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Abstract

Upscaling flux tower measurements based on machine learning (ML) algorithms is an essential approach for large-scale net

ecosystem CO2 exchange (NEE) estimation, but existing ML upscaling methods face some challenges, particularly in capturing

NEE interannual variations (IAVs) that may relate to lagged effects. With the capacity of characterizing temporal memory

effects, the Long Short-Term Memory (LSTM) networks are expected to help solve this problem. Here we explored the potential

of LSTM for predicting NEE across various ecosystems using flux tower data over 82 sites in North America. The LSTM model

with differentiated plant function types (PFTs) demonstrates the capability to explain 79.19% (R2 = 0.79) of the monthly

variations in NEE within the testing set, with RMSE and MAE values of 0.89 and 0.57 g C m-2 d-1 respectively (r = 0.89, p <

0.001). Moreover, the LSTM model performed robustly in predicting cross-site variability, with 67.19% of the sites that can be

predicted by both LSTM models with and without distinguished PFTs showing improved predictive ability. Most importantly,

the IAV of predicted NEE highly correlated with that in flux observations (r = 0.81, p < 0.001), clearly outperforming that

by the random forest model (r = -0.21, p = 0.011). Among all nine PFTs, solar-induced chlorophyll fluorescence, downward

shortwave radiation, and leaf area index are the most important variables for explaining NEE variations, collectively accounting

for approximately 54.01% in total. This study highlights the great potential of LSTM for improving carbon flux upscaling with

multi-source remote sensing data.
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Key Points: 21 

 The LSTM model with differentiated PFTs demonstrates the capability to explain 79.19% 22 

of the monthly variations in NEE. 23 

 The LSTM model exhibited clear advantages over the RF model in capturing the 24 

interannual variations of NEE. 25 

 The relative importance of feature variables for predicting monthly NEE dynamics across 26 

different PFTs in North America was quantified. 27 
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Abstract 29 

Upscaling flux tower measurements based on machine learning (ML) algorithms is an essential 30 

approach for large-scale net ecosystem CO2 exchange (NEE) estimation, but existing ML 31 

upscaling methods face some challenges, particularly in capturing NEE interannual variations 32 

(IAVs) that may relate to lagged effects. With the capacity of characterizing temporal memory 33 

effects, the Long Short-Term Memory (LSTM) networks are expected to help solve this 34 

problem. Here we explored the potential of LSTM for predicting NEE across various ecosystems 35 

using flux tower data over 82 sites in North America. The LSTM model with differentiated plant 36 

function types (PFTs) demonstrates the capability to explain 79.19% (R
2
 = 0.79) of the monthly 37 

variations in NEE within the testing set, with RMSE and MAE values of 0.89 and 0.57 g C m
-2

 d
-

38 
1
 respectively (r = 0.89, p < 0.001). Moreover, the LSTM model performed robustly in predicting 39 

cross-site variability, with 67.19% of the sites that can be predicted by both LSTM models with 40 

and without distinguished PFTs showing improved predictive ability. Most importantly, the IAV 41 

of predicted NEE highly correlated with that in flux observations (r = 0.81, p < 0.001), clearly 42 

outperforming that by the random forest model (r = -0.21, p = 0.011). Among all nine PFTs, 43 

solar-induced chlorophyll fluorescence, downward shortwave radiation, and leaf area index are 44 

the most important variables for explaining NEE variations, collectively accounting for 45 

approximately 54.01% in total. This study highlights the great potential of LSTM for improving 46 

carbon flux upscaling with multi-source remote sensing data. 47 

Plain Language Summary 48 

Net ecosystem exchange (NEE) of CO2 is a crucial process that regulates carbon exchange 49 

between terrestrial ecosystems and the atmosphere. Currently, the growing availability of NEE 50 

measurement data, multi-source remote sensing data and meteorological data, has made machine 51 

learning algorithms a popular approach for estimating large-scale NEE. Various types of NEE 52 

datasets have been derived with different methods; however, the ability in representing the 53 

memory effects of climate and environmental factors remains a significant source of uncertainty 54 

contributed to NEE estimates. To address this issue, we constructed site-level LSTM training 55 

models by plant function types in North America for improving the monthly-scale simulation of 56 

NEE and its interannual variations. The established LSTM model enables the prediction of the 57 

temporal variability of NEE and effectively captures the memory effects over time, showing a 58 

great potential for improving carbon flux upscaling. 59 

1 Introduction 60 

 The net exchange of CO2 between terrestrial ecosystems and the atmosphere (NEE) is an 61 

essential component of the global carbon cycle (Bonan, 2008; Shevliakova et al., 2013). 62 

Accurately estimating NEE is an essential step towards enhancing our understanding of the 63 

feedback between the terrestrial carbon cycle and climate change and better predicting future 64 

climate status. Accurately quantifying terrestrial NEE is also a prerequisite for implementing net-65 
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zero policies. However, estimating large-scale NEE faces great challenges due to the complex 66 

relationships among the physical, chemical, and biological processes.  67 

Currently, there are three main ways for large-scale NEE estimation, including top-down 68 

atmospheric CO2 inversions, terrestrial biosphere models (TBMs) and eddy flux upscaling, the 69 

latter two also calls bottom-up approaches. The top-down approach infers biosphere CO2 fluxes 70 

from atmospheric CO2 observations onboard different observation platforms, such as tall towers, 71 

aircraft, ships, and satellites (Ciais et al., 2014), which utilizes atmospheric CO2 data and a 72 

transport model to deduce the spatiotemporal distribution of carbon fluxes. Atmospheric 73 

inversions are particularly beneficial for constraining large-scale carbon fluxes (He et al., 2023a; 74 

He et al., 2023b), but providing limited spatial information on smaller scales, as uncertainties 75 

increase with spatial scale decreases. The process-based TBMs consider the physical processes 76 

of energy, carbon, and water cycle regulation. Nevertheless, the complexity of the model 77 

structure and the inherent assumptions of specific parameters contribute to substantial 78 

discrepancies in NEE simulations among various ecosystem models (Huntzinger et al., 2012). 79 

