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Abstract

Atmospheric rivers (ARs) significantly impact the hydrological cycle and associated extremes in western continental regions.

Recent studies suggest ARs also influence water resources and extremes in continental interiors. AR detection tools indicate

that AR conditions are relatively frequent in areas east of the Rocky Mountains. The origin of these ARs, whether from

synoptic-scale waves or mesoscale processes, is unclear. This study uses meteorological composite maps and transects of AR

conditions during the four seasons. The analysis reveals that ARs east of the Rockies are associated with a long-wave baroclinic

Rossby wave. This result demonstrates that eastern and midwestern ARs are dynamically similar to their western coastal

counterparts, though mechanisms for vertical moisture flux differ between the two. These findings provide a foundation for

understanding future climate change and ARs in this region and offer new methods for evaluating climate model simulations.
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Key Points:9

• Atmospheric rivers (ARs) east of the Rockies are associated with baroclinic waves10

• Western coastal ARs and eastern/midwest ARs are dynamically similar11

• Synoptic-scale uplift, combined with convective instability, provide efficient mech-12

anisms for generating precipitation13
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Abstract14

Atmospheric rivers (ARs) significantly impact the hydrological cycle and associated ex-15

tremes in western continental regions. Recent studies suggest ARs also influence water16

resources and extremes in continental interiors. AR detection tools indicate that AR con-17

ditions are relatively frequent in areas east of the Rocky Mountains. The origin of these18

ARs, whether from synoptic-scale waves or mesoscale processes, is unclear. This study19

uses meteorological composite maps and transects of AR conditions during the four sea-20

sons. The analysis reveals that ARs east of the Rockies are associated with a long-wave21

baroclinic Rossby wave. This result demonstrates that eastern and midwestern ARs are22

dynamically similar to their western coastal counterparts, though mechanisms for ver-23

tical moisture flux differ between the two. These findings provide a foundation for un-24

derstanding future climate change and ARs in this region and offer new methods for eval-25

uating climate model simulations.26

Plain Language Summary27

Atmospheric rivers (ARs) are a weather pattern that brings high amounts of at-28

mospheric water and winds in a relatively narrow region. ARs are typically considered29

a ‘west coast’ phenomenon, largely because the majority of the scientific research on ARs30

has focused on ARs in western coastal regions: particularly the western United States.31

ARs occur in contental interiors, but there has been some debate about whether these32

ARs represent the same type of weather as those in western coastal regions.33

This paper uses two objective methods for identifying ARs and finds times when34

ARs are present in two locations in the eastern half of the United States: Bloomington,35

IN and Washington, DC. Examination of weather conditions during these AR times shows36

remarkable similarity to conditions associated with west coast ARs. This gives strong37

evidence that ARs do occur in the eastern half of the United States. This result is im-38

portant because it suggests that ARs may be important for water resources and extreme39

weather in the eastern half of the United States, just as they are in the western United40

States. This result also suggests that ARs may be important for water resources and ex-41

tremes in other continental interiors.42

1 Introduction43

Atmospheric rivers (AR) are widely recognized as being important for water re-44

sources and impacts in western coastal zones, with nearly 30 years of research establish-45

ing their meteorological context (Newell et al., 1992; Newell & Zhu, 1994; Zhu & Newell,46

1994; Neiman et al., 2002; Ralph et al., 2004, 2005), demonstrating their importance for47

the hydrological cycle at global and regional scales (Zhu & Newell, 1998; Bao et al., 2006;48

Neiman, Ralph, Wick, Lundquist, & Dettinger, 2008; Neiman, Ralph, Wick, Kuo, et al.,49

2008; Strong & Magnusdottir, 2008a, 2008b; Knippertz & Wernli, 2010; Viale & Nuñez,50

2011; Guan et al., 2011; Newman et al., 2012; Cordeira et al., 2013; Ryoo et al., 2013;51

Sodemann & Stohl, 2013; Rutz et al., 2014; Dacre et al., 2015; Guan & Waliser, 2015;52

L. M. Smith & Stechmann, 2017; Eiras-Barca et al., 2018; Z. Zhang et al., 2019; Guo et53

al., 2020, e.g.,), and establishing their connection with extreme precipitation and impacts54

