right boundary, while the strong wind flow regimes are distributed toward the other boundaries. 514 

The synoptic northerly/northeasterly regimes occupy the lower half of the latent space, and the 515 

southeasterly/southerly synoptic flows can be identified on the upper half of the plane. While 516 

higher-order fitting functions can minimize fitting errors, we aim to demonstrate the capability of 517 
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the VAE to transform the latent space into physical parameters-based coordinates while 518 

maintaining the simplicity of the entire framework. Through this transformation, the new 519 

coordinates of the latent space can fulfill the alignment with the variability in the training 520 

samples represented by the latent vectors and offer a physical explanation of the latent 521 

distributions that can generate the high-fidelity local circulations. 522 

 523 
Fig. 6 (a) The contours of the synoptic wind direction (red lines) and wind speed (blue lines) 524 

derived by the fitting functions. The fitting function forms are selected as Equation (6) and 525 

Equation (7), where the fitting parameters for the wind direction fitting function are 526 

𝑎=118.7, 𝑏=0.99, 𝑐=1, 𝑑=2.5, and the parameters are 𝑎=0.05, 𝑏=0.89, 𝛼=10.06, 𝛽=0.02 for the 527 

wind speed. (b) the generated high-fidelity local circulations. The local circulations 528 

correspond to the sampling points (green dots in subfigure (a)) in the latent space are 529 

shown in the titles of subfigures in (b) along with the synoptic wind directions and speeds. 530 

 531 

By taking the latent space as a synoptic flow regime phase diagram, we construct the 532 

matrix of generated local circulations corresponding to the gradual changes in the synoptic flow 533 

regimes, as shown in Fig. 6b. The sampled locations in the latent space are selected as specific 534 

synoptic flow regimes that veer from southeasterly (on the upper half of the latent space) to 535 

northeasterly (on the lower half of the latent space), as well as the intensification of the 536 

prevailing wind speed (moves along the red lines in Fig. 6a from the central area near the right 537 

boundary to other boundaries radially). The corresponding variability of local circulations in the 538 

matrix (Fig. 6b) displays the reasonable scenarios in lee vortex flow structures. Upon examining 539 

the variation among the rows of the local circulation matrix, we can identify the impact of 540 

changes in wind direction. Notably, prevailing easterly winds tend to result in a dipole structure 541 

of the lee vortices on the west plain of Taiwan (Fig 6b-h and 6b-l). Moreover, when the 542 

prevailing wind direction shifts to southerly (northerly), it promotes the formation of cyclonic 543 

(anti-cyclonic) lee vortices, as evident in Fig. 6b-d (Fig. 6b-p). In addition, the effects of changes 544 

in synoptic wind speed are demonstrated through the local circulations across different columns 545 

of the matrix. Instances of the lee vortices stalling near the topography can be observed in Fig. 546 
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6b-h and 6b-g; the lee vortices tend to be shedding away from the topography as the prevailing 547 

winds intensified, as shown in Fig. 6b-f and 6b-e. 548 

The compelling outcomes of the VAE serve as a valuable reduced-order model capable 549 

of generating local circulation from specific synoptic flow regimes, thereby conserving 550 

computational resources compared to the integration of traditional physics models. This 551 

approach showcases the potential of  VAE as an effective AI downscaling tool for advancing our 552 

evaluation of complex local circulation under various climate change scenarios in the warming 553 

climate, in which the physics fundamental and the explainaibility are upmost essential demands. 554 

4 Applicaiton and Discussion 555 

In this study, we employed the VAE to learn the physical mechanism of the vortex 556 

formation of Taiwan in the semi-realistic TaiwanVVM simulations. The selection of suitable 557 

synoptic environments and the subsequent physics model simulation procedures served as 558 

essential physical preprocessing steps for the machine learning framework. The VAE excels in 559 

nonlinear dimension reduction of high-dimensional dynamic fields in the atmospheric domain, 560 

allowing us to extract essential features from the complex atmospheric data. Meanwhile, the 561 

TaiwanVVM simulation results adhere rigorously to physical laws and provide a robust 562 

foundation for the VAE to learn the physical representations of the variability in the local 563 

circulations in Taiwan. Through this integration of machine learning and physics-based 564 

simulations, we gained valuable high-fidelity local circulation through the VAE that can be 565 

explained physically. 566 

As the VAE takes these physically constrained training data to learn from and further 567 

create a continuous phase diagram that can elaborate the variability in the training samples in 568 

terms of the synoptic conditions of the ensemble simulations, the VAE has yielded a reduced-569 

order model capable of producing realistic and high-fidelity local circulation patterns in response 570 

to specific synoptic flow regimes. To demonstrate the application of the reduced-order model in 571 

examining the local weather, we revisit the PM2.5 deterioration scenarios shown in Fig.1. 572 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

