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Key Points: 7 

• We implement a rotated staggered grid (RSG) elastic wave solver based on open-source 8 

finite-difference Python package.  9 

• This wave solver is optimized and can simulate the 2D/3D elastic wave propagation in 10 

complex anisotropy media and structure. 11 

• The stability and performance of this RSG wave solver is tested and compared to traditional 12 

standard staggered grid (SSG).  13 

  14 



manuscript submitted to Earth and Space Science 

 

Abstract 15 

The progression of computational technologies has catalyzed a better understanding into 16 

the authentic properties of geological materials. Seismic anisotropy, a pivotal elastic characteristic 17 

of Earth's subsurface, profoundly affects seismic wave propagation, underscoring the need for its 18 

precise modeling to interpret geophysical data and to unravel subsurface structures. In response, 19 

we have engineered and implemented a Rotated Staggered Grid (RSG) finite-difference solver, 20 

integrated with the open-source finite-difference framework Devito, for modeling of wave 21 

propagation in intricate anisotropic media across two-dimensional (2D) and three-dimensional 22 

(3D) domains. We explore the foundational principles of finite-difference modeling and stress-23 

velocity relationship and compare the RSG with the Standard Staggered Grid (SSG). Our 24 

implementation details optimization using fewer derivative operations and source excitation 25 

techniques to addresses the checkerboard artifacts. Our analysis highlight that the RSG scheme 26 

outperforms SSG in complex anisotropic media, in maintaining the stability of the wavefield. 27 

Performance evaluations demonstrate that the RSG approach is a robust alternative for 2D 28 

modeling, providing enhanced stability and precision, thereby enabling its regular application in 29 

seismic studies without the burden of excessive computational costs. This wave propagator is 30 

intended to deepen the geophysical understanding of complex anisotropy and its geological 31 

implications, thereby facilitating more comprehensive and frequent investigations into the 32 

challenges posed by complex anisotropic media and structures. 33 

Plain Language Summary 34 

Anisotropy, the variation in material properties with direction, is a fundamental aspect of 35 

the Earth's subsurface that should be accurately characterized to enhance our understanding of 36 

seismic wave dynamics. The complexity of elastic anisotropy necessitates advanced study to 37 

improve interpretations of seismic data, which are critical for geophysical exploration and seismic 38 

risk assessment for fractured media. Although conventional finite-difference method for seismic 39 

wave modeling is computationally efficient, it has been limited in their ability to capture these 40 

complex anisotropic behaviors, leading to computational instability. Recognizing the need for a 41 

more capable modeling strategy, we implement a Rotated Staggered Grid (RSG) wave propagator 42 

based on an open-source finite-difference package. Despite the theoretical proposal of this method 43 

two decades ago, a practical and openly accessible application has been notably absent in the field. 44 



manuscript submitted to Earth and Space Science 

 

This RSG wave propagator effectively addresses the checkerboard problem and supports arbitrary 45 

even-order spatial finite-differencing, thereby enhancing the accuracy of seismic wavefield 46 

simulations. We evaluate the RSG wavesolver’s stability and performance and offer a comparative 47 

analysis with traditional Standard Staggered Grid (SSG). The findings demonstrate that our RSG 48 

implementation not only resolves the challenges associated with complex anisotropy but also 49 

provides a stable and precise alternative for the seismic modeling. 50 

1 Introduction 51 

Modeling seismic wave propagation is an important tool for understanding the interior 52 

structure of the earth (Tromp et al., 2004), for evaluating geological hazards (Chaillat et al., 2009), 53 

for mapping the elastic physical properties of unreachable rocks (Sidler et al., 2013), and for 54 

detailed subsurface imaging in the pursuit of resources (Virieux & Operto, 2009). While analytical 55 

solutions provide rapid answers in simplified geometries, numerical modeling are required to 56 

understand more complex wave propagation in intricate geological and anisotropic structures. 57 

Essentially, numerical models solve the wave equation within a defined structure.  A 58 

variety of numerical methods have been developed that include the spectral element method (SEM) 59 

(Komatitsch & Tromp, 1999), the pseudo-spectrum method (PSM) (Kosloff & Baysal, 1982), 60 

finite-element method (FEM) (Serón et al., 1990), finite-difference method (FDM) (Virieux, 61 

1986), and finite-volume method (FVM) (Dormy & Tarantola, 1995). All of these perform to 62 

varying degrees of success depending on the final application.  Of these, the finite difference 63 

methods are most straightforwardly implemented and remain widely used (Graves, 1996; 64 

Levander, 1988; Operto et al., 2007).  One disadvantage is that FDM models are constructed of 65 

rectangular cells that unavoidably result in stair-step approximations at curved interfaces resulting 66 

in some error.   On the other hand, the simplified model construction and associated reduced 67 

computational cost provide an advantage.  68 

That said, wave solver performance remains an impediment in modeling of complex 69 

structures with finite-difference method (FDM). Emerging full waveform inversion (Virieux & 70 

Operto, 2009) or adjoint methods (Tape et al., 2009) require updating and recalculating large 71 

forward seismic models thousands of times; calculations that can consume a supercomputer for 72 

days or weeks both taking time and contributing to greenhouse gas emissions.  The tradeoff 73 

between accuracy and computing affordability remains a major concern for all seismic wave 74 
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propagation modeling. Meanwhile, with the advances of computing power future seismic models 75 

should allow for the investigation of more complex geological structures comprised of more 76 

realistic anisotropic material.   Our motivation for this work stems from the need to understand 77 

wave propagation in a 3D fractured anisotropic structure.  78 

As is well known, seismic anisotropy simply means to many that the wave speeds vary 79 

with the propagation direction through an elastic material or structure, although additional 80 

complications arise with wave polarizations, birefringence (shear wave splitting), and differences 81 

between plane wave and ray propagation (Crampin, 1984). The existence of anisotropy has been 82 

known for decades (Helbig & Thomsen, 2005), but it remains largely overlooked or deemed an 83 

unnecessary complication in seismic studies.  All crystalline minerals are elastically anisotropic, 84 

as are foliated, fractured, and layered geological structures (Almqvist & Mainprice, 2017). The 85 

critical examination and quantification of this phenomenon, particularly in weakly anisotropic 86 

media, were significantly advanced through the groundbreaking work of Thomsen (1986). 87 

Nowadays, the utilization of Thomsen’s parameter is common in industry and this approximation 88 

has led better quality seismic imaging (Tsvankin et al., 2010). However, as computational 89 

capabilities progress there is a growing realization (Assad, 2005; Cheadle et al., 1991; Malehmir 90 

& Schmitt, 2017; Schoenberg & Sayers, 1995; Tsvankin, 1997) that Thomsen's approximations 91 

are not sufficient to describe more complicated situations of tilted and fractured formations 92 

necessitating that elastic wave solvers capable of handling more general, lower symmetry cases of 93 

anisotropy.  94 

The standard staggered grid method (SSG) introduced by Virieux (1986) is the most 95 

prevalent finite-difference scheme employed for elastic wave modeling. This scheme leverages 96 

the relationship between particle velocity and stress, strategically placing these components on a 97 

staggered grid. This arrangement effectively suppresses numerical dispersion, compared with the 98 

previous non-staggered grid, where all the components are at the same node.  However, as 99 

demonstrated later, the SSG encounters limitations when dealing with intrinsic anisotropy or in 100 

scenarios where the symmetric axis does not align with the coordinate axis, such as for tilted 101 

transverse isotropy (TTI).  102 

To address these challenges, both the rotated staggered grid (RSG) (Saenger, Gold, and 103 

Shapiro, 2000) and Lebedev schemes (Lisitsa & Vishnevskiy, 2010) were developed to offer 104 
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robust solutions for modeling seismic wave propagation in anisotropic media.  While the Lebedev 105 

scheme offers the advantage of reduced memory usage, the RSG is especially notable for its 106 

decreased computational demand requiring fewer float floating point operations per second 107 

