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Abstract

Machine-learned uncertainty quantification (ML-UQ) has become a hot topic in environmental science, especially for neural

networks. Scientists foresee the use of ML-UQ to make better decisions and assess the trustworthiness of the ML model. How-

ever, because ML-UQ is a new tool, its limitations are not yet fully appreciated. For example, some types of uncertainty are

fundamentally unresolvable, including uncertainty that arises from data being out of sample, i.e., outside the distribution of the

training data. While it is generally recognized that ML-based point predictions (predictions without UQ) do not extrapolate

well out of sample, this awareness does not exist for ML-based uncertainty. When point predictions have a large error, instead

of accounting for this error by producing a wider confidence interval, ML-UQ often fails just as spectacularly. We demonstrate

this problem by training ML with five different UQ methods to predict shortwave radiative transfer. The ML-UQ models

are trained with real data but then tasked with generalizing to perturbed data containing, e.g., fictitious cloud and ozone

layers. We show that ML-UQ completely fails on the perturbed data, which are far outside the training distribution. We also

show that when the training data are lightly perturbed – so that each basis vector of perturbation has a little variation in the

training data – ML-UQ can extrapolate along the basis vectors with some success, leading to much better (but still somewhat

concerning) performance on the validation and testing data. Overall, we wish to discourage overreliance on ML-UQ, especially

in operational environments.
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Abstract20

Machine-learned uncertainty quantification (ML-UQ) has become a hot topic in envi-21

ronmental science, especially for neural networks. Scientists foresee the use of ML-UQ22

to make better decisions and assess the trustworthiness of the ML model. However, be-23

cause ML-UQ is a new tool, its limitations are not yet fully appreciated. For example,24

some types of uncertainty are fundamentally unresolvable, including uncertainty that arises25

from data being out of sample, i.e., outside the distribution of the training data. While26

it is generally recognized that ML-based point predictions (predictions without UQ) do27

not extrapolate well out of sample, this awareness does not exist for ML-based uncer-28

tainty. When point predictions have a large error, instead of accounting for this error29

by producing a wider confidence interval, ML-UQ often fails just as spectacularly. We30

demonstrate this problem by training ML with five different UQ methods to predict short-31

wave radiative transfer. The ML-UQ models are trained with real data but then tasked32

with generalizing to perturbed data containing, e.g., fictitious cloud and ozone layers.33

We show that ML-UQ completely fails on the perturbed data, which are far outside the34

training distribution. We also show that when the training data are lightly perturbed35

– so that each basis vector of perturbation has a little variation in the training data –36

ML-UQ can extrapolate along the basis vectors with some success, leading to much bet-37

ter (but still somewhat concerning) performance on the validation and testing data. Over-38

all, we wish to discourage overreliance on ML-UQ, especially in operational environments.39

Plain-language summary40

Machine-learned uncertainty quantification (ML-UQ) – i.e., ML models that re-41

turn both a point prediction and an estimate of their own uncertainty – is a hot topic42

in environmental science. Recent developments in ML-UQ have generated much excite-43

ment, but this excitement should be tempered by an awareness of its limitations. For44

example, just like basic ML (with only point predictions) extrapolates poorly outside the45

distribution of its training data, so do uncertainty estimates from ML-UQ. This can lead46

to catastrophic errors, i.e., very wrong predictions made with high confidence (low un-47

certainty). We demonstrate this problem across a range of ML-UQ methods and address48

a way to alleviate the problem.49

1 Introduction50

1.1 Machine-learned uncertainty in environmental science51

For as long as machine learning (ML) has been used in environmental science (ES),52

both developers and users have been interested in how uncertain the predictions are. This53

uncertainty quantification (UQ) is especially important for high-impact applications, such54

as severe weather, where an incorrect prediction can cost property and human lives. The55

computer-science literature has recently made breakthroughs in ML models that quan-56

tify their own uncertainty (ML-UQ), which could be a game-changer for high-impact ML57

applications in ES. The next step is for the ES community to familiarize itself with these58

new ML-UQ tools and modify them to best suit the unique needs of ES applications. This59

work is already in progress (Rasp et al., 2018; Wimmers et al., 2019; Scheuerer et al.,60

2020; Baran & Baran, 2021; Bihlo, 2021; Barnes et al., 2021; Clare et al., 2021; Ghazvinian61

et al., 2021; Orescanin et al., 2021; Scher & Messori, 2021; Veldkamp et al., 2021; Chap-62

man et al., 2022; Garg et al., 2022; Klotz et al., 2022; Ortiz et al., 2022; Schulz & Lerch,63

2022). Specifically, the ES community is asking the following questions:64

1. Which ML-UQ methods are reasonably easy to learn and implement?65

2. Which methods are available for classification (predicting a category) vs. regres-66

sion (predicting a continuous real number)? The computer-science community of-67
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ten develops methods for classification tasks, whereas many ES problems are re-68

gression tasks.69

3. What is the best ML-UQ method for a given application? Just like the quality of70

point predictions (i.e., single predictions without UQ, often called “determinis-71

tic”) can be evaluated with objective tools, so can the quality of uncertainty es-72

timates. See Haynes et al. (2023, henceforth H23) for an overview of UQ evalu-73

ation.74

We are particularly interested in the last question. Specifically, we take one step75

further back and ask:76

1. Are there fundamentally unresolvable types of uncertainty (i.e., that cannot be77

captured with any UQ method)?78

2. If so, what real-world scenarios create unresolvable uncertainty? What are the im-79

plications for using ML-UQ in operations? For example, how should the uncer-80

tainty estimates be interpreted, knowing that they might completely miss some81

types of uncertainty?82

We are interested in these questions because we foresee a danger of scientists relying too83

heavily on ML-UQ.84

1.2 ML-UQ is not magic85

To understand why we are concerned, let us briefly recap the state of ML in ES.86

ML has shown great promise in terms of improved accuracy and faster execution, rel-87

ative to process-based models. Although these advantages have been demonstrated for88

many ES applications, users, such as operational weather-forecasters, have been slow to89

accept ML into operations (Gil et al., 2019; Reichstein et al., 2019). The primary rea-90

son is that ML is not guaranteed to generalize well to out-of-sample data (Buiten, 2019)91

– e.g., locations, seasons, or physical regimes that were not included in the training data.92

In contrast, process-based models, which employ known laws of physics, typically gen-93

eralize much better out-of-sample. Also, where process-based models make an approx-94

imation, users generally understand the potential impacts – e.g., situations where the95

model is thereby inappropriate. This understanding is much harder to build for ML mod-96

els.97

One hope is that recently developed ML-UQ methods can help indicate situations98

where an ML model is inappropriate, i.e., where it will produce unacceptable errors. How-99

ever, this hope rests on the assumption that the model’s estimates of its own uncertainty100

are highly correlated with its error – i.e., that the model “knows when it is wrong”. It101

is our subjective experience that scientists do not question an ML model’s uncertainty102

estimates as much as they question its predictions. In particular, scientists do not con-103

sider the possibility of catastrophic errors : extremely wrong predictions made with high104

confidence (low uncertainty). The concept of catastrophic errors, especially arising due105

to unresolvable uncertainty, is at the core of this manuscript.106

1.3 A few examples of unresolvable uncertainty107

An ML-based UQ method (e.g., Bayesian neural network) must ground its uncer-108

tainty estimates in the training data, just like the base ML model (e.g., neural network)109

must ground its predictions in the training data. No other information is provided to the110

model. Thus, if a physical relationship exists in the real world but is not represented in111

the training data, it will not be learned by the base model or ML-UQ method. From this112

insight, we construct three scenarios that any ML-UQ method would struggle with.113

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Scenario 1: Missing variable. The target variable y depends strongly on a vari-114

able not included in the predictors. This scenario is common, as some variables cannot115

be measured and a limited number of variables can be included in an ML model. Specif-116

ically, consider an example where y is a function of two variables, xknown and xunknown,117

but only xknown is included in the predictors. Let the model be f̂ with a probabilistic118

output vector y⃗pred, which represents the full predicted distribution. (For example, if f̂119

is an ensemble model, each element of y⃗pred is one member of the ensemble; if f̂ is a para-120

metric model assuming the normal distribution, the two elements of y⃗pred are mean and121

variance; ...; etc.)122

{

ytrue(xknown, xunknown) = xknown · xunknown;

y⃗pred(xknown) = f̂(xknown).
(1)

Since ytrue depends strongly on xunknown but the model does not have access to xunknown,123

the distribution y⃗pred – including any point prediction (e.g., the mean) and any mea-124

sure of uncertainty (e.g., the variance) – will lack skill. In other words, the model’s point125

predictions will be poor, and the tool designed to alert us when point predictions are poor126

– namely UQ – will fail as well. Although this example is extreme, unresolvable uncer-127

tainty can arise in other ways. The point of this example is to illustrate that any UQ128

method will fail to alert us to the model’s poor predictions.129

Scenario 2: Variable constant in training data. y depends strongly on a vari-130

able xc that, although it is included in the predictors, takes a constant value over all the131

training data. In general, though, xc is not constant. Specifically, consider an example132

with one other predictor, x:133

{

ytrue(x, xc) = x · xc;

y⃗pred(x, xc) = f̂(x, xc) = f̂(x).
(2)

Although both x and xc are provided to the model f̂ , it cannot learn anything from a134

variable that does not actually vary in the training data. Replacing x with xknown and135

xc with xunknown, Equation 2 becomes Equation 1, so uncertainty arising from xc is un-136

resolvable. For a more intuitive example, consider a climate model trained to predict global-137

annual-averaged temperature (GAAT), with one of the predictors being CO2 concentra-138

tion (q). All training samples contain the year-2000 value, q = 370 ppm; but the model139

is then applied to year-2100 data, with q = 600 ppm. The year-2100 data are out of sam-140

ple with respect to q, leading to unresolvable uncertainty and catastrophic errors. Specif-141

ically, the model will severely underpredict GAAT with high confidence.142

Scenario 3: Missing basis vector in training data. y depends strongly on vari-143

ations along a basis vector b̂ of the predictor space, but the training data contain no vari-144

ation along this direction. Scenario 3 is a more general example of scenario 2, where b̂145

= x̂c. Scenario 2 is unlikely because it is easy to spot (e.g., by plotting a histogram of146

every predictor variable), whereas scenario 3 is hard to spot, because it is hard to know147

all the important basis vectors in a dataset, especially for high-dimensional data. As our148

experiments in Sections 5 and 6 show, if an important basis vector (e.g., thickness of the149

ozone layer) is not well sampled in the training data, this can lead to catastrophic out-150

of-sample errors. (We use the term basis vector loosely; in the strict definition all ba-151

sis vectors of a space are orthogonal, which is not necessarily true in our data. The term152

“latent variable” or “latent-space vector” would be more accurate (Van et al., 2020), since153

latent spaces do not imply orthogonality, but we feel that “basis vector” is more famil-154

iar to an ES audience.)155

1.4 Our sample application: Shortwave radiative transfer156

Simulating radiative transfer (RT) – i.e., heating of the atmosphere due to the scat-157

tering and absorption of radiation by particles such as hydrometeors, water vapour, aerosols,158
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and trace gases – is a key part of numerical weather prediction (NWP). However, ex-159

isting RT models are computationally expensive, which slows down NWP. In previous160

work (Lagerquist et al., 2023, henceforth L23) we demonstrated that one of these mod-161

els, namely the Rapid Radiative Transfer Model (RRTM; Iacono et al., 2008), can be em-162

ulated accurately and quickly with neural networks. The current study builds on L23163

and focuses entirely on UQ, which is not included in L23 or the RRTM. We focus on short-164

wave radiation (wavelengths of 0.2-12.2 µm), which is largely of solar origin.165

