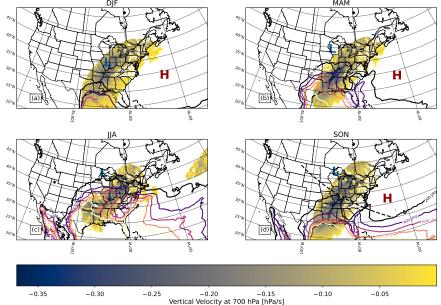
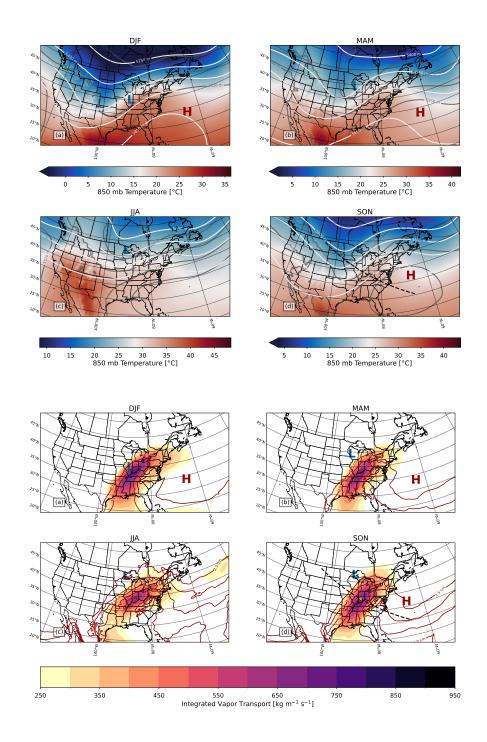
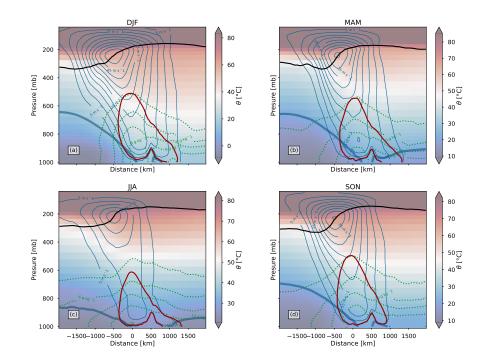
Atmospheric Rivers in the Eastern and Midwestern United States Associated with Baroclinic Waves


Travis Allen O'Brien¹, Burlen Loring², Amanda Dufek³, Mohammad Rubaiat Islam¹, Diva Kamnani¹, Kwesi Twentwewa Quagraine¹, and Cody Kirkpatrick¹


¹Indiana University Bloomington ²Lawrence Berkeley Lab ³Lawrence Berkeley National Lab


November 14, 2023

Abstract

Atmospheric rivers (ARs) significantly impact the hydrological cycle and associated extremes in western continental regions. Recent studies suggest ARs also influence water resources and extremes in continental interiors. AR detection tools indicate that AR conditions are relatively frequent in areas east of the Rocky Mountains. The origin of these ARs, whether from synoptic-scale waves or mesoscale processes, is unclear. This study uses meteorological composite maps and transects of AR conditions during the four seasons. The analysis reveals that ARs east of the Rockies are associated with a long-wave baroclinic Rossby wave. This result demonstrates that eastern and midwestern ARs are dynamically similar to their western coastal counterparts, though mechanisms for vertical moisture flux differ between the two. These findings provide a foundation for understanding future climate change and ARs in this region and offer new methods for evaluating climate model simulations.

Atmospheric Rivers in the Eastern and Midwestern United States Associated with Baroclinic Waves

Travis A. O'Brien,^{1,2}Burlen Loring,³Amanda Dufek,⁴Mohammad Rubaiat Islam,¹Diya Kamnani,¹Kwesi Quagraine,¹Cody Kirkpatrick¹

¹Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, USA ²Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA ³Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA, USA ⁴National Energy Research Supercomputing Center, Lawrence Berkeley National Lab, Berkeley, CA, USA

Key Points: 9

1

2

3

13

10	•	Atmospheric rivers (ARs) east of the Rockies are associated with baroclinic waves
11	•	Western coastal ARs and eastern/midwest ARs are dynamically similar
12	•	Synoptic-scale uplift, combined with convective instability, provide efficient mech-
13		anisms for generating precipitation

Corresponding author: Travis A. O'Brien, obrienta@iu.edu

14 Abstract

Atmospheric rivers (ARs) significantly impact the hydrological cycle and associated ex-15 tremes in western continental regions. Recent studies suggest ARs also influence water 16 resources and extremes in continental interiors. AR detection tools indicate that AR con-17 ditions are relatively frequent in areas east of the Rocky Mountains. The origin of these 18 ARs, whether from synoptic-scale waves or mesoscale processes, is unclear. This study 19 uses meteorological composite maps and transects of AR conditions during the four sea-20 sons. The analysis reveals that ARs east of the Rockies are associated with a long-wave 21 baroclinic Rossby wave. This result demonstrates that eastern and midwestern ARs are 22 dynamically similar to their western coastal counterparts, though mechanisms for ver-23 tical moisture flux differ between the two. These findings provide a foundation for un-24 derstanding future climate change and ARs in this region and offer new methods for eval-25 uating climate model simulations. 26

27 Plain Language Summary

Atmospheric rivers (ARs) are a weather pattern that brings high amounts of atmospheric water and winds in a relatively narrow region. ARs are typically considered a 'west coast' phenomenon, largely because the majority of the scientific research on ARs has focused on ARs in western coastal regions: particularly the western United States. ARs occur in contental interiors, but there has been some debate about whether these ARs represent the same type of weather as those in western coastal regions.