Recently, the bottom-up approach for extrapolating eddy covariance (EC) data, i.e., flux 80 

upscaling, shows advantages in accurately quantifying large-scale carbon fluxes. Traditionally, 81 

EC technology has been used for continuous measurements at flux sites to develop and evaluate 82 

NEE models at the site level. Subsequently, by using spatial variability predominantly driven by 83 

Earth observation data, the net exchange of CO2 and energy between terrestrial ecosystems and 84 

the atmosphere can be estimated through spatial extrapolation. Empirical models use statistics to 85 

identify certain patterns between meteorological and satellite remote sensing observations, 86 

enabling them to capture even highly nonlinear relationships among explanatory variables and 87 

carbon fluxes. With the growing availability of global flux observation data and multi-source 88 

remote sensing data, there is an increasing interest in encouraging machine learning (ML) 89 

technology to become another promising method for NEE prediction. Data-driven ML methods 90 

are simple and effective in evaluating NEE, as they are entirely adaptable to the data and do not 91 

rely on assumptions about terrestrial ecosystem patterns (Peylin et al., 2013). Various ML 92 

algorithms have made advancements in estimating ecosystem carbon fluxes and exchange, 93 

including Artificial Neural Networks (Papale & Valentini, 2003), Model Tree Ensemble (Liang 94 

et al., 2020), and Random Forest (RF; Guo et al., 2023). 95 

However, despite significant progress have made in the field of empirically upscaling 96 

NEE from in-situ EC measurements, various sources of uncertainty remain (Jung et al., 2020). 97 

Firstly, many regions around the world only provide point measurements from sparse flux site 98 

networks (Tramontana et al., 2016), which contributes to a significant uncertainty regarding NEE 99 

upscaling at the regional scale. Moreover, the accuracy of ML methods for estimating carbon 100 

fluxes depends heavily on the variables used as driving factors and the limited information 101 

available regarding all major ecosystem features that influence carbon fluxes (Huang et al., 102 

2021). An essential aspect of data limitation is the accessibility of pertinent explanatory 103 

variables, which correspond to in-situ information at the site level and corresponding global 104 

networks. Additionally, predictive factors can also hinder the evaluation of NEE variability, 105 
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emphasizing the need for more important feature variables to enhance our understanding of NEE. 106 

In addition, the upscaling method could also impact flux upscaling, since their abilities in 107 

characterizing the relationship between carbon flux and feature variables vary notably 108 

(Tramontana et al., 2016; Jung et al., 2020).  109 

When employing ML methods for spatial estimation of different carbon and energy 110 

fluxes, NEE is recognized as the most challenging flux to predict (Bodesheim et al., 2018; Jung 111 

et al., 2011; Tramontana et al., 2016). Particularly, the interannual variation (IAV) of NEE has 112 

not been accurately estimated (Jung et al., 2020), predominantly due to the inability to represent 113 

temporal dynamics of climate and vegetation activities. Extreme climate events and human 114 

disturbances exhibit memory effects in the response of NEE. These effects refer to the influence 115 

of past climate and environmental conditions on current and future ecosystem responses (Ogle et 116 

al., 2015). This can lead to nonnegligible interannual changes in the terrestrial carbon budget. 117 

The FLUXNET and AmeriFlux networks are composed of EC flux towers, which offer long-118 

term, high-temporal resolution measurements of the site-scale NEE. Remote sensing, being a 119 

potentially powerful technology, offers ecosystem observations with consistent spatial and 120 

temporal coverage. Recent rapid development of deep learning (DL) technology has shed new 121 

light on Earth system modeling (Irrgang et al., 2021). In particular, its capacity for mining 122 

historical time-series information from multi-source ecosystem observations offers a great 123 

potential for improving terrestrial carbon flux estimation (Besnard et al., 2019; Liu et al., 2023), 124 

which incorporates environmental memory into flux modeling while difficult to implement in 125 

state-of-the-art process models. The Long Short-Term Memory model (LSTM) is a dynamic 126 

statistical method that has demonstrated excellent performance on sequence data, such as crop 127 

field classification (Rußwurm & Körner, 2018). With its distinctive design, the LSTM model can 128 

effectively address long-term considerations and incorporate memory effects of climate and 129 

vegetation, thus aiding in the representation of interannual fluctuations in carbon fluxes (Besnard 130 

et al., 2019). To support this concept, we developed and applied an LSTM model to predict site-131 

level NEE in North America. This model utilizes meteorological and flux data sets from 132 

FLUXNET and AmeriFlux networks, along with multi-source remote sensing data. We use 133 

continuous monthly NEE data, which represent direct samples of NEE from sites encompassing 134 

diverse biological communities and climate types in North America. The predictive performance 135 

of the LSTM model was assessed in combination with NEE data obtained from EC flux towers, 136 

regarding spatial variability and interannual changes in monthly NEE at both site and ecosystem 137 

levels. The advantage of the LSTM model to capture climate and vegetation memory effects in 138 

quantifying spatiotemporal variations in NEE was analyzed.  139 

The reliability of spatial-resolved NEE estimation over large regions is constrained by the 140 

predictive capability of ML- or DL- based upscaling models at the site level. Thus, it is a 141 

prerequisite to address significant challenges in accurately modeling site-level NEE before 142 

conducting large-scale flux estimation. The objectives of this study are to (a) investigate the 143 

differences of established LSTM models with and without distinguishing PFTs in describing 144 

monthly NEE variations at the plant functional type (PFTs) level, (b) analyze the variability of 145 
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LSTM model performances across sites, (c) evaluate the ability of the PFT-based LSTM models 146 

in capturing the IAV of NEE and compare with the modeling results using widely used RF 147 

models, and (d) quantify the relative importance of feature variables for predicting monthly NEE 148 

dynamics across different PFTs in North America. 149 

2 Materials and Methods 150 

2.1. Dataset and Preprocessing 151 

The FLUXNET is a worldwide ecosystem observational network composing observation 152 

sites distributed around the globe. These sites are situated in diverse ecosystems, such as forests, 153 

grasslands, cropland, etc. AmeriFlux is a network especially dedicated to monitoring terrestrial 154 

ecosystems in the Americas. The observation stations affiliated with both networks utilize high-155 

precision instruments and equipment to record meteorological and ecosystem data (Baldocchi, 156 