(FLOPs). This efficiency combined with RSG's precision in modeling complex anisotropies makes 108 

it a particularly appealing choice for extensive simulations. Given the distinct advantages and 109 

applications of both methods, the choice between RSG and Lebedev often depends on the specific 110 

objectives and constraints of individual studies. In this paper, while acknowledging the 111 

effectiveness of both approaches, we will primarily focus on the Rotated Staggered Grid (RSG) 112 

method.  113 

Over the years, RSG methodologies have significantly evolved. Bohlen and Saenger (2006) 114 

applied RSG to model Rayleigh waves in 2D and noted that the accuracy is improved by larger 115 

numbers of nodes, suggesting potential difficulties for full 3D modelling. Krüger, Saenger, and 116 

Shapiro (2005) illustrated the efficacy of RSG in handling high elastic moduli contrast and 117 

simulate the seismic wave from a single crack. While limited in 2D with 2nd-spatial order, the 118 

results aligned closely with analytical solutions. Chen, Wang, and Zhao (2006) introduced a 119 

perfectly-matched layer (PML) for 2D RSG to achieve better absorption at the boundary; however, 120 

while effective, the additional computational effort required was not addressed. Bansal and Sen 121 

(2008) brought the study into the 3D realm, leveraging fourth-spatial ordered RSG to model S-122 

wave splitting. Their insights emphasized the significance of S-wave splitting in fracture studies. 123 

W. Wang et al. (2017); Yang, Yan, and Liu (2015) optimize 2D RSG with variable-order and 124 

choice of finite-difference coefficient, respectively. Gao and Huang (2017) use fourth temporal 125 

order for better precision in 2D RSG. Whereas, this can be difficult to realize in 3D modeling due 126 

to the substantial memory demands. K. Wang et al. (2020) delved into fractured media modeling 127 

with 4th-ordered 2D RSG and suggest consistency with theoretical result. Zheng et al. (2023) 128 

implement RSG on GPUs using CUDA and emphasized the performance comparison between 129 

GPU and CPU. However, the implications of varying spatial orders with these platforms were left 130 

unexplored.  131 

The trajectory of studies highlights the necessity for an integrated RSG approach 132 

encompassing both 2D and 3D geometries and media with lower symmetry than transversely 133 

isotropic with arbitrary spatial orders and potential arithmetic optimization.  Here, we first briefly 134 

review the theory of staggered grid finite-difference modeling. We then detail our implementation 135 
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highlighting aspects such as arbitrary spatial order derivatives, optimization techniques, and source 136 

excitation. Finally, we evaluate and benchmark the computational performance of our RSG solver 137 

and compare to SSG. To the best of our knowledge, despite the long-standing proposal of RSG, 138 

no open-source implementations are readily accessible to the public. The code developed in this 139 

study within the existing Devito package is also described and made readily accessible.    140 

2 Background Theory 141 

2.1 Stress-velocity relation 142 

Modeling of seismic wave propagation using finite-difference methods has already been 143 

extensively explored in the literature; and here simply review the fundamental principles. For a 144 

comprehensive understanding, readers are referred to Moczo, Robertsson, and Eisner (2007) and 145 

Iturrarán-Viveros and Sánchez-Sesma (2020). By revisiting these essential equations and their 146 

numerical representations, we aim to set a solid groundwork for our subsequent discussions and 147 

analyses.  148 

The fundamental equation governing the motion of seismic waves is given by the equation 149 

of motion: 150 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 =
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝑓𝑖                                                          ( 1 ) 151 

where 𝜌 represents the density and 𝑢𝑖 denotes the components of the displacement vector 152 

in a x-, y-, and z- Cartesian coordinates, respectively (with i = 1,2,3), ij denotes the Cauchy stress 153 

tensor and fi denotes the external body force applied to the system. The source is activated at 154 

specific points and introduced by the moment tensor, which describes the spatial orientation and 155 

characteristics of the seismic source (Vavryčuk, 2015) within the system or area of interest. The 156 

body force term fi is frequently omitted in many seismic simulations, unless external forces become 157 

dominant, e.g., gravity in low-frequency seismology simulation.  158 

The equation can alternatively be expressed in terms of a stress-velocity relation by 159 

substituting particle velocity for displacement omitting fi: 160 

𝜌
𝜕𝑣𝑖

𝜕𝑡
=

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
      ( 2 ) 161 
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Where vi is denotes particle velocity vector. The relationship between stress and strain in 162 

the context of seismic waves is governed by the elastic Hooke’s Law. For small amplitude 163 

vibrations leading to microscopic deformations, the stress-strain relation remains linear: 164 

𝜏𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙       ( 3 ) 165 

Where Cijkl is the 4th order elastic stiffness tensor with 81 components and kl is the strain 166 

tensor. The rate of change of strain with respect to time can be mathematically expressed in terms 167 

of particle velocities vi, and spatial coordinates xi, as: 168 

𝜕𝜀𝑖𝑗

𝜕𝑡
= 

1

2
(

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)      ( 4 ) 169 

To numerically model the seismic propagation, discretization in space and time of the 170 

equations is necessary.  In a second-order temporal scheme, the discretization stencils can be 171 

formulated as: 172 

𝑣𝑖
+ = 𝑣𝑖 + ∆𝑣𝑖 = 𝑣𝑖 +

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗

1

𝜌
∆𝑡     ( 5 ) 173 

and 174 

𝜏𝑖𝑗
+ = 𝜏𝑖𝑗 + ∆𝜏𝑖𝑗 = 𝜏𝑖𝑗 +

1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

+ ∆𝑡 = 𝜏𝑖𝑗 +
1

2
𝐶𝑖𝑗𝑘𝑙 (

𝜕𝑣𝑘
+

𝜕𝑥𝑙
+

𝜕𝑣𝑙
+

𝜕𝑥𝑘
) ∆𝑡   ( 6 ) 175 

Here two memory-intensive wavefield components of ij and vi represent stress and velocity 176 

components, respectively. In the notation, the absence of an upper script indicates the current field 177 

value, while the superscript '+' designates the field for the subsequent time step. The symbol t 178 

denotes the time spacing. Equations 5 and 6 are elastodynamic equations for elastic anisotropic 179 

media. The finite-difference modeling proceeds through updating these two wavefields vi and ij 180 

with the two Equations 5 and 6 alternatively. 181 

2.2 Standard Staggered Grid (SSG) and Rotated Staggered Grid (RSG) 182 

This section elucidates the distinct evaluation methods employed different schemes, 183 

aiming to provide insights on the process of the modeling and the required finite-difference 184 

operation.  185 
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The Standard Staggered Grid (SSG) assigns components varied locations in a staggered 186 

manner, as illustrated in Figure 1. Within a SSG unit cell, there are three primary nodal types: edge 187 

midpoints, that one of three index is shifted by half of the grid spacing, e.g., shear stress ij, ij; 188 

face centers, that two of three indices are shifted by half of the grid spacing, e.g., vi; cell centers, 189 

that all three indices are shifted by half of the grid spacing, e.g., elastic stiffness Cijkl, density  and 190 

normal stress ij, i=j. Notably, no components are positioned at the vertices. 191 

 192 

 193 

Figure 1. Sketches to compare the Standard Staggered Grid (SSG) and Rotated Staggered Grid 194 

(RSG). Symbols denotes variation of components and their distributed location within the grid. 195 

With the consideration of varying location of difference components, a full expression of 196 

Equation 5 in SSG can be written as: 197 
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∆𝑣𝑖 = 

[
 
 
 
 ∆𝑣𝑥(𝑖𝑥 +

1

2
, 𝑖𝑦 , 𝑖𝑧)

∆𝑣𝑦(𝑖𝑥, 𝑖𝑦 +
1

2
, 𝑖𝑧)

∆𝑣𝑧(𝑖𝑥, 𝑖𝑦 , 𝑖𝑧 +
1

2
) ]
 
 
 
 

=
1

𝜌
∆𝑡

[
 
 
 
 
 𝜕𝜏𝑥𝑥(𝑖𝑥 ,𝑖𝑦,𝑖𝑧)