This paper uses two objective methods for identifying ARs and finds times when 34 ARs are present in two locations in the eastern half of the United States: Bloomington, 35 IN and Washington, DC. Examination of weather conditions during these AR times shows 36 remarkable similarity to conditions associated with west coast ARs. This gives strong 37 evidence that ARs do occur in the eastern half of the United States. This result is im-38 portant because it suggests that ARs may be important for water resources and extreme 39 weather in the eastern half of the United States, just as they are in the western United 40 States. This result also suggests that ARs may be important for water resources and ex-41 tremes in other continental interiors. 42

43 1 Introduction

Atmospheric rivers (AR) are widely recognized as being important for water re-44 sources and impacts in western coastal zones, with nearly 30 years of research establish-45 ing their meteorological context (Newell et al., 1992; Newell & Zhu, 1994; Zhu & Newell, 46 1994; Neiman et al., 2002; Ralph et al., 2004, 2005), demonstrating their importance for 47 the hydrological cycle at global and regional scales (Zhu & Newell, 1998; Bao et al., 2006; 48 Neiman, Ralph, Wick, Lundquist, & Dettinger, 2008; Neiman, Ralph, Wick, Kuo, et al., 49 2008; Strong & Magnusdottir, 2008a, 2008b; Knippertz & Wernli, 2010; Viale & Nuñez, 50 2011; Guan et al., 2011; Newman et al., 2012; Cordeira et al., 2013; Ryoo et al., 2013; 51 Sodemann & Stohl, 2013; Rutz et al., 2014; Dacre et al., 2015; Guan & Waliser, 2015; 52 L. M. Smith & Stechmann, 2017; Eiras-Barca et al., 2018; Z. Zhang et al., 2019; Guo et 53 al., 2020, e.g.,), and establishing their connection with extreme precipitation and impacts 54 (Ralph et al., 2006; Stohl et al., 2008; Leung & Qian, 2009; Dettinger, 2011; Ralph & 55 Dettinger, 2012; Lavers et al., 2012; Warner et al., 2012; Ralph et al., 2013; Gimeno et 56 al., 2016; Waliser & Guan, 2017; Ralph, Wilson, et al., 2019; Griffith et al., 2020). AR 57 research has expanded dramatically in the last 10 years, with numerous new papers on 58 their qualitative and quantitative definition (see e.g., Ralph et al., 2018; Ralph, Rutz, 59 et al., 2019; Shields et al., 2018; Rutz et al., 2019; Lora et al., 2020; O'Brien et al., 2020; 60 Collow et al., 2022, and references therein), AR variability and change (Dettinger, 2011; 61 Gao et al., 2015; Payne & Magnusdottir, 2015; Warner et al., 2015; Hagos et al., 2016; 62 Mundhenk et al., 2016; Gershunov et al., 2017; Lora et al., 2017; Warner & Mass, 2017; 63

Dong et al., 2018; Espinoza et al., 2018; Mundhenk et al., 2018; Zhou et al., 2018; Zhou
& Kim, 2018; Cao et al., 2020; McClenny et al., 2020; Payne et al., 2020; Rhoades et al.,
2020; O'Brien et al., 2021; Reid et al., 2021; Zhou et al., 2021; Ma & Chen, 2022), and
AR forecasting (Lavers, Pappenberger, et al., 2016; Lavers, Waliser, et al., 2016; DeFlorio et al., 2018, 2019; Lavers et al., 2020; Cao et al., 2021; Zheng et al., 2021). The list
of topics and citations here is meant to be illustrative rather than exhaustive; there are
now hundreds of atmospheric river papers in the literature.

The vast majority of papers in the AR literature are focused on studies of west-71 ern coastal zones, with most centered specifically on the United States West Coast where 72 much of the early research on ARs was directed. That said, there is an increasing recog-73 nition that atmospheric rivers are also important in other regions, such as continental 74 interiors and polar regions (Gorodetskaya et al., 2014; Wille et al., 2019; Nash et al., 2018), 75 the interiors of Australia and China (Liang et al., 2020; Rauber et al., 2020; Y. Xu et 76 al., 2020; L. Xu et al., 2020; H. Zhang et al., 2020; Nash et al., 2021; Reid et al., 2021), 77 the Middle East and North Africa (Massoud et al., 2020), and the interior of the United 78 States east of the Rocky Mountains (Dirmeyer & Kinter, 2009, 2010; Moore et al., 2012; 79 Slinskey et al., 2020). 80

For two specific examples, significant flooding events have occurred in the midwest-81 ern United States in association with atmospheric rivers: one in Nashville, Tennessee on 82 May 1–2, 2010 (Moore et al., 2012) and one in Bloomington, Indiana on June 18–19, 2021. 83 The Bloomington flood was a 100-year event in which multiple rain gauges recorded over 84 15 cm (6 in) of rainfall in a 24-hour period. Analysis of the associated meteorology (and 85 use of an objective AR detection tool: see Section 2) shows that the flood was associ-86 ated with the combination of an AR, a cold frontal zone (as indicated by a region of lo-87 cal maximum gradient in 850 hPa temperatures), and a mesoscale convective complex 88 (as indicated by a large coherent zone for which cloud brightness temperatures are lower 89 than the 225 K threshold determined by Feng et al. (2018)); see Figure S1. 90

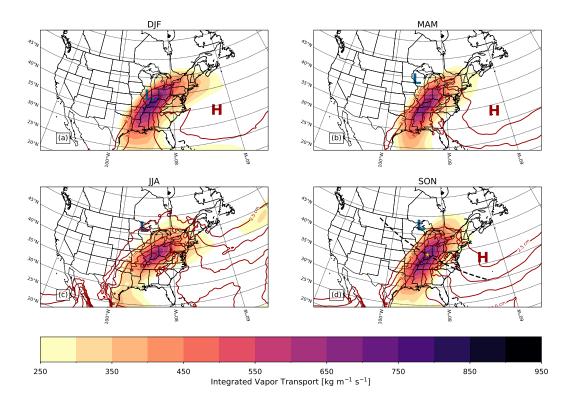
Several studies (Lavers & Villarini, 2013; Mahoney et al., 2016; Nakamura et al.,
2013; Nayak et al., 2016; Slinskey et al., 2020) demonstrate the importance of ARs for
extreme precipitation in areas of the United States (US) east of the Rocky Mountains.
However, some literature (Dirmeyer & Kinter, 2010; Gimeno et al., 2010, 2016) presents
a hypothesis that midwestern and eastern (hereafter 'eastern' for brevity) US ARs are
fundamentally different from their west coast counterparts, in that they are a manifestation of the Great Plains Low Level Jet (GPLLJ).