2020; Novick et al., 2018). Researchers use data from the flux networks to analyze and 157 

comprehend factors related to climate change and energy and material exchange processes in 158 

terrestrial ecosystems, particularly NEE and GPP (Guo et al., 2023; Xu et al., 2019). These 159 

measurements are reliable, allowing for robust analysis of daily, monthly, and interannual 160 

variations in the North American region.  161 

When training the site-level ML algorithm for each site, we constructed a feature dataset 162 

to indicate vegetation growth status. We retrieved monthly NEE and environmental variables 163 

from the FLUXNET2015 (Pastorello et al., 2020) and AmeriFlux data sets (Novick et al., 2018), 164 

including wind speed (WS), vapor pressure deficit (VPD), air temperature (TA), soil water 165 

content (SWC), downward shortwave radiation (DSR), and precipitation (P). To gain a deeper 166 

understanding of plant responses to extreme events like droughts and floods, we specifically 167 

chose SWC to analyze the impact of soil moisture conditions on NEE, despite this may result in 168 

a loss of some site candidates because of SWC unavailability.  169 

The selected remote sensing variables included the normalized difference vegetation 170 

index (NDVI), leaf area index (LAI), solar-induced chlorophyll fluorescence (SIF), and the 171 

fraction of absorbed photosynthetically active radiation (FAPAR). This study utilized the Global 172 

Land Surface Satellite (GLASS) LAI and FAPAR products (Liang et al., 2021). LAI represents 173 

half of the total green leaf area per unit of horizontal land surface, and it is a fundamental land 174 

climate variable defined by the Global Climate Observing System (GCOS) (Fang et al., 2013). 175 

FAPAR is a crucial biophysical variable that directly reflects the photosynthetic activity of plants 176 

(Gower et al., 1999). NDVI, which is a normalized ratio of the near-infrared (NIR) and red 177 

bands, is valuable data for detecting vegetation status (Yin et al., 2022). We use the PKU Global 178 

Inventory Monitoring and Modeling Studies (GIMMS) NDVI product (Li et al., 2023). During 179 

the process of plant photosynthesis, leaves absorb photosynthetically active radiation (PAR) and 180 

release the unused portion of the absorbed energy in the form of fluorescence, which is referred 181 

to as SIF (Verrelst et al., 2016). SIF has a direct and close relationship with photosynthesis and is 182 

reported to highly correlate with NEE (Shiga et al., 2018). However, previous ML predictions of 183 
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NEE seldom incorporated SIF as a feature variable, which may relate to its low spatial resolution 184 

and spatially discontinuation in original satellite retrievals. Here we employed a high-resolution 185 

(0.05°) contiguous reanalysis SIF dataset (GOSIF) (Li & Xiao, 2019), primarily derived from 186 

OCO-2 SIF data, to characterize the response of NEE to climate and environment. To match the 187 

site level NEE data, we utilized the monthly remote sensing observation data from GLASS LAI 188 

and FAPAR products by averaging 8-day data, with a spatial resolution of 0.05° × 0.05°. For 189 

remote sensing data, the pixels covering the site were used to monitor vegetation growth at the 190 

site level. The values at the coordinates of each site are extracted for model training and 191 

validation. Following Ukkola et al. (2021), we employed the cubic spline function to fill in the 192 

blank of the monthly time series obtained, and any negative feature data was set to zero.  193 

Through this approach, we created a comprehensive dataset at monthly scale. The dataset 194 

comprises one label data (NEE) and 10 feature variables (WS, VPD, TA, SWC, DSR, P, NDVI, 195 

LAI, SIF, and FAPAR) that are closely associated with NEE. To match the length of 196 

comprehensive memory effects in each ecosystem and ensure adequate volume of data for 197 

LSTM analysis, we only considered sites with at least one and a half years of NEE records. We 198 

ultimately selected 7471 monthly data records from 82 sites distributed in 9 biological 199 

communities in North America, covering the period from 2001 to 2020 (Figure S1 in Supporting 200 

Information S1). These records encompass measurements of carbon fluxes and meteorological 201 

data. The sites that were selected cover a diverse range of climatic conditions and ecosystems. 202 

Following the vegetation classification scheme of the International Geosphere-Biosphere 203 

Program (IGBP), those sites include 9 vegetation types: evergreen needleleaf forest (ENF; n = 204 

22), grassland (GRA; n = 17), deciduous broadleaf forest (DBF; n = 11), open shrubland (OSH; 205 

n = 10), cropland (CRO; n = 9), permanent wetland (WET; n = 7), closed shrubland (CSH; n = 206 

2), mixed forest (MF; n = 2)  and woody savanna (WSA; n = 2). The type of cropland/natural 207 

vegetation mosaics (CVM; n = 1) was not used for model establishment due to limited site 208 

observation data. Our analysis involved 35 sites from FLUXNET and 47 sites from AmeriFlux. 209 

This analysis is based on NEE data and focuses on conducting monthly scale simulations and 210 

interannual variation predictions across different PFTs and sites. 211 

2.2. The LSTM-based NEE model 212 

2.2.1. LSTM Algorithm 213 

Recurrent Neural Networks (RNNs) can learn to recursively use internal memory states 214 

to process sequential data (Thireou & Reczko, 2007). It has emerged as a valuable tool for 215 

studying vegetation and climate history through time series observations (Reichstein et al., 216 