(Ralph et al., 2006; Stohl et al., 2008; Leung & Qian, 2009; Dettinger, 2011; Ralph &55

Dettinger, 2012; Lavers et al., 2012; Warner et al., 2012; Ralph et al., 2013; Gimeno et56

al., 2016; Waliser & Guan, 2017; Ralph, Wilson, et al., 2019; Griffith et al., 2020). AR57

research has expanded dramatically in the last 10 years, with numerous new papers on58

their qualitative and quantitative definition (see e.g., Ralph et al., 2018; Ralph, Rutz,59

et al., 2019; Shields et al., 2018; Rutz et al., 2019; Lora et al., 2020; O’Brien et al., 2020;60

Collow et al., 2022, and references therein), AR variability and change (Dettinger, 2011;61

Gao et al., 2015; Payne & Magnusdottir, 2015; Warner et al., 2015; Hagos et al., 2016;62

Mundhenk et al., 2016; Gershunov et al., 2017; Lora et al., 2017; Warner & Mass, 2017;63
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Dong et al., 2018; Espinoza et al., 2018; Mundhenk et al., 2018; Zhou et al., 2018; Zhou64

& Kim, 2018; Cao et al., 2020; McClenny et al., 2020; Payne et al., 2020; Rhoades et al.,65

2020; O’Brien et al., 2021; Reid et al., 2021; Zhou et al., 2021; Ma & Chen, 2022), and66

AR forecasting (Lavers, Pappenberger, et al., 2016; Lavers, Waliser, et al., 2016; DeFlo-67

rio et al., 2018, 2019; Lavers et al., 2020; Cao et al., 2021; Zheng et al., 2021). The list68

of topics and citations here is meant to be illustrative rather than exhaustive; there are69

now hundreds of atmospheric river papers in the literature.70

The vast majority of papers in the AR literature are focused on studies of west-71

ern coastal zones, with most centered specifically on the United States West Coast where72

much of the early research on ARs was directed. That said, there is an increasing recog-73

nition that atmospheric rivers are also important in other regions, such as continental74

interiors and polar regions (Gorodetskaya et al., 2014; Wille et al., 2019; Nash et al., 2018),75

the interiors of Australia and China (Liang et al., 2020; Rauber et al., 2020; Y. Xu et76

al., 2020; L. Xu et al., 2020; H. Zhang et al., 2020; Nash et al., 2021; Reid et al., 2021),77

the Middle East and North Africa (Massoud et al., 2020), and the interior of the United78

States east of the Rocky Mountains (Dirmeyer & Kinter, 2009, 2010; Moore et al., 2012;79

Slinskey et al., 2020).80

For two specific examples, significant flooding events have occurred in the midwest-81

ern United States in association with atmospheric rivers: one in Nashville, Tennessee on82

May 1–2, 2010 (Moore et al., 2012) and one in Bloomington, Indiana on June 18–19, 2021.83

The Bloomington flood was a 100-year event in which multiple rain gauges recorded over84

15 cm (6 in) of rainfall in a 24-hour period. Analysis of the associated meteorology (and85

use of an objective AR detection tool; see Section 2) shows that the flood was associ-86

ated with the combination of an AR, a cold frontal zone (as indicated by a region of lo-87

cal maximum gradient in 850 hPa temperatures), and a mesoscale convective complex88

(as indicated by a large coherent zone for which cloud brightness temperatures are lower89

than the 225 K threshold determined by Feng et al. (2018)); see Figure S1.90

Several studies (Lavers & Villarini, 2013; Mahoney et al., 2016; Nakamura et al.,91

2013; Nayak et al., 2016; Slinskey et al., 2020) demonstrate the importance of ARs for92

extreme precipitation in areas of the United States (US) east of the Rocky Mountains.93