A counter-hypothesis is that these eastern US ARs, like their west coast counter-98 parts, are driven by synoptic-scale eddies; i.e., they are primarily associated with baro-99 clinic Rossby waves. Both hypotheses are testable. The Great Plains LLJ is thought to 100 be regulated by an inertial oscillation modulated by a consistent meridional buoyancy 101 gradient, rather than synoptic-scale waves (Gebauer & Shapiro, 2019). If baroclinic waves 102 are the primary driver, then we would expect the signatures of these midlatitude sys-103 tems to be evident in meteorological composites of times that satisfy AR conditions in 104 the central US. Indeed, (Lavers & Villarini, 2013) show composites of mean sea-level pres-105 sure suggesting the influence of synoptic-scale dynamics. 106

Using composites of reanalysis data, we find support for the baroclinic Rossby wave hypothesis. Our results show that eastern US ARs are dynamically similar to their wellstudied west coast counterparts in terms of their association with baroclinic waves.

110 2 Methods

We detect ARs using the Toolkit for Extreme Climate Analysis (TECA) Bayesian Atmospheric River Detector (teca_bard_v1.0.1) application, which simultaneously uses 1,024 equally plausible AR detectors to detect ARs with uncertainty quantification (O'Brien et al., 2020). As in O'Brien et al. (2020), we apply teca_bard_v1.0.1 to six-hourly MERRA-2 reanalysis output (Gelaro et al., 2017) spanning January 1, 1980 through December 31, 2021 (376,944 timesteps). For the analyses shown in Figures 1, 2, and 3, we identify high-confidence AR conditions over Bloomington, IN when the AR probability from teca_bard_v1.0.1 is 100%. This results in 1,089 AR timesteps total, with 219 in DJF, 172 in MAM, 243 in JJA, and 455 in SON.


We test the sensitivity of our results to choice of ARDT and to location by repeat-120 ing the entire analysis with a more permissive ARDT, guan_waliser_v2 (Guan & Waliser, 121 2015), and by repeating the entire analysis with $teca_bard_v1.0.1$ in a different loca-122 tion in the eastern United States: Washington, DC. The guan_waliser_v2 data come 123 from the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) Tier 124 1 database (Shields et al., 2018), which spans the years 1980-2017. Results of these sen-125 sitivity studies are provided in Supplemental Information (Figures S2–S9). The guan_waliser_v2 126 ARDT detects nearly 10 times more timesteps with AR conditions occurring over Bloom-127 ington, IN: 12,400 total, 2,925 in DJF, 3,379 in MAM, 2,754 in JJA, and 3,342 in SON. 128 The teca_bard_v1.0.1 ARDT detects a total of 1,548 timesteps with AR conditions 129 over Washington, D.C., with a similar distribution among seasons. 130

We generate composites of various meteorological quantities during the Blooming-131 ton, IN AR timesteps, as indicated above, within each season using the ERA5 reanal-132 ysis (Hersbach et al., 2020; European Centre for Medium-Range Weather Forecasts, 2019). 133 Note that the AR timesteps come from MERRA-2 due to our use of the ARTMIP dataset, 134 but the meteorological composites come from ERA5. We utilize geopotential height, tem-135 perature, integrated vapor transport, integrated water vapor, winds, potential vorticity, 136 137 vertical velocity, and mean sea-level pressure. Composites are generated using the teca_temporal_reduction application available within TECA (Loring et al., 2022; Prabhat et al., 2015). In the com-138 posite maps (Figures 1–4), we determine the location of surface low and high-pressure 139 regions by finding the location of minimum sea-level pressure in the region bounded by 140 the box (100 °W, 35 °N), (80 °W, 50 °N) for the low and by finding the location of max-141 imum sea-level pressure in the region bounded by the box (85 °W, 25 °N), (55 °W, 45 142 "N) for the high. These search regions were determined by visual inspection of the com-143 posites. A local minimum sea-level pressure is found for all four seasons, and a local max-144 imum sea-level pressure is found for all seasons except JJA. 145

In the composite transect in Section 3, the frontal zone locations are determined 146 by (1) finding the location of the maximum 1000 mb potential temperature gradient in 147 each season, and by (2) contouring the isentrope corresponding to the 1000 mb poten-148 tial temperature at that location. The dynamic troppoause in Figure 3a-d is determined 149 by the location of the 2 PVU potential vorticity contour. Cross-transect winds are cal-150 culated by taking the dot product of the transect-normal vector and the winds, and cross-151 transect moisture transport is calculated as the cross-transect wind times specific hu-152 midity. 153

154 3 Results

Figure 1 shows composites of integrated vapor transport (IVT; vertically integrated 155 horizontal moisture flux), total column water vapor (IWV), and the locations of surface 156 lows and highs for all four seasons. The IVT and IWV fields show the distinctive sig-157 nature of atmospheric river conditions, namely a long, narrow band of high water va-158 por transport co-located with high precipitable water content. In all four seasons, a sur-159 face low is present to the northwest of the central AR zone (southern Indiana), and a 160 surface high is present over the Atlantic Ocean in all seasons except JJA which instead 161 shows a broad ridge pattern over the region. The ARs occur within a region of high sur-162 face pressure gradient between these low and high-pressure regions. 163

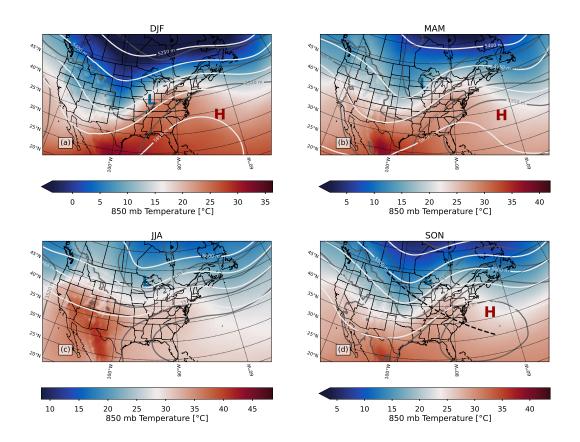


Figure 1. Composite maps of integrated vapor transport (shading), total column water vapor (red contours), and surface low and high pressures (L and H symbols) for AR conditions over Bloomington, IN in (a) DJF, (b) MAM, (c) JJA, and (d) SON. The dashed black curve in (d) shows the location of the transect in Figure 3, and the yellow star shows the location of Bloomington, IN.