𝜕𝑥
+

𝜕𝜏𝑥𝑦(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧)

𝜕𝑦
+

𝜕𝜏𝑥𝑧(𝑖𝑥+
1

2
,𝑖𝑦,𝑖𝑧+

1

2
)

𝜕𝑧

𝜕𝜏𝑦𝑥(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧)

𝜕𝑥
+

𝜕𝜏𝑦𝑦(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑦
+

𝜕𝜏𝑦𝑧(𝑖𝑥,𝑖𝑦+
1

2
,𝑖𝑧+

1

2
)

𝜕𝑧

𝜕𝜏𝑧𝑥(𝑖𝑥+
1

2
,𝑖𝑦,𝑖𝑧+

1

2
)

𝜕𝑥
+

𝜕𝜏𝑧𝑦(𝑖𝑥,𝑖𝑦+
1

2
,𝑖𝑧+

1

2
)

𝜕𝑦
+

𝜕𝜏𝑧𝑧(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑧 ]
 
 
 
 
 

   (7) 198 

Where ix, iy and iz, are the indices of the grid cell. ‘+½’ denotes it is staggered by shifting 199 

half grid spacing (x/2, y/2, z/2, respectively). A total of nine derivatives of ij are evaluated to 200 

calculate the increment vi and used to update the velocity wavefield vi. Taking the calculation of 201 

vx(ix+½, iy, iz) as example, assuming a second-order spatial derivative, the increment vx(ix+½, 202 

iy, iz) equals to the sum of three derivatives: 203 

∆𝑣𝑥 (𝑖𝑥 +
1

2
, 𝑖𝑦 , 𝑖𝑧) =

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 

𝜏𝑥𝑥(𝑖𝑥+1,𝑖𝑦,𝑖𝑧)−𝜏𝑥𝑥(𝑖𝑥 ,𝑖𝑦,𝑖𝑧)

∆𝑥
+

𝜏𝑥𝑦(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧)−𝜏𝑥𝑦(𝑖𝑥+

1

2
,𝑖𝑦−

1

2
,𝑖𝑧)

∆𝑦
+204 

𝜕𝜏𝑥𝑧(𝑖𝑥+
1

2
,𝑖𝑦,𝑖𝑧+

1

2
)−𝜏𝑥𝑧(𝑖𝑥+

1

2
,𝑖𝑦,𝑖𝑧−

1

2
)

∆𝑧
      (8) 205 

By taking advantage of the centered finite-difference, although the stress components ij 206 

are staggered, the derivative with respect to three different orthogonal directions elegantly locate 207 

at the same point as vx (e.g., ix+½, iy, iz) 208 

A higher even (2N) order spatial derivative can be expressed as: 209 

∆𝑣𝑥 (𝑖𝑥 +
1

2
, 𝑖𝑦 , 𝑖𝑧) =

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 

∑ 𝐵𝑘𝜏𝑥𝑥(𝑖𝑥+1+𝑘,𝑖𝑦,𝑖𝑧)
𝑁−1
𝑘=−𝑁

∆𝑥
+

∑ 𝐵𝑘𝜏𝑥𝑦(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
+𝑘,𝑖𝑧)

𝑁−1
𝑘=−𝑁

∆𝑦
+210 

∑ 𝐵𝑘𝜏𝑥𝑧(𝑖𝑥+
1

2
,𝑖𝑦,𝑖𝑧+

1

2
+𝑘)𝑁−1

𝑘=−𝑁

∆𝑧
     (9) 211 

Where Bk is the finite-difference coefficient, if the derivative at point xi=0 is desired, a 212 

distribution of neighboring points {(-N+0.5)xi, …, -1.5xi, -0.5xi, 0.5xi, 1.5xi, …, (N-1+0.5) 213 

xi} are used, where xi=x, y, z respectively. The coefficient for orders 2 to 24 are computed 214 

and provided in Appendix A.  215 

To update the wavefield ij and obtain its increment ij with Equation 6, the strain matrix 216 

is computed by firstly calculating ∂vi/∂xj then multiplied with stiffness Cijkl. Similarly, an 217 

expression considering the component location in SSG to calculate the increment ∂vi/∂xj can be 218 

written as: 219 
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𝜕𝑣𝑖

𝜕𝑥𝑗
=

[
 
 
 
 
 
𝜕𝑣𝑥(𝑖𝑥+

1

2
,𝑖𝑦,𝑖𝑧)

𝜕𝑥

𝜕𝑣𝑥(𝑖𝑥+
1

2
,𝑖𝑦,𝑖𝑧)

𝜕𝑦

𝜕𝑣𝑥(𝑖𝑥+
1

2
,𝑖𝑦,𝑖𝑧)

𝜕𝑧

𝜕𝑣𝑦(𝑖𝑥,𝑖𝑦+
1

2
,𝑖𝑧)

𝜕𝑥

𝜕𝑣𝑦(𝑖𝑥,𝑖𝑦+
1

2
,𝑖𝑧)

𝜕𝑦

𝜕𝑣𝑦(𝑖𝑥 ,𝑖𝑦+
1

2
,𝑖𝑧)

𝜕𝑧

𝜕𝑣𝑧(𝑖𝑥,𝑖𝑦,𝑖𝑧+
 1

2
)

𝜕𝑥

𝜕𝑣𝑧(𝑖𝑥,𝑖𝑦,𝑖𝑧𝑧+
1

2
)

𝜕𝑦

𝜕𝑣𝑧(𝑖𝑥,𝑖𝑦,𝑖𝑧+
1

2
)

𝜕𝑧 ]
 
 
 
 
 

    ( 10 ) 220 

Taking the first component ∂vx/∂x as example: 221 

𝜕𝑣𝑥

𝜕𝑥
(𝑖𝑥, 𝑖𝑦 , 𝑖𝑧) =

𝑣𝑥(𝑖𝑥+
1

2
,𝑖𝑦,𝑖𝑧)−𝑣𝑥(𝑖𝑥−

1

2
,𝑖𝑦,𝑖𝑧)

∆𝑥
   ( 11 ) 222 

By second-order centered finite-differencing, the resulted ∂vx/∂x is at (ix, iy, iz), so that 223 

normal strain at (ix, iy, iz) is calculated and then multiplied by stiffness Cijkl according to Equation 224 

6 to obtain normal stress. Note (ix, iy, iz) is where the normal stress is defined. 225 

When calculating the shear strain, e.g. ∂vx/∂y + ∂vy/∂x are evaluated respectively. Taking 226 

second-order centered finite-differencing as illustration: 227 

 

𝜕𝑣𝑥

𝜕𝑦
(𝑖𝑥 +

1

2
, 𝑖𝑦 +

1

2
, 𝑖𝑧) =

𝑣𝑥 (𝑖𝑥 +
1
2 , 𝑖𝑦 + 1, 𝑖𝑧) − 𝑣𝑥(𝑖𝑥 +

1
2 , 𝑖𝑦 , 𝑖𝑧)

∆𝑦
 

( 12 ) 

 

𝜕𝑣𝑦

𝜕𝑥
(𝑖𝑥 +

1

2
, 𝑖𝑦 +

1

2
, 𝑖𝑧) =

𝑣𝑦 (𝑖𝑥 + 1, 𝑖𝑦 +
1
2 , 𝑖𝑧) − 𝑣𝑦 (𝑖𝑥, 𝑖𝑦 +

1
2 , 𝑖𝑧)

∆𝑥
 

Two derivatives ∂vx/∂y and ∂vy/∂x collocate at the point (ix +½, iy +½, iz), where the shear 228 

strain is further evaluated at also. This can be extended to higher even spatial order too with the 229 

same method as Equation 9. Combining Equations 7 and 10, a total of 18 derivative operations are 230 

required to update the wavefield at each time step. 231 

So far, the complete expression of Equation 6 in SSG with strain matrix ij and ij with their 232 

corresponding locations are: 233 
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∆𝜏𝑖𝑗

(

 
 
 