2018). By internally transmitting data, RNNs effectively encode the information seen at past 217 

time-steps, enabling them to capture temporal dependencies and patterns. As an enhanced 218 

variation of RNN, the Long Short-Term Memory Networks (LSTMs) adeptly model long-term 219 

dependencies by regulating the information flow (Hochreiter & Schmidhuber, 1997). The 220 

connections between units in the LSTM layer create a directed graph along the sequence, 221 
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illustrating the dynamic temporal behavior of time series in this RNN architecture. LSTM can 222 

selectively store and extract information relevant to the problem at each time-step, thereby 223 

enabling a better adaption to the memory effect of environmental variables on the carbon cycle 224 

of terrestrial ecosystems.  225 

2.2.2. Design of NEE Prediction Model  226 

Different PFTs exhibit distinct characteristics and ecological processes, leading to diverse 227 

NEE responses to ecosystem carbon cycle and climate changes. To enhance the utilization of 228 

existing data resources and increase model flexibility, our method directly establishes the LSTM 229 

model for different PFTs to estimate NEE. NEE observations obtained from FLUXNET2015 and 230 

AmeriFlux networks were used as the label data for time series prediction. The site-level inputs 231 

are decomposed into 9 separate PFT groups (ENF, GRA, DBF, OSH, CRO, WET, CSH, MF, 232 

and WSA). Then, we create individual LSTM model for each PFT, optimizing the model 233 

parameters specifically for the PFT site being applied. Furthermore, we included all training data 234 

in an LSTM model and did not consider PFTs during the model establishment process. To 235 

evaluate whether distinguishing PFTs leads to improved model performance in NEE estimation, 236 

we compared the accuracy of each PFT DL model with that of the model without differentiating 237 

PFTs. The model that distinguishes PFTs are referred to as PFT_LSTM models, whereas the 238 

latter are referred to as nonPFT_LSTM models.  239 

The developed LSTM deep learning (DL) model framework is illustrated in Figure 1. It 240 

employs an LSTM layer for the processing and modeling of time series data. Following the 241 

LSTM layer, a dropout layer is incorporated to randomly disregard a portion of neuron outputs 242 

during training, reducing the interdependence between neurons (Baldi & Sadowski, 2014). Early 243 

stopping is implemented to enhance the generalization ability of the networks. The final fully 244 

connected layer is responsible for mapping the output of the dropout layer to the target variable 245 

NEE. We calculate the Mean Squared Error between the predicted results and the label data 246 

(monthly NEE) as the loss function (Rumelhart et al., 1986). To obtain the optimal model, we 247 

employ the Adam optimizer to minimize this loss function (Kingma & Ba, 2017). To achieve the 248 

best model performance, a grid search was employed to determine major model parameters 249 

(Bergstra & Bengio, 2012): learning rate (0.01, 0.001), number of hidden neurons (32, 64, 128, 250 

256), weight decay coefficient (0.01, 0.001, 0.0001), dropout rate (0.1, 0.2, 0.3), and batch size 251 

(8, 16, 32).  252 

Throughout this process, we tested various parameter combinations. Thus, we selected 253 

the parameter set that showed the least deviation between the observed monthly NEE data 254 

provided by each PFT and the corresponding data predicted by the model. To ensure the 255 

comprehensive utilization of time information, the initial 70% of both the feature data set and 256 

label data set from each site served as training data to optimize the weights of networks. The 257 

remaining 30% was employed as test data to assess the model performance. We conducted time 258 

validation for each PFT. The training and testing data sets were used for the development and 259 

evaluation of prediction models, respectively. We utilize EC tower-measured data (WS, VPD, 260 
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TA, DSR, SWC, and P) along with remote sensing data (NDVI, LAI, FAPAR, and SIF) to train 261 

the LSTM model and estimate site-level NEE in North America at monthly intervals. 262 

 263 

Figure 1. The architecture of the designed LSTM deep learning model. 264 

2.3. Model evaluation and uncertainty assessment 265 

In this study, we determined the optimal prediction by iterating the models used to fit the 266 

feature dataset. This approach allowed us to simplify, or at least quantify the empirical 267 

uncertainty caused by the random initialization of the LSTM model. We conducted 10 simulation 268 

training sessions using LSTM for each model to reflect the uncertainty in the model output 269 

(Besnard et al., 2019). Based on this training approach, 90 DL models with optimal parameters 270 

were eventually obtained. For each PFT, these models were employed to generate 10 sets of 271 

predictions for NEE. The uncertainty range of the model output was determined by the 272 

interquartile range of these 10 predicted sets, while the final estimate was derived from the 273 

median of the predicted set. We evaluated the accuracy of each model during the testing period 274 

using three indicators, coefficient of determination (R
2
), Root Mean Square Error, and Mean 275 

Absolute Error (MAE). These indicators are defined as, 276 
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where 
obs

iY
 and 

obs

iY  are the observation value and mean observations, and 
pred

iY
 is the 280 

model predictions. 281 

2.4. Variable Importance Analysis 282 

Due to the diverse nonlinear responses of ecosystems to climate conditions and 283 

environmental control, complex spatiotemporal variability in NEE exists within and across 284 

ecosystems. While traditional LSTM DL algorithms are capable of learning system modeling 285 

and capturing dynamic behavior from observations, they cannot provide explanations for the 286 

spatiotemporal variability of carbon fluxes (Perez-Suay et al., 2020). In the case of carbon fluxes, 287 

it is essential for an ML model to identify and clarify the most significant environmental driving 288 

factor. In revealing the interaction between vegetation biological characteristics and the 289 

environment, quantifying the contribution of these driving factors to monthly NEE changes 290 

poses a significant challenge. The presence of imbalanced sample data among PFT sites can 291 

hinder the effectiveness of statistical analysis, thereby limiting the reliability of traditional 292 

statistical methods in inferring the impact of variables on monthly NEE (Stoy et al., 2009). 293 

