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Abstract 

Background 

Anthracycline treatment often causes cardiotoxicity in breast cancer patients. Imaging and cardiac biomarkers are now 

used as criteria for cardiotoxicity. However, new biomarkers are needed for early diagnosis. Gene expression may be 

controlled, in part, by little non-coding RNA molecules called microRNAs (miRNAs). Several microRNAs (miRNAs) 

have been linked to cardiovascular illness and are being studied as indicators for cardiotoxicity caused by cancer 

treatments. 

Methods 

We conducted a comprehensive search of the literature until April 2020 using the following databases: 

Medline/PubMed, Cochrane Central Register of Controlled Trials, Scopus, Lilacs, Web of Science, and Embase. 

Anthracycline-induced cardiotoxicity and non-cardiotoxicity patients with breast cancer who participated in cohort 

studies reporting miRNA biomarkers were considered. Moreover, we examined the miRTarBase for experimentally 

confirmed miRNA-target interactions. 

Results 

Only five of the 209 studies that were found met the requirements for inclusion. Two population-based cohorts 

confirmed the validity of Let-7f, miR-1, miR-20a, miR-126, and miR-210. Epirubicin-cardiotoxicity dramatically down-

regulated the pro-angiogenic miRNAs let-7f, miR-20a, miR-126, and miR-210, compared to the non-cardiotoxicity 

group. Although alterations in miR-1 levels have been debated in doxorubicin-treated breast cancer patients with 

cardiotoxicity, they have been demonstrated to give diagnostic and prognostic information in the context of myocardial 

infarction. Target genes for let-7f, miR-1, miR-20a, miR-126, and miR-210 were used to compile a cardiotoxicity-related 

reactome pathway. 

Conclusion 

Anthracycline-based cardiotoxicity during breast cancer treatment seems to be linked to let-7f, miR-1, miR-20a, miR-

126, and miR-210. 

Keywords: Anthracycline, cardiotoxicity, doxorubicin, epirubicin, microRNAs, and breast cancer. 
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Female breast cancer accounts for the majority of all cancer diagnoses and deaths in women [1]. Breast cancer was 

responsible for the deaths of an estimated 627,000 women in 2018, or 15% of all female cancer fatalities, according to 

the World Health Organization [2]. Treatment with anthracyclines like doxorubicin and epirubicin for breast cancer 

has greatly increased disease-specific survival [3]. However, this chemotherapy schedule has been linked to a higher 

risk of cardiovascular complications and death, particularly in women of advanced age. Thus, early detection and 

prevention of cardiovascular disease [4] depend on accurate risk factor classification. 

Recent studies have suggested using cardiac imaging and cardiac biomarkers to detect myocardial damage early in 

cancer patients receiving anthracycline and/or anti-HER2 (human epithelial growth factor receptor 2) treatment [5,6]. 

A reduction in left ventricular ejection fraction (LVEF) is the most generally known echocardiographic characteristic to 

cardiotoxicity assessment. However, LVEF has a low detection threshold for mild myocardial impairment [7]. During 

patient follow-up, circulating markers of cardiac disease onset such as troponins and brain natriuretic peptides have 

shown promise as useful biomarkers for identifying patients at risk for developing myocardial dysfunction [8,9]. 

However, when tissue damage has occurred, only then can circulating levels of these biomarkers rise. 

The role of microRNAs (miRNAs) in anthracyclines-induced toxicity has been studied using in vitro and in vivo models 

[10]. Post-transcriptional regulation of gene expression is achieved by miRNAs, a family of short noncoding RNAs (21-

25 nucleotides) that may either repress translation of mRNA or hasten its destruction [11]. They play a role in a wide 

variety of vital biological processes, including embryonic development, cell signaling, cell division, intercellular 

communication, and even apoptosis. It is important to note that aberrant miRNA expression has been linked to the 

onset and development of clinical disorders, such as heart illnesses [12]. 