Note that the goal of this paper is not to generate new insights for the application166

of emulating RT. Rather, we use this application because it is an ideal setup to exper-167

iment with the scenarios of unresolvable uncertainty discussed above. Because we are168

using ML to emulate another model (the RRTM), we can freely modify the inputs (pre-169

dictors) and use the RRTM to compute the corresponding correct outputs (targets). We170

use this setup to explore the following questions:171

1. Can we observe the theoretical scenarios from Section 1.3 in practice? i.e., Can172

we cause ML-UQ to fail catastrophically for such scenarios?173

2. How drastic are the failures in practice? Do some UQ methods fare better than174

others? Are there simple ways to address the failures?175

1.5 Organization of this manuscript176

First, we create out-of-sample data that should confound any ML-UQ method. Specif-177

ically, we perturb the validation and testing data along several basis vectors (e.g., thick-178

ness of the ozone layer) that have very little variability in the training data. Second, we179

train models with five different ML-UQ methods and apply them to the perturbed val-180

idation and testing data, verifying that all five methods produce catastrophic errors. Third,181

we explore whether we can reduce these catastrophic errors by perturbing the training182

data just a little along each basis vector.183

2 Input data184

This section is a brief overview of the predictor and target variables, referring to185

L23 for details. The RRTM and ML-based emulators have the same target variables and186

mostly the same predictor variables; the emulators have two extra predictors, for rea-187

sons discussed in Section 2a of L23. For the target variables, values produced by the RRTM188

are considered ground truth, or “labels” in ML terminology.189

2.1 Predictor variables190

We use 26 predictor variables, summarized in Table 1. Most of these variables are191

available in output files from version 16 of the Global Forecast System model (GFSv16;192

see 2021 update at https://www.emc.ncep.noaa.gov/emc/pages/numerical forecast193

systems/gfs/documentation.php), but a few are not. For these synthetic variables,194

we create fictitious data, following Section 2b of L23. For the GFSv16 variables, we ex-195

tract forecast profiles at locations around the globe from 0000 UTC model runs on dates196

from Sep 1 2018 to Dec 23 2020. Thus, our dataset is global in terms of both geographic197

location and seasonality – i.e., covers all times of year at all locations. For more details198

on the GFSv16 variables, see Section 2a of L23.199
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Table 1: Description of predictor variables. “Scalar?” indicates whether the variable is
scalar, versus a full profile. “Synthetic?” indicates whether the values are synthesized
from fake data, versus taken from GFSv16 output. “ML only?” indicates whether the

variable is used only in the ML-based emulators, versus both ML and RRTM. “AGL” =
above ground level. Downward LWP at height z is LWC integrated from the top of the

profile down to z, and upward LWP at height z is LWC integrated from the bottom of the
profile up to z. Downward IWP, upward IWP, downward WVP, and upward WVP have

analogous definitions.

Variable Units Scalar? Synthetic? ML only?

Temperature K

Pressure Pa

Specific humidity kg kg-1

Relative humidity

Liquid-water content (LWC) kg m-3

Ice-water content (LWC) kg m-3

Downward liquid-water path (LWP) kg m-2

Downward ice-water path (IWP) kg m-2

Downward water-vapour path (WVP) kg m-2

Upward LWP kg m-2

Upward IWP kg m-2

Upward WVP kg m-2

O3 mixing ratio kg kg-1

Height m AGL

Solar zenith angle ◦ ✓

Surface albedo ✓

Height thickness m ✓

Pressure thickness Pa ✓

Aerosol single-scattering albedo ✓ ✓

Aerosol asymmetry parameter ✓ ✓

Aerosol extinction coefficient m-1 ✓

Liquid effective radius m ✓

Ice effective radius m ✓

N2O concentration ppmv ✓

CH4 concentration ppmv ✓

CO2 concentration ppmv ✓

2.2 Target variables200

The RRTM performs 1-dimensional RT, assuming that RT occurs only in the ver-201

tical. Thus, both the RRTM and emulators are applied to each profile separately. The202

target variables are those required by an NWP model from its RT parameterization: a203

full profile of heating rates (HR), surface downwelling flux (F sfc
down), top-of-atmosphere204

upwelling flux (FTOA
up ), and net flux (Fnet). See Figure 1 for an example.205
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Figure 1: RRTM outputs for one data sample. We emulate the full profile of heating
rates, F sfc

down (the bottom value in the green curve), FTOA
up (the top value in the purple

curve), and Fnet (the difference between the last two values).

2.3 Preparing the data for ML206

Our data preparation includes three steps. First, we split the data into three tem-207

porally independent partitions: training, validation, and testing (Table 2). We use the208

training data to optimize parameters (weights and biases) for each ML model, the val-209

idation data to select the best ML model (e.g., best UQ method), and the testing data210

for a final assessment of the selected model. Second, we perturb the data in each par-211

tition to a different extent: the training data not at all (for the first experiment) or lightly212

(for the second experiment), the validation data moderately, and the testing data heav-213

ily. In other words, the ML models are trained with clean or lightly perturbed data, se-214

lected based on moderately perturbed data, and then tasked with generalizing to heav-215

ily perturbed data. Third, we normalize each predictor variable from physical units to216

z-scores, following Section 3b of Lagerquist et al. (2021).217
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Table 2: Partitioning of data into temporally independent subsets. “Sample size” =
number of profiles. Also, “Number of days” ̸= length of “Time period,” because some

days are missing from the archive.

Data subset Time period Number Sample size

of days

Training Sep 1 2018 – Dec 21 2019 237 873 086

Validation Jan 2-15 2020, Feb 12-25 2020, 126 479 806
Mar 24 – Apr 6 2020, May 5-18 2020,
Jun 16-29 2020, Jul 27 – Aug 9 2020,
Sep 6-19 2020, Oct 19 – Nov 2 2020,
Nov 30 – Dec 13 2020

Testing Jan 18-31 2020, Feb 28 – Mar 12 2020, 120 474 726
Apr 9-22 2020, May 22 – Jun 4 2020,
Jul 2-15 2020, Aug 12-25 2020,
Sep 22 – Oct 7 2020, Nov 5-18 2020,
Dec 16-23 2020

2.4 Perturbing to create out-of-sample data218

We create out-of-sample data by perturbing five atmospheric properties represented219

in the predictor variables. The five properties are near-surface temperature, near-surface220

humidity, liquid cloud, ice cloud, and ozone. Loosely, each property may be seen as cor-221

responding to one or more basis vectors of the predictor space. Some of our perturba-222

tions – e.g., increasing near-surface temperature and humidity – mimic impacts that are223

expected from climate change, a real process that creates out-of-sample data. Some re-224

searchers have developed methods to make ML more robust to climate change (Beucler225

et al., 2021), albeit with a focus on point predictions rather than uncertainty estimates.226

However, some of our perturbations – e.g., those involving the ozone layer – are unlike227

anything seen in the Earth’s atmosphere or expected with climate change. Supplemen-228

tal Figures S5-S9 show the distribution of each variable before and after perturbation;229

here it is evident, for example, that the changes to ozone are much more extreme than230

the changes to temperature and humidity. These extreme perturbations allow us to ob-231

serve the behaviour of the UQ methods when tasked with generalizing to extremely out-232

of-sample data. In other words, the more extreme perturbations allow us to stress-test233

the UQ methods in a way that more realistic data would not.234

The target values – i.e., heating rates and fluxes – must change in response to the235

new predictors. To obtain the new target values (y⃗′) for a given profile, we simply feed236

the new predictors (x⃗′) to the RRTM.237

Two details remain to be specified: [1] Which atmospheric properties are perturbed238

for which profiles? [2] What are the specific perturbation methods? For each profile P239

and each property χ, there is a 50% chance that χ will be perturbed in P , based on draw-240

ing a random integer from {0, 1}. For a given profile P , if all five random numbers eval-241

uate to 0, one of the five is randomly changed to 1, so that at least one property is per-242

turbed for every profile. The subsections below explain the specific perturbation method243

for each atmospheric property.244
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Near-surface temperature245

Our motivation for this procedure is to mimic the lower-tropospheric warming ex-246

pected with climate change. The procedure has two parameters: maximum depth of the247

warm layer (Dmax) and maximum surface-temperature increase (∆Tmax
sfc ). For the lightly248

perturbed training data, we set Dmax = 1.25 km and ∆Tmax
sfc = 2 K; for the moderately249

perturbed validation data, Dmax = 2.5 km and ∆Tmax
sfc = 4 K; for the heavily perturbed250

testing data, Dmax = 5 km and ∆Tmax
sfc = 8 K. The procedure is shown schematically251

in Figure 2. After the numbered procedure below, we recompute relative humidity, based252

on the new temperature and untouched specific humidity.253

1. Determine the depth of the warm layer by sampling from a uniform distribution254

over [0, Dmax]. Symbolically, D ∈ U [0, Dmax].255

2. Sample to determine the surface-temperature increase: ∆Tsfc ∈ U [0,∆Tmax
sfc ].256

3. At each height in the warm layer, scale the temperature increase linearly from ∆Tsfc257

at the surface to 0 at height D above the surface. See Figures 2a-c.258

4. If step 3 led to any temperature above 60 ◦C, reduce to 60 ◦C. See Figure 2d.259

Figure 2: Procedure for perturbing near-surface temperature. Panel c = a + b. In this
example, the warm-layer depth D is 3 km and the surface-temperature increase ∆Tsfc is 8

K.

Near-surface humidity260

Our motivation is to mimic the lower-tropospheric moistening expected with cli-261

mate change. We first generate a disturbance for the relative humidity (RH) profile, then262

recompute the other moisture variable (specific humidity) from the new RH. See Sup-263

plemental Section 1 for details.264
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Liquid cloud265

Our motivation is to create more complex cloud arrangements, as well as denser266

and deeper clouds, than seen in the real atmosphere. We completely replace the liquid-267

water content (LWC) profile, generating a number of cloud layers from 0 up to Nmax.268

Nmax varies from 2 for the lightly perturbed training data to 5 for the heavily perturbed269

testing data. See Supplemental Section 1 for details.270

Ice cloud271

The motivation for perturbing ice cloud is the same as for perturbing liquid cloud;272

the two procedures are nearly identical. See Supplemental Section 1 for details.273

Ozone274

Our motivation is to create more complex ozone layers – over a wider range of lo-275

cations, depths, and mixing ratios – than seen in the real atmosphere. We completely276

replace the ozone mixing ratio (w) profile, generating an ozone layer with a random lo-277

cation, depth, and structure. See Supplemental Section 1 for details.278

3 Methods279

3.1 The base model: U-net++280

The field of deep learning has produced many specialized neural network (NN) ar-281

chitectures for handling spatial data. We have chosen the U-net++ architecture, which282

L23 found to be the best for shortwave RT. The U-net++ is a slight generalization of283

the U-net (Ronneberger et al., 2015), which is designed for image-to-image translation,284

i.e., to output predictions on the same spatial grid as the predictors. The U-net contains285

four key components: convolutional layers, pooling (downsampling) layers, upsampling286

layers, and skip connections. Convolutional layers use learned image filters to detect spa-287

tial and multivariate features in the predictor data, producing abstract representations288

of the predictor data, called “feature maps”. Pooling and upsampling layers scale fea-289

ture maps to coarser and finer spatial resolutions, respectively, allowing convolutional290

layers to detect features at different scales. Skip connections carry high-resolution fea-291

ture maps directly across the network, bypassing the series of downsampling and upsam-292

pling layers, which is a lossy operation that degrades high-resolution information. The293

U-net++ (Zhou et al., 2019) is a U-net with more skip connections, which more effec-294

tively preserve small-scale features, such as cloud boundaries, that are important for short-295

wave RT. Our specific U-net++ setup for point prediction is shown in Figure 3. Our main296

learning task is to translate a 127-by-26 image of predictor variables into a 127-by-1 im-297

age of heating rates. (There are 127 heights in the GFS grid and 26 predictor variables;298

see Table 1. We duplicate the 4 scalar variables over all 127 heights, so that they fit into299

the matrix.) There is also a second learning task: to predict the three flux variables (F sfc
down,300

FTOA
up , and Fnet), which are scalars rather than images. For this we attach fully connected301

layers – which are used in traditional (non-convolutional) NNs (Chapter 6 of Goodfel-302

low et al., 2016) and still a popular choice for scalar data – to the U-net++.303
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Figure 3: [adapted from Figure 3a of L23] Our specific U-net++ setup for point
prediction. For each set of feature maps (green box), the label is

number of heights × number of channels. In the remaining discussion, let K be the
number of convolutional layers per block. We call this hyperparameter “width” in L23;
the chosen value in this study, based on L23, is K = 1. Each orange “convolution” arrow

represents K convolutional layers with 3-pixel filters; each “downsampling” arrow
represents K convolutional layers with 3-pixel filters, followed by maximum-pooling with
a 2-pixel window; each “upsampling” arrow represents upsampling with a 2-pixel window,

followed by a convolutional layer with 3-pixel filters; each “skip connection” arrow
includes K convolutional layers with 3-pixel filters; each black “convolution” arrow

represents one convolutional layer with 1-pixel filters; and finally, each “fully connected
layer” arrow represents one fully connected layer.