However, some literature (Dirmeyer & Kinter, 2010; Gimeno et al., 2010, 2016) presents94

a hypothesis that midwestern and eastern (hereafter ‘eastern’ for brevity) US ARs are95

fundamentally different from their west coast counterparts, in that they are a manifes-96

tation of the Great Plains Low Level Jet (GPLLJ).97

A counter-hypothesis is that these eastern US ARs, like their west coast counter-98

parts, are driven by synoptic-scale eddies; i.e., they are primarily associated with baro-99

clinic Rossby waves. Both hypotheses are testable. The Great Plains LLJ is thought to100

be regulated by an inertial oscillation modulated by a consistent meridional buoyancy101

gradient, rather than synoptic-scale waves (Gebauer & Shapiro, 2019). If baroclinic waves102

are the primary driver, then we would expect the signatures of these midlatitude sys-103

tems to be evident in meteorological composites of times that satisfy AR conditions in104

the central US. Indeed, (Lavers & Villarini, 2013) show composites of mean sea-level pres-105

sure suggesting the influence of synoptic-scale dynamics.106

Using composites of reanalysis data, we find support for the baroclinic Rossby wave107

hypothesis. Our results show that eastern US ARs are dynamically similar to their well-108

studied west coast counterparts in terms of their association with baroclinic waves.109

2 Methods110

We detect ARs using the Toolkit for Extreme Climate Analysis (TECA) Bayesian111

Atmospheric River Detector (teca_bard_v1.0.1) application, which simultaneously uses112

1,024 equally plausible AR detectors to detect ARs with uncertainty quantification (O’Brien113
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et al., 2020). As in O’Brien et al. (2020), we apply teca_bard_v1.0.1 to six-hourly MERRA-114

2 reanalysis output (Gelaro et al., 2017) spanning January 1, 1980 through December115

31, 2021 (376,944 timesteps). For the analyses shown in Figures 1, 2, and 3, we identify116

high-confidence AR conditions over Bloomington, IN when the AR probability from teca_bard_v1.0.1117

is 100%. This results in 1,089 AR timesteps total, with 219 in DJF, 172 in MAM, 243118

in JJA, and 455 in SON.119

We test the sensitivity of our results to choice of ARDT and to location by repeat-120

ing the entire analysis with a more permissive ARDT, guan_waliser_v2 (Guan & Waliser,121

2015), and by repeating the entire analysis with teca_bard_v1.0.1 in a different loca-122

tion in the eastern United States: Washington, DC. The guan_waliser_v2 data come123

from the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) Tier124

1 database (Shields et al., 2018), which spans the years 1980-2017. Results of these sen-125

sitivity studies are provided in Supplemental Information (Figures S2–S9). The guan_waliser_v2126

ARDT detects nearly 10 times more timesteps with AR conditions occurring over Bloom-127

ington, IN: 12,400 total, 2,925 in DJF, 3,379 in MAM, 2,754 in JJA, and 3,342 in SON.128

The teca_bard_v1.0.1 ARDT detects a total of 1,548 timesteps with AR conditions129

over Washington, D.C., with a similar distribution among seasons.130

We generate composites of various meteorological quantities during the Blooming-131

ton, IN AR timesteps, as indicated above, within each season using the ERA5 reanal-132

ysis (Hersbach et al., 2020; European Centre for Medium-Range Weather Forecasts, 2019).133

Note that the AR timesteps come from MERRA-2 due to our use of the ARTMIP dataset,134

but the meteorological composites come from ERA5. We utilize geopotential height, tem-135

perature, integrated vapor transport, integrated water vapor, winds, potential vorticity,136

vertical velocity, and mean sea-level pressure. Composites are generated using the teca_temporal_reduction137

application available within TECA (Loring et al., 2022; Prabhat et al., 2015). In the com-138

posite maps (Figures 1–4), we determine the location of surface low and high-pressure139

regions by finding the location of minimum sea-level pressure in the region bounded by140

the box (100 °W, 35 °N), (80 °W, 50 °N) for the low and by finding the location of max-141

imum sea-level pressure in the region bounded by the box (85 °W, 25 °N), (55 °W, 45142

°N) for the high. These search regions were determined by visual inspection of the com-143

posites. A local minimum sea-level pressure is found for all four seasons, and a local max-144

imum sea-level pressure is found for all seasons except JJA.145

In the composite transect in Section 3, the frontal zone locations are determined146

by (1) finding the location of the maximum 1000 mb potential temperature gradient in147

each season, and by (2) contouring the isentrope corresponding to the 1000 mb poten-148

tial temperature at that location. The dynamic tropopause in Figure 3a–d is determined149

by the location of the 2 PVU potential vorticity contour. Cross-transect winds are cal-150

culated by taking the dot product of the transect-normal vector and the winds, and cross-151