To establish a quantitative framework for quantifying the importance of control factors 294 

on NEE changes at PFT sites, we used the boosted regression trees (BRT) model (Elith et al., 295 

2008). The BRT model is a ML method that effectively connects environmental variables with 296 

monthly scale NEE data. It is able to capture physically complex and nonlinear relationships as 297 

well as interactions among variables (Kong et al., 2022; Li et al., 2020). This advantage makes it 298 

particularly suitable for quantifying the contribution of predicted variables to monthly NEE. The 299 

BRT model can identify key features related to the target variable by evaluating the importance 300 

of each feature within the model. We used the BRT model to discern the primary plant traits and 301 

environmental factors that drive NEE changes in each PFT.  302 
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3 Results 303 

3.1. Prediction Performance at the PFT Level 304 

The LSTM models were used to estimate monthly NEE for various PFTs over the flux 305 

sites in North America. We firstly investigated the impact of differentiating PFT to the prediction 306 

accuracy. Figure 2 shows the performance comparison between the LSTM models with 307 

distinguished PFT (PFT_LSTM) and the ones without differentiating PFTs (nonPFT_LSTM) for 308 

monthly NEE predictions. Among all PFTs, the NEE values predicted by the PFT_LSTM model 309 

highly correlated with the observations (r = 0.89, p < 0.001), slightly outperforming the 310 

nonPFT_LSTM models (r = 0.85, p < 0.001). In the PFT_LSTM models, their R
2
 over all PFT 311 

sites increased from 0.72 to 0.79, RMSE decreased from 0.98 g C m
-2

 d
-1

 to 0.89 g C m
-2

 d
-1

, and 312 

MAE decreased from 0.62 g C m
-2

 d
-1

 to 0.57 g C m
-2

 d
-1

. PFT_LSTM models demonstrated 313 

higher accuracy compared to the nonPFT_LSTM models, with significantly higher R
2
 and lower 314 

RMSE and MAE.  315 

The performances of the LSTM models varied across PFTs (R
2
 shown in Figure 2c and 316 

RMSE, MAE can be found in Table S2 in Supporting Information S1). Different PFT models 317 

employed various driver data and architectures, leading to slightly different performance and 318 

generalization abilities of the trained LSTM model for the NEE predictions. For PFT_LSTM 319 

models, the median R
2
 ranged from 0.51 to 0.93 for each PFT test set, with RMSE ranging from 320 

0.28 and 1.47 g C m
-2

 d
-1

, and MAE ranging from 0.20 to 0.95 g C m
-2

 d
-1

. Without 321 

distinguishing PFTs, the R
2
 of each PFT test set ranged from 0.13 to 0.82. The RMSE ranged 322 

from 0.37 to 1.66 g C m
-2

 d
-1

, and the MAE ranged from 0.27 to 1.09 g C m
-2

 d
-1

. Among the 323 

nine PFTs, except for WSA, where the R
2
 remained the same, the PFT_LSTM models 324 

outperformed the nonPFT_LSTM models in predicting NEE. The LSTM model performance 325 

was improved in terms of R
2
, with an increase ranging from 0.05 to 0.38. The NEE estimation 326 

for the MF sites showed the most significant increase in R
2
, with an improvement of 0.38. This 327 

was followed by CSH, OSH and WET sites, where the increase in median R
2
 exceeding 0.10. 328 

Therefore, the differentiation of PFTs has improved the ability of the DL models to predict NEE.  329 
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 330 

Figure 2. Comparative evaluation of the predicted monthly NEE by the LSTM models against the observed 331 

NEE. (a) The PFT_LSTM models for all PFTs; (b) The nonPFT_LSTM models for all PFTs; (c) Model 332 

performance comparison over nine different PFTs. The colors of points in (a) and (b) indicate the predominant 333 

PFT presented at respective sites (ENF: evergreen needleleaf forest, GRA: grassland, DBF: deciduous 334 

broadleaf forest, OSH: open shrubland, CRO: cropland, WET: permanent wetland, CSH: closed shrubland, 335 

MF: mixed forest, and WSA: woody savanna). Each data point corresponds to the modeled estimates derived 336 

from the median ensemble of the 10 model runs. The black line shows the best-fit line from the least-squares 337 

regression.  The units of RMSE and MAE are g C m
-2

 d
-1

. 338 

Overall, the PFT_LSTM models demonstrated a satisfactory performance in predicting 339 

monthly NEE across various PFTs (Figure 3). The model performed best for CSH and DBF, with 340 

the median R
2 

of 0.93 and 0.88, respectively. In contrast, the predictive ability for MF is 341 
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relatively poor, with the median R
2
 close to 0.50. This can be explained by multiple factors, 342 

including the limited number of sites (n = 2), limited observation data (only 253 site months of 343 

NEE), and limited variation of NEE between these investigated sites. These factors collectively 344 

constrain the performance of the LSTM models. The PFT_LSTM models performed relatively 345 

well in ENF, DBF, OSH, CRO, WET, CSH, and WSA, with R
2
 greater than 0.65. In comparison, 346 

the nonPFT_LSTM models performed best at DBF sites, with the R
2
 of 0.82, while they 347 

performed the worst at the MF sites, with the R
2
 of only 0.13.  348 

 349 

Figure 3. Scatter plots of the predicted NEE by the PFT_LSTM models against the observed NEE across 350 

various PFTs. The color in the scatter density thermogram indicates data density. The range covered by the 351 

black dashed line is the 95% prediction band of the models. The units of RMSE and MAE are g C m
-2

 d
-1

. 352 
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3.2. Across-Site Variability Estimation 353 