Increased plasma levels of miR-1, miR-133a, and miR-208 were seen in rats that had been treated with doxorubicin 

[13,14]. Specifically, miR-133a levels quickly rose during acute myocardial infarction and were shown to be more 

sensitive than cardiac troponin T [15]. Additionally, 25 breast cancer patients who had received anthracycline-based 

chemotherapy showed increased plasma levels of miR-34a and miR-122 after treatment [16]. MiRNAs have been found 

to be promising indicators for cardiac disorders, but their likely participation in anthracycline-induced cardiotoxicity 

[17] still needs further investigation. Despite the clinical significance, most of the investigations have relied on non-

human animal models, which have shortcomings as human biology predictors [18]. 

The purpose of this review was to determine whether or not anthracycline-induced cardiotoxicity is linked to the 

differential expression of circulating miRNAs in breast cancer patients. Pathway analysis was another goal, with the 

intention of uncovering the biological processes associated with these miRNAs. 

2. Substances and Techniques 

The methods used in this review were those recommended in the Cochrane Handbook [19]. Results were reported in 

line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [20]. The 

PRISMA checklist is included in Additional file 1. The present study's protocol has been submitted to PROSPERO 

(http://www.crd.york.ac.uk/ PROSPERO, number CRD42020177833) at the International Prospective Register of 

Systematic Reviews. 

2.1. technique for locating 

P (participants) = women with breast cancer who received anthracycline treatment; E (exposure) = cardiotoxicity; C 

(control) = women with breast cancer who had anthracycline treatment without cardiotoxicity; O (outcome) = 

microRNA expression levels; PECO question set search technique. Medline was searched through PubMed (Medical 

Literature Analysis and Retrieve System Online), CINAHL EBSCO (Cumulative Index to Nursing and Allied Health 

Literature), Scopus, LILACS through Virtual Health Library (VHL) (Latin American and Caribbean Health Sciences), 
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Scielo (Scientific Electronic Library Online), ISI Web of Science (Core Collection), and Embase (Electronic Medical 

Library) for relevant articles. Mesh phrases "breast neoplasms," "cardiotoxicity," and "microRNA" were used in 

conjunction with the entry terms to find relevant articles. The PubMed search approach is outlined in the second 

supplementary file. 

The same phrases were used to search for clinical studies in Google Scholar, www.scholar.google.com/ and OpenGrey, 

www.opengrey.eu/. We searched the databases of the Federal University of Minas Gerais (https://repositorio.ufmg.br/), 

the University of So Paulo (https://www.teses.usp.br/), the Oswaldo Cruz Foundation - Fiocruz 

(https://portal.fiocruz.br/repositorio-institucional-arca), the University of Brasilia (https://repositorio. No restrictions 

were placed on the reports' original language or publication date since any reports that could be relevant were taken 

into account. Additional relevant references were found by searching the reference lists of the featured papers.  

Titles and abstracts of all publications retrieved were reviewed by two writers (J.D.P. and M.T.A.) working separately 

to determine inclusion in this research. In the event of a dispute, a third researcher (K.B.G. or J.A.G.T.) helped to reach 

a conclusion. 

Studies were deemed to be eligible if they compared the miRNA expression levels of patients with breast cancer who 

underwent anthracycline cancer treatment with or without cardiotoxicity. Studies that did not include a non-

cardiotoxicity control group, used animal models or cell lines, or failed to provide the results of interest were 

disregarded. Therefore, we omitted reviews and meta-analyses. 

2.3. Methods for Choosing Studies and Extracting Data 

Studies were obtained from many electronic databases, compiled into a single digital library, and then duplicates were 

eliminated using the EndNote® bibliographic management system. The data was compiled by two reviewers (J.D.P. 

and M.T.A.) using a common form. In cases where two reviewers could not agree on how to extract the data, a third 

reviewer (K.B.G. or J.A.G.T.) was brought in to settle the dispute. Data extraction included the following categories of 

information: 1) research details (such as author and publication year); 2) assessed sample type (plasma, serum, or 

tissue); 3) miRNAs measured; 4) miRNA detection technique; and 5) miRNA expression in each study group. 