3.2 The ML-UQ methods304

The total uncertainty in an ML model is the sum of two components: aleatory and305

epistemic. The Appendix provides definitions of these terms – which, interestingly, dif-306

fer across disciplines – and shows that the examples of unresolvable uncertainty from307

Section 1.3 can show up in both components. Thus, our analysis must include UQ meth-308

ods that can capture both the aleatory and epistemic components of uncertainty. Specif-309

ically, we use the three UQ methods discussed in the subsections. The first method (CRPS-310

LF) was found by H23 to perform well, but it can capture only aleatory uncertainty. Thus,311

we also use the multi-model ensemble (MME) and Bayesian neural networks (BNN). On312

their own MME and BNN can capture only epistemic uncertainty, but either method can313

be combined with CRPS-LF to capture both types of uncertainty.314

How to read this section: Our purpose for testing multiple UQ methods is to315

show that our results generalize across UQ methods. The interested reader may continue316

with this section and see H23 for even more details; readers less interested in the inner317

workings of UQ methods may skip ahead to Section 4.318
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3.2.1 CRPS-LF319

This approach involves training a NN with the continuous ranked probability score320

(CRPS) as the loss function (LF). The CRPS-LF approach can be used with both para-321

metric prediction and ensemble prediction. In ensemble prediction, the NN approximates322

ypred by generating an ensemble, and its loss function is the ensemble formulation of the323

CRPS:324

CRPS =
1

N

N
∑

i=1

|ytrue − yipred| −
1

2

1

N2

N
∑

i=1

N
∑

j=1

|yipred − y
j
pred|, (3)

where N is the ensemble size; ytrue is the correct value; and ykpred is the kth prediction325

in the ensemble. The first term is the mean absolute error (MAE), and the second is the326

mean absolute pairwise difference (MAPD) between ensemble members, a measure of327

spread. The CRPS ranges from [0,∞); the optimal value is 0.328

The CRPS is an uncertainty-oriented generalization of the MAE, which is a stan-329

dard loss function for point prediction. However, for point prediction we use a custom330

loss function to emphasize large heating rates (Section 3d of L23), which the NN pre-331

dicts poorly when trained with standard loss functions. Specifically, we use the follow-332

ing loss function for point prediction:333

L =
1

H

H
∑

h=1

max

{

|rh|, |r̂h|

}

(rh − r̂h)
2 +

1

L

L
∑

l=1

(Fl − F̂l)
2, (4)

where H = 127 is the number of heights; rh is the actual heating rate at the hth height;334

r̂h is the corresponding prediction; L = 3 is the number of flux variables; Fl is the ac-335

tual value of the lth flux variable; and F̂l is the corresponding prediction. The second336

term is the standard MSE for flux variables, but the first term is a weighted MSE for337

heating rates, the weight being max

{

|rh|, |r̂h|

}

. We call this term the dual-weighted MSE338

(DWMSE).339

To generalize the above loss function for UQ, we hybridize Equations 3 and 4, yield-340

ing the dual-weighted CRPS (DWCRPS):341

DWCRPS =
1

H

1

N

H
∑

h=1

N
∑

i=1

max

{

|rh|, |r̂hi|

}

|rh−r̂hi|−
1

2

1

H

1

N2

H
∑

h=1

N
∑

i=1

N
∑

j=1

max

{

|r̂hi|, |r̂hj |

}

|r̂hi−r̂hj |.

(5)
H, N , and rh are as defined previously; r̂hk is the kth predicted heating rate at the hth

342

height; max

{

|rh|, |r̂hi|

}

is the maximum absolute value of the actual and ith predicted343

heating rate at the hth height; and max

{

|r̂hi|, |r̂hj |

}

is the maximum absolute value of344

the ith and jth predicted heating rates at the hth height. Both max terms are weights345

that emphasize large heating rates.346

The DWCRPS is used only for heating rates; the standard CRPS is used for fluxes,347

since the distribution of fluxes is less skewed (Figure 5 of Lagerquist et al., 2021) and348

therefore does not necessitate a custom loss function to ensure good prediction of extreme349

values. Thus, the total loss function we use for the CRPS-LF approach is:350

L = DWCRPS +
1

L

1

N

L
∑

l=1

N
∑

i=1

|Fl − F̂li| −
1

2

1

L

1

N

L
∑

l=1

N
∑

i=1

N
∑

j=1

|F̂li − F̂lj |. (6)

The second and third terms, collectively, are the CRPS for flux variables.351

To make the CRPS-LF approach work, in addition to changing the loss function,352

one must change the NN architecture to output N estimates per target variable (Fig-353

ure 4).354
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Figure 4: [adapted from Figure 3a of L23] Our specific U-net++ setup for UQ. If using
the CRPS-LF approach, N (the ensemble size) > 1 and the loss function is Equation 6;
otherwise, N = 1 and the loss function is Equation 4. If using the BNN approach, one or
more of the double arrows contain Bayesian layers. The arrows marked “fully connected
layer” and “convolution with 1-px filters” each represent a single layer; the corresponding
layer may or may not be Bayesian. Meanwhile, recall from the caption of Figure 3 that
the arrows marked “upsampling” and “skip connection” each contain K convolutional

layers. If an upsampling or skip connection is made Bayesian, then all convolutional layers
therein are Bayesian.

3.2.2 Multi-model ensemble355

The idea behind the multi-model ensemble (MME) is simple: train many point-356

prediction NNs, each with a different random seed, then ensemble the predictions. The357

random seed determines how the NN weights are initialized, and different initializations358

lead to different solutions, the “solution” being the final set of weights.359

3.2.3 Bayesian neural networks360

Any NN can be made Bayesian by replacing traditional (point-prediction) layers361

with Bayesian layers; thus, BNNs are a highly flexible approach to UQ. A point-prediction362

NN learns a single value for each weight, but a BNN learns a full distribution for some363

weights, determined by fitting the parameters of a user-chosen canonical distribution.364

In this work and in common practice, the normal distribution is chosen, so the BNN must365

learn two values for each Bayesian weight: the mean and variance. It is unnecessary to366

make all layers Bayesian. For example, a popular approach is to make only the last few367

layers Bayesian, which often achieves the same performance (i.e., quality of mean pre-368

dictions and uncertainty estimates) at a fraction of the computing cost (Jospin et al.,369

2022; Hertel et al., 2023).370

While simple in theory, “making a layer Bayesian” is non-trivial in practice. To up-371

date a Bayesian weight w, one must compute the posterior distribution p(w | D), where372
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D represents the training data. Solving the posterior exactly involves a computationally373

intractable integral, so in practice, variational inference is often used as an approxima-374

tion (Hoffman et al., 2013; Ranganath et al., 2014; Rezende et al., 2014). Furthermore,375

weights in a NN are updated via gradient descent with backpropagation, which involves376

the gradient of the loss with respect to every weight, ∂L
∂w

. However, a Bayesian weight377

is a random variable, and it is impossible to backpropagate the gradient through ran-378

dom variables. There are two popular solutions to this problem: the reparameterization379

trick (Kingma & Welling, 2013), which involves loss gradients with respect to only the380

parameters of the weight distribution (e.g., the mean and variance of a normal distri-381

bution), and flipout (Wen et al., 2018), which involves sampling weight perturbations.382

The advantage of reparameterization is speed – per training epoch, it is faster than flipout383

– while the advantage of flipout is more accurate gradient estimates. This accuracy of-384

ten translates to needing fewer training epochs, which can make flipout faster per net-385

work even though it is slower per epoch.386

4 Experimental setup387

We attempt five UQ methods with the U-net++ base model: CRPS-only, MME-388

only, MME/CRPS, BNN-only, and BNN/CRPS. Each of these methods generates an en-389

semble; for fair comparison across UQ methods, we set the ensemble size to 50. (Larger390

ensemble sizes lead to memory issues for training the BNN/CRPS models.) Specifically,391

we use the following techniques:392

1. CRPS-only. Train a single U-net++ with the probabilistic loss function (Equa-393

tion 6) and 50 output neurons per target variable (N = 50 in Figure 4).394

2. MME-only. Train 50 U-net++ models, each with the deterministic loss function395

(Equation 4) and 1 output neuron per target variable.396

3. MME/CRPS. Train 50 U-net++ models, each with the probabilistic loss function397

and 25 output neurons per target variable. Hence, the inner ensemble size is 25398

and the outer ensemble size is 50 – leading to a total ensemble size of 1250, from399

which we randomly select 50 members.400

4. BNN-only. Train a single Bayesian U-net++ with the deterministic loss function401

and 1 output neuron per target variable. At inference time, run the Bayesian U-402

net++ 50 times to get 50 predictions per target variable.403

5. BNN/CRPS. Train a single Bayesian U-net++ with the probabilistic loss func-404

tion and 50 output neurons per target variable. At inference time, run the Bayesian405

U-net++ 10 times, so that each probabilistic weight is sampled 10 times. Hence,406

the inner ensemble size is 50 and the outer ensemble size is 10 – leading to a to-407

tal ensemble size of 500, from which we randomly select 50 members.408

For methods involving a BNN, this leaves the question of which layers are Bayesian409

(probabilistic weights) and which are not (deterministic weights), as well as which method410

to use for training Bayesian layers (reparameterization or flipout). For both the BNN-411

only and BNN/CRPS methods, we optimize these hyperparameters with an experiment412

documented in Supplemental Section 2.413

Models trained with a single UQ method can capture only one type of uncertainty414

(aleatory for CRPS-only, epistemic for MME-only and BNN-only), while those trained415

with a hybrid method can capture both types of uncertainty. Since uncertainty arising416

from out-of-sample data is partly aleatory and partly epistemic, we expect the hybrid417

UQ methods to perform best on the perturbed (validation and testing) data.418
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Experiment 1: Clean training data419