𝑖𝑥, 𝑖𝑦 , 𝑖𝑧 𝑖𝑥 +
1

2
, 𝑖𝑦 +

1

2
, 𝑖𝑧 𝑖𝑥 +

1

2
, 𝑖𝑦 , 𝑖𝑧 +

1

2

𝑖𝑥 +
1

2
, 𝑖𝑦 +

1

2
, 𝑖𝑧 𝑖𝑥, 𝑖𝑦 , 𝑖𝑧 𝑖𝑥, 𝑖𝑦 +

1

2
, 𝑖𝑧 +

1

2

𝑖𝑥 +
1

2
, 𝑖𝑦, 𝑖𝑧 +

1

2
𝑖𝑥, 𝑖𝑦 +

1

2
, 𝑖𝑧 +

1

2
𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧 )

 
 
 

≅ 234 

𝐶𝑖𝑗𝑘𝑙(𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧) 𝜀𝑘𝑙

(

 
 

𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧 𝑖𝑥 +
1

2
, 𝑖𝑦 +

1

2
, 𝑖𝑧 𝑖𝑥 +

1

2
, 𝑖𝑦 , 𝑖𝑧 +

1

2

𝑖𝑥 +
1

2
, 𝑖𝑦 +

1

2
, 𝑖𝑧 𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧 𝑖𝑥, 𝑖𝑦 +

1

2
, 𝑖𝑧 +

1

2

𝑖𝑥 +
1

2
, 𝑖𝑦, 𝑖𝑧 +

1

2
𝑖𝑥, 𝑖𝑦 +

1

2
, 𝑖𝑧 +

1

2
𝑖𝑥, 𝑖𝑦 , 𝑖𝑧 )

 
 

     ( 13 ) 235 

Theoretically, the components of wavefield variable e.g. ij, ij and vj are continuous 236 

functions. Even within an unit cell and square root of half spacing apart, the wavefield ij(ix+½, 237 

iy+½, iz) is different than ij (ix, iy, iz). Although the SSG method's inherent design assures improved 238 

accuracy relative to non-staggered gird without necessitating adjustments in spatial spacing or the 239 

order of the derivative, a notable limitation arises due to this half spacing error, when it is 240 

performed on anisotropic media. Igel et al., (1995) overcome that issue by interpolation operation 241 

in Hooke’s law (Equation 3) using Fourier Transform. For the off-diagonal elements, either the 242 

elasticity tensor Cijkl or the wavefield ij and ij need to be interpolated to avoid error introduced by 243 

half spacing shift. However, this comes with increased computational costs.  244 

The rotated staggered grid (RSG) can effectively cure this problem. In RSG scheme, the 245 

particle velocity components vi are placed at vertices and stiffnesses Cijkl, stresses tij, and density 246 

 components are at the center of the cell (Figure 1). The RSG derivative is calculated from four 247 

rotated directions diagonally across the center of the unit cell for 3D or two diagonal directions for 248 

2D. For generality, all the following expressions are three-dimensional. The positive directions in 249 

the rotated coordinates are:  250 

 

𝑑1̃ =
∆𝑥

∆𝑙
𝐱 +

∆𝑦

∆𝑙
𝐲 +

∆𝑧

∆𝑙
𝐳 

( 14 ) 

 

𝑑2̃ =
∆𝑥

∆𝑙
𝐱 +

∆𝑦

∆𝑙
𝐲 −

∆𝑧

∆𝑙
𝐳 
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𝑑3̃ =
∆𝑥

∆𝑙
𝐱 −

∆𝑦

∆𝑙
𝐲 +

∆𝑧

∆𝑙
𝐳 

 

𝑑4̃ =
∆𝑥

∆𝑙
𝐱 −

∆𝑦

∆𝑙
𝐲 −

∆𝑧

∆𝑙
𝐳 

in case of non-equilateral grid, where x, y, and z are the grid spacings in three 251 

coordinate directions 𝐱 , 𝐲 , 𝐳 respectively. ∆𝑙 = √∆𝑥2 + ∆𝑦2 + ∆𝑧22
 252 

The derivative operator in original coordinates can be replaced with a linear combination 253 

of the four rotated coordinates: 254 

 𝜕

𝜕𝑥
≈

∆𝑙

4∆𝑥
(

𝜕

𝜕𝑑1̃

+
𝜕

𝜕𝑑2̃

+
𝜕

𝜕𝑑3̃

+
𝜕

𝜕𝑑4̃

) 

( 15 ) 
 𝜕

𝜕𝑦
≈

∆𝑙

4∆𝑦
(

𝜕

𝜕𝑑1̃

+
𝜕

𝜕𝑑2̃

−
𝜕

𝜕𝑑3̃

−
𝜕

𝜕𝑑4̃

) 

 𝜕

𝜕𝑧
≈

∆𝑙

4∆𝑧
(

𝜕

𝜕𝑑1̃

−
𝜕

𝜕𝑑2̃

+
𝜕

𝜕𝑑3̃

−
𝜕

𝜕𝑑4̃

) 

After calculating under this rotated staggered scheme, both normal strain and shear strain 255 

components will always locate at the center of the unit cell, then multiplied by the collocated 256 

elasticity tensor Cijkl to calculate the increment of stress ij.  257 

To update the vi, a full expression of Equation 5 in RSG with the corresponding location 258 

of each component written out is: 259 

∆𝑣𝑖 = [

∆𝑣𝑥

∆𝑣𝑦

∆𝑣𝑧

] (𝑖𝑥 +
1

2
, 𝑖𝑦 +

1

2
, 𝑖𝑧 +

1

2
) =

[
 
 
 
 
 
𝜕𝜏𝑥𝑥(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑥
+

𝜕𝜏𝑥𝑦(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑦
+

𝜕𝜏𝑥𝑧(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑧

𝜕𝜏𝑦𝑥(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑥
+

𝜕𝜏𝑦𝑦(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑦
+

𝜕𝜏𝑦𝑧(𝑖𝑥 ,𝑖𝑦,𝑖𝑧)

𝜕𝑧

𝜕𝜏𝑧𝑥(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑥
+

𝜕𝜏𝑧𝑦(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑦
+

𝜕𝜏𝑧𝑧(𝑖𝑥,𝑖𝑦,𝑖𝑧)

𝜕𝑧 ]
 
 
 
 
 

 ( 16 ) 260 
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Because there is no distinction in terms of location between normal stress and shear stress 261 

in RSG scheme. The evaluations on all nine derivatives are similar. To illustrate, we take the 262 

second spatial derivative ∂xx/∂x as example, and it can be expanded easily for all other evaluations: 263 

𝜕𝜏𝑥𝑥

𝜕𝑥
(𝑖𝑥 +

1

2
, 𝑖𝑦 +

1

2
, 𝑖𝑧 +

1

2
) = 264 

 
∆𝑙

4∆𝑥
{

𝜏𝑥𝑥(𝑖𝑥+1,𝑖𝑦+1,𝑖𝑧+1)−𝜏𝑥𝑥(𝑖𝑥,𝑖𝑦,𝑖𝑧)

∆𝑙
+

𝜏𝑥𝑥(𝑖𝑥+1,𝑖𝑦+1,𝑖𝑧)−𝜏𝑥𝑥(𝑖𝑥,𝑖𝑦,𝑖𝑧+1)

∆𝑙

+
𝜏𝑥𝑥(𝑖𝑥+1,𝑖𝑦,𝑖𝑧+1)−𝜏𝑥𝑥(𝑖𝑥,𝑖𝑦+1,𝑖𝑧)

∆𝑙
+

𝜏𝑥𝑥(𝑖𝑥+1,𝑖𝑦,𝑖𝑧)−𝜏𝑥𝑥(𝑖𝑥,𝑖𝑦+1,𝑖𝑧+1)

∆𝑙

}( 17 ) 265 

As it shown by centered finite-difference, the derivative from four direction ends at vertices 266 