transect moisture transport is calculated as the cross-transect wind times specific hu-152

midity.153

3 Results154

Figure 1 shows composites of integrated vapor transport (IVT; vertically integrated155

horizontal moisture flux), total column water vapor (IWV), and the locations of surface156

lows and highs for all four seasons. The IVT and IWV fields show the distinctive sig-157

nature of atmospheric river conditions, namely a long, narrow band of high water va-158

por transport co-located with high precipitable water content. In all four seasons, a sur-159

face low is present to the northwest of the central AR zone (southern Indiana), and a160

surface high is present over the Atlantic Ocean in all seasons except JJA which instead161

shows a broad ridge pattern over the region. The ARs occur within a region of high sur-162

face pressure gradient between these low and high-pressure regions.163
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Figure 1. Composite maps of integrated vapor transport (shading), total column water va-

por (red contours), and surface low and high pressures (L and H symbols) for AR conditions

over Bloomington, IN in (a) DJF, (b) MAM, (c) JJA, and (d) SON. The dashed black curve

in (d) shows the location of the transect in Figure 3, and the yellow star shows the location of

Bloomington, IN.

To put the AR conditions in a synoptic context, Figure 2 shows composites of 850164

mb potential temperature, 850 mb heights, 500 mb heights, and the same low/high-pressure165

regions shown in Figure 1. The upper-level heights show the clear presence of a longwave166

trough, with the mean trough axis 500–1500 km to the west of the AR region in all four167

seasons and a ridge to the east, such that upper-level geostrophic winds are southwest-168

erly over the AR region. The lower-level heights also show a clear longwave pattern, with169

a phase offset of several hundred kilometers to the east of the upper-level trough axis170

in all four seasons. The surface low sits within, or just to the east of, the low-level trough.171

The 850-mb potential temperature field also shows signs of a wave-like pattern, with172

a mean temperature gradient west of the AR region that would be associated with cold173

frontal zones, and signs of a warm frontal zone to the east of the AR region. Mean tem-174

perature features that could be correlated with fronts are much less well-defined in JJA,175

consistent with the weaker temperature gradients expected in Northern Hemisphere sum-176

mer in midlatitudes.177

In all four seasons, a mean upper-level trough exists west of the study region. If178

we were to treat each of the composite maps as representative of a typical event in that179

season, then this trough location indicates that the cyclonic vorticity associated with the180

trough is being advected eastward over the study region. The intensification of the winds181

with height (shown more clearly in Figure 3) indicates that the cyclonic vorticity advec-182

tion increases with height. Such differential cyclonic vorticity advection is consistent with183

quasigeostrophic forcing favoring ascent over the region (Holton, 2004).184
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Figure 2. Composite maps of 850 mb potential temperature (shading), 850 mb heights (dark

gray contours), 500 mb heights (light gray contours), and surface low and high pressures (L and

H symbols) for AR conditions over Bloomington, IN in (a) DJF, (b) MAM, (c) JJA, and (d)

SON. The dashed black curve in (d) shows the location of the transect in Figure 3.

The transect composites (Figure 3; see Figure 2d for the trace of the transect) show185

the presence of an upper-level jet with a maximum to the northwest of the AR region186

(to the left of 0 in the transects) and just below the tropopause in all four seasons. The187

upper-level jet is strongest in DJF but weakest in JJA, and exhibits a westward tilt in188

all four seasons, with relatively strong winds from the upper levels down toward the sur-189

face. All four seasons also exhibit a relative maximum in wind speed near the surface190

approximately 200-300 km to the southeast (right of 0 in the transects), which indicates191

the presence of a low-level jet. These winds are thermally-forced, as indicated by com-192

posites generated using geostrophic winds instead of the full wind field; these compos-193

ites (not shown) are essentially identical to those in Figure 2. The potential tempera-194

ture field shows indications of a cold frontal region, with a dome of relatively cold air195

extending from the surface up to about 300 hPa to the northwest (left of 0). The actual196

values of potential temperature vary according to season, but the general structure of197

the frontal region is consistent. The maximum gradient in 1000 mb temperatures is reached198

at or near the AR region, indicating that individual AR events may be assocaited with199

an impinging cold front.200

Near-surface specific humidity (green dashed lines in Figure 3) reaches at least 10201

g kg-1 in all seasons, with highest values primarily to the southeast of the AR region.202