Information was also gathered from the control and exposure groups. 

2.4. Evaluation of the reliability of each research 

Using the Newcastle-Ottawa quality evaluation scale 

(http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp), two reviewers (J.D.P. and M.T.A.) evaluated the 

included studies' risk of bias and methodological quality. This scale has eight items, including the following: exposure 

cohort sample representativeness, unexposed cohort selection, exposure measure (e.g., secure records, structured 

interviews), outcome assessment method, study follow-up duration sufficient to test hypothesis, and adequate cohort 

follow-up. Each task is worth a certain number of stars, with nine being the maximum. If the study scores over 6, it is 

of good methodological quality. We examined the expression of miRNAs between the cardiotoxicity and non-

cardiotoxicity groups, and we chose a p-value 0.05 to represent a statistically significant difference. 

We searched the miRTarBase to find target genes for each of the five miRNAs identified in this systematic review, and 

considered their different names or aliases, as follows: let-7f (hsa-let-7a-5p), miR-1 (hsa-miR-1-3p), miR-20a (hsa-miR-

20a-3p and hsa-miR-20a-5p), miR-126 (hsa-miR-126-3p and hsa-miR-126-5p), and miR-210 (hsa-miR-210-3p). 

miRTarBase was created to give complete information on experimentally proven miRNA-target interactions [21]. Only 

target genes that had at least one experimental validation technique (reporter assay, western blot, or qPCR) that 

provided strong evidence according to miRTarBase [21] were selected for the pathway analysis. Target genes for each 
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miRNA were manually extracted (Table 3), and Enrichr [23] was used to search for important well-curated signaling 

pathways based on these genes, with results ordered by p-value ranking 0.5. 

3. Results 

3.1. Cases for Research 

In Fig. 1, we depict the process we followed to determine which papers to include in our meta-analysis. 1. From the 

original pool of 209 studies found, 53 were disqualified as duplicates or non-qualifiers. Studies that did not examine 

anthracycline treatment for breast cancer were not included, nor were experimental studies, review articles, or meta-

analyses. Only the titles and abstracts of the remaining 156 articles were read and scored. At this juncture, J.D.P. and 

M.T.A.'s Kappa coefficient of agreement was 0.862. 

After reading the titles and abstracts, 133 research were removed for not satisfying the inclusion criteria, and 23 

possibly suitable publications were chosen. Reasons for excluding studies were: participants aged <18 years old, 

patients who were not treated with chemotherapy with anthracyclines, studies conducted on animal models or cell 

lines, studies which did not evaluate microRNA levels, those which did not present a proper non-cardiotoxicity group, 

review papers and meta-analyses. MiRNA expression was assessed in breast cancer patients with and without 

anthracycline-cardiotoxicity (cases and controls, respectively) in studies meeting the inclusion criteria. However, after 

reviewing the entire texts of these papers, we found that 18 were ineligible because they either (1) did not assess 

anthracycline-based cancer treatment, (2) did not offer a non-cardiotoxicity group, (4) were done on animal models/cell 

lines, or (5) were not main studies. Finally, five papers [[24], [25], [26], [27], [28]] met the inclusion criteria for this 

systematic review. 

3.2. Methodology and evaluation of study quality 

One of the five investigations was conducted on an Italian population [24], two on Chinese populations [25,28], one on 

Brazilians [26], and one on Americans [27]. Since the results of one research [24] were presented using two distinct 

anthracyclines (doxorubicin and epirubicin), we counted them as two separate reports. Table 1 displays the primary 

features of these items. 

The studies used cohort designs and compared miRNA expression in plasma samples between groups with and 

without anthracycline-induced cardiotoxicity. Two studies in particular looked at miRNA expression as potential 

circulating markers of cardiotoxicity; Rigaud et al. [26] examined data from the CECCY study (NCT01724450), while 

Gioffre et al. [24] evaluated findings from the ICOS-ONE clinical trial (NCT01968200). One of the studies analyzed only 

triple negative breast cancer [28] and one excluded HER-2 positive breast cancer patients [26]. There were four studies 

where cardiac damage was measured at both baseline and after a year of medication. One research [27] was taken into 

account for the definition of a brief follow-up (after the first infusion). 