(ix+½, iy+½, iz+½). Analogous to Equation 9, the centered finite-difference can be induced to 267 

higher even spatial order.  268 

Similarly, to update ij with Equation 6, the strain component is obtained by firstly 269 

calculating ∂vi/∂xj. A complete expression for ∂vi/∂xj with the corresponding location of each 270 

component in RSG is: 271 

𝜕𝑣𝑖

𝜕𝑥𝑗
(𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧) =

[
 
 
 
 
 
𝜕𝑣𝑥(𝑖𝑥+

1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑥

𝜕𝑣𝑥(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑦

𝜕𝑣𝑥(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑧

𝜕𝑣𝑦(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑥

𝜕𝑣𝑦(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑦

𝜕𝑣𝑦(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑧

𝜕𝑣𝑧(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑥

𝜕𝑣𝑧(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑦

𝜕𝑣𝑧(𝑖𝑥+
1

2
,𝑖𝑦+

1

2
,𝑖𝑧+

1

2
)

𝜕𝑧 ]
 
 
 
 
 

            ( 18 ) 272 

Therefore, the strain components ij are also located at (ix, iy, iz) with elasticity tensor Cijkl 273 

to guarantee the stability of wave propagation. 274 

3 Implementation 275 

3.1 Symbolic computation with Devito 276 

In the constantly evolving landscape of hardware technology, the challenge for physicists 277 

is not just to understand and model physical phenomena but also to continually adapt and optimize 278 

their code to leverage the latest computational platforms. This dual demand can divert significant 279 

time and effort away from primary research objectives. 280 
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Devito addresses this challenge by offering an interface that bridges high-level physics 281 

modeling with the intricacies of modern computation (Kukreja et al., 2016; Louboutin et al., 2019). 282 

Through its symbolic interface in Python, physicists can focus on the physics and mathematics, 283 

while Devito ensures compatibility and optimization for various hardware platforms, translating 284 

the high-level code to low-level C code suitable for CPUs or CUDA code for GPUs. More 285 

information about Devito may be found in Luporini et al., (2020). 286 

Symbolic computing's inherent strength is its ability to manipulate and optimize equations 287 

symbolically before numerical values are even introduced. This pre-emptive optimization allows 288 

for more efficient computational strategies and minimizing redundancy. For instance, by analyzing 289 

the symbolic form of equations, redundancies can be identified and eliminated, and common sub-290 

expressions can be factored out. This not only streamlines the actual computation but also paves 291 

the way for more sophisticated optimizations, such as adaptive mesh refinement or domain 292 

decomposition. Thus, the overarching advantage of Devito and symbolic computing is that it 293 

allows scientists to remain centered on their primary research, confident in the knowledge that the 294 

computational aspects are being managed efficiently and effectively. 295 

3.2 Arithmetic optimization 296 

The wave propagation is based on computing and update two wavefields ij and vi, 297 

(Equations 5 and 6) at each the progressing time. Nine derivative operations are necessary to 298 

update each of vi (Equation 7). Another nine derivative operations of tij with respect to xi are also 299 

required, (Equation 10), resulting in a total of 18 derivative operation in 3D.  In contrast, RSG 300 

takes four times of derivative operation (Equation 15), because each derivative in the original 301 

coordinate consists of four derivative operations in rotated coordinates, see Equations 14 and 15, 302 

ending up with a total of 72 operations. To reduce this number, a minor but useful modification 303 

can be made. When computing the derivative of vi: 304 

𝜕𝑣𝑖

𝜕𝑥𝑗
=

[
 
 
 
 

𝑑𝑙

4𝑑𝑥
(

𝜕

𝜕𝑑1̃
+

𝜕

𝜕𝑑2̃
+

𝜕

𝜕𝑑3̃
+

𝜕

𝜕𝑑4̃
)𝑣𝑥

𝑑𝑙

4𝑑𝑦
(

𝜕

𝜕𝑑1̃
+

𝜕

𝜕𝑑2̃
−

𝜕

𝜕𝑑3̃
−

𝜕

𝜕𝑑4̃
)𝑣𝑥

𝑑𝑙

4𝑑𝑧
(

𝜕

𝜕𝑑1̃
−

𝜕

𝜕𝑑2̃
+

𝜕

𝜕𝑑3̃
−

𝜕

𝜕𝑑4̃
)𝑣𝑥

𝑑𝑙

4𝑑𝑥
(

𝜕

𝜕𝑑1̃
+

𝜕

𝜕𝑑2̃
+

𝜕

𝜕𝑑3̃
+

𝜕

𝜕𝑑4̃
)𝑣𝑦

𝑑𝑙

4𝑑𝑦
(

𝜕

𝜕𝑑1̃
+

𝜕

𝜕𝑑2̃
−

𝜕

𝜕𝑑3̃
−

𝜕

𝜕𝑑4̃
) 𝑣𝑦

𝑑𝑙

4𝑑𝑧
(

𝜕

𝜕𝑑1̃
−

𝜕

𝜕𝑑2̃
+

𝜕

𝜕𝑑3̃
−

𝜕

𝜕𝑑4̃
)𝑣𝑦

𝑑𝑙

4𝑑𝑥
(

𝜕

𝜕𝑑1̃
+

𝜕

𝜕𝑑2̃
+

𝜕

𝜕𝑑3̃
+

𝜕

𝜕𝑑4̃
)𝑣𝑧

𝑑𝑙

4𝑑𝑦
(

𝜕

𝜕𝑑1̃
+

𝜕

𝜕𝑑2̃
−

𝜕

𝜕𝑑3̃
−

𝜕

𝜕𝑑4̃
)𝑣𝑧

𝑑𝑙

4𝑑𝑧
(

𝜕

𝜕𝑑1̃
−

𝜕

𝜕𝑑2̃
+

𝜕

𝜕𝑑3̃
−

𝜕

𝜕𝑑4̃
)𝑣𝑧]

 
 
 
 

  ( 19 ) 305 
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Apparently, there are 12 derivative operations to calculate each row. But only four 306 

derivatives 
𝜕𝑣𝑖

𝜕𝑑1̃
,
𝜕𝑣𝑖

𝜕𝑑2̃
,
𝜕𝑣𝑖

𝜕𝑑3̃
,
𝜕𝑣𝑖

𝜕𝑑4̃
 are needed. The numerical values of these four derivatives can be 307 

cached and reused their combinations to calculate the entire row. By employing this modification, 308 

the derivative operation times can be reduced to 12 (4 derivative/row times 3 rows) instead of 36 309 

(12 derivative/row times 3 rows) originally. This modification trims the total operations from 72 310 

to 48. 311 

In practical tests, a 3D model of dimensions (251, 251, 251) with a 20-point boundary zone, 312 

runs on a computer cluster utilizing a single node with 24 cores, showed a reduction in computation 313 

time from approximately 343-356 seconds to between 303-316 seconds, representing an 314 

improvement of around 11%. 315 

Another optimization is to leverage the inherent symmetries in the stress and strain tensors 316 

to optimize computations. Specifically, the conservation of angular momentum ensures that τij = 317 

τji, and the principle of rigid body rotations confirms εij = εji. With these symmetries in place, 318 

Hooke's Law can be compactly represented using a 6×6 Voigt matrix form, rather than a full 4th 319 

order elasticity tensor. For clarity, Hooke's Law in the Voigt notation is given by: 320 

[
 
 
 
 
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧
𝜎𝑦𝑧

𝜎𝑧𝑥

𝜎𝑥𝑦]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11

𝐶12

𝐶13

𝐶14

𝐶15

𝐶16

𝐶12

𝐶22

𝐶23

𝐶24

𝐶25

𝐶26

𝐶13

𝐶23

𝐶33

𝐶34

𝐶35

𝐶36

𝐶14

𝐶24

𝐶34

𝐶44

𝐶45

𝐶46

𝐶15

𝐶25

𝐶35

𝐶45

𝐶55

𝐶56

𝐶16

𝐶26

𝐶36

𝐶46

𝐶56

𝐶66]
 
 
 
 
 

[
 
 
 
 
 