In this experiment we train the models with clean (unperturbed) data, then task420

them with generalizing – both point predictions and uncertainty estimates – to perturbed421

validation and testing data. We expect all UQ methods to perform poorly on the per-422

turbed data, because the perturbations are made along basis vectors with much less vari-423

ability in the clean training data (Supplemental Figures S5-S9).424

Experiment 2: Lightly perturbed training data425

The confirmation of the above expectation (see Section 5) motivates another sci-426

ence question: what happens if the models are trained with lightly perturbed, instead of427

clean, data? Said differently, what happens if the models “see” a light version of the per-428

turbations occurring in the validation and testing data? On the out-of-sample valida-429

tion and testing data, we expect models trained with lightly perturbed data to perform430

better than models trained with clean data, but how much better is an open question.431

Tools for evaluating UQ results432

This section provides a light background on UQ-evaluation tools (both graphics433

and single-number metrics), which should be sufficient for readers to understand the en-434

suing results and discussion. See H23 for more details.435

Figure 5 demonstrates our evaluation tools for two synthetic datasets. The first dataset436

(Figure 5a) represents a model with good mean predictions but too much spread (i.e.,437

ensemble ranges are wider than necessary); we call this Model A. The second dataset (Fig-438

ure 5b) represents a model with poor mean predictions and too little spread (i.e., the439

observation often falls completely outside the ensemble range); we call this Model B. The440

attributes diagram – which is a reliability curve with extra information (Hsu & Mur-441

phy, 1986) – is used to evaluate point predictions, showing the mean observation ytrue442

as a function of the ensemble-mean prediction ypred. This graphic is used to assess con-443

ditional bias, i.e., bias as a function of ypred. Model A has no conditional biases (Fig-444

ure 5c), leading to a reliability curve that follows the 1:1 line and a reliability (REL, the445

mean squared distance between the curve and 1:1 line) of 0.00 K2 day-2. Meanwhile, Model446

B completely misses the extremes, i.e., the lowest (highest) predictions are far too high447

(low). This leads to the classic sigmoid-shaped reliability curve and a large REL (Fig-448

ure 5d).449
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Figure 5: Demonstration of evaluation tools on two synthetic datasets. [a-b] The two
synthetic datasets, representing “Model A” and “Model B”. [c] Attributes diagram for

Model A. Of the dashed grey lines: the diagonal (1:1) line represents the perfect reliability
curve; the vertical line is the climatology line, representing the mean observation in the
dataset (16 K day-1); and the horizontal line is the no-resolution line, representing the

reliability curve for a completely uninformative model. The blue shading is the
positive-skill area, where the model’s MSE is better than that yielded by always

predicting climatology (here, 16 K day-1). [d] Same but for Model B. [e] Spread-skill plot
for Model A. The diagonal (1:1) line represents a perfect spread-skill curve; the grey

histogram shows how often each spread value occurs; and the inset plot shows any biases
as a function of model spread. [f] Same but for Model B. [g] Discard test for Model A.

The inset plot shows any biases as a function of discard fraction. [h] Same but for Model
B. [i] PIT histogram for Model A. The dashed line represents a perfect (uniform) PIT

histogram. [j] Same but for Model B.–16–
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Remaining tools shown in Figure 5 are for uncertainty estimates rather than point450

predictions. The spread-skill plot (Delle Monache et al., 2013) shows the root mean square451

error (RMSE) achieved by ypred, or “skill,” as a function of the ensemble standard de-452

viation, or “spread”. For a perfect model, the spread-skill ratio is 1.0 across all spread453

values, so the curve follows the 1:1 line. Model A (Figure 5e) is very overspread or “un-454

derconfident,” leading to a curve well below the 1:1 line and a large overall spread-skill455

ratio (SSRAT). Model B (Figure 5f) has the opposite problem. Spread-skill reliability456

(SSREL), the mean distance between the curve and 1:1 line, is substantially lower (bet-457

ter) for Model A.458

In the discard test, data samples are thrown out in descending order of model un-459

certainty (i.e., the highest-uncertainty samples are thrown out first) and the effect on460

model error is observed. The error should decrease monotonically, i.e., whenever the dis-461

card fraction increases. For all discard tests in this paper, model error is based on the462

ensemble mean ypred and model uncertainty is the height-averaged variance of HR pre-463

dictions. (Mathematically, this is 1
H

H
∑

h=1

[

1
N−1

N
∑

i=1

(r̂hi − r̂h)
2

]

, where r̂h is the ensem-464

ble mean at the hth height; all other variables are defined in Equation 5. There are two465

reasons that we use only HR, and not flux, to define overall uncertainty. First, most of466

the model’s outputs [127 of every 130] are HRs; second, combining HR and flux uncer-467

tainties into an overall uncertainty is non-trivial, as they have different units.) Model468

A (Figure 5g) has a perfect discard test, leading to a monotonicity fraction (MF) of 100%.469

Model B (Figure 5h) has an imperfect discard test; error increases as the discard frac-470

tion increases from 20-25%, from 25-30%, from 30-35%, and from 35-40%. Thus, model471

error decreases only 15 of 19 times that the discard fraction increases, leading to an MF472

of 15
19

= 78.9%.473

The probability integral transform (PIT), defined for each data sample, is the rank-474

ing of ytrue in the distribution y⃗pred. For example, if ytrue is less than all y⃗pred, its PIT475

is 0.0; if ytrue is greater than all y⃗pred, its PIT is 1.0; if ytrue is the median of all y⃗pred,476

its PIT is 0.5; etc. The PIT histogram – which is similar to the rank histogram, or “Ta-477

lagrand diagram” (Hamill, 2001), and can be interpreted similarly – then shows the dis-478

tribution of PIT values. For a perfectly calibrated model – which is neither overconfi-479

dent nor underconfident – all PIT values occur equally often, leading to a uniform his-480

togram. For Model A (Figure 5i), nearly all PIT values are between 0.3 and 0.7, mean-481

ing that ytrue is usually in the middle 40% of the y⃗pred distribution and rarely at the ex-482

tremes. In other words, the y⃗pred distribution is usually too wide; the model is under-483

confident. For Model B (Figure 5j), nearly all PIT values are below 0.05 or above 0.95,484

meaning that ytrue is usually in the bottom or top 5% of the distribution. In other words,485

the y⃗pred distribution is usually too narrow; the model is overconfident. The PIT devi-486

ation (PITD), the mean absolute difference between bar height and the horizontal line,487

is substantially better (lower) for Model A. (The horizontal line line denotes the bar height488

for the ideal [uniform] PIT histogram, which is 1
number of bins

.)489

REL, SSREL, and PITD are negatively oriented with a perfect value of 0.0; MF490

is positively oriented with a perfect value of 1.0; and the perfect SSRAT is 1.0, with higher491

(lower) values indicating underconfidence (overconfidence).492

Lastly, we define “large point error” as a data sample where ypred has absolute er-493

ror ≥ 1 K day-1; we define “catastrophic error” as a large point error where the obser-494

vation also falls outside the 95% confidence interval (in other words, PIT is either < 0.025495

or > 0.975).496

How to read the results497

Sections 5 and 6, which discuss the results of the two experiments, contain many498

specific terms from the RT application and the field of UQ. All these terms have been499
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explained briefly heretofore, with longer explanations found in L23 (for RT) and H23 (for500

UQ). However, we do not expect readers to be fluent in these terms, so we highlight “key501

points” throughout Sections 5 and 6. Readers with less interest in the details can jump502

directly to the key points.503

5 Results for Experiment 1: Clean training data504

We start with overall diagnostics (metrics computed from the entire validation or505

testing set), which allow us to understand the UQ methods’ performance and choose the506

best method. Then we present a small number of case studies, which allow us to under-507

stand the UQ methods’ performance in a way that overall diagnostics cannot.508

5.1 Overall diagnostics509

Figure 6 compares all five UQ methods on the moderately perturbed validation data.510

Error metrics pertaining to heating rates (HR) are averaged over the 127 heights; those511

pertaining to fluxes are averaged over the three variables (F sfc
down, F

TOA
up , and Fnet).512
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Figure 6: Comparison of UQ methods on validation data, for models trained with clean
data. In panel g, higher is better; in panel e, closer to 1.0 is better; in all other panels,

lower is better. “CEF” in panel h is catastrophic-error frequency.

We highlight several observations from Figure 6:513

1. UQ methods that can capture only epistemic uncertainty – i.e., MME-only and514

BNN-only – produce too little spread for both HR and fluxes (panel e). This sug-515

gests that much of the uncertainty in the validation data is aleatory.516

2. Methods that can capture aleatory uncertainty – i.e., those involving the CRPS517

– produce too much spread for fluxes (panel e). However, out of these three meth-518

ods, BNN/CRPS is the least overspread.519
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3. All UQ methods produce far too little spread for HR (panel e); this is true at all520

127 heights (not shown).521

4. All UQ methods produce catastrophic errors at least ∼10% of the time (panel h);522

the non-hybrid methods (CRPS-only, MME-only, and BNN-only) produce catas-523

trophic errors substantially more often.524

5. The BNN/CRPS method performs best on 4 of the 10 uncertainty-based metrics525

(flux SSREL, flux SSRAT, flux PITD, and HR MF). The MME/CRPS method526

performs best on 6 of the 10 uncertainty-based metrics (HR SSREL, HR SSRAT,527

HR PITD, HR MF, HR CEF, and flux CEF), where CEF is catastrophic-error fre-528

quency. However, MME/CRPS performs worst on flux MF (panel g) and second-529

worst on flux SSRAT (panel e), while BNN/CRPS does not perform this badly530

for any uncertainty-based metric.531

6. MME/CRPS outperforms BNN/CRPS on 3 of the 4 point-prediction-based met-532

rics (HR MAE, flux MAE, and flux REL; not HR REL). Thus, MME/CRPS pro-533

duces better point predictions than BNN/CRPS; however, the differences here are534

small.535

Key points: Points 3 and 4 exemplify that, when trained with clean data, all UQ536

methods fail dramatically. Based on points 5 and 6, we judge that the best UQ method537

is BNN/CRPS, followed by MME/CRPS. Both are hybrid methods, which can capture538

both aleatory and epistemic uncertainty. The remaining analysis will focus largely on539

BNN/CRPS.540
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Figure 7: Detailed results of the BNN/CRPS method on validation data, for a model
trained with clean data. [a-e] Evaluation of point predictions (ensemble means). [a]

Attributes diagram for Fnet; [b] attributes diagram for HR, aggregated over all heights; [c]
profile of mean absolute errors for HR; [d] profile of mean signed errors (biases) for HR;
[e] profile of large-point-error frequencies for HR. [f-h] Evaluation of uncertainty estimates

for Fnet. [f] Spread-skill plot; [g] discard test; [h] PIT histogram. [i-l] Evaluation of
uncertainty estimates for HR. [i] Profile of catastrophic-error frequencies for HR; [j-l] as in

panels f-h but for HR.
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Figure 7 shows detailed results for the BNN/CRPS model, based on the moder-541

ately perturbed validation data. For both Fnet (panel a) and HR (panel b), the attributes542

diagram is nearly perfect, except a large positive bias (∼5 K day-1) when ypred ≳ 38 K543

day-1. In other words, the highest HR predictions are too high. Panels c-d show MAE544

and bias at each height for the ensemble-mean HR prediction. For shortwave RT, errors545

on the order of 0.1 K day-1 are generally considered acceptable – e.g., Table 2 of Krasnopolsky546

et al. (2012), page 7 of Song and Roh (2021), Figure 1 of Kim and Song (2022). At most547

heights the errors are on this order, except in the upper stratosphere, where MAE jumps548

to 3.91 K day-1 and bias jumps to 2.71 K day-1. Panel e shows the frequency of large549

point errors for HR, which is below 5% throughout the troposphere but jumps to 45%550

in the upper stratosphere. Error maxima in the upper stratosphere are associated with551

perturbed ozone layers; some examples will be shown in case studies.552

Figures 7f-h show the quality of uncertainty estimates for Fnet. The spread-skill553

plot (panel f) shows that Fnet predictions are almost perfectly calibrated when spread554