To put the AR conditions in a synoptic context, Figure 2 shows composites of 850 164 mb potential temperature, 850 mb heights, 500 mb heights, and the same low/high-pressure 165 regions shown in Figure 1. The upper-level heights show the clear presence of a longwave 166 trough, with the mean trough axis 500-1500 km to the west of the AR region in all four 167 seasons and a ridge to the east, such that upper-level geostrophic winds are southwest-168 erly over the AR region. The lower-level heights also show a clear longwave pattern, with 169 a phase offset of several hundred kilometers to the east of the upper-level trough axis 170 in all four seasons. The surface low sits within, or just to the east of, the low-level trough. 171

The 850-mb potential temperature field also shows signs of a wave-like pattern, with a mean temperature gradient west of the AR region that would be associated with cold frontal zones, and signs of a warm frontal zone to the east of the AR region. Mean temperature features that could be correlated with fronts are much less well-defined in JJA, consistent with the weaker temperature gradients expected in Northern Hemisphere summer in midlatitudes.

In all four seasons, a mean upper-level trough exists west of the study region. If we were to treat each of the composite maps as representative of a typical event in that season, then this trough location indicates that the cyclonic vorticity associated with the trough is being advected eastward over the study region. The intensification of the winds with height (shown more clearly in Figure 3) indicates that the cyclonic vorticity advection increases with height. Such differential cyclonic vorticity advection is consistent with quasigeostrophic forcing favoring ascent over the region (Holton, 2004).

Figure 2. Composite maps of 850 mb potential temperature (shading), 850 mb heights (dark gray contours), 500 mb heights (light gray contours), and surface low and high pressures (L and H symbols) for AR conditions over Bloomington, IN in (a) DJF, (b) MAM, (c) JJA, and (d) SON. The dashed black curve in (d) shows the location of the transect in Figure 3.

The transect composites (Figure 3; see Figure 2d for the trace of the transect) show 185 the presence of an upper-level jet with a maximum to the northwest of the AR region 186 (to the left of 0 in the transects) and just below the tropopause in all four seasons. The 187 upper-level jet is strongest in DJF but weakest in JJA, and exhibits a westward tilt in 188 all four seasons, with relatively strong winds from the upper levels down toward the sur-189 face. All four seasons also exhibit a relative maximum in wind speed near the surface 190 approximately 200-300 km to the southeast (right of 0 in the transects), which indicates 191 the presence of a low-level jet. These winds are thermally-forced, as indicated by com-192 posites generated using geostrophic winds instead of the full wind field; these compos-193 ites (not shown) are essentially identical to those in Figure 2. The potential tempera-194 ture field shows indications of a cold frontal region, with a dome of relatively cold air 195 extending from the surface up to about 300 hPa to the northwest (left of 0). The actual 196 values of potential temperature vary according to season, but the general structure of the frontal region is consistent. The maximum gradient in 1000 mb temperatures is reached 198 at or near the AR region, indicating that individual AR events may be assocaited with 199 an impinging cold front. 200

Near-surface specific humidity (green dashed lines in Figure 3) reaches at least 10 g kg⁻¹ in all seasons, with highest values primarily to the southeast of the AR region. The combination of high specific humidity, increased winds associated with the upperlevel jet, and increased winds in the lower atmosphere result in high moisture transport directly over the AR region, consistent with the high IVT values shown in Figure 1. The

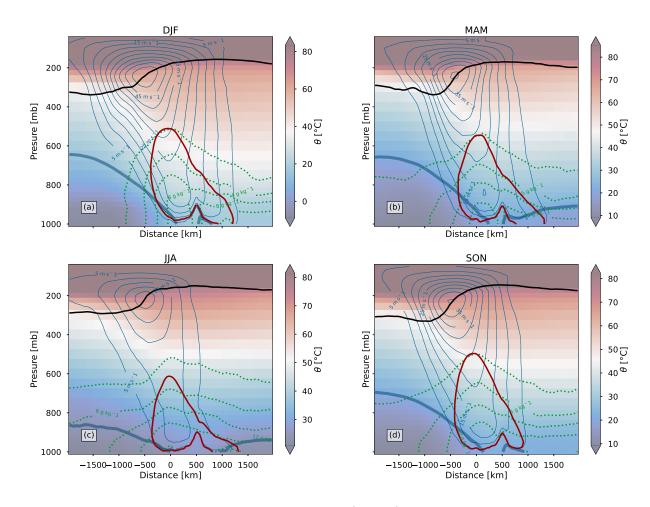


Figure 3. Composite transects of potential temperature (shading), transect-normal winds (blue curves), specific humidity (dotted green curves), moisture flux at the 60 g m kg⁻¹ s⁻¹ level (red contour), and the 2 PVU potential vorticity contour (black curve) for AR conditions over Bloomington, IN in (a) DJF, (b) MAM, (c) JJA, and (d) SON. Thick, transparent blue curves in all four panels show frontal zones. The trace of the transect is shown in Figure 2d.

region of high water vapor transport has a westward tilt, similar to the tilt in the tro pospheric wind maximum, suggesting the importance of the upper level flow in gener ating the high IVT that defines the AR.

209 4 Discussion

Figures 1 and 3 bear a strong similarity to the map and transect plots shown by 210 Ralph et al. (2018) in the American Meteorological Society Glossary definition of atmo-211 spheric rivers: strong, filamentary moisture transport to the southeast of a surface low 212 and cold frontal zone; and high moisture transport associated with high surface humid-213 ity and southwesterly winds from an upper-level jet and a pre-frontal low-level jet. Based 214 on the qualitative definition given by Ralph et al. (2018), and based on the objective de-215 tection of AR conditions by TECA-BARD, it seems clear that the ARs discussed here 216 are phenomenologically similar to their western coastal counterparts. 217