Four studies included LVEF (measured by echocardiography) as a criterion for cardiotoxicity. One research [24] looked 

at cardiac troponin (troponin I or T) to determine the presence of cardiotoxicity. In the papers that were considered, 

sample sizes varied from 32 up to 363. There were a total of 708 people studied throughout all of these trials, with an 

average age of 45.38 years (cardiotoxicity, n = 76) and a wide range of ages (non-cardiotoxicity, n = 632). 

In some of the trials we looked at, anthracycline was taken in tandem with other cytotoxic drugs. Both Todorova et al. 

[27] and Rigaud et al. [26] combined doxorubicin (cumulative dosage of 240 mg/m2) and cyclophosphamide (600 

mg/m2), then administered paclitaxel (80 mg/m2 or docetaxel 75 mg/m2) thereafter. Patients on cardio-protective 

medications such as angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers, or beta-blockers 

were excluded from all but one study [Rigaud et al., 2016]. Epirubicin (100 mg/m2), cyclophosphamide (600 mg/m2), 

and docetaxel (75-100 mg/m2) were used as neoadjuvant chemotherapy in another research [28]. Qin et al. [25] used 
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the same neoadjuvant chemotherapy regimen in their trial, which included HER2 positive patients who were treated 

with trastuzumab on demand (6 mg/kg, following docetaxel). One research compared the two anthracyclines described 

above [24]. According to the clinical study, epirubicin and doxorubicin had a median cumulative dosage of 360 [270-

360] and 240 [240-240] mg/m2, respectively. Breast cancer patients who participated in the study received taxanes in 

63% of cases, trastuzumab in 22.5% of cases, and imatinib in 2% of cases [29]. 

Two studies [24,27] analyzed the miRNA profiles in the plasma of individuals receiving anthracycline treatment. Only 

Gioffre et al. [24] hand-picked miRNA candidates for single qPCR validation of miRNA array data. Two research 

[25,26] used a literature search to identify miRNAs for further analysis by RT-qPCR, whereas a third study [28] did not 

reveal the candidate miRNA selection procedure. 

Supplemental material 3 displays the results of the quality evaluation of the included studies using NOS for cohort 

studies. The typical level of NOS was an 8. All studies had a low risk of bias (scoring 6), indicating that they were of 

excellent quality. 

3.3. MicroRNAs that are differentially expressed between anthracycline cardiotoxicity and non-cardiotoxicity in 

breast cancer patients 

Two studies solely looked at miRNA expression initially [25,28]. One research, however, analyzed miRNA expression 

before and after the first dosage of the medicine [27], whereas the other studies analyzed miRNA expression before 

and after therapy at least twice [24,26]. 

Different investigations have reported varying numbers of miRNAs with differential expression between individuals 

with cardiotoxicity and those without, from 3 [24] to 32 miRNAs [27]. Forty microRNAs were found to have 

significantly varied expression levels throughout the five trials (p 0.05; Table 2). Four microRNAs (let-7f, miR-20a, miR-

126, and miR-210) exhibited consistent down-regulation in the cardiotoxicity group compared to the non-cardiotoxicity 

group in two investigations [25,28]. Only miR-1 exhibited inconsistent findings, with reports of down-regulation in 

one research [27] and up-regulation in another [26] among individuals with cardiotoxicity. 

In particular, one research examined people with and without cardiotoxicity and found that 26 miRNAs were up-

regulated in the cardiotoxicity group [27]. Another research [24] found that three miRNAs had higher expression levels 

in individuals with cardiotoxicity. Additionally, three miRNAs were down-regulated in patients with cardiotoxicity 

who were treated with anthracyclines for breast cancer in two separate investigations [25,27], and one miRNA was 

down-regulated in patients with cardiotoxicity who were treated with anthracyclines in a third study [28]. 