𝜖𝑥𝑥

𝜖𝑦𝑦

𝜖𝑧𝑧

𝜖𝑦𝑧 + 𝜖𝑧𝑦

𝜖𝑧𝑥 + 𝜖𝑥𝑧

𝜖𝑥𝑦 + 𝜖𝑦𝑥]
 
 
 
 
 

   ( 20 ) 321 

When the anisotropy is tilted, it's crucial to appropriately rotate the Voigt matrix to ensure 322 

the material's coordinate is correctly represented within the global coordinate system (Auld, 1973). 323 

According to our test, adopting the Voigt notation for Hooke’s law, rather than the 4th order tensor 324 

form, can significantly diminishes repetitive floating-point operations in modeling, offering 325 

computational efficiency. Through our testing, we found that implementations utilizing matrix 326 

multiplication exhibit enhanced computational speed compared to those employing tensor 327 

multiplication. However, the degree of this speed advantage is contingent upon varying 328 

computational conditions and the dimensions of the model under consideration. 329 
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3.3 Source excitation 330 

Although the computing domain is discretized into grids, the source/receiver points may 331 

not always align perfectly with a grid node. In such cases, coefficients weighted by the distance 332 

from the source location to its nearest adjacent nodes within the cell (4 nodes for 2D, 8 nodes for 333 

3D) are used to position the source. (Virieux et al., 2012) 334 

Another problem appears when the source is injected at the node point, one sub-grids is 335 

incomplete and uncoupled with another, thus, causes alternating amplitudes between neighboring 336 

grid points and appears as checkerboard pattern (cite figure). To avoid this, a source can be 337 

distributed over several adjacent nodes. (Hustedt et al., 2004; Virieux et al., 2012). However, 338 

smearing out the source point inject to more grids may downgrade the accuracy. In our 339 

implementation to overcome this and meanwhile, we minimize the source point dislocation and 340 

distortion of the wavelet. Instead of the single source point itself (isx, isz), where. is is the index of 341 

the source node, eight neighboring points around the source point for 2D (isx+1, isz+1), (isx, isz+1), 342 

(isx -1, isz+1), (isx+1, isz), (isx -1, isz), (isx -1, isz -1), (isx, isz -1), (isx+1, isz -1) are excited. For 3D, we 343 

also inject eight neighboring points (including source point itself) to fulfill all the stress component 344 

in the grid cell defined by the one grid positive shift in three dimensions. (isx, isy, isz), (isx+1, isy, isz), 345 

(isx, isy+1, isz), (isx, isy, isz+1), (isx+1, isy+1, isz), (isx+1, isy, isz+1), (isx, isy+1, isz+1), (isx+1, isy+1, 346 

isz+1). This source excitation will lead to dislocation less than single spatial spacing. 347 

Figure 2 illustrates how increasing the spatial resolution can somewhat but not entirely 348 

ameliorate the checkerboard effect. Distributing the source injection effectively addresses this 349 

issue.  350 
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 351 

Figure 2. Snapshot of the vertical velocity (vz) wavefield in a 1000m-by-1000m extent with 352 

alternative source excitation methods. (a) single node excitation with spatial spacing = 10m. (b) 353 

distributed source excitation with spatial spacing = 10m. (c) single node excitation with spatial 354 

spacing = 5m. (d) distributed source excitation with spatial spacing = 5m.  355 

4 Results 356 

4.1 Wavefield stability in anisotropic media 357 

To evaluate the stability of RSG in modeling intricate anisotropic media in comparison to 358 

SSG, we analyzed wavefield snapshots from both approaches across varying media complexities. 359 

Four distinct configurations, each with increasing anisotropic intricacy, were examined. The first 360 

configuration uses the simplest isotropic media. The second configuration uses a vertical 361 

transverse isotropic media (VTI) and the third configuration rotates the same VTI media to be 362 
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tilted transverse isotropic media (TTI). The fourth configuration uses an alpha quartz, whose a 363 

trigonal symmetry, from resonance ultrasound spectroscopy (Ogi et al., 2006). The elasticity 364 

parameters, density and geometry are listed in Table 1. In all configurations, model size is 251 × 365 

251 × 251 with 4-meter spacing with eighth spatial order. The sources were 40Hz central frequency 366 

Ricker wavelet, injected via the Mzz component exclusively to highlight shear wave behavior 367 

(Figure 3a). The snapshot of the wavefields at 400ms for SSG and RSG, respectively, are shows 368 

in Figure 3b. 369 
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Table 1. Elasticity parameters, density and geometry of the four configurations 370 

Name ISO VTI TTI α-quartz 

Density (g/cm3) ρ 2.6 2.6 2.6 2.6 

Dip angle θ (°) --- --- 60 --- 

Strike angle ψ (°) ---- --- 30 --- 

C11 (GPa) 98.2 98.2 98.2 86.7 

C22 (GPa) 98.2 98.2 98.2 86.7 

C33 (GPa) 98.2 80.6 80.6 105.5 

C12 (GPa) 36.9 24.0 24.0 6.9 

C13 (GPa) 36.9 10.33 10.33 11.9 

C23 (GPa) 36.9 10.33 10.33 11.9 

C44 (GPa) 30.65 30.65 30.65 58.1 

C55 (GPa) 30.65 30.65 30.65 58.1 

C66 (GPa) 30.65 37.1 37.1 39.9 

C14 (GPa) 0. 0. 0. -18.0 

C15 (GPa) 0. 0. 0. 0. 

C16 (GPa) 0. 0. 0. 0. 

C24 (GPa) 0. 0. 0. 18.0 

C25 (GPa) 0. 0. 0. 0. 

C26 (GPa) 0. 0. 0. 0. 

C34 (GPa) 0. 0. 0. 0. 

C35 (GPa) 0. 0. 0. 0. 

C36 (GPa) 0. 0. 0. 0. 

C45 (GPa) 0. 0. 0. 0. 

C46 (GPa) 0. 0. 0. 0. 

C56 (GPa) 0. 0. 0. -18.0 

 371 
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 372 

Figure 3. (a) Sketch shows the cubic modeling domain for the wavefield stability test. Spatial 373 

spacing is 4m. The red frame outlines the satellite view on the middle slice in z-direction. The blue 374 

frame outlines the cross-section view on the middle slice in x-direction. (b) Wavefield snapshots 375 

(vertical velocity component) of the 3D modeling at 400ms using the four configurations using 376 

SSG and RSG, respectively. (b1-b4) corresponds to the four configurations ISO, VTI, TTI and α-377 

quartz, respectively, with parameters listed in Table 1.  378 

4.2 Numerical dispersion 379 

Numerical dispersion is an artifact that arises in the process of approximating continuous 380 

wave equations using discrete numerical methods. When finite-difference method discretizes 381 

continuous equation for computational purposes, if the spatial sampling is not inadequately small, 382 

the phase velocity of high frequency component with shorter wavelength can be misrepresented. 383 

This will lead to the phenomenon where waves travel at different velocities for different 384 
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frequencies which is not expected for body wave propagation in a pure elastic medium. Numerical 385 

dispersion is different than physical dispersion caused by material properties.  386 

Numerical dispersion can be mitigated by increasing the finite-difference order. Many 387 

studies have derived the numerical dispersion error with various spatial order using dispersion 388 

relation of RSG analytically (Bohlen & Saenger, 2006, p. 33; Hustedt et al., 2004; Krüger et al., 389 

2005; O’Brien, 2010; Saenger et al., 2000), and the solution shows the original direction xi (where 390 

i=1,2,3 corresponds to x-, y- and z- axis) of SSG and rotated axis di (where i =1,2,3,4) of RSG are 391 

more inclined to disperse numerically. While these studies provide quantitative measures of 392 

dispersion errors, often in the form of percentages, these numerical values don't always capture the 393 

practical impact of the discrepancy. Direct comparison of waveforms can offer a more intuitive 394 

and representative understanding of the actual differences arising from numerical dispersion. 395 