Likewise, Figures 2 and 3 show the distinctive characteristics of a longwave baroclinic Rossby wave: an upper-level jet, presence of a frontal zone and a surface low, and

westward tilting wind and potential temperature fields indicative of baroclinic waves. The 220 westward tilt in the moisture flux suggests that the moisture flux is associated with the 221 synoptic-scale, geostrophically-driven winds. This argues strongly against the hypothe-222 sis that central US atmospheric rivers are simply manifestations of the Great Plains low-223 level jet (GPLLJ). The clear signature of a baroclinic wave and upper-level dynamics 224 (e.g., the tropopause folds in Figure 3) indicate that the moisture flux is associated with 225 synoptic processes rather than the more mesoscale (and possibly boundary layer) scale 226 processes associated with the Great Plains low-level jet. Note that this does not rule out 227 the possibility that the GPLLJ is present during these AR conditions; indeed, a mas-228 ters thesis by Gyawali (2022) shows that most central Great Plains ARs also occur with 229 a detected GPLLJ. But two factors suggest that synoptic-scale processes, rather than 230 the GPLLJ, are the primary driver: (1) the similarity of the composites between seasons 231 when the GPLLJ is not considered to be important (DJF) and seasons when it does have 232 some influence (MAM and SON), and (2) Gyawali (2022) notes the similarity between 233 mid-level height composites of AR+GPLLJ conditions and the dynamically-coupled GPLLJ 234 composite conditions discussed by Burrows et al. (2019) in which the GPLLJ seems to 235 be synoptically controlled. 236

Composites from all four seasons support the general idea that eastern US ARs are 237 driven by longwave baroclinic Rossby waves, though there are some differences that are 238 worth further investigation. The low amplitude of the upper-level wave in JJA (Figure 2c) 239 may simply be related to the relatively weak meridional temperature gradient present 240 at that time of year, or it may indicate that the composites are averages over multiple 241 types of synoptic states such that the composite-mean pattern is weak. Additionally, DJF 242 stands out from the other seasons in that the mean surface low is nearly co-located with 243 the center of the AR (see Figure 2a) instead of being located well to the northwest of 244 the AR. It is possible that surface convergence associated with lows in DJF may enable 245 moisture-and resultant upper-level heating-from the AR to contribute to rapid deep-246 ening of these lows (Zhu & Newell, 1994; Z. Zhang et al., 2019). The use of simulation-247 based experiments and lagged composites may help clarify this. 248

There are two forms of uncertainty that may impact the conclusions here: uncertainty in the detection of ARs, and uncertainty associated with the choice of region over which to composite. Sensitivity tests using a different AR detection tool (from Guan and Waliser (2015)) and focus on a different region (Washington, DC) show qualitatively identical results: Figures S2–S5 for the ARDT sensitivity test; and Figures S3–S9 for the region sensitivity test. This suggests that the results presented here are robust to these sources of uncertainty.

Taken together, Figures 1–3 provide strong evidence that eastern US ARs are dy-256 namically similar to their well-studied western US counterparts, though a key difference 257 between the two is the mechanism for uplift and generation of precipitation. Orographic 258 ascent in neutrally-stratified atmosphere provides an efficient mechanism for upward mois-259 ture flux (Neiman et al., 2002; Ralph et al., 2005; Neiman, Ralph, Wick, Kuo, et al., 2008; 260 Cobb et al., 2021). The ubiquitous mountain ranges in the western US (e.g., the Coast 261 Ranges, the Cascades, and the Sierra Nevadas) can provide this orographic forcing for 262 ARs (B. L. Smith et al., 2010), though atmospheric stability and AR angle modulate the 263 264 effectiveness of this orographic forcing (Neiman et al., 2002; Kingsmill et al., 2013; Hughes et al., 2014). In contrast, the relative dearth of topography in the area between the Rocky 265 Mountains and the Appalachian mountains means that any upward moisture flux must 266 come from dynamical and/or convective processes, such as isentropic lift or convective 267 instability. 268

Analysis of composite vertical velocities shows a broad area of low-level updraft across the majority of the AR region: Figure 4 shows composite vertical velocities at 700 hPa (in pressure coordinates: negative velocities indicate upward motion) over regions where IVT is greater than the 250 kg m⁻¹ s⁻¹ threshold that is often used as a baseline for AR

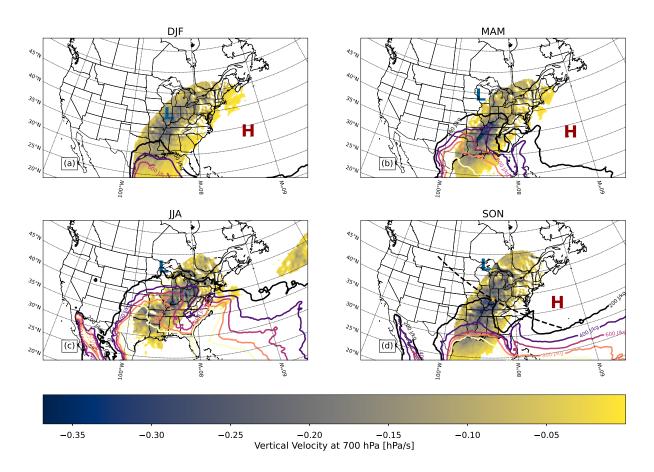


Figure 4. Composite of upward vertical velocity at 700 mb within regions of IVT higher than 250 kg m⁻¹s⁻¹, CAPE (colored contours), and the location of lows, highs, and the transect trace as in Figure 2.

presence (Rutz et al., 2014). These velocities reach up to -0.3 hPa s⁻¹ in all seasons. Considering that Figure 3 shows specific humidity values in the range 1–10 g kg⁻¹, this corresponds to a vertical moisture flux of $\mathcal{O}(0.1)$ mm d⁻¹ or smaller. A moisture flux of this magnitude is too low to explain the extreme precipitation associated with AR conditions as discussed by Slinskey et al. (2020) and shown in Figure S1. However, this broad region of synoptic-scale uplift may be enough to initiate convection.