≲ 40 W m-2; for higher spread values, the model is slightly underconfident. The discard555

test (panel g) shows that, despite the underconfidence at higher spread values, the model’s556

overall uncertainty is strongly correlated with its error for Fnet. In other words, one can557

trust that lower uncertainty means lower expected Fnet error. The PIT histogram (panel558

h) shows that the model’s Fnet predictions are quite well calibrated, except slightly too559

many PIT values below 0.5. In other words, ytrue falls in the bottom half of the y⃗pred560

distribution more often than it should. Meanwhile, Figures 7i-l show the quality of un-561

certainty estimates for HR. Panel i shows the profile of CEFs, which are similar to large-562

error frequencies (panel e). In other words, most large errors are also catastrophic er-563

rors, because the confidence interval (CI) cannot account for errors > 1 K day-1. The564

spread-skill plot (panel j) shows that the model is extremely overconfident, producing565

only 14% as much spread as it should. The discard test (panel k) shows that, despite566

this overconfidence, the model’s overall uncertainty is strongly correlated with its HR567

error. Finally, the PIT histogram (panel l) shows that the model’s HR predictions are568

poorly calibrated, with extreme PIT values (the first and last bars) occurring for 30%569

of data samples. In other words, ytrue falls near the bottom or top of the y⃗pred distribu-570

tion 30% of the time, three times as often as it should.571

Having used the moderately perturbed validation data to select the best UQ method572

(BNN/CRPS), we now evaluate BNN/CRPS on the heavily perturbed testing data. By573

comparison of Figure 6 and Supplemental Figure S23, the overall ranking of UQ meth-574

ods is similar between the validation and testing data. Most importantly, BNN/CRPS575

appears to be the best method for both datasets.576
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Figure 8: Detailed results of the BNN/CRPS method on testing data, for a model
trained with clean data. Formatting is explained in the caption of Figure 7.

Figure 8 shows detailed results for the BNN/CRPS model on the testing data. Here577

we highlight differences from the validation results (Figure 7). The attributes diagrams578

(panels a-b) show that point predictions of Fnet and HR are worse on the testing data579

(note the higher REL values), but these plots still indicate good skill except for the high-580

est HR predictions. The MAE and bias profiles (panels c-d) show that point predictions581

of HR are still mostly acceptable in the troposphere, but problems in the stratosphere582

are worse in the testing data. Large-error frequencies for HR (panel e) are similar to the583
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validation data but with a slightly better maximum (7% decrease) in the upper strato-584

sphere. Results for Fnet uncertainty (panels f-h) are similar to the validation data, ex-585

cept with a worse SSREL (55% increase) and slightly better PITD (12% decrease). Re-586

sults for HR uncertainty (panels i-l) are also similar to the validation data – showing587

very poor skill – except with a slightly better maximum for CEF (7% decrease), worse588

SSREL (24% increase), and worse PITD (19% increase).589

Key points: For models trained with clean data, even the best model produces590

unacceptable errors, as expected. The most notable errors are poor HR predictions in591

the stratosphere, with CEF > 40%; poor HR predictions at the highest values, with a592

bias of ≫ 1 K day-1; and poor HR uncertainty estimates throughout the atmosphere,593

with SSRAT < 14%. Results for the testing data are worse than for the validation data,594

as expected.595

5.2 Case studies596

Case study 1: Validation data. Figure 9 shows a case with the following per-597

turbations: a two-layer ice cloud (panel a), a multi-layer liquid cloud with large/noisy598

LWC values (panel a), and an ozone layer with noisy mixing ratios (panel b). For the599

HR spike due to ice cloud (around 10 km), all point predictions are too low and most600

CIs (for all models except BNN/CRPS; panel f) miss the observation. For the HR spikes601

due to liquid cloud (from 1-3 km), point predictions have a large error (> 1 K day-1) but602

observations generally fall within the CI, especially for the non-BNN models (panels c,603

d, g). For the HR spike due to ozone (around 45 km), all point predictions and CIs are604

far too low – i.e., all models produce a catastrophic error. The models also fail to cap-605

ture other aspects of ozone-related heating (from 15-60 km), including the HR minimum606

around 60 km.607

Key points: This case study exemplifies that while perturbed cloud sometimes608

causes larger point errors than perturbed ozone, perturbed ozone causes catastrophic er-609

rors more often. This conclusion is supported more rigorously by comparing panel i across610

Supplemental Figures S26-S28. The reason is that ozone varies much less in the train-611

ing data than LWC/IWC – e.g., all training samples have exactly one ozone layer with612

a maximum mixing ratio between 5.5 and 18.5 mg kg-1, while different training samples613

have very different LWC/IWC profiles. Thus, perturbed ozone layers are more alien to614

the training data than perturbed cloud layers.615
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Figure 9: Case study for models trained with clean data and applied to a validation
sample: 0000 UTC 9 Dec 2020, 1.58 ◦S, 94.80 ◦E. [a-b] Key predictor variables, i.e., those

subject to perturbation. [c] Actual HR profile (blue), along with ensemble-mean
prediction (dashed red line) and 95% confidence interval (shaded red envelope), from the
MME-only model. [d] Same but for MME/CRPS model. [e] Same but for BNN-only

model. [f] Same but for BNN/CRPS model. [g] Same but for CRPS-only model. In the
legends, “HR MAE” is the MAE of ensemble-mean HR predictions over the 127 heights;
“Fnet error” is the ensemble-mean Fnet prediction minus actual; and “F sfc

down error” and
“FTOA

up error” are defined analogously.
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Case study 2: Cloudy testing data. Figure 10 shows a case with two follow-616

ing perturbations: a shallow ozone layer and near-surface moist layer (panel b). All mod-617

els struggle with ozone-related heating (from 15-30 km), as in the validation case but worse.618

The near-surface moist layer (bottom 0.6 km) causes an HR maximum of ∼10 K day-1,619

for which all UQ methods fail completely. The best models in this region are MME-only620

(panel c) and MME/CRPS (panel d), but the HR maximum is still ∼3 K day-1 above621

both ensemble means and ∼1 K day-1 above both CIs, so these errors are considered catas-622

trophic.623

Key points: This case study exemplifies two conclusions from the broader dataset.624

First, although perturbed near-surface moisture generally causes smaller errors than per-625

turbed ozone and cloud layers, near-surface moisture can still cause catastrophic errors.626

These are most common in profiles with little to no cloud, leaving ample solar radiation627

to reach the near-surface and interact with water vapour there. Second, perturbations628

in the testing data cause worse errors than perturbations in the validation data (cf. Fig-629

ures 7 and 8), as expected.630
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Figure 10: Case study for models trained with clean data and applied to a testing
sample: 1200 UTC 18 Dec 2020, 27.47 ◦N, 6.91 ◦E. All formatting is explained in the

caption of Figure 9.

Case study 3: Cloud-free testing data. Figure 11 shows a case with the fol-631

lowing perturbations: a shallow ozone layer with large mixing ratios (panel b), three cloud632

layers with large/noisy LWC values (panel a), a near-surface moist layer with specific633

humidity reaching ∼30 g kg-1 (panel b), and a near-surface warm layer with tempera-634

ture reaching ∼35 ◦C (panel b). There is virtually no heating near the surface, because635

all solar radiation is attenuated by the clouds above. The models capture this lack of heat-636
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ing quite well, except for MME/CRPS (panel d) and BNN/CRPS (panel f), which pro-637

duce an erroneous HR maximum in the bottom 0.2 km. For the HR spike due to liquid638

cloud (around 10 km), all models produce a catastrophic error. This error is worse than639

cloud-related errors in the validation case (Figure 9), consistent with the more extreme640

LWC values in this, a testing case. For ozone-related heating, all models produce catas-641

trophic errors throughout the stratosphere.642

Key points: The models were trained with clean data and simply have not seen643

liquid cloud or ozone layers like the one here (cf. Figure 11b and Supplemental Figure644

S9a). Thus, when presented with heavily perturbed testing data, which are far out of sam-645

ple compared to the training data, the models (including their uncertainty estimates)646

completely fail. This confirms our expectation from Section 4 and motivates Experiment647

2 – with lightly perturbed, instead of clean, training data.648
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Figure 11: Case study for models trained with clean data and applied to a testing
sample: 1200 UTC 12 Aug 2020, 16.69 ◦S, 37.14 ◦E. All formatting is explained in the

caption of Figure 9.

6 Results for Experiment 2: Lightly perturbed training data649

As in the discussion for Experiment 1, we start with overall diagnostics, then dig650

deeper with case studies.651
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6.1 Overall diagnostics652

Figure 12 compares all five UQ methods on the validation data. This figure, which653

shows models trained with lightly perturbed data (henceforth LP-trained models), is anal-654

ogous to Figure 6, which shows clean-trained models. We highlight several observations655

from Figure 12. Unless otherwise stated, these observations are true for the clean-trained656

models as well.657

1. MME-only and BNN-only produce too little spread for all variables (panel e).658

2. Methods involving the CRPS produce too much spread for fluxes, but BNN/CRPS659

is the least overspread among these methods (panel e).660

3. The clean-trained models produce far too little spread for HR (no SSRAT > 0.19;661

Figure 6e). However, among the LP-trained models, all except BNN-only produce662

an HR SSRAT > 0.74 (Figure 12e).663

4. The LP-trained models produce far fewer catastrophic errors than the clean-trained664

models, especially for HR (panel h). For example, the LP-trained model with the665

MME/CRPS method produces a CEF of 0.26% and 4.2% for HR and flux, respec-666

tively; analogous values for the clean-trained model are 6.7% and 7.6%.667

5. As for the clean-trained models, BNN/CRPS produces the best uncertainty es-668

timates overall (performing best on 8 of 10 uncertainty-based metrics). Unlike for669

the clean-trained models, there is no clear second-best method for uncertainty es-670

timates.671

6. BNN/CRPS also produces competitive point predictions (4th-best HR MAE, 2nd-672

best flux MAE, best HR REL, best flux REL).673
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Figure 12: Comparison of UQ methods on validation data, for models trained with
lightly perturbed data. In panels a-d and f, lower is better; in panel e, closer to 1.0 is

better; and in panel g, higher is better.

As for the clean-trained models, we judge that BNN/CRPS is the best UQ method674

overall. Supplemental Figure S29 shows that this conclusion also holds on the testing675

data. The remainder of this section focuses on the BNN/CRPS method and, for brevity,676

focuses on the testing data rather than the validation data. We have already seen for677

clean-trained models that performance deteriorates from the validation to the testing data,678

and this is true for LP-trained models as well.679
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Figure 13: Detailed results of the BNN/CRPS method on testing data, for a model
trained with lightly perturbed data. Formatting is explained in the caption of Figure 7.