The combination of high specific humidity, increased winds associated with the upper-203

level jet, and increased winds in the lower atmosphere result in high moisture transport204

directly over the AR region, consistent with the high IVT values shown in Figure 1. The205
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Figure 3. Composite transects of potential temperature (shading), transect-normal winds

(blue curves), specific humidity (dotted green curves), moisture flux at the 60 g m kg−1 s−1 level

(red contour), and the 2 PVU potential vorticity contour (black curve) for AR conditions over

Bloomington, IN in (a) DJF, (b) MAM, (c) JJA, and (d) SON. Thick, transparent blue curves in

all four panels show frontal zones. The trace of the transect is shown in Figure 2d.

region of high water vapor transport has a westward tilt, similar to the tilt in the tro-206

pospheric wind maximum, suggesting the importance of the upper level flow in gener-207

ating the high IVT that defines the AR.208

4 Discussion209

Figures 1 and 3 bear a strong similarity to the map and transect plots shown by210

Ralph et al. (2018) in the American Meteorological Society Glossary definition of atmo-211

spheric rivers: strong, filamentary moisture transport to the southeast of a surface low212

and cold frontal zone; and high moisture transport associated with high surface humid-213

ity and southwesterly winds from an upper-level jet and a pre-frontal low-level jet. Based214

on the qualitative definition given by Ralph et al. (2018), and based on the objective de-215

tection of AR conditions by TECA-BARD, it seems clear that the ARs discussed here216

are phenomenologically similar to their western coastal counterparts.217

Likewise, Figures 2 and 3 show the distinctive characteristics of a longwave baro-218

clinic Rossby wave: an upper-level jet, presence of a frontal zone and a surface low, and219
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westward tilting wind and potential temperature fields indicative of baroclinic waves. The220

westward tilt in the moisture flux suggests that the moisture flux is associated with the221

synoptic-scale, geostrophically-driven winds. This argues strongly against the hypothe-222

sis that central US atmospheric rivers are simply manifestations of the Great Plains low-223

level jet (GPLLJ). The clear signature of a baroclinic wave and upper-level dynamics224

(e.g., the tropopause folds in Figure 3) indicate that the moisture flux is associated with225

synoptic processes rather than the more mesoscale (and possibly boundary layer) scale226

processes associated with the Great Plains low-level jet. Note that this does not rule out227

the possibility that the GPLLJ is present during these AR conditions; indeed, a mas-228

ters thesis by Gyawali (2022) shows that most central Great Plains ARs also occur with229

a detected GPLLJ. But two factors suggest that synoptic-scale processes, rather than230

the GPLLJ, are the primary driver: (1) the similarity of the composites between seasons231

when the GPLLJ is not considered to be important (DJF) and seasons when it does have232

some influence (MAM and SON), and (2) Gyawali (2022) notes the similarity between233

mid-level height composites of AR+GPLLJ conditions and the dynamically-coupled GPLLJ234

composite conditions discussed by Burrows et al. (2019) in which the GPLLJ seems to235

be synoptically controlled.236

Composites from all four seasons support the general idea that eastern US ARs are237

driven by longwave baroclinic Rossby waves, though there are some differences that are238

worth further investigation. The low amplitude of the upper-level wave in JJA (Figure 2c)239

may simply be related to the relatively weak meridional temperature gradient present240

at that time of year, or it may indicate that the composites are averages over multiple241

types of synoptic states such that the composite-mean pattern is weak. Additionally, DJF242

stands out from the other seasons in that the mean surface low is nearly co-located with243

the center of the AR (see Figure 2a) instead of being located well to the northwest of244

the AR. It is possible that surface convergence associated with lows in DJF may enable245

moisture–and resultant upper-level heating–from the AR to contribute to rapid deep-246

ening of these lows (Zhu & Newell, 1994; Z. Zhang et al., 2019). The use of simulation-247

based experiments and lagged composites may help clarify this.248

There are two forms of uncertainty that may impact the conclusions here: uncer-249

tainty in the detection of ARs, and uncertainty associated with the choice of region over250

which to composite. Sensitivity tests using a different AR detection tool (from Guan and251