The levels of 11 miRNAs (let-7b, miR-17-3p, miR-18a, miR-19b-1, miR-130a, miR-146a, miR-148a-3p, miR-208a, miR-

208b, miR-296, miR-423-5p) were not different between the cardiotoxicity and non-cardiotoxicity groups (p > 0.05, data 

not show). 

3.4. Five miRNAs showed differential expression, and their target genes were analyzed for pathways. 

We employed a strategy centered on the target genes reported in the miRTarBase for the five miRNAs (let-7f, miR-1, 

miR-20a, miR-126 and miR-210) or their aliases. Notably, let-7f and miR-1 each had a different number of target genes, 

ranging from 46 to 80 (Table 3). We then used the target genes for each miRNA to conduct a pathway analysis and look 

for potential biological pathways involved in anthracycline-induced cardiotoxicity. Each of the five miRNAs' reactome 

pathways is shown in Fig. 2. For example, the "Signal transduction R-HAS-162582" pathway is shared by let-7f, miR-1, 

miR-20a, and miR-126 (Fig. 2), while the "Cellular responses to stress R-HAS-2262752" route is shared by let-7f, miR-

20a, and miR-210 (Fig. 2). 

4. Discussion 
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The diagnosis of acute myocardial damage prior to the established malfunction [17] makes the hunt for new biomarkers 

for the early detection of cardiotoxicity therapeutically important. Researchers in this area have found evidence that 

miRNAs have a significant role in regulating anthracycline-induced heart damage [[13], [14], [15], [16]]. Because they 

are persistent in circulation, resistant to degradation by nucleases, and may be identified prior to the development of 

clinical signs [30], circulating miRNAs have the potential to serve as non-invasive biomarkers. The determination of 

the optimal miRNA candidates for cardiotoxicity evaluation is complicated by the fact that studies have showed 

conflicting findings regarding miRNA expression patterns [31]. Furthermore, considerable variation was also detected 

in various studies related to cardiotoxicity criteria, the number of patients involved and the number of miRNAs studied 

[32]. We conducted this meta-analysis to systematically analyze all studies that investigated the differential expression 

of miRNAs in breast cancer patients because of the relevance of miRNAs as diagnostic biomarkers in anthracycline-

induced cardiotoxicity. Five microRNAs (let-7f, miR-1, miR-20a, miR-126, and miR-210) were shown to be considerably 

downregulated in two groups of breast cancer patients experiencing anthracycline-induced cardiotoxicity. 

The let-7 family includes the pro-angiogenic miRNA let-7f [27]. This molecule has angiogenic and endothelial action 

and alters the clinical outcome for ischemic stroke in young people [13]. Directly affecting TGF- and vascular 

endothelial growth factor (VEGF) [27], Let-7f aids the vascular system. In dilated cardiomyopathy, decreased LVEF 

was also observed to be associated with reduced let-7f expression [27]. Therefore, let-7f may protect patients receiving 

anthracycline treatment from cardiotoxicity [27], lowering the risk of cardiac dysfunction. Breast cancer patients who 

had anthracycline-induced cardiotoxicity had lower levels of let-7f compared to those who did not experience 

cardiotoxicity, according to two Chinese studies included in this systematic review [25,28]. Based on their hypothesized 

pro-angiogenic function, 14 miRNAs were chosen for evaluation in both investigations using RT-qPCR. The validation 

of miRNAs on an independent cohort of participants helps to strengthen the use of miRNAs as minimally invasive 

screening and triage tools prior to further diagnostic assessment, even when miRNA candidates were picked from the 

literature or based on past evidences. In addition, the authors included a 12-month follow-up period and epirubicin 

(dosage of 100 mg/m2) chemotherapy patients in their study. In all trials, cardiotoxicity was defined as a reduction in 

LVEF of 10% from baseline, with an endpoint of 53% or less. The reliability of comparing findings is ensured by the 

consistency in research design and miRNA detection technology. Furthermore, let-7f was identified in plasma miRNA 

expression profiles from Chinese women with breast cancer in these two investigations, limiting generalizability. 