In the numerical analysis, we used a model configured for isotropic media with parameters: 396 

vp = 4km/s, vs = 2km/, and density = 2.6 g/cm3. A Ricker wavelet with 50 Hz central frequency, 397 

sufficiently encompass the typical range for most seismic surveys. The spatial increments x and 398 

z are both set to 8 meters, covering a domain of 1000 meters in width and depth. The comparisons 399 

are between two directions, whose the most inclination to be numerically dispersive: xi, e.g. (1,0) 400 

in 2D or (1,0,0) in 3D direction and di, e.g. (1,1) in 2D and (1,1,1) in 3D. The receiver is 300 m 401 

away from the source in the corresponding direction. Various even number spatial orders are 402 

tested. To obtain the same waveform for better comparison, instead of velocity in specific 403 

direction, we plot the divergence of the velocity, which is the volumetric strain rate, in Figures 4 404 

and 5 for 2D and 3D respectively. 405 

In the 2D analysis, the 4th order SSG displays minor numerical dispersion. It's invisible at 406 

45 ° (rotated axis direction) in Figure 4c and slightly discernible at 90 ° (x-direction) in Figure 4a. 407 

However, the 4th order RSG demonstrates a contrasting behavior: the dispersion is mild at 90° 408 

(Figure 4b) but significantly pronounced at 45° (Figure 4d). To adequately counter this dispersion 409 

in RSG, an upgrade to the 8th order spatial domain is necessary, which reduces the dispersion to a 410 

barely noticeable level. For the dispersion to be imperceptible, a 16th order configuration is 411 

required.   412 
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 413 

Figure 4. Result waveform from 2D SSG and RSG modeling at two selected directions xi and di 414 

with increasing spatial order, where i=1, 2. (a) SSG waveform at the receiver location along the 415 

x-, z-axis. (b) RSG waveform at the receiver location along the x-, z-axis. (c) SSG waveform at 416 

the receiver location along the 45° rotated axis (1, 1). (d) RSG waveform at the receiver location 417 

along the 45° rotated axis (1, 1). 418 

In the 3D analysis, the 2nd order RSG exhibits significant numerical dispersion, attributed 419 

to the reduction in nodes per wavelength divided by a factor of √3. The 2nd order 3D SSG performs 420 

adequately in the rotated direction (Figure 5c) but displays noticeable numerical dispersion (Figure 421 

5a). At the 4th order, the 3D SSG becomes satisfactory in both directions, while RSG's 422 

performance remains severely dispersive. Even with spatial orders as high as 24, RSG still 423 

struggles in the rotated direction in Figure 5d.  424 
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 425 

Figure 5. Resulted waveform from 3D SSG and RSG modeling at two selected directions xi 426 

(i=1,2,3) and di (i=1,2,3,4) with increasing spatial order. (a) SSG waveform at the receiver location 427 

along the x-, y-, z-axis. (b) RSG waveform at the receiver location along the x-, y-, z-axis. (c) SSG 428 

waveform at the receiver location along the rotated axis (1, 1, 1). (d) RSG waveform at the 429 

receiver location along the rotated axis (1, 1, 1). 430 

4.3 Performance comparison with SSG 431 

The total computational time for seismic modeling can generally be divided into two main 432 

components: the stencil setup time, which pertains to the preparation of the computational stencil, 433 

and the actual computation time, which accounts for the primary simulation. To assess the 434 
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performance of our optimized RSG solver, we compared its simulation durations with those of an 435 

unoptimized SSG solver, which uses the 4th order elasticity tensor instead of the Voigt notation. 436 

For the 2D model, our simulation covered a domain of 1000 meters by 1000 meters. This 437 

domain was meshed with a variable number of nodes in 2D, leading to distinct values of xi. On 438 

the other hand, the 3D model was set within a fixed 1000-meter cube, characterized by xi=10m. 439 

Both models utilized an explosive 30Hz-central-frequency Ricker wavelet as the source and 440 

operated with a time interval of Δt=0.05ms. We tested the solvers' performance, both in 2D and 441 

3D, across various spatial orders. 442 

From a computational perspective, the 2D tests were executed using 10 out of 64 available 443 

cores, while the 3D tests utilized 48 out of a total of 128 cores. All tests were conducted on a single 444 

computing node, powered by the AMD Epyc 7763 “Milan” CPUs operating at 2.2GHz. Given the 445 

inherent memory demands of 3D modeling, we also conducted a comparative analysis of memory 446 

usage for both solvers in the 3D scenarios. The results of these comparisons, including stencil 447 

setup times, computation durations, and memory consumption, are presented in the Figure 6. 448 
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 449 

Figure 6. (a) 2D modeling with various model size and spatial order. Size denotes of points utilized 450 

in one direction for a square domain. (a1) Time spent on setup the 2D FD stencil as spatial order 451 

increases for SSG and RSG respectively. (a2) Time spent on computing SSG as size increases with 452 

varying spatial order. (a3) Time spent on computing RSG as size increases with varying spatial 453 

order. (b) 3D modeling with a fixed cube model in size (101×101×101) and varying spatial order. 454 

(b1) Time spent on setup the 3D FD stencil as spatial order increases for SSG and RSG 455 

respectively. (b2) Computing time comparison between SSG and RSG as spatial order increases. 456 

(b3) Memory usage comparison between SSG and RSG as spatial order increases. 457 
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5 Discussion 458 

The initial stability tests (Figure 3) in isotropic and VTI media showed promising results 459 

for both RSG and SSG, primarily because the material's symmetry axis remains in alignment with 460 

the coordinate axes (Igel et al., 1995). However, the challenges observed in the TTI medium setup 461 

underscore the vulnerabilities of the SSG approach, especially when the symmetry axis is not 462 

aligned with the coordinate axes. The final test in the a-quartz environment further highlighted the 463 

robustness of RSG in handling complex anisotropic media, in stark contrast to the SSG's inability 464 

to manage the intricacies of such structures. 465 

The rotated staggered grid (RSG) scheme benefits with the stably modeling complicated 466 

seismic anisotropy, on the other hand, suffers more from numerical dispersion, thus has less 467 

computational efficiency. While numerical dispersion is impossible entirely eliminate, it can 468 

certainly be minimized by (i) using finer grid spacings (nodes per wavelength),  (ii) using higher 469 

order derivativse to increase accuracy, and  (iii) reducing the central frequency of the source. 470 

(Saenger et al., 2000). However, lowering the frequency of the source means sacrifice both spatial 471 

and temporal resolution. RSG has more severe numerical dispersion than SSG, because its 472 

inherently number of grid points per wavelength is divided by a factor of square root of 2 for 2D, 473 

and square root of 3 for 3D (Saenger & Bohlen, 2004).  To suppress the numerical dispersion, the 474 

first strategy (i), refining the spatial grid by decreasing the spacing is an effective in lessening 475 

numerical dispersion. However, in many practical scenarios, especially with 3D modeling, 476 

computational resources are constrained. It's crucial to recognize that even a modest reduction in 477 

grid size can escalate the computational cost exponentially. Since the spatial resolution increases, 478 

not only do the number of grid cells rise sharply in 3D, but the time step typically also needs to be 479 

made smaller which further intensifying the computational burden.  The second (ii) of enhancing 480 

the spatial order emerges as an efficient strategy especially when computational power is limited. 481 

This method enhances the precision of derivative evaluations. It does more calculations, but it does 482 

not significantly increase memory consumption, offering a balance for scenarios with limited 483 

memory but ample processing power. For the approach (iii), lower the frequency content 484 

compromises resolution and interaction with small geological features, e.g., thin bed, small-scale 485 
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faults or fractures. With a major focus on approach (ii) and based on the dispersion observation on 486 

the waveform (Figures 4 and 5), we can infer: 487 

1. RSG performs commendably in 2D. The reduction in nodes per wavelength divided by √2 488 

may be countered by increasing the spatial order. This increment, as it was demonstrated in the 489 

performance test, does not substantially inflate computational costs. 490 

2. 3D RSG presents more intricacies. While increasing the spatial order can mitigate the 491 

numerical dispersion to some extent, there seems to be a limit to its effectiveness. For accurate 492 

modeling of anisotropic media, it may be more prudent to rely on approach (i) and utilize a greater 493 

number of grid points. 494 

Lastly, benchmarking the performance of a wave solver is inherently challenging, 495 

especially considering the potential variability when different platforms are utilized. However, the 496 

insights derived from the provided figure are instructive, given that both the RSG and SSG were 497 

executed under identical configurations on the same CPU/platform. 498 

The stencil setup time is independent of the model size (Figure a1). It primarily involves 499 

preparing the stencil formula for updates and is thus solely dependent on the FD order. 500 