Waliser (2015)) and focus on a different region (Washington, DC) show qualitatively iden-252

tical results: Figures S2–S5 for the ARDT sensitivity test; and Figures S3–S9 for the re-253

gion sensitivity test. This suggests that the results presented here are robust to these254

sources of uncertainty.255

Taken together, Figures 1–3 provide strong evidence that eastern US ARs are dy-256

namically similar to their well-studied western US counterparts, though a key difference257

between the two is the mechanism for uplift and generation of precipitation. Orographic258

ascent in neutrally-stratified atmosphere provides an efficient mechanism for upward mois-259

ture flux (Neiman et al., 2002; Ralph et al., 2005; Neiman, Ralph, Wick, Kuo, et al., 2008;260

Cobb et al., 2021). The ubiquitous mountain ranges in the western US (e.g., the Coast261

Ranges, the Cascades, and the Sierra Nevadas) can provide this orographic forcing for262

ARs (B. L. Smith et al., 2010), though atmospheric stability and AR angle modulate the263

effectiveness of this orographic forcing (Neiman et al., 2002; Kingsmill et al., 2013; Hughes264

et al., 2014). In contrast, the relative dearth of topography in the area between the Rocky265

Mountains and the Appalachian mountains means that any upward moisture flux must266

come from dynamical and/or convective processes, such as isentropic lift or convective267

instability.268

Analysis of composite vertical velocities shows a broad area of low-level updraft across269

the majority of the AR region: Figure 4 shows composite vertical velocities at 700 hPa270

(in pressure coordinates: negative velocities indicate upward motion) over regions where271

IVT is greater than the 250 kg m−1 s−1 threshold that is often used as a baseline for AR272
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Figure 4. Composite of upward vertical velocity at 700 mb within regions of IVT higher than

250 kg m−1s−1, CAPE (colored contours), and the location of lows, highs, and the transect trace

as in Figure 2.

presence (Rutz et al., 2014). These velocities reach up to -0.3 hPa s−1 in all seasons. Con-273

sidering that Figure 3 shows specific humidity values in the range 1–10 g kg−1, this cor-274

responds to a vertical moisture flux of O(0.1) mm d−1 or smaller. A moisture flux of this275

magnitude is too low to explain the extreme precipitation associated with AR conditions276

as discussed by Slinskey et al. (2020) and shown in Figure S1. However, this broad re-277

gion of synoptic-scale uplift may be enough to initiate convection.278

Among the four seasons, all but DJF have appreciable mean convectively available279

potential energy (CAPE; see Figure 4 and Figures S5, S9) over the study region, and even280

DJF shows hints of elevated CAPE extending from the Gulf of Mexico. This suggests281

that ARs in this region fuel convection through providing: (1) an adequate supply of high282

moisture content, (2) a source of unstable air, and (3) a broad region of upward motion.283

Even absent an orographic source of uplift, these three factors combine to provide an ef-284

ficient mechanism for translating horizontal moisture flux into intense vertical moisture285

flux within convective regions. These three ingredients, in combination with the wind286

shear (Figure 2) associated with the growing baroclinic wave that drives the AR, are well-287

known ingredients for severe convective environments. One therefore might expect a strong288

association between mesoscale convective systems (MCS) and ARs in this region, and289

this warrants further study.290

This association between ARs and environments favorable for MCS development291

may also open new opportunities for using paleoclimate proxies to study ARs and cli-292
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mate change. For the western US, the presence of terrigenous sediment layers can pro-293

vide a proxy of AR-driven activity, since terrestrial flood events tend to be primarily as-294

sociated with ARs in the region (Hendy et al., 2015; Du et al., 2018). Such a proxy is295

inapplicable in the continental interior, but recent work by Sun et al. (2021) shows that296

the hydrogen isotopic composition of leaf wax preserves a signal associated with MCS.297

The authors primarily associate this proxy with changes in the GPLLJ, but analysis of298

paleoclimate simulations suggest that ARs–and changes therein–may have played a ma-299

jor factor in the hydroclimate of the continental interior since the Last Glacial Maximum300

(Skinner et al., 2020; Lora et al., 2023; Skinner et al., 2023). Taken together, the anal-301

ysis here suggests that ARs may be a factor in modulating MCS activity in the region.302