We further evaluated the prediction accuracy of the LSTM models at the site level. In the 354 

across-site study, we employed trained PFT_LSTM and nonPFT_LSTM models to generate the 355 

simulated data specially for each site during the testing phase. The validation analysis reveals 356 

that the PFT_LSTM models demonstrated a good performance in capturing cross-site variability, 357 

with R
2
 exceeding 0.2 for 74 sites, which accounts for 90.24% of the total amount of tested sites. 358 

However, the performance of the PFT_LSTM models was unsatisfactory at 8 sites, e.g., R
2
 = 359 

0.06 at the US-KS2 site (Figure S2a in Supporting Information S1). In comparison, for the 360 

nonPFT_LSTM models, only 66 sites achieved an R
2
 above 0.2, representing 80.49% of the total 361 

participated sites. Meanwhile, the nonPFT_LSTM models showed poor prediction at 16 sites, 362 

e.g., R
2
 = 0.01 at the CA-NS6 site (Figure S2b in Supporting Information S1).  363 

For cross-site validation, we viewed that the model failed to predict NEE changes at that 364 

site if the R
2
 was lower than 0.2. These failed predictions can be attributed to limited input data, 365 

the choice of feature variables, and the limitation of the model design. Uncertain factors may 366 

obscure the relationship between the target variable and the predictors. Among the sites that can 367 

be predicted by LSTM models, when using PFT_LSTM models for prediction, the median R
2
 368 

across sites was greater than 0.65, including CSH, DBF, WET, and ENF sites. Especially, 369 

PFT_LSTM models can effectively explain monthly NEE variations at DBF sites, with a median 370 

R
2
 of 0.92 for site-level predictions, RMSE = 0.66 g C m

-2
 d

-1
, and MAE = 0.5 g C m

-2
 d

-1
. In 371 

addition, for all PFTs except CRO and GRA, the fitting accuracy of PFT_LSTM models for 372 

cross-site monthly NEE was higher than that of nonPFT_LSTM models. We compared the 373 

model performance at the sites that can be predicted by both PFT_LSTM models and 374 

nonPFT_LSTM models (Figure 4). 43 out of these 64 sites exhibited an improvement in R
2 
along 375 

with obvious reductions
 
in RMSE and MAE, indicating that 67.19% of the sites have enhanced 376 

the performance of LSTM models. 377 
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 378 

Figure 4. Model performance comparison between the PFT_LSTM models and the nonPFT_LSTM models 379 

across different sites. (a) R
2
, (b) RMSE and (c) MAE. The unit for RMSE and MAE is g C m

-2
 d

-1
. 380 

Cross-site validation analyses consistently demonstrated that the DBF and CSH sites 381 

exhibit the best predictive capability, which aligns with the performance evaluations at the PTF 382 

level. The PFT_LSTM models demonstrated the ability to predict monthly NEE spatiotemporal 383 

variability at more than 90% of EC tower sites in North America, with satisfactory performance 384 

(i.e., R
2
 > 0.6) at over 50% of the sites. Therefore, distinguishing PFTs in predicting terrestrial 385 

ecosystem carbon fluxes is pretty crucial. Figure 5 illustrates the time series of the monthly NEE 386 

simulations by the PFT_LSTM models at typical sites within each PFT. The PFT_LSTM models 387 

can effectively capture the seasonal variations of terrestrial NEE during both the training period 388 

and the testing period. 389 
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 390 

Figure 5. Fitting of the predicted NEE by the PFT_LSTM models against the observed NEE across various 391 

representative sites for each PFT. The shaded bands around the lines indicate the uncertainty ranges of the 392 

prediction ensemble members. The red dashed line indicates the start of the site testing period. Note that we 393 

use the previous 6 months of input data to predict NEE, thus no NEE predictions were made for the initial 6 394 

months. The unit for RMSE and MAE is g C m
-2

 d
-1

. 395 

3.3. Advantages of LSTM over RF in Predicting NEE and its IAV  396 

Random Forest (RF) is a widely recognized ML algorithm that performs well in handling 397 

complex datasets and features by constructing multiple decision trees for prediction (Belgiu & 398 

Drăguţ, 2016). It has been successfully employed to predict NEE variability at the site level 399 

(Huang et al., 2021), as well as in various endeavors aiming to upscale carbon fluxes to 400 

continental or global scales (Kondo et al., 2015; Reitz et al., 2021). RF and LSTM are two 401 
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representatives ML or DL models with different theoretical and algorithmic implementations. 402 

For each PFT, we established an RF model and labeled them as PFT_RF Model. During the 403 

training phase of the RF models, we employed a tenfold cross-validation process to conduct a 404 

grid search to determine the optimal parameter set. Subsequently, a prediction model was built 405 

using the training data, and its performance was evaluated using test data. Similar to the LSTM 406 

model, each PFT model run 10 times, and the median estimate from these results was considered 407 

the best prediction.  408 

The performance on predicting monthly NEE was compared between the RF model and 409 

the LSTM model (R
2 

shown in
 
Figure 6 and RMSE, MAE can be found in Table S2 in 410 

Supporting Information S1). It showed that the RF models provided monthly NEE estimations 411 

with R
2
=0.59, RMSE=1.19 g C m

-2
 d

-1
, and MAE=0.70 g C m

-2
 d

-1
. PFT_RF models also 412 

exhibited acceptable performance in predicting NEE for 9 PFTs, with R
2
 ranging from 0.1 to 0.8. 413 

Both the RF and LSTM models displayed consistent predictive abilities, with the best 414 

performance observed for the PFTs of CSH and DBF, with the R
2
 of 0.80 and 0.73, respectively. 415 

Notably, the RF model performed poorly for the PFT of WET, with the R
2
 value close to 0.1. 416 

The PFT_LSTM models demonstrated better predictive ability compared to the RF models 417 

across all PFTs.  418 

 419 

Figure 6. Model performance comparison between the LSTM model and the RF model over nine PFTs.  420 

 421 

We further made comparative evaluations on the predictive capacities of NEE IAV by the 422 