Validation of these results requires more research using samples from other demographics. 

According to the results of the pathway study, one of let-7a-5p's target genes is LIN28A (Lin-28 Homolog A). The 

importance of Lin28a in pathological cardiac hypertrophy in a mouse model was recently shown [33]. Lin28a and 

Lin28b, two closely related RNA-binding proteins, play important roles in pluripotency, organismal development, 

tissue healing, and oncogenesis via their ability to block microRNA let-7 maturation or by directly binding to mRNAs 

to control their abundance and translation [34,35]. The miR-17 family, of which miR-20a is a part, is part of the miR-

17/92 cluster, a group of genes with an oncogenic function that shows differential expression in breast cancer, 

particularly in estrogen receptor-negative tumors [36]. Notably, the miR-17/92 cluster was disrupted in cardiovascular, 

immunological and neurodegenerative illnesses [37]. Studies have revealed that miR-20a regulates angiogenesis in 

breast cancer and causes vascular mesh defects [38]. In addition, cardiotoxicity patients were shown to have lower 

plasma levels of miR-20a compared to patients who did not experience cardiotoxicity, suggesting that miR-20a might 

serve as a circulating marker of cardiotoxicity caused by cancer therapy [25,28]. 

In the work by Mojdeh Mahmoudian and others, it was found that some microRNAs were expressed more strongly in 

BC tumors compared to the nearby tissues. In particular, hsa-miR-25-3p, -29a-5p, -105-3p, and -181b1-5p were turned 

up, while hsa-miR-335-5p and -339-5p were turned down. Most of these potential microRNAs, except for hsa-miR-339-

5p, were linked to different TNM stages by either going up or down in levels. In addition, all but hsa-miR-105-3p of 

the potential microRNAs were linked to HER-2 status. The study of ROC curves also showed that these six microRNAs 
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could work together as a measure to tell the difference between breast tissue samples from people who don't have 

tumors and those who do. 

Cancers and autoimmune illnesses benefit greatly from miR-126's involvement in angiogenic and inflammatory 

processes [39]. Tumors have been demonstrated to have low levels of miR-126, despite the fact that this microRNA 

may block cancer cell proliferation, adaptability, migration, and invasion. Prognostic patterns for survival in neoplastic 

patients have been developed using miR-126 levels [40]. Furthermore, miR-126 has been linked to reduced myocardial 

damage after episodes of acute myocardial infarction. MiR-126 may be a measure of cardiotoxicity risk, since its levels 

were lower in individuals with cardiotoxicity compared to those without cardiotoxicity in two investigations [25,28]. 

In contrast, a study comparing the pre- and post-chemotherapy levels of miR-126 in 25 breast cancer patients reported 

that miR-126 was substantially up-regulated following neoadjuvant chemotherapy (cyclophosphamide or fluorouracil 

with epirubicin followed by docetaxel or paclitaxel) [16]. Notably, the link between miR-126 levels and indicators of 

cardiotoxicity [16] was not investigated in this investigation. This discrepancy may be because to the reduced or non-

existent cardiac toxicity. Furthermore, miR-126's mechanisms inducing cardiotoxicity remain elusive. 

The endothelial cell response to hypoxia is regulated by miR-210, which also has powerful anti-hypoxia properties. 

Capillary network development, as well as endothelial cell migration and differentiation, were all shown to be 

improved by miR-210 [41]. Overexpression of miR-210 protected cells against damage caused by hypoxia in vitro [42]. 

Furthermore, it has been revealed that miR-210 is positively regulated in cardiac stem cells under hypoxia to inhibit 

apoptosis and stimulate cell migration [43]. In cells of breast cancer lineage, while in a hypoxic environment, miR-210 

stimulated metastasis, proliferation and self-renewal [44]. Importantly, a connection between miR-210 levels and the 

decrease in LVEF was identified in a sample of 97 breast cancer patients under anthracycline therapy; twelve developed 

cardiotoxicity with a drop in baseline LVEF [45]. Patients with cardiotoxicity have lower miR-126 levels compared to 

healthy controls [25,28]. Taken together, our findings imply that the differential control of miR-126 may affect 

cardiotoxicity. 