Figure 13 shows detailed testing results for the LP-trained BNN/CRPS model. We680

compare these results to the clean-trained BNN/CRPS model (Figure 8). The attributes681

diagrams (panels a-b) show that point predictions of both Fnet and HR are extremely682

well calibrated, except for the highest HR predictions. The attributes diagrams are bet-683

ter for the LP-trained model. The MAE and bias profiles (panels c-d) show that point684

HR predictions are better for the LP-trained model, much better in the stratosphere.685

Specifically, the maximum MAE is 85% lower, and the maximum absolute bias is 92%686
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lower. The frequency of large HR errors (panel e) is also better for the LP-trained model,687

with a 69% decrease in the upper-stratosphere maximum. Results for Fnet uncertainty688

(panels f-h) show that the LP-trained model is well calibrated, although slightly under-689

confident in general (panel f) and producing slightly too many PIT values below 0.5 (panel690

h). The SSREL and PITD are better than for the clean-trained model, but the SSRAT691

is worse. Results for HR uncertainty (panels i-l) show that the LP-trained model is poorly692

calibrated, with overconfidence at nearly all spread values (panel j) and too many PIT693

values above 0.5 (panel l). However, these results are much better than for the clean-694

trained model, with a 69% decrease in maximum CEF, 89% decrease in SSREL, 285%695

increase in SSRAT, and 38% decrease in PITD. Overall, the comparison of Figures 8 and696

13 shows that the LP-trained model is better than the clean-trained model, but three697

results of the LP-trained model are still concerning: large positive bias for HR point pre-698

dictions ≳ 38 K day-1, a 14% frequency of catastrophic HR errors in the upper strato-699

sphere, and large overconfidence for HR in general. Supplemental Figure S30 – analo-700

gous to Figure 13 but for the validation data – shows that similar concerns exist in the701

validation data but are much less severe.702

Key points: Experiment 1 showed that training with clean data, which barely sam-703

ple important basis vectors in the validation/testing data, leads to catastrophic errors.704

Experiment 2 shows that perturbing the training data just a little along these basis vec-705

tors leads to much better performance on the validation/testing data, even if the latter706

are still out of sample. However, catastrophic errors still occur, showing that ML-UQ707

is not magic.708

6.2 Case studies709

Both case studies in this section are from the testing data.710

Case study 1: Extreme liquid cloud and humidity. Figure 14 shows a case711

with the following perturbations: a very dense liquid cloud (panel a), an ozone layer with712

very large/noisy mixing ratios (panel b), and a near-surface moist layer with very large713

humidity (panel b). Also, the maximum ozone content occurs at a lower height than usual,714

around 20 km (in the lower stratosphere). For ozone-related heating around this level,715

all models produce a catastrophic error. However, for ozone-related heating above this716

level, most models (all except BNN-only; panel e) perform quite well. This result is in717

stark contrast to case studies for the clean-trained models, which struggle with perturbed718

ozone everywhere in the stratosphere. For the heating due to liquid cloud and the moist719

layer (from 0-0.3 km), only the MME-only and MME/CRPS models (panels c-d) per-720

form well. The BNN-only and BNN/CRPS models (panels e-f) produce catastrophic er-721

rors, and the CRPS-only model (panel g) produces a large point error (∼ 10 K day-1)722

for the HR maximum.723

Key points: Although the LP-trained models are much better than the clean-trained724

models, every LP-trained model produces a catastrophic error somewhere in the profile.725

–33–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 14: Case study for LP-trained models applied to a testing sample: 1800 UTC 22
Apr 2020, 30.99 ◦N, 99.26 ◦W. All formatting is explained in the caption of Figure 9.

Case study 2: Extreme ice cloud and ozone. Figure 15 shows a case with the726

following perturbations: a very dense two-layer ice cloud (panel a) and an ozone layer727

with small/noisy mixing ratios (panel b). There is virtually no heating below 7 km, be-728

cause all solar radiation is attenuated by the ice cloud above; all models capture this lack729

of heating well. For the ice-cloud-related heating (around 8 km), all point predictions730

are 1-3 K day-1 too low. However, most CIs (for all models except BNN-only and BNN/CRPS;731

panels e-f) capture the observed HR. For the ozone-related heating (above 10 km), the732
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MME/CRPS model (panel d) performs best. Specifically, at every height except the HR733

maximum around 29 km, the point error is < 1 K day-1 and the CI captures the obser-734

vation. The other models perform nearly as well, except the BNN-only model, which pro-735

duces catastrophic errors from 30-45 km.736

Key points: Again, the LP-trained models are much better than the clean-trained737

models. The MME/CRPS model even manages to produce no catastrophic errors for this738

case study, which is far out of sample.739

Figure 15: Case study in the testing data: 0000 UTC 29 Jan 2020, 41.65 ◦N, 168.52 ◦E.
All formatting is explained in the caption of Figure 9.
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7 Summary and future work740

For a long time, uncertainty quantification (UQ) has been a key ambition for ma-741

chine learning (ML) in environmental science (ES). The field of computer science has re-742

cently made breakthroughs in ML-UQ, and environmental scientists are just beginning743

to apply the resulting methods. One hope of the ES community is that new ML-UQ meth-744

ods can be used to assess the trustworthiness of an ML model on a case-by-case basis745

– e.g., to alert users when the model is expected to have a large error. However, ML-746

UQ methods, just like the base ML models with which they are coupled, do not gener-747

alize well to out-of-sample data. When a UQ-enhanced ML model encounters out-of-sample748

data, it is likely to produce a catastrophic error – i.e., an extremely wrong prediction749

with high confidence. While scientists are generally aware that ML generalizes poorly750

out of sample, in our experience they do not have this awareness for UQ, leaving them751

prone to catastrophic errors. We wish to discourage overreliance on ML-UQ by show-752

ing that there are fundamentally unresolvable types of uncertainty, including that which753

arises from out-of-sample data.754

To this end, we trained neural networks (NN) to predict shortwave radiative trans-755

fer. The NNs predict 130 quantities – a length-127 vector of heating rates and 3 flux com-756

ponents – each with a 50-member ensemble. The ensemble is produced by one of five757

UQ methods: a multi-model ensemble (MME), Bayesian neural network (BNN), train-758

ing with the continuous ranked probability score (CRPS) loss function, or a hybrid method759

(MME/CRPS or BNN/CRPS). The validation and testing data are pushed out of sam-760

ple by perturbing several predictor variables: temperature, humidity, liquid cloud, ice761

cloud, and ozone.762

In Experiment 1, the NNs are trained with clean (unperturbed) data, then tasked763

with generalizing to moderately perturbed validation data and heavily perturbed testing764

data. Irrespective of the UQ method with which they are coupled, the NNs completely765

fail on the validation and testing data, generating poor point predictions (ensemble means)766

and uncertainty estimates. Even the best-performing UQ method (BNN/CRPS) is ex-767

tremely overconfident for heating rates, producing only 14% as much spread as it should.768

Perturbations made to the ozone layer – which are more severe than perturbations made769

to other atmospheric properties – confound our NNs the most. The models fail on val-770

idation and testing data because the perturbations therein are simply not “seen” in the771

clean training data. In other words, the perturbations occur along basis vectors with lit-772

tle to no variability in the training data. While it is generally recognized that ML-based773

predictions will fail in this setting, ML-generated uncertainty estimates fail just as spec-774

tacularly. This has serious implications for operational use of ML, e.g., in weather-forecasting.775

If a high-impact event occurs in real time that is not represented in the training data776

(i.e., is out of sample), overreliance on ML – including ML-based uncertainty estimates777

– could have severe consequences.778

The discouraging results from Experiment 1 motivated another question: what hap-779

pens if the basis vectors represented by the perturbations are represented just a little in780

the training data? To answer this, in Experiment 2 we trained NNs with lightly perturbed781

data, calling these “LP-trained models” (as opposed to the clean-trained models in Ex-782

periment 1). On the validation and testing data, the LP-trained models performed much783

better than clean-trained models. This result illustrates the power of triggering each ba-784

sis vector of variability – even just a little – in the training data. Ebert-Uphoff and Deng785

(2017) found a similar result for causal discovery in ES: if a causal mechanism is not trig-786

gered in the training data, it will not be learned by the model.787

Despite the obvious advantages of the LP-trained models, evaluation on the test-788

ing data revealed some concerning properties. For example, the best-performing UQ method789

(BNN/CRPS) is still quite overconfident for heating rates, producing only 52% as much790

spread as it should. Thus, lightly triggering important basis vectors in the training data791
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allowed the ML-UQ models to extrapolate much better along these basis vectors, but792

it did not cure all ills. This is especially true for the testing data; the three concerns listed793

above are quite minor in the validation data. The above results have two important im-794

plications for operational ML. First, while enhancing the training data by triggering im-795

portant basis vectors of the predictor space allows ML to better extrapolate along these796

vectors, ML will likely struggle when extrapolating far out of sample. Second, in large797

predictor spaces (which are common in ES), it is hard to know all the important basis798

vectors, especially those representing high-impact events. Thus, even for ML models with799

safeguards against poor out-of-sample performance – such as UQ or enhanced training800

data – we still discourage overreliance on ML and ML-UQ. Also, we encourage users to801

be familiar with the training data used for an ML model, so that they can identify out-802

of-sample (or poorly sampled) situations and approach the model with a healthy skep-803

ticism.804

Future work will proceed along two lines. First, we will explore strategies for adapt-805

ing ML-UQ to more realistic out-of-sample data, such as those caused by climate change806

(our application was a sandbox for testing the generalization of ML-UQ methods under807

extreme conditions). Second, we will try combining ML-UQ with tools that automat-808

ically detect out-of-sample data (Bulusu et al., 2020). Although these tools cannot im-809

prove an ML model’s generalization to out-of-sample data, they can alert users when out-810

of-sample data appear. This would automate part of the process of determining an ML811

model’s trustworthiness.812

Appendix A Aleatory vs. epistemic uncertainty813

Uncertainty can be divided into two components: aleatory and epistemic. Briefly,814

according to the ML literature, aleatory uncertainty is due to gaps in the (training) dataset,815

while epistemic uncertainty is due to gaps in model development. Note, however, that816

the definitions vary across disciplines – see Figure A1 and discussions in Hüllermeier and817

Waegeman (2021), Bevan (2022), Haynes et al. (2023)). We use the ML definition through-818

out this manuscript, shown in Figure A1b. Figure A1 is adapted from Figure 3 of Haynes819

et al. (2023).820

Epistemic (math):

Everything else
Epistemic (ML):

Uncertainty due to 

imperfect modeling

To
ta

l 
u

n
ce

rt
a

in
ty

alea:  Latin word, referring to game of dice (random).

epistēmē:  Greek word, meaning knowledge (model).

Only information available in ML context is what 

arises from the data – that becomes dividing line.

Aleatory (ML):

Uncertainty due to any 

shortcomings in data

(stochastic + other)

Aleatory (math):

Uncertainty due to 

stochastic processes only

(a) Math definition (b) ML definition

Figure A1: The aleatory/epistemic divide, according to different disciplines. [a] The
math (original) definition is based only on the mathematical nature of the observed

system. Only uncertainty due to stochastic processes, such as the chaotic nature of the
atmosphere, is considered aleatory. [b] The ML definition of aleatory uncertainty is much
wider, including not only uncertainty due to the stochastic nature of the system, but due

to all other shortcomings of the dataset, such as limited observations.
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In Section 1.3 we provide examples of unresolvable uncertainty, which cannot be821

captured by any ML-UQ method. One might wonder whether the unresolvable uncer-822

tainty in these scenarios is aleatory or epistemic. The answer is: it depends on how the823

dataset is chosen. We illustrate this below for Scenario 1 from Section 1.3, where uncer-824

tainty depends strongly on a variable xunknown not included in the ML model. The key825

question in distinguishing aleatory from epistemic is: where was the information lost?826

Let us track our steps:827

1. The physical system contains both variables: xknown and xunknown (Equations 1).828

2. The dataset collected by observing the physical system may or may not include829

xunknown. Letting M be the number of samples, the two possibilities for the dataset830

are831

D1 =
{

(xi
known, x

i
unknown); i = 1, 2, . . . ,M

}

or

D2 =
{

(xi
known); i = 1, 2, . . . ,M

}

.