 573 
Fig. 7 (a) The generated local circulation (streamlines) and the observed local pollution 574 

enhancement index (colored dots) in Taiwan in the selected WD120 flow regime as depicted 575 

in Fig. 1a). (b) Same as (a) but in the selected WD150 flow regime. The PM2.5 enhancement 576 

index and the definition of the WD120/WD150 are the same as depicted in Fig. 1b and 1c. 577 

The local circulations are generated from the reduced-order model derived from the VAE 578 

with the average synoptic wind speeds and directions of the selected days within 579 

WD120/WD150 are projected into the latent space. 580 

 581 

 As depicted in the introduction section, the bifurcation of the local PM2.5 pollution 582 

enhancement scenarios implies a distinct change in local circulations between WD120 and 583 

WD150 synoptic flow regimes. By projecting the selected cases’ mean wind direction and speed 584 

into the latent space of the VAE, the local circulations corresponding to WD120 and WD150 585 

flow regimes can be generated using this reduced-order model. Figure 7 displays the generated 586 

local circulations along with the PM2.5 enhancement indices under WD120 and WD150 flow 587 

regimes, as revealed in Fig. 1. The high-fidelity local circulations provide insights into the 588 

underlying pollutants transport processes that are responsible for the distinct local pollution 589 

deterioration. As displayed in Fig. 7a, a dipole of the lee vortices is identified in the local 590 

circulation under the WD120 flow regime. The local circulation over northern Taiwan is 591 

dominated by the cyclonic flow of the lee vortex located on the northern Taiwan Strait. On the 592 

other hand, the northerly on the central and south areas of the west plain of Taiwan can be 593 

attributed to the anti-cyclonic circulation of the other vortex located on the southern Taiwan 594 

Strait. As the major local emission sites are located on the west coastline of central and southern 595 

Taiwan, the local circulation on the west plain of Taiwan in Fig. 7a promotes the transport of the 596 

local pollutants both northward and southward, resulting in an overall deteriorated pollution 597 

scenario except for the north corner near Taipei. Notably, the sharp difference in PM2.5 598 
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enhancement indices between the areas surrounding Taipei and the adjacent western regions 599 

aligns with the configuration of local circulations, where the lee vortex circulation causes 600 

southwesterly winds in this area to shift to southeasterly winds. Consequently, pollutants from 601 

central and southern Taiwan cannot reach Taipei owing to the prevailing southeasterly local flow 602 

in the areas around Taipei originating in eastern Taiwan, where pollutant emission sites are 603 

scarce. 604 

As the synoptic flow regime shifts from WD120 to WD150, the local flow pattern turns 605 

into an elongated anti-cyclonic circulation on the west plain of Taiwan (Fig. 7b). The curved 606 

southerly flow, which later shifts to westerly over northern Taiwan, provides an efficient 607 

pathway for transporting pollutants from central and southern Taiwan to the Taipei metropolitan 608 

area. Compared with the scenarios of WD120 shown in Fig. 7a, the weaker southeasterly in 609 

Taipei areas also promotes a favorable environment for the accumulation of pollutants. 610 

Meanwhile, the strong southerly in Kaohsiung can alleviate the locally emitted pollution, 611 

resulting in a distinct scenario of the pollution distribution under the WD150 flow regime. 612 

In this study, we demonstrate that this reduced order model is an effective tool for 613 

evaluating local circulations that provides a reliable physical examination of the local pollution 614 

scenarios. The bifurcation of the pollution scenarios can be physically interpreted through the 615 

sharp transition of the local circulations caused by the synoptic flow regime shifting from 616 

WD120 to WD150.  617 

The AI downscaling approach proposed in this study can be further applied to the climate 618 

projection scenarios to shed light on the prediction of the local response to changes in the large-619 

scale circulation in the warming climate. While the CMIP6 models’ output represents the most 620 

up-to-date climate modeling data for a better understanding of the future of the climate system 621 

given internal climate variability uncertainties, the horizontal resolution of the CMIP6 GCMs, 622 

which is usually over 100 km, is still too coarse to be used in adaptation management at local 623 

scale such as Taiwan. Leveraging the reduced-order model, we can obtain high-fidelity 624 

representations of local circulation patterns given the projected synoptic flow regime scenarios in 625 

the coarser CMIP6 simulations, while achieving significant computational savings compared to 626 

traditional dynamical downscaling approaches. To demonstrate the capability of this framework, 627 

an example is provided using the large-scale flow regime change in TaiESM1 model output as 628 

the synoptic controlling physical parameters to apply the reduced-order model. By projecting the 629 

occurrence difference on the latent space, we can clearly identify the synoptic flow regimes 630 