Among the four seasons, all but DJF have appreciable mean convectively available 279 potential energy (CAPE; see Figure 4 and Figures S5, S9) over the study region, and even 280 DJF shows hints of elevated CAPE extending from the Gulf of Mexico. This suggests 281 that ARs in this region fuel convection through providing: (1) an adequate supply of high 282 moisture content, (2) a source of unstable air, and (3) a broad region of upward motion. 283 Even absent an orographic source of uplift, these three factors combine to provide an ef-284 ficient mechanism for translating horizontal moisture flux into intense vertical moisture 285 flux within convective regions. These three ingredients, in combination with the wind 286 shear (Figure 2) associated with the growing baroclinic wave that drives the AR, are well-287 known ingredients for severe convective environments. One therefore might expect a strong 288 association between mesoscale convective systems (MCS) and ARs in this region, and 289 this warrants further study. 290

This association between ARs and environments favorable for MCS development may also open new opportunities for using paleoclimate proxies to study ARs and cli-

mate change. For the western US, the presence of terrigenous sediment layers can pro-293 vide a proxy of AR-driven activity, since terrestrial flood events tend to be primarily as-294 sociated with ARs in the region (Hendy et al., 2015; Du et al., 2018). Such a proxy is 295 inapplicable in the continental interior, but recent work by Sun et al. (2021) shows that 296 the hydrogen isotopic composition of leaf wax preserves a signal associated with MCS. 297 The authors primarily associate this proxy with changes in the GPLLJ, but analysis of 298 paleoclimate simulations suggest that ARs-and changes therein-may have played a ma-299 jor factor in the hydroclimate of the continental interior since the Last Glacial Maximum 300 (Skinner et al., 2020; Lora et al., 2023; Skinner et al., 2023). Taken together, the anal-301 ysis here suggests that ARs may be a factor in modulating MCS activity in the region. 302 Further analysis of the proxy developed by Sun et al. (2021) may provide a novel way 303 to study paleoclimate changes in ARs in the continental interior. 304

305 5 Conclusions

This analysis provides clear evidence that ARs in the eastern US are driven by synoptic-306 scale processes, and in particular that ARs seem to be associated with longwave baro-307 clinic Rossby waves. This does not preclude the idea that the GPLLJ can sometimes play 308 a role in these ARs, but the evidence presented here suggests that the primary means 309 of generating strong, and southwesterly, horizontal moisture flux is through geostrophic 310 forcing of winds from a synoptic-scale wave. This horizontal moisture flux-and associ-311 ated unstable air-then drives vertical moisture flux (and precipitation) through convec-312 tive processes rather than orographic processes as in the western US. 313

As Slinskey et al. (2020) report, a high proportion of central and eastern US ex-314 treme precipitation is associated with ARs, but it is not known whether this extreme pre-315 cipitation results from ARs alone. Figure S1 indicates that some extreme precipitation 316 events are associated with more than one meteorological phenomenon (e.g., a front, an 317 AR, and a mesoscale convective system as in that case), and analysis of Figures 2, 3, and 318 4 suggest that these ARs occur in an environment favorable for mesoscale convection. 319 It is not clear how frequently such co-occurrences happen or whether they systematically 320 intensify precipitation. We are currently working on follow-up studies to assess this. 321

Given that eastern US ARs are synoptically forced, it seems reasonable to expect 322 that climate models should be able to resolve this association between midlatitude cy-323 clones and ARs in this region. Indeed, a recent intercomparison of simulations and AR 324 detection tools shows that most climate models simulate a relative maximum in AR fre-325 quency in the midwestern and eastern US (O'Brien et al., 2021), suggesting that this may 326 be the case. Building composites, like the ones shown here but for historical climate model 327 simulations, could provide a way to directly evaluate the dynamics of simulated ARs. 328 In contrast, the mechanisms for vertical moisture flux-which appear to be convective in 329 nature-could be quite challenging for models to adequately simulate. Such a phenomenon-330 focused perspective could provide a way to elucidate specific model deficiencies as well 331 as possible indications for how to fix them. A recent workshop has advocated for such 332 an approach as a promising way to rapidly improve the simulation of precipitation in cli-333 mate models (Pendergrass et al., 2020). 334

This work helps pave the way for advancing a theory-based understanding of ARs 335 and climate change in the eastern US that builds on the well-established thermodynamic 336 scaling of moisture (i.e., Clauius-Clapeyron scaling) in ARs (Payne et al., 2020). The 337 results here show that eastern US ARs are strongly associated with midlatitude cyclones, 338 and there is an increasing body of literature about the theoretical effects of climate change 339 on the location and frequency of these storms (Shaw et al., 2016; Feldl et al., 2017; Shaw, 340 2019). Overall, it could be beneficial to extend this work further to assess the degree to 341 which different areas of high AR frequency-particularly the inland ones-seem to be as-342 sociated with midlatitude cyclones. 343

³⁴⁴ Open Research Section

The European Centre for Medium-Range Weather Forecasts ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid) dataset was provided by the Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/BH6N-5N20

Atmospheric river detections from teca_bard_v1.0.1 and guan_waliser_v2 are available as part of the Atmospheric River Tracking Method Intercomparison Project Tier 1 experiment archive. https://doi.org/10.5065/D6R78D1M

352 Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, 353 Office of Science, Office of Biological and Environmental Research, Climate and Envi-354 ronmental Sciences Division, Regional & Global Model Analysis Program and used re-355 sources of the National Energy Research Scientific Computing Center (NERSC), also sup-356 ported by the Office of Science of the U.S. Department of Energy under Contract No. 357 DE-AC02-05CH11231. This research was also supported in part by the Environmental 358 Resilience Institute, funded by Indiana University's Prepared for Environmental Change 359 Grand Challenge initiative and in part by Lilly Endowment, Inc., through its support 360 for the Indiana University Pervasive Technology Institute. 361

TAO designed the study, performed the data analysis, and wrote the original draft of the paper. BL, AD, and TAO contributed software (the Toolkit for Extreme Climate Analysis) central to the study. MRI, DK, KQ, and CK contributed to interpretation of the results and the writing of the original draft. All authors contributed to the review and editing of the final manuscript.