PFT_LSTM models and PFT_RF models against flux tower observations over various PFTs. For 423 

each EC tower, we filtered the data to ensure only NEE data with sufficient 12 months per year 424 

is included, and calculated the annual NEE (g C m
-2

 yr
-1

) from these monthly NEE data. This 425 

allowed us to obtain both annual NEE observations and model predictions. The evaluation was 426 
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based on the analysis of annual anomalies. NEE IAV was calculated as the difference between 427 

yearly NEE during the testing period and the average value over the entire observation period. 428 

The results indicate that PFT_LSTM models reasonably captured the IAV of NEE in North 429 

America, showing a significant positive correlation between the observations and the model 430 

predictions in the IAV of NEE (r = 0.81, p < 0.001). By contrast, the PFT_RF models generally 431 

failed to predict the NEE IAV, with a low correlation coefficient r = -0.21 (p = 0.011). Figure 7 432 

shows the combined time series of NEE IAV predicted by the LSTM and RF models by PFTs. 433 

The LSTM models performed relatively well in representing the IAV of NEE for ENF, WET, 434 

MF, and WSA, with the r exceeding 0.75, among which the WET performed the best (r = 0.970, 435 

p < 0.001). The CRO had strong IAV of NEE, ranging from -783.52 g C m
-2

 yr
-1

 to 271.93 g C 436 

m
-2

 yr
-1

. Consequently, LSTM models predicted NEE IAV poorly for CRO, with r = 0.330 (p = 437 

0.250). In terms of indicating NEE IAV, the RF models performed clearly less effectively 438 

compared to the LSTM models at the PFT level.  439 
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 440 

Figure 7. Evaluation of combined time series of NEE IAV predicted by the LSTM and RF models against flux 441 

tower observations at the PFT level. The shaded bands around the lines indicate the uncertainty ranges of the 442 

prediction ensemble members. Each scatter represents a site-year, while a solid scatter represents the start of 443 

the site testing period. n represents the number of sites available for estimating NEE IAVs across each PFT. 444 

Note that the IAV predictions for CSH are not included in the plots due to the limited availability of complete 445 

observational data; only two full years of observations were available for CSH during the testing period. 446 

Furthermore, we investigated the performance of the LSTM and RF models to predict the 447 

IAV of NEE at the site level (Figure 8). These selected sites typically cover at least four 448 

complete years of flux observations during the testing period, ensuring sufficient data for 449 

conducting analysis. The LSTM models exhibited a much stronger correlation with the observed 450 

NEE IAVs at these sites than the RF models did, e.g., at US-GLE and US-Me2.  451 
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 452 

Figure 8. Evaluation of time series of NEE IAV predicted by the LSTM and RF models against flux tower 453 

observations at the site level. The shaded bands around the lines indicate the uncertainty ranges of the 454 

prediction ensemble members. 455 

3.4. Relative Contributions of Environmental Controls to Monthly NEE Variations 456 

Across PFTs 457 

We quantified the importance of the 10 predictive variables (WS, VPD, TA, SWC, DSR, 458 

P, NDVI, LAI, SIF, and FAPAR) on predicting monthly NEE using the BRT model (Figure 9). 459 

Since different PFTs exhibit distinct responses to NEE, individual BRT models were established 460 

for the 9 PFTs. Overall, among all PFTs, SIF was the most powerful predictor for monthly NEE 461 

variability, with an average contribution of 26.32%, followed by DSR and LAI. The combined 462 

contributions of SIF, DSR, and LAI to monthly NEE variability accounted for approximately 463 

52.02%. Compared with SIF, DSR, and LAI, other variables showed much weaker controls over 464 

monthly NEE, with an average contribution of less than 10%. This analysis is in line with the 465 

findings of a previous study (Kong et al., 2022), which identified DSR and LAI as the primary 466 

environmental controls of daily NEE changes for most PFTs, while the contributions of TA, 467 

SWC, and other variables were relatively small. It is worth noting that Kong et al.’s study did not 468 

include the SIF variable. 469 

The relative importance of predictive variables in driving NEE changes diverged among 470 

PFTs. For most PFTs, including GRA, DBF, OSH, WET, CRO, MF, and WSA, SIF is the most 471 

powerful predictor for monthly NEE variability. Particularly, for DBF, WET, and WSA, SIF 472 

contributed for more than 30% of monthly NEE variability. For WSA, SIF even contributed for 473 

more than 50% of monthly NEE variations. In contrast, SIF played a much weaker role for ENF 474 
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and CSH, where DSR emerged as the most critical predictor for ENF, and LAI additionally made 475 

a remarkable contribution for CSH.  476 

 477 

Figure 9. The relative contributions of downward shortwave radiation (DSR), solar-induced chlorophyll 478 

fluorescence (SIF), air temperature (TA), normalized difference vegetation index (NDVI), leaf area index 479 

(LAI), wind speed (WS), vapor pressure deficit (VPD), soil water content (SWC), precipitation (P) and 480 

fraction of absorbed photosynthetically active radiation (FAPAR) to monthly net ecosystem exchange of CO2 481 

from the BRT method across all North American vegetation types. 482 

4 Discussion 483 

4.1. Advantages of LSTM in Predicting NEE and Its IAV 484 

The proposed LSTM models in this study exhibited a satisfactory performance in 485 

predicting the temporal dynamics and cross-site variability of monthly NEE, and clearly superior 486 

performance over the traditional ML models (e.g., RF investigated in this study) that doesn’t 487 

consider temporal memory effect.  488 

Extreme climate events and disturbances can affect the development, structure, and 489 

function of terrestrial ecosystems(S. Liu et al., 2011; Williams et al., 2012). Due to the complex 490 

carbon cycling process between terrestrial ecosystems and the atmosphere, these impacts 491 

typically persist for a long period (Frank et al., 2015). This memory effect results in a delayed 492 