3. Regardless of which dataset was chosen (D1 or D2), the ML model has no access832

to xunknown and depends only on xknown.833

In other words, regardless of which dataset was chosen, the ML model is exactly the same.834

However, uncertainty in the model’s output arising from its ignorance of xunknown is con-835

sidered epistemic if the dataset chosen is D1 (because the problem is deemed to be in836

the model), versus aleatory if the dataset chosen is D2 (because the problem is deemed837

to be in the data). In other words, the distinction of aleatory vs. epistemic depends on838

whether the relevant information was dropped during the data-collection or model-development839

step. The key conclusion for this study is that the types of unresolvable uncertainty in840

Section 1.3 can show up in both the aleatory and epistemic components; thus, we need841

to employ UQ methods that can capture both types.842

Appendix B Open research843

We used version 3.0.0 of ML4RT (Machine Learning for Radiative Transfer; https://844

doi.org/10.5281/zenodo.10086129) – a Python library managed by author Lagerquist845

– for all tasks in this study. The input data and all models not involved in a MME can846

be found at https://zenodo.org/doi/10.5281/zenodo.10081204; the MMEs can be847

found at https://zenodo.org/doi/10.5281/zenodo.10084393, https://zenodo.org/848

doi/10.5281/zenodo.10084403, https://zenodo.org/doi/10.5281/zenodo.10084445,849

and https://zenodo.org/doi/10.5281/zenodo.10084454.850
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1 Methods for data perturbation12

This section explains how each atmospheric property is perturbed, with the excep-13

tion of near-surface temperature (see Section 2d of main text).14

1.1 Near-surface humidity15

Our motivation is to mimic the lower-tropospheric moistening expected with cli-16

mate change. The procedure has three parameters: maximum depth of the moist layer17

(Dmax), minimum surface relative humidity (RHmin
sfc ), and maximum (RHmax

sfc ). Param-18

eter settings are shown in Table S1; the procedure is shown schematically in Figure S1.19

After the numbered procedure below, we recompute the two moisture variables used as20

predictors (relative and specific humidity), based on the new mixing ratio and untouched21

temperature/pressure.22

1. Sample to determine the depth of the moist layer: D ∈ U [0, Dmax].23

2. Sample to determine the surface RH: RHsfc ∈ U
[

RHmin
sfc ,RHmax

sfc

]

.24

3. Compare the new and original (unperturbed) surface-RH values. If RHsfc ≤ RHorig
sfc ,25

do nothing and end the procedure.26

4. Convert surface RH to surface mixing ratio, wsfc.27

5. Calculate the increase in surface mixing ratio: ∆wsfc = wsfc − w
orig
sfc .28

6. At each height in the moist layer, scale the mixing-ratio increase linearly from ∆wsfc29

at the surface to 0 at height D above the surface. See Figures S1a-c.30

7. If step 6 led to any height with dewpoint > temperature, reduce dewpoint to tem-31

perature. See Figure S1d.32

8. If step 6 led to any mixing ratio above 40 g kg-1, reduce to 40 g kg-1. See Figure33

S1e.34
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Figure S1: Procedure for perturbing near-surface humidity. In this example, the
moist-layer depth D is 3 km and the new surface relative humidity RHsfc is 100%. In

panel c, the new mixing ratio is obtained by adding panels a and b; the new dewpoint is
then computed from the new mixing ratio. In panel d, the new dewpoint is obtained by
taking the minimum of dewpoint and temperature at each height; the new mixing ratio is
then computed from the new dewpoint. In panel e, the new mixing ratio is obtained by

reducing to 40 g kg-1 at each height if necessary; the new dewpoint is then computed from
the new mixing ratio.
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Table S1: Parameter settings for perturbation of predictor variables.

Parameter Setting for Setting for Setting for

lightly perturbed validation data testing data

training data

Near-surface temperature

Dmax 1.25 km 2.5 km 5 km

∆T
max
sfc 2 K 4 K 8 K

Near-surface humidity

Dmax 1.25 km 2.5 km 5 km

RHmin
sfc 50% 50% 50%

RHmax
sfc 62.5% 75% 100%

Liquid cloud

Nmax 2 3 5

Dmax 5 km 5 km 5 km

LWCmax
center 2 g m-3 2.5 g m-3 5 g m-3

σLWC 0.25 g m-3 0.5 g m-3 1 g m-3

Ice cloud

Nmax 2 3 5

Dmax 5 km 5 km 5 km

IWCmax
center 2 g m-3 2.5 g m-3 5 g m-3

σIWC 0.25 g m-3 0.5 g m-3 1 g m-3

Ozone

Dmin and Dmax 40 and 60 km 25 and 60 km 0.1 and 60 km

z
min
center and z

max
center 20 and 50 km AGL 20 and 50 km AGL 20 and 50 km AGL

wmax
center 20 mg kg-1 25 mg kg-1 50 mg kg-1

σw 0.25 mg kg-1 0.5 mg kg-1 1 mg kg-1

1.2 Liquid cloud35

Our motivation is to create more complex cloud profiles, as well as denser and deeper36

clouds, than seen in the real atmosphere. The procedure has four parameters: maximum37

number of cloud layers (Nmax), maximum layer depth (Dmax), maximum liquid-water38

content at layer center (LWCmax
center), and noise level for LWC (σLWC). Parameter settings39

are shown in Table S1; the procedure is shown schematically in Figure S2.40

1. Sample to determine the number of cloud layers: N ∈ U [0, Nmax].41

2. For each cloud layer i from 1. . .N :42

(a) Sample to determine the depth of the ith cloud: D ∈ U [0, Dmax].43

(b) Sample to determine the height of the cloud top above the surface:44
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ztop ∈ U [0, ztropopause + 2 km].2,345

(c) Calculate the height of the cloud bottom: zbottom = ztop−D. If this leads to46

zbottom < 0 km AGL, increase to 0 km AGL. See Figure S2b.47

(d) Find all grid points in the cloud. These are grid points with a height in [zbottom, ztop]48

and temperature ≥ -40 ◦C that have not already been assigned to another liquid-49

cloud layer.4 See Figure S2c.50

(e) Sample to determine the LWC at the center of the cloud: LWCcenter ∈ U [0,LWCmax
center].51

(f) At each height in the cloud, scale the LWC linearly from LWCcenter at the cen-52

ter to 0 g m-3 at both the top and bottom. See Figure S2d.53

(g) Add Gaussian noise to the LWC profile for this cloud. Specifically, at each height54

in the cloud, add an offset δ, sampled from a normal distribution with mean55

= 0 g m-3 and standard deviation = σLWC. Symbolically, δ ∈ N (0, σLWC). See56

Figure S2e.57

(h) If the previous step led to any LWC < 0 g m-3, increase to 0 g m-3. If the pre-58

vious step led to any LWC > LWCcenter, reduce to LWCcenter. See Figure S2f.59

2 We use the World Meteorological Organization (Slovnik, 1992) definition of the first tropopause: the

lowest height at which lapse rate decreases to < 2 K km-1 (let this be z
′), provided that the mean lapse

rate between z
′ and z

′ + 2 km does not exceed 2 K km-1.
3 A maximum height of ztropopause + 2 km allows clouds to reach 2 km into the stratosphere, as in the

overshooting tops of thunderstorms. Figure 12 of Cooney et al. (2018) shows that few overshooting tops

reach further than 2 km into the stratosphere.
4 Supercooled liquid droplets can exist at temperatures down to ∼-40 ◦C; see Figure 6.29 of Wallace

and Hobbs (2006).
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Figure S2: Procedure for creating a new liquid cloud layer. [a] Original profiles of LWC
and temperature. Temperature is not perturbed in this procedure, but it is shown as a
reference variable, because liquid droplets cannot exist at temperatures below -40 ◦C. [b]
Same as panel a, but the extent of the proposed new cloud is shaded in grey. In this

example, the proposed new cloud has depth D = 5 km. [c] Same as panel b, but corrected
to exclude temperatures < −40◦C and overlap with other liquid cloud. [d] LWC profile

after adding new cloud. In this example, the LWC at the center of the cloud is LWCcenter

= 5 g m-3. [e] Same as panel d, but after adding Gaussian noise for new cloud. In this
example, the noise parameter is σLWC = 1 g m-3. [f] Same as panel e, but after removing

unwanted values created by Gaussian noise.

1.3 Ice cloud60

This procedure has the same parameters as for liquid cloud, but replacing liquid-61

water content with ice-water content (IWC). In other words, replace LWCmax
center with IWCmax

center62

and σLWC with σIWC. Parameter settings are shown in Table S1.63

The procedure itself – shown schematically in Figure S3 – is the same as for liq-64

uid cloud, except in step 2d. The criterion “temperature ≥ -40 ◦C” is replaced with “tem-65

perature < 0 ◦C”.66
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Figure S3: Procedure for creating a new ice cloud layer. [a] Original profiles of IWC and
temperature. [b] Same as panel a, but the extent of the proposed new cloud is shaded in
grey. In this example, the proposed new cloud has depth D = 5 km. [c] Same as panel b,
but corrected to exclude temperatures ≥ 0◦C and overlap with other ice cloud. [d] IWC
profile after adding new cloud. In this example, the IWC at the center of the cloud is

IWCcenter = 5 g m-3. [e] Same as panel d, but after adding Gaussian noise for new cloud.
In this example, the noise parameter is σIWC = 1 g m-3. [f] Same as panel e, but after

removing unwanted values created by Gaussian noise.

1.4 Ozone67

Our motivation is to create more complex ozone layers – over a wider range of lo-68

cations, depths, and mixing ratios – than seen in the real atmosphere. The procedure69

has six parameters: minimum and maximum depth (Dmin and Dmax), minimum and max-70

imum height of layer center (zmin
center and zmax

center), maximum ozone mixing ratio at layer71

center (wmax
center), and noise level for mixing ratio (σw). Parameter settings are shown in72

Table S1; the procedure is shown schematically in Figure S4.73

1. Sample to determine the ozone-layer depth: D ∈ U [Dmin, Dmax].74

2. Sample to determine the height of the layer center: zcenter ∈ U
[

zmin
center, z

max
center

]

.75

3. Find all grid points in the ozone layer. These are grid points with a height in76
[

zcenter −
1
2
D, zcenter +

1
2
D
]

that are above the tropopause.77

4. Sample to determine the ozone mixing ratio at the layer center: wcenter ∈ U [0, wmax
center].78

5. At each height in the ozone layer, scale the mixing ratio linearly from wcenter at79

the center to 0 mg kg-1 at both the top and bottom.80

6. Add Gaussian noise to the mixing-ratio profile. Specifically, at each height in the81

ozone layer, add an offset δ sampled from N (0, σw).82

7. If the previous step led to any w < 0 mg kg-1, increase to 0 mg kg-1. If the pre-83

vious step led to any w > wcenter, reduce to wcenter.84
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Figure S4: Procedure for creating a new ozone layer. [a] Original temperature profile,
with proposed extent of ozone layer shaded in grey. In this example, the proposed ozone
layer has depth D = 20 km and center zcenter = 25 km AGL. The tropopause is at 16.5
km AGL, where temperature begins to increase with height. [b] Same as panel a, but

corrected to exclude heights below the tropopause. [c] New ozone profile. In this example,
wcenter = 10 mg kg-1. [d] Same as panel c, but after adding Gaussian noise. In this

example, the noise parameter is σw = 1 mg kg-1. [e] Same as panel d, but after removing
unwanted values created by Gaussian noise.