367 References

368	Bao, J. W., Michelson, S. A., Neiman, P. J., Ralph, F. M., & Wilczak, J. M. (2006).
369	Interpretation of enhanced integrated water vapor bands associated with ex-
370	tratropical cyclones: Their formation and connection to tropical moisture.
371	Monthly Weather Review, 134(4), 1063–1080. doi: 10.1175/MWR3123.1
372	Burrows, D. A., Ferguson, C. R., Campbell, M. A., Xia, G., & Bosart, L. F. (2019,
373	nov). An Objective Classification and Analysis of Upper-Level Coupling to the
374	Great Plains Low-Level Jet over the Twentieth Century. Journal of Climate,
375	32(21), 7127-7152. Retrieved from http://journals.ametsoc.org/doi/10
376	.1175/JCLI-D-18-0891.1 doi: 10.1175/JCLI-D-18-0891.1
377	Cao, Q., Gershunov, A., Shulgina, T., Ralph, F. M., Sun, N., & Lettenmaier,
378	D. P. (2020, aug). Floods due to Atmospheric Rivers along the U.S. West
379	Coast: The Role of Antecedent Soil Moisture in a Warming Climate. Jour-
380	nal of Hydrometeorology, 21(8), 1827–1845. Retrieved from https://
381	journals.ametsoc.org/view/journals/hydr/21/8/jhmD190242.xml doi:
382	10.1175/JHM-D-19-0242.1
383	Cao, Q., Shukla, S., DeFlorio, M. J., Ralph, F. M., & Lettenmaier, D. P. (2021,
384	apr). Evaluation of the subseasonal forecast skill of floods associated with
385	atmospheric rivers in coastal Western U.S. watersheds. Journal of Hydromete-
386	orology, 22(6), 1535-1552. Retrieved from https://journals.ametsoc.org/
387	view/journals/hydr/aop/JHM-D-20-0219.1/JHM-D-20-0219.1.xml doi:
388	10.1175/JHM-D-20-0219.1
389	Cobb, A., Michaelis, A., Iacobellis, S., Ralph, F. M., & Delle Monache, L. (2021,
390	mar). Atmospheric River Sectors: Definition and Characteristics Observed
391	Using Dropsondes from 2014–20 CalWater and AR Recon. Monthly Weather
392	<i>Review</i> , 149(3), 623-644. Retrieved from https://journals.ametsoc.org/

393	view/journals/mwre/aop/MWR-D-20-0177.1/MWR-D-20-0177.1.xmlhttps://
394	journals.ametsoc.org/view/journals/mwre/149/3/MWR-D-20-0177.1.xml doi: 10.1175/MWR-D-20-0177.1
395	Collow, A. B. M., Shields, C. A., Guan, B., Kim, S., Lora, J. M., McClenny, E. E.,
396	Wehner, M. (2022, apr). An Overview of ARTMIP's Tier 2 Reanalysis In-
397 398	tercomparison: Uncertainty in the Detection of Atmospheric Rivers and Their
399	Associated Precipitation. Journal of Geophysical Research: Atmospheres,
400	127(8). Retrieved from https://onlinelibrary.wiley.com/doi/10.1029/
401	2021JD036155 doi: 10.1029/2021JD036155
402	Cordeira, J. M., Martin Ralph, F., & Moore, B. J. (2013). The development and
403	evolution of two atmospheric rivers in proximity to western north pacific trop-
404	ical cyclones in october 2010. Monthly Weather Review, 141(12), 4234–4255.
405	doi: 10.1175/MWR-D-13-00019.1
406	Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., Stringer, M. A., & Lavers, D. A.
407	(2015). How do atmospheric rivers form? Bulletin of the American Meteorolog-
408	ical Society, 96(8), 1243–1255. doi: 10.1175/BAMS-D-14-00031.1
409	DeFlorio, M. J., Waliser, D. E., Guan, B., Lavers, D. A., Ralph, F. M., & Vi-
410	tart, F. (2018, feb). Global Assessment of Atmospheric River Predic-
411	tion Skill. Journal of Hydrometeorology, $19(2)$, $409-426$. Retrieved from
412	http://journals.ametsoc.org/doi/10.1175/JHM-D-17-0135.1 doi:
413	10.1175/JHM-D-17-0135.1
414	DeFlorio, M. J., Waliser, D. E., Guan, B., Ralph, F. M., & Vitart, F. (2019, mar).
415	Global evaluation of atmospheric river subseasonal prediction skill. Cli -
416	<i>mate Dynamics</i> , 52(5-6), 3039-3060. Retrieved from https://doi.org/ 10.1007/s00382-018-4309-x.http://link.springer.com/10.1007/
417	s00382-018-4309-x doi: 10.1007/s00382-018-4309-x
418	Dettinger, M. (2011). Climate change, atmospheric rivers, and floods in Cali-
419 420	fornia - a multimodel analysis of storm frequency and magnitude changes.
421	Journal of the American Water Resources Association, $47(3)$, $514-523$. doi:
422	10.1111/j.1752-1688.2011.00546.x
423	Dirmeyer, P. A., & Kinter, J. L. (2009). The "Maya Express": Floods in the U.S.
424	Midwest. Eos, 90(12), 101–102. doi: 10.1029/2009EO120001
425	Dirmeyer, P. A., & Kinter, J. L. (2010). Floods over the U.S. midwest: A regional
426	water cycle perspective. Journal of Hydrometeorology, $11(5)$, $1172-1181$. doi:
427	10.1175/2010JHM1196.1
428	Dong, L., Leung, L. R., Song, F., & Lu, J. (2018). Roles of SST versus internal
429	atmospheric variability in winter extreme precipitation variability along the
430	U.S. West Coast. Journal of Climate, JCLI–D–18–0062.1. Retrieved from
431	http://journals.ametsoc.org/doi/10.1175/JCLI-D-18-0062.1 doi:
432	10.1175/JCLI-D-18-0062.1 Du, X., Hendy, I., & Schimmelmann, A. (2018). A 9000-year flood history
433	for Southern California: A revised stratigraphy of varved sediments in
434 435	Santa Barbara Basin. Marine Geology, 397(November 2017), 29–42. Re-
435	trieved from https://doi.org/10.1016/j.margeo.2017.11.014 doi:
437	10.1016/j.margeo.2017.11.014
438	Eiras-Barca, J., Ramos, A. M., Pinto, J. G., Trigo, R. M., Liberato, M. L. R., &
439	Miguez-Macho, G. (2018, jan). The concurrence of atmospheric rivers and ex-
440	plosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Sys-
441	tem Dynamics, $9(1)$, $91-102$. Retrieved from https://esd.copernicus.org/
442	articles/9/91/2018/ doi: 10.5194/esd-9-91-2018
443	Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., & Ralph, F. M. (2018, may).
444	Global Analysis of Climate Change Projection Effects on Atmospheric Rivers.
445	Geophysical Research Letters, 45(9), 4299–4308. Retrieved from http://
446	doi.wiley.com/10.1029/2017GL076968 doi: 10.1029/2017GL076968
447	European Centre for Medium-Range Weather Forecasts. (2019). Era5 reanalysis