change and the corresponding local circulation responses, as shown in Fig. 8. The heatmap in the 631 

latent space displayed in Fig. 8a indicates that the weak(about 4 m s
-1

) easterly and the strong 632 

(about 10 m s
-1

) southerly flow regimes are more profoundly increased under the SSP585 633 

warming climate. By applying the reduced-order model to generate the local circulation based on 634 

these projected locations in the latent space, the local flow pattern can be evaluated as displayed 635 

in Fig  8b and 8c. The local circulation response of the strong southerly scenario (Fig 8b) 636 

displayed a flow pattern akin to the scenario of the WD150 scenario (Fig. 7b) with an elongated 637 

anticyclonic circulation along the west coast of Taiwan that promotes the local pollutants 638 

transport from central and southern Taiwan to the Taipei metropolitan area. On the other hand, 639 

the weak easterly scenarios  induces a dipole of the lee vortices on the west of Taiwan. The 640 

cyclonic flow of the northern vortex promotes strong southeasterly winds over the areas around 641 

Taipei, while the center of the southern vortex locates at Kaohsiung indicates that the weak wind 642 

situation in Kaohsiung city might favors the pollutants accumulation. 643 
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 644 
Fig. 8 (a) The projected synoptic flow regimes change from current climate to SSP585 645 

warming scenario in TaiESM1 in the latent space. Two most increased flow regimes are 646 

selected to generate the corresponding local circulations indicating by the curved arrows as 647 

(b) the local circulation under the strong southerly and (c) the local circulation under the 648 

weak easterly. The correspondent synoptic wind speeds and directions are indicated in the 649 

titles of subfigures (b) and (c). The synoptic flow regime change is defined as below: we 650 

take the near-surface wind (at 1000 hPa) at the geographic location of Ishigaki island, 651 

Japan, as the synoptic flow regime upstream to Taiwan in the cold season (Oct. to Apr.) for 652 

a 20-year period in both of the historical (1990-2010) and SSP585 climate scenario(2079-653 

2099) experiment data. After confining the wind direction between 30° and 180°, and 654 

excluding the sharp wind direction change around the nearby area of Taiwan as criteria 655 

for filtering out the strong synoptic weather system such as the front system, the flow 656 

regime change is calculated as  the occurrence change of different flow regimes in these 657 

filtered days between the current climate and SSP858 warming scenario. 658 

 659 

Examining the local circulation responses to the most possible increasing flow regimes 660 

above indicates that the two major cities of Taiwan, namely Taipei and Kaohsiung, could 661 

experience pollution deterioration from the local pollutant transport. The reduced-order model as 662 

an AI downscaling tool provides an instantaneous evaluation of the high-resolution local 663 

circulation given a specific synoptic flow regime. As a 48-hour semi-realistic simulation 664 

conducted in this study takes 9 hours on a 64-core computer to create 132 snapshots of the local 665 

circulations, it only takes 1.17 seconds for VAE to create the same local circulation ensembles. 666 

While the physical model simulation can provide a comprehensive evolution of Taiwan's 3-667 

dimensional local circulation structure, we demonstrate that the reduced-order model can 668 

accelerate the evaluation of the surface local circulation by more than 27,000 times. It shows this 669 

framework's potential in assessing Taiwan's local circulation under multiple warming scenarios 670 

or in the diverse CMIP GCM simulation results. Our ongoing work is to characterize the local 671 

circulation response to East Asia's synoptic flow regime shift in CMIP6 multiple GCM members. 672 

The diversity of the local response in the spread of the CMIP6 climate projection can be 673 

examined through the reduced-order model. It is worth noting that this framework empowers the 674 

efficiency of the VAE model prediction to the storyline approach of representing the uncertainty 675 

in climate change proposed by Shephard et al. (2018). As the reduced-order model can 676 
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efficiently evaluate the local circulation, the uncertainty of the future local pollution events 677 

owing to the variability in the GCM projections can be isolated and evaluated. This advancement 678 

in modeling capabilities enables us to explore and understand the uncertainty of local weather 679 

phenomena in response to changing climate conditions with efficiency and accuracy. By utilizing 680 

this innovative approach, researchers can make more informed decisions regarding pollution 681 

control strategies and policy interventions to mitigate the environmental impacts of local 682 

pollution. 683 

Furthermore, we emphasize that the explainable VAE framework introduced in this study 684 

has the potential to assess various weather regimes under climate change. With a clear physical 685 

connection established between synoptic controlling factors and specific local weather patterns, a 686 

series of ensemble LES experiments can be carried out focusing on the specific local weather 687 

regime that captures the various local responses to large-scale variability. By learning from this 688 

dataset, the reduced-order model of this specific weather regime can be constructed.  689 
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