2 Effects of data perturbation85

Figures S5-S9 show the effects of different levels of data perturbation: light (for one86

set of training data), moderate (for the validation data), and heavy (for the testing data).87

Specific perturbation methods are discussed in Section 3d of the main text and Supple-88

mental Section 1. A key property shown in these figures is that the perturbations to ozone89

are more drastic than those to liquid and ice water, which in turn are much more dras-90

tic than the perturbations to temperature and humidity.91

Note that, as in Table S1, temperature is perturbed only at heights below {1.25, 2.5, 5}92

km AGL in the {lightly perturbed training, validation, testing} data. Thus, above 5 km,93

the temperature distribution is nearly identical across the four datasets (Figure S5). All94

differences above 5 km are caused by differences among the clean datasets, i.e., before95

perturbation. The same is true for other quantities not affected by perturbation: spe-96

cific humidity above 5 km, liquid-water content in the stratosphere, ice-water content97

in the stratosphere, and ozone mixing ratio in the troposphere.98
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Figure S5: Distribution of temperature in [a] the clean training data, [b] the lightly
perturbed training data, [c] the validation data, and [d] the testing data.
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Figure S6: Same as Figure S5 but for specific humidity.
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Figure S7: Same as Figure S5 but for liquid-water content (LWC).
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Figure S8: Same as Figure S5 but for ice-water content (IWC).
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Figure S9: Same as Figure S5 but for ozone mixing ratio.

3 Hyperparameter experiment to determine the best BNN architec-99

ture100

We conduct four hyperparameter experiments, each to determine the best BNN (Bayesian101

neural network) architecture in a given context. The contexts are:102

• for the BNN-only UQ method, trained with clean data;103

• for the BNN/CRPS method, trained with clean data;104

• for the BNN-only method, trained with lightly perturbed data;105

• for the BNN/CRPS method, trained with lightly perturbed data.106

For each context we optimize four hyperparameters: the number of Bayesian fully con-107

nected layers (N fully
b ), number of Bayesian upsampling connections (Nupsampling

b ), num-108

ber of Bayesian skip connections (N skip
b ), and training method for Bayesian layers (repa-109

rameterization or flipout). Bayesian fully connected layers allow the network to do UQ110

for scalar outputs (fluxes), while Bayesian upsampling and skip connections allow the111

network to do UQ for vector outputs (heating rates). The attempted values for each hy-112

perparameter are listed in Table S2.113
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Table S2: Hyperparameters optimized for BNNs.

Hyperparameter Values attempted

Number of Bayesian fully connected layers 2, 3, 4
Number of Bayesian upsampling connections 1, 2
Number of Bayesian skip connections 1, 2
Training method for Bayesian layers Reparameterization, flipout
Spectral complexity 64, 128

We experiment with the first four hyperparameters in particular – defined in Sec-114

tion 3a of the main text – because they are the main choices involved in changing a U-115

net from deterministic to Bayesian. When making fully connected layers Bayesian, we116

start at the layer nearest to the scalar outputs and work backwards. For example, if N fully
b117

= 3, we make the two output layers (labeled “A” in Figure S10) and the preceding layer118

(“B” in Figure S10) Bayesian. Similarly, when making upsampling and skip connections119

Bayesian, we start at the layer nearest to the vector outputs and work backwards. For120

example, if Nupsampling
b = 2 and N

skip
b = 1, the two upsampling connections with high-121

est spatial resolution (“C” in Figure S10) and one skip connection with highest spatial122

resolution (“D” in Figure S10) are made Bayesian. The vector output layer (“E” in Fig-123

ure S10) is always Bayesian if the network is Bayesian. Within a network, the training124

method (reparameterization or flipout) is the same for all Bayesian layers.125
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Figure S10: The optimal U-net++ setup for one context: the BNN-only UQ method with
lightly perturbed training data. Since BNN-only uses the deterministic loss function

rather than the CRPS, N (the ensemble size) = 1. This figure, which shows one specific
U-net++ setup, is analogous to Figure 4 in the main text, which shows the generic

U-net++ setup for UQ. In Figure 4 the double arrows indicate a component that might be

Bayesian, while in this figure the double arrows indicate a component that is Bayesian.

For all hyperparameters not related to UQ, we use the optimal value determined126

in Lagerquist et al. (2023, henceforth L23), with one exception. The exception is spec-127

tral complexity, defined as the number of filters in the first convolutional layer (128 in128

Figure S10, the optimal value determined by L23). With the BNN/CRPS UQ method,129

this spectral complexity makes the network so large that training leads to out-of-memory130

errors. Thus, we attempt values of 64 and 128, as L23 found that a spectral complex-131

ity of 64 is nearly optimal.132

The hyperparameter experiment is a grid search (Section 11.4.3 of Goodfellow et133

al., 2016), meaning that we try all 48 possible combinations of the hyperparameters. We134

use the validation data to find the best model, i.e., best combination of hyperparame-135
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ter values. Because we wish to optimize both point predictions (ensemble means) and136

uncertainty estimates for two variables (heating rates [HR] and fluxes), choosing the “best”137

model is non-trivial, as model performance can be described by a wide variety of error138

metrics. We examine the 12 metrics shown in Figure 5 of the main text: {MAE, REL,139

SSREL, SSRAT, PITD, and MF} for {HR, flux}. MAE is mean absolute error; REL is140

reliability; SSREL is spread-skill reliability; SSRAT is spread-skill ratio; PITD is devi-141

ation from the perfect probability integral transform (PIT) histogram; and MF is mono-142

tonicity fraction measured from the discard test. MAE and REL concern point predic-143

tions only, while the other metrics concern the entire predicted distribution, including144

uncertainty. MAE, REL, SSREL, and PITD are negatively oriented with a perfect value145

of 0.0; MF is positively oriented with a perfect value of 1.0; and SSRAT has a perfect146

value of 1.0, with values of [0,∞) possible. We choose the best model by subjectively147

combining results across the 12 metrics.148

For brevity – and because results are similar across the four contexts – here we149

show the results for only one context, namely the BNN-only method trained with lightly150

perturbed data. These results are shown in Figures S11-S22. In each figure, the circle151

represents the selected model (based on all 12 metrics) and the star represents the model152

with the best value of the given metric. Note that the best values for HR MF (Figure153

S16) and flux MF (Figure S22) are a multi-way tie, as many models achieve a perfect154

MF of 1.0. In this case, the tie is broken arbitrarily and the star marks one of the many155

models with perfect MF. The selected model has N fully
b = 3, Nupsampling

b = 2, N skip
b =156

1, spectral complexity of 128, and uses the reparameterization method instead of flipout.157

The first four of these hyperparameter values are represented in Figure S10.158

Figure S11: MAE for heating rate, computed on validation data for each set of
hyperparameters. “Dense” here is a synonym for “fully connected”. Each panel shows one
spectral complexity and one Bayesian training method (reparameterization or flipout);
within each panel the other three hyperparameters vary. The white circle marks the

selected model, and the white star (hidden behind the white circle) marks the model with
the lowest value for this error metric.
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Figure S12: REL for heating rate, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.

Figure S13: SSREL for heating rate, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.
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Figure S14: SSRAT for heating rate, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.

Figure S15: PITD for heating rate, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.
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Figure S16: MF for heating rate, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.

Figure S17: MAE for flux variables, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.
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Figure S18: REL for flux variables, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.

Figure S19: SSREL for flux variables, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.
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Figure S20: SSRAT for flux variables, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.

Figure S21: PITD for flux variables, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.
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Figure S22: MF for flux variables, computed on validation data for each set of
hyperparameters. Formatting is explained in the caption of Figure S11.

4 Further results of Experiment 1 (clean training data)159

Figure S23 shows error metrics, based on the heavily perturbed testing data, for all160

five UQ methods. This is analogous to Figure 5 in the main text, which shows results161

on the moderately perturbed validation data. The main purpose of Figure S23 is to show162

that the overall ranking of UQ methods is similar between the validation and testing data.163

Most importantly, BNN/CRPS appears to be the best method for both datasets.164
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Figure S23: Comparison of UQ methods on testing data, for models trained with clean
(unperturbed) data. In panel g, higher is better; in panel e, closer to 1.0 is better; in all

other panels, lower is better. “CEF” in panel h is catastrophic-error frequency.

Figure S24 shows detailed results for the BNN/CRPS model on the subset of the165

testing data with perturbed near-surface temperature. This is analogous to Figure 7 in166

the main text, which shows results on the entire testing set. Figures S25-S28 are anal-167

ogous to S24 but for different perturbation types: near-surface moisture, liquid cloud,168

ice cloud, and ozone. Some broad conclusions from these figures are highlighted in the169

main text.170
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Figure S24: Detailed results of the BNN/CRPS method, for a model trained with clean
data, on the subset of the testing data with perturbed near-surface temperature.

Formatting is explained in the caption of Figure 6 in the main text.
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Figure S25: Same as Figure S24 but for the subset of testing data with perturbed
near-surface moisture.
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Figure S26: Same as Figure S24 but for the subset of testing data with perturbed liquid
cloud.
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Figure S27: Same as Figure S24 but for the subset of testing data with perturbed ice
cloud.
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Figure S28: Same as Figure S24 but for the subset of testing data with perturbed ozone.
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5 Further results of Experiment 2 (lightly perturbed training data)171

Figure S29 shows error metrics, based on the heavily perturbed testing data, for all172

five UQ methods. This is analogous to Figure 11 in the main text, which shows results173

on the moderately perturbed validation data. The main purpose of this new figure is to174

show that the BNN/CRPS method appears to be best for both datasets.175

Figure S29: Comparison of UQ methods on testing data, for models trained with lightly
perturbed data. In panel g, higher is better; in panel e, closer to 1.0 is better; in all other

panels, lower is better. “CEF” in panel h is catastrophic-error frequency.

Figure S30 shows detailed results for the BNN/CRPS model on the validation data.176

This is analogous to Figure 12 in the main text, which shows results on the testing set.177
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The main purpose of this new figure is to show that concerning properties of the test-178

ing results are much less concerning in the validation results. Specifically, the positive179

bias for large HR (when ensemble mean ≳ 38 K day-1) decreases from ∼5 K day-1 to ∼1180

K day-1; struggles with perturbed ozone improve (catastrophic-error frequency in the up-181

per stratosphere decreases from 14% to 5%); and overall underestimation of HR uncer-182

tainty improves, with SSRAT increasing from 0.520 to 0.884.183
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Figure S30: Detailed results of the BNN/CRPS method, for a model trained with lightly
perturbed data, on the validation data. Formatting is explained in the caption of Figure 6

in the main text.
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Figure S31 shows detailed results for the BNN/CRPS model on the subset of the184

testing data with perturbed near-surface temperature. This is analogous to Figure 12185

in the main text, which shows results on the entire testing set. Figures S32-S35 are anal-186

ogous to S31 but for different perturbation types: near-surface moisture, liquid cloud,187

ice cloud, and ozone. Some broad conclusions from these figures are highlighted in the188

main text.189
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Figure S31: Detailed results of the BNN/CRPS method, for a model trained with lightly
perturbed data, on the subset of the testing data with perturbed near-surface

temperature. Formatting is explained in the caption of Figure 6 in the main text.
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Figure S32: Same as Figure S31 but for the subset of testing data with perturbed
near-surface moisture.
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Figure S33: Same as Figure S31 but for the subset of testing data with perturbed liquid
cloud.
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Figure S34: Same as Figure S31 but for the subset of testing data with perturbed ice
cloud.
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Figure S35: Same as Figure S31 but for the subset of testing data with perturbed ozone.
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