The miR-1 is encoded by two separate genes, miR-1-1 and miR1-2, which are found on chromosomes 20 and 18, 

respectively. Following their export to the cytoplasm by the Exportin 5 protein, the two precursors are processed into 

mature versions of miR-1 that are otherwise indistinguishable. miR-1 has been linked to several cancers, including 

breast cancer [46]. In contrast to other tissues, cardiac muscle seems to have an increased level of miR-1 [47]. persons 

who have suffered from acute myocardial infarction have greater plasma levels of miR-1 compared to healthy persons. 

Due to its high levels of expression in skeletal muscle, miR-1 has been hypothesized to be secreted by dead cardiac 

myocytes [48]. Patients with breast cancer who were treated with doxorubicin and had cardiac dysfunction after cycles 

2, 3, and 4 had higher plasma levels of miR-1 [26], whereas miR-1 was down-regulated after the first dosage of 

doxorubicin [27]. Both investigations looked at doxorubicin-treated patients, although they used different dosing and 

combination regimens [26,27]. Their results may vary because of the chemotherapy cycles (dosage, duration, and 

periodicity) and drug combinations, since cardiotoxicity is linked to both the peak plasma concentration and 

cumulative dose of anticancer medications [49]. Different molecular subtypes of breast cancer may also lead to varying 

clinical outcomes, which may account for the discrepancy in results. It's crucial to note that various sample sizes and 

techniques of detection were used. Rigaud et al. [26] specifically chose 6 potential miRNAs based on the literature to 

test for aberrant cardiac function in the plasma of 56 breast cancer patients. However, Todorova et al. [27] used a 

miRNome PCR panel to profile plasma from 20 individuals suffering from cardiotoxicity related to breast cancer. 

Results may vary and be difficult to compare when using multiple commercial kits and methods. Finally, in a study 

comparing doxorubicin with epirubicin for the treatment of breast cancer, Gioffre et al. [24] found no statistically 

significant variations in miR-1 levels between the two groups. Because LVEF didn't decline, cTnT and cTnI levels were 

used to determine how anthracycline affected these patients [24]. Two additional investigations, however, used LVEF 

to evaluate cardiotoxicity [26,27]. Using an OpenArray screening, miR-1 was not observed to be differently expressed 
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at baseline, throughout therapy and at follow-up, perhaps because few patients developed cardiac toxicity [24]. This 

work is unique in that it validated the expression of miRNAs in the same plasma samples using a second RT-qPCR 

approach, this time using TaqMan assays. 

We searched the miRTarBase for target genes for the five miRNAs (Table 3) and identified significant Reactome 

pathways (Fig. 2) related to anthracycline-induced cardiotoxicity. Target genes for microRNAs let-7f, miR-20a, and 

miR-210 were used to identify the "Cellular responses to stress R-HAS-2262752" pathway. Accordingly, redox cycling 

and oxidative stress are among the well-known molecular mechanisms connected to doxorubicin-induced 

cardiotoxicity [[50], [51], [52], [53]]. Specifically, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have 

been shown in recent research to have a significant role in both the pathogenic process of oxidative stress and the 

response of cells to oxidative stress [54,55]. Recent research, however, has shown that redox cycling is not the only 

cause of doxorubicin's cardiotoxicity. Anthracycline-dependent regulation of important signaling pathways affecting 

DNA damage response, cardiomyocyte survival, cardiac inflammation, energy stress, and gene expression 

modification [56] is one new hypothesis. Target genes for microRNAs let-7f, miR-1, miR-20a, and miR-126 were used 

to identify the "Signal transduction R-HAS-162582" pathway. Reactive oxidative stress, interference in 

apoptosis/growth/metabolism, and angiogenic imbalance are all implicated in anthracycline-associated 

cardiomyopathy, as reviewed by a recent molecular breakthroughs review [52]. 