Interestingly, the optimized 2D RSG, which employs the Voigt notation and derivative operations 501 

reduction, results in a more concise stencil. Consequently, its stencil setup time is even shorter 502 

than that of the 2D SSG. Furthermore, the 2D RSG's computation time is exceptional. Across all 503 

four model sizes, the 2D RSG consistently outperforms the 2D SSG in computation time. This 504 

efficiency can be attributed to our implementation and optimization strategies, which effectively 505 

counterbalance the increased derivative operations inherent to the RSG.  506 

In the 3D domain, the SSG's stencil setup time is considerably shorter and remains 507 

relatively consistent. Although RSG take longer time to setup the stencil when order increases, the 508 

RSG's performance aligns closely with the SSG for orders 2, 4, and 8 in terms of computing time, 509 

which indicates relative high order is suggested. The higher-order longer stencil is reusable and 510 
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can benefit the entire modeling with better accuracy, though it takes longer to setup. However, 511 

significant increasing computational times are observed for the order 16 RSG.  512 

Memory usage is another critical aspect to consider. The SSG in this test operates with six 513 

parameters, including vp, vs, density , and three Thomsen's parameters. In contrast, the RSG 514 

demands a total of 21 independent elastic constants. Given this disparity, it's unsurprising that the 515 

RSG consumes more memory. However, when evaluating the actual memory usage, the RSG's 516 

consumption is barely double that of the SSG, showcasing its efficiency. 517 

In summarizing the performance, the 2D RSG stands out as an effective choice for 518 

simulating wave propagation in anisotropic media. Users can utilize it confidently in 2D, without 519 

major worries about computational costs. However, for those exploring the 3D RSG, it's important 520 

to recognize that its capability to model complex and general anisotropy comes with higher 521 

computational demands. Additionally, the 3D RSG's aggravated numerical dispersion may 522 

necessitate the use of finer grids, further elevating the computational requirements. 523 

5 Conclusions 524 

We have introduced an implementation of a rotated staggered grid (RSG) wave solver built 525 

upon a symbolic finite difference framework. This solver aims to simulate the elastic wave 526 

propagation in complex anisotropic media or structure and is theoretically applicable for any even-527 

numbered spatial order. We address pertinent issues such as the source injection method to 528 

circumvent the checkerboard effect and provide computational optimizations. Our results highlight 529 

the RSG's superior stability, especially when dealing with lower anisotropic symmetries, 530 

outperforming the conventional standard staggered grid (SSG). Through our tests on numerical 531 

dispersion and waveform observations, we note that although 2D models are prone to numerical 532 

dispersion compared to SSG, its effects can potentially be mitigated using higher spatial orders. 533 

Based on the subsequent performance evaluation, the optimized 2D wave solver proves to be 534 

computationally efficient and could be applied to simulate any geologic problem with complicate 535 

anisotropic structures, without significant concerns about additional computational effort. In 3D, 536 

given the inherent fourfold increase in derivative operations relative to SSG, the RSG solver 537 

demonstrates improved performance, but remains computationally demanding. With the rising 538 
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significance of seismic anisotropy and the continuous advancement in computing capabilities, we 539 

anticipate that this challenge will become less prohibitive in the future. 540 
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media. At the time of submission of the manuscript, the wavesolver is compatible with Devito 554 

version 4.6.2 to 4.8.3.  555 
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Appendix A: Finite difference coefficient for arbitrary spatial order 566 

The FD spatial order (i.e., how many adjacent points are used in evaluating the derivatives) 567 

is one critical factor controlling the modeling accuracy. Use of increasingly higher orders can 568 

suppress numerical dispersion (Marfurt, 1984) without dramatic increases in memory compared 569 

against using finer grids. Despite numerous efforts to identify optimal coefficients (Holberg, 1987; 570 

Lele, 1992; Liu and Sen, 2009), many approaches may require detailed knowledge about the model 571 

(Yang et al., 2015) or specific modifications to the FD stencil based on varying media (Wang et 572 

al., 2017). As a result, these methods might not be as universally applicable as the classical Taylor 573 

Expansion. With advancements in computing capabilities, including expanded memory and faster 574 

I/O, it's desirable for wave solvers to support increasingly high spatial orders. This allows users to 575 

select an order tailored to their available computational resources. In our implementation, we 576 

support arbitrary even-numbered spatial orders and determine the corresponding FD coefficients 577 

using Taylor Expansion. 578 

For a 2D example, a series of adjacent points about x0 are involved in derivative 579 

evaluations, whose location are distributed at (x0+ndl+0.5dl), where n=-N, -N+1, …., N-1, N, in 580 

rotated direction, where dl= √dx2+dz2 (for 2D) and N is the even number spatial order. The finite-581 

difference coefficients C can be determined by solving (Taylor, 2016): 582 

[
𝐶1

⋮
𝐶𝑁

] =
1

𝑑𝑙
[

(−𝑁 − 0.5)0 (−𝑁 + 1 − 0.5)0 ⋯ (𝑁 − 1 + 0.5)0 (𝑁 + 0.5)0

⋮                   ⋮ ⋱ ⋮                        ⋮
(−𝑁 − 0.5)𝑛−1 (−𝑁 + 1 − 0.5)𝑛−1 ⋯ (𝑁 − 1 + 0.5)𝑛−1 (𝑁 + 0.5)𝑛−1

] [
1
⋮
0
] 583 

A more detail and general discussion to generate arbitrary spaced FD coefficient can refer 584 

to Fornberg (1988). Consequently, with this method, our implementation of the solver is capable 585 

to calculate the derivative of arbitrary even spatial order, while it is still limited to the computing 586 

power. The FD coefficients of order 2, 4, 6, 8, 16 and 24, which are used in this study, are 587 

summarized in Table A1. 588 

Table A1. Finite-Difference coefficients for rotated staggered grid with spatial order of 2, 4, 589 

8 ,16 and 24. 590 

Spatial 

order 
2 4 8 16 24 

-12     1.74342842e-09 

-11     -4.81004771e-08 
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-10     6.46359004e-07 

-9     -5.65173186e-06 

-8    8.52346420e-07 3.62967068e-05 

-7    -1.70217111e-05 -1.83631414e-04 

-6    1.66418878e-04 7.69431397e-04 

-5    -1.07727117e-03 -2.79139604e-03 

-4   6.97544643e-04 5.34238560e-03 9.22870290e-03 

-3   -9.57031250e-03 -2.30363667e-02 -3.01471042e-02 

-2  0.04166667 7.97526042e-02 1.06649846e-01 1.17238580e-01 

-1 -1.0 -1.125 -1.19628906e+00 -1.23409107e+00 -1.24699536e+00 

1 1.0 1.125  1.19628906e+00 1.23409107e+00 1.24699536e+00 

2  -0.04166667 -7.97526042e-02 -1.06649846e-01 -1.17238917e-01 

3   9.57031250e-03 2.30363667e-02 3.01471839e-02 

4   -6.97544643e-04 -5.34238560e-03 -9.22874008e-03 

5    1.07727117e-03 2.79141194e-03 

6    -1.66418878e-04 -7.69437092e-04 

7    1.70217111e-05 1.83633083e-04 

8    -8.52346420e-07 -3.62970974e-05 

9     5.65180201e-06 

10     -6.46368086e-07 

11     4.81012311e-08 

12     -1.74345856e-09 
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