IAV in the growth rate of atmospheric CO2 concentration, which hinders the accurate prediction 493 

of long-term changes in the terrestrial carbon budget under climate change and human influence. 494 

Capturing this impact on NEE was quite challenging in a long past period. The widely used ML-495 

based NEE dataset (FLUXCOM NEE) is an upscaling of remote sensing data and meteorological 496 

reanalysis data to the flux towers data. However, FLUXCOM fails to accurately reproduce the 497 
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long-term trends and IAV of NEE (Piao et al., 2020), which could largely associate with 498 

characterizing memory effect. The memory effect is important factor in controlling the IAV of 499 

NEE (Bloom et al., 2020), but has not been considered in FLUXCOM. Recent researches 500 

demonstrated the potential of considering memory effects in improving terrestrial carbon flux 501 

simulations (Besnard et al., 2019; Liu et al., 2023). 502 

In terms of representing NEE IAV, the LSTM DL algorithm outperforms the widely used 503 

RF ML model when using the same input data and model configuration. The LSTM algorithm is 504 

able to dynamically incorporate temporal information into the estimation of CO2 fluxes, allowing 505 

for the characterization of the memory effect caused by disturbances and climate change on 506 

NEE. The strong long-term dependency modeling abilities of LSTM make it suitable for 507 

characterizing memory effect relationships in sequence data, leading to more realistic estimations 508 

of NEE dynamics (Schmidhuber, 2015). By capturing the memory effects of climate and 509 

vegetation, we can enhance our understanding and predictive ability of regional C budgets. We 510 

anticipate that PFT_LSTM models will deliver enhanced performance in future carbon flux 511 

upscaling research. 512 

4.2. Uncertainties and Prospects 513 

While LSTM can generally fit monthly NEE from North American sites well, avoiding 514 

prediction bias is also challenging due to imbalanced input sampling caused by spatial and 515 

temporal differences in NEE data. In the model training process, the model is more frequently 516 

exposed to sites with spatial correlation and longer observation data, enabling better learning of 517 

the NEE variability of these specific sites (He et al., 2015). However, if certain spatiotemporal 518 

changes in the training samples are not adequately represented, the model may not accurately 519 

predict or adapt to those changes, resulting in significant bias and uncertainty. Although the 520 

LSTM model was specifically designed for PFT, there are still 8 sites scattered across three PFTs 521 

in North America that are not predictable by LSTM (GRA; n = 5, DBF; n = 2, and CSH; n = 1).  522 

Furthermore, despite PFT_LSTM models performed better than nonPFT_LSTM models 523 

for the PFT level of CRO and GRA, their performances were slightly weaker than 524 

nonPFT_LSTM models in predicting across-site variability, with the median R
2
 reduced by 0.01 525 

for CRO and 0.09 for GRA, respectively. This is attributed to the challenge of identifying similar 526 

trends, patterns, or relationships between CRO and GRA sites, along with the substantial 527 

influence of human management on croplands (Marcolla et al., 2017). Thus, the integration of 528 

more observations could be crucial for ML algorithms to accurately capture monthly NEE 529 

changes at CRO and GRA sites. The Unbalanced sampling leads to a lack of representativeness 530 

in the data, which may be the primary factor contributing to uncertainty in the NEE simulation 531 

for these sites. Adding more observations is crucial for improving the ability to fit the NEE 532 

variability at these sites. 533 

We notice that the time length of memory effect could influence the modeling power for 534 

different PFTs and sites. In this study, we used 6 months for all PFTs. In fact, for different PFTs, 535 
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the memory length could be different (Aubinet et al., 2018; Zhang et al., 2022). In the study by 536 

Liu et al., (2023), they found the optimal memory effect lengths diverged across PFTs. From 537 

their study, 6 months are proper for most PFTs. In the future, in order to achieve a more reliable 538 

upscaling, designing different memory effect lengths for different PFTs could be helpful. 539 

With LSTM models, the NEE fluxes in the context of global climate change are expected 540 

to be more accurately predicted. Using LSTM DL algorithms to upscale carbon estimation at the 541 

regional, continental, and even global scales would emerge as a popular approach for future NEE 542 

modeling. The investment and use of more flux towers will provide a substantial volume of high-543 

quality continuous observation data for future studies. Enhancing the representativeness of flux 544 

tower data and the availability of predictive variables is an important undertaking in accurately 545 

estimating future carbon fluxes. 546 

5 Conclusions 547 

This study explored the potential of LSTM models in predicting monthly NEE over 82 548 

sites in North America based on FLUXNET 2015 and the AmeriFlux datasets and multiple 549 

satellite land surface products. After distinguishing PFTs, the overall R
2
 of monthly NEE 550 

increased by 9.72%, RMSE decreased by 0.09 g C m
-2

 d
-1

, and MAE decreased by 0.05 g C m
-2

 551 

d
-1

. The model performance of each PFT has been improved, highlighting the importance of 552 

differentiating PFTs during model training. The use of time series data as model inputs allows 553 

the LSTM algorithm to effectively capture the memory effect of climate and environmental 554 

factors on the time scale. A significant positive correlation exists between the observation of 555 

NEE IAV and the model prediction results (r = 0.81, p < 0.001). While commonly used non-556 

temporal dynamic statistical RF ML algorithms demonstrate acceptable performance in 557 

predicting monthly NEE, their ability to predict IAV is very poor. Among the selected predictive 558 

variables, SIF exhibits the strongest correlation with monthly NEE changes, contributing an 559 

average of 26.32%, followed by DSR (14.83%) and LAI (12.87%). Including these variables into 560 

ML or DL models is critical for predicting monthly NEE. Overall, the combination of LSTM and 561 

PFTs classification shows potential in predicting the temporal variability of NEE and correcting 562 

for NEE IAVs. This study provides a reference for modeling terrestrial carbon cycle, especially 563 

for upscaling in-situ carbon flux observations to larger scales. 564 
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