Further analysis of the proxy developed by Sun et al. (2021) may provide a novel way303

to study paleoclimate changes in ARs in the continental interior.304

5 Conclusions305

This analysis provides clear evidence that ARs in the eastern US are driven by synoptic-306

scale processes, and in particular that ARs seem to be associated with longwave baro-307

clinic Rossby waves. This does not preclude the idea that the GPLLJ can sometimes play308

a role in these ARs, but the evidence presented here suggests that the primary means309

of generating strong, and southwesterly, horizontal moisture flux is through geostrophic310

forcing of winds from a synoptic-scale wave. This horizontal moisture flux–and associ-311

ated unstable air–then drives vertical moisture flux (and precipitation) through convec-312

tive processes rather than orographic processes as in the western US.313

As Slinskey et al. (2020) report, a high proportion of central and eastern US ex-314

treme precipitation is associated with ARs, but it is not known whether this extreme pre-315

cipitation results from ARs alone. Figure S1 indicates that some extreme precipitation316

events are associated with more than one meteorological phenomenon (e.g., a front, an317

AR, and a mesoscale convective system as in that case), and analysis of Figures 2, 3, and318

4 suggest that these ARs occur in an environment favorable for mesoscale convection.319

It is not clear how frequently such co-occurrences happen or whether they systematically320

intensify precipitation. We are currently working on follow-up studies to assess this.321

Given that eastern US ARs are synoptically forced, it seems reasonable to expect322

that climate models should be able to resolve this association between midlatitude cy-323

clones and ARs in this region. Indeed, a recent intercomparison of simulations and AR324

detection tools shows that most climate models simulate a relative maximum in AR fre-325

quency in the midwestern and eastern US (O’Brien et al., 2021), suggesting that this may326

be the case. Building composites, like the ones shown here but for historical climate model327

simulations, could provide a way to directly evaluate the dynamics of simulated ARs.328

In contrast, the mechanisms for vertical moisture flux–which appear to be convective in329

nature–could be quite challenging for models to adequately simulate. Such a phenomenon-330

focused perspective could provide a way to elucidate specific model deficiencies as well331

as possible indications for how to fix them. A recent workshop has advocated for such332

an approach as a promising way to rapidly improve the simulation of precipitation in cli-333

mate models (Pendergrass et al., 2020).334

This work helps pave the way for advancing a theory-based understanding of ARs335

and climate change in the eastern US that builds on the well-established thermodynamic336

scaling of moisture (i.e., Clauius-Clapeyron scaling) in ARs (Payne et al., 2020). The337

results here show that eastern US ARs are strongly associated with midlatitude cyclones,338

and there is an increasing body of literature about the theoretical effects of climate change339

on the location and frequency of these storms (Shaw et al., 2016; Feldl et al., 2017; Shaw,340

2019). Overall, it could be beneficial to extend this work further to assess the degree to341

which different areas of high AR frequency–particularly the inland ones–seem to be as-342

sociated with midlatitude cyclones.343
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Contents of this �le

1. Figures S1 to S9

Intro duction This supporting information �le provides (1) a satellite overview of a spe-

ci�c Midwestern US AR event discussed in the introduction and discussion sections, pro-

vided to give context for those unfamiliar with the event; and (2) duplicates of Figure

1{4 in the main that show the sensitivity of the composites to choice of atmospheric river

detection tool (ARDT) and to the choice of location on which the composites are centered.
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Figure S1. An objectively-detected frontal zone (blue shading), mesoscale convective complex

(orange contour) and AR (red contour), detected in ERA5, overlain on geostationary satellite

imagery from 03 UTC on June 19, 2021. Two-day precipitation totals from Global Precipitation

Measurement mission (GPM) IMERG V06B (Tan et al., 2019), associated with this event, are

shown as shaded contours.
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Figure S2. As in Figure 1, but using the guanwaliser ARDT and centered on Bloomington,

IN.
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Figure S3. As in Figure 2, but using the guanwaliser ARDT and centered on Bloomington,

IN.
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Figure S4. As in Figure 3, but using the guanwaliser ARDT and centered on Bloomington,

IN.

November 9, 2023, 6:57am
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Figure S5. As in Figure 4, but using the guanwaliser ARDT and centered on Bloomington,

IN.

November 9, 2023, 6:57am
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