Predicting which patients exposed to anthracyclines would go on to develop cardiomyopathy and heart failure has 

been difficult [52]. Predictive genetic indicators of functional significance for doxorubicin-induced cardiotoxicity and 

heart failure were previously established utilizing human Induced Pluripotent Stem Cells-derived cardiomyocytes 

[57]. Long-term doxorubicin treatment downregulates genes involved in apoptosis, DNA damage, and the oxidative 

stress response. After two and six days of treatment with 156 nM doxorubicin, several groups of genes were found to 

be down-regulated (sarcomere, myofibril, contractile fiber, and regulation of heart contraction genes) or up-regulated 

(stress response, p53 signaling pathway, and apoptosis genes), returning to control levels after the drug was removed 

[57,58]. The originality of this review and route analysis was its greatest asset. This is the first systematic study that we 

are aware of that specifically addresses the function of miRNAs in anthracycline-induced cardiotoxicity and how it 

affects the prognosis of breast cancer patients. We also demonstrated that two pathways, "Signal transduction R-HAS-

162582" and "Cellular responses to stress R-HAS-2262752," are common to many of the miRNAs. 

The present research contains several flaws, despite the fact that the literature search was performed in accordance 

with conventional recommendations. There were just five qualifying papers in this systematic review. Although we 

were able to identify five miRNAs that are linked to anthracycline-based cardiotoxicity, evaluating their potential 

application for early cardiotoxicity monitoring during chemotherapy was challenging due to the limited number of 

papers reporting on these miRNAs. Some studies do not adequately describe the population they studied (e.g., 

histological classification of breast cancer type, number of patients, age), the treatment they used (e.g., total or 

cumulative anthracycline dose), or the methods they used to assess cardiotoxicity (e.g., echography, troponins, etc.). 

Notably, nearly no research included or excluded individuals who were using cardioprotective medicines, despite the 

fact that these treatments have been shown to have positive benefits on cardiovascular health. Although the authors 

did not examine potential confounding variables or compensate for them in the study, the presence of comorbidities is 

an important factor that might hasten cardiotoxicity. Studies that chose just previously published miRNAs (such miR-

1) were also included, which is a constraint. Indeed, the studies demonstrated substantial heterogeneity in the 

management of breast cancer, with regards to both the use of additional concurrent medicines known to have 

cardiotoxic effects and the duration of follow-up. Therefore, in this systematic review, the small number of studies with 

the same differentially expressed miRNA makes it difficult to undertake a quantitative analysis of the data (meta-

analysis). Moreover, the majority of research merely reported whether or not the miRNA was substantially up- or 

down-regulated, rather than including the raw or normalized miRNA expression data. Five microRNAs were 
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identified in this systematic review as potentially being involved in anthracycline-induced cardiotoxicity in breast 

cancer patients. However, large prospective studies are required to corroborate this. Additional research into miRNAs 

linked to other pathways in the cardiotoxic process is needed, and studies using screening methods such as microarrays 

and/or RNAseq approaches should be conducted. 

5. Conclusion 

Five microRNAs (let-7f, miR-1, miR-20a, miR-126, and miR-210) were identified via our systematic review as having 

the ability to predict anthracycline-induced cardiotoxicity in breast cancer patients. These miRNAs and their targets 

engage in pathways of recognized importance for cardiotoxicity pathophysiology, such as pro-angiogenesis and 

myocardial infarction. It is possible that cellular responses to stress and signal transduction pathways are involved in 

anthracycline-induced cardiotoxicity, as shown by analysis of the target genes discovered for the five miRNAs. 

Considering their therapeutic potential as early prediction tools and prognostic indicators, we believe this is the first 

comprehensive study to examine the differential expression of circulating miRNAs in breast cancer patients impacted 

by anthracycline cardiotoxicity. 
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