448	(0.25 degree latitude-longitude grid). Boulder CO: Research Data Archive
449	at the National Center for Atmospheric Research, Computational and Infor-
450	mation Systems Laboratory. Retrieved from https://doi.org/10.5065/
451	BH6N-5N20
452	Feldl, N., Anderson, B. T., & Bordoni, S. (2017). Atmospheric eddies mediate lapse
453	rate feedback and arctic amplification. Journal of Climate, 30(22), 9213–9224.
454	doi: 10.1175/JCLI-D-16-0706.1
455	Feng, Z., Leung, L. R., Houze, R. A., Hagos, S., Hardin, J., Yang, Q., Fan, J.
456	(2018, jul). Structure and Evolution of Mesoscale Convective Systems: Sensi-
457	tivity to Cloud Microphysics in Convection-Permitting Simulations Over the
458	United States. Journal of Advances in Modeling Earth Systems, 10(7), 1470–
459	1494. Retrieved from https://onlinelibrary.wiley.com/doi/10.1029/
460	2018MS001305 doi: 10.1029/2018MS001305
461	Gao, Y., Lu, J., Leung, L. R., Yang, Q., Hagos, S., & Qian, Y. (2015, sep). Dy-
462	namical and thermodynamical modulations on future changes of landfalling
463	atmospheric rivers over western North America. Geophysical Research Let-
464	ters, 42(17), 7179-7186. Retrieved from http://doi.wiley.com/10.1002/
465	2015GL065435 doi: 10.1002/2015GL065435
466	Gebauer, J. G., & Shapiro, A. (2019). Clarifying the baroclinic contribution to
467	the great plains low-level jet frequency maximum. Monthly Weather Review,
468	147(9), 3481–3493. doi: 10.1175/MWR-D-19-0024.1
469	Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
470	Zhao, B. (2017, jul). The Modern-Era Retrospective Analysis for Research
471	and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14),
472	5419-5454. Retrieved from http://journals.ametsoc.org/doi/10.1175/
473	JCLI-D-16-0758.1 doi: 10.1175/JCLI-D-16-0758.1
474	Gershunov, A., Shulgina, T., Ralph, F. M., Lavers, D. A., & Rutz, J. J. (2017,
475	aug). Assessing the climate-scale variability of atmospheric rivers affect-
476	ing western North America. Geophysical Research Letters, 44(15), 7900–
477	
477 478	7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi:
	7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175
478	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J.,
478 479	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport
478 479 480	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environ-
478 479 480 481	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport
478 479 480 481 482 483	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558
478 479 480 481 482 483 484	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117–141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the
478 479 480 481 482 483	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13).
478 479 480 481 482 483 484 485	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
478 479 480 481 482 483 484 485 486 487	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712
478 479 480 481 482 483 484 485 486 487 488	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van
478 479 480 481 482 483 484 485 486 487 488	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous
478 479 480 481 482 483 484 485 486 487 488 489 490	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17),
478 479 480 481 482 483 484 485 486 487 488	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199-6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881
478 479 480 481 482 483 484 485 486 487 488 489 490 491	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199-6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199-6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river
478 479 480 481 482 483 484 485 486 487 488 489 490 491	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199-6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river orientation determines flood occurrence. Hydrological Processes(September),
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117–141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199–6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river orientation determines flood occurrence. Hydrological Processes(September), 4547–4555. doi: 10.1002/hyp.13905
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117–141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199–6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river orientation determines flood occurrence. Hydrological Processes(September), 4547–4555. doi: 10.1002/hyp.13905 Guan, B., & Waliser, D. E. (2015, dec). Detection of atmospheric rivers: Evalu-
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117-141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199-6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river orientation determines flood occurrence. Hydrological Processes(September), 4547-4555. doi: 10.1002/hyp.13905 Guan, B., & Waliser, D. E. (2015, dec). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysic
478 479 480 481 482 483 484 485 486 487 488 489 490 490 491 492 493 494 495 496 497 498	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117–141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199–6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river orientation determines flood occurrence. Hydrological Processes(September), 4547–4555. doi: 10.1002/hyp.13905 Guan, B., & Waliser, D. E. (2015, dec). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120(24), 12514–12535. Retrieved from http://doi
 478 479 480 481 482 483 484 485 486 487 488 490 491 492 493 494 495 496 497 498 499 	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117–141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199–6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river orientation determines flood occurrence. Hydrological Processes(September), 4547–4555. doi: 10.1002/hyp.13905 Guan, B., & Waliser, D. E. (2015, dec). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120(24), 12514–12535. Retrieved from http://doi.wiley.com/10.1002/2015JD024257
 478 479 480 481 482 483 484 485 486 487 488 490 491 492 493 494 495 496 497 498 499 500 	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117–141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199–6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river orientation determines flood occurrence. Hydrological Processes(September), 4547–4555. doi: 10.1002/µp.13905 Guan, B., & Waliser, D. E. (2015, dec). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120(24), 12514–12535. Retrieved from http://doi.wiley.com/10.1002/2015JD024257 Guan, B., Waliser, D. E., Molotch, N. P., Fetzer, E. J., & Neiman, P. J. (2011).
 478 479 480 481 482 483 484 485 486 487 488 490 491 492 493 494 495 496 497 498 499 	 7908. Retrieved from http://doi.wiley.com/10.1002/2017GL074175 doi: 10.1002/2017GL074175 Gimeno, L., Dominguez, F., Nieto, R., Trigo, R., Drumond, A., Reason, C. J., Marengo, J. (2016). Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 41(1), 117–141. doi: 10.1146/annurev-environ-110615 -085558 Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., & Stohl, A. (2010). On the origin of continental precipitation. Geophysical Research Letters, 37(13). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2010GL043712 doi: https://doi.org/10.1029/2010GL043712 Gorodetskaya, I. V., Tsukernik, M., Claes, K., Ralph, M. F., Neff, W. D., & Van Lipzig, N. P. M. (2014, sep). The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophysical Research Letters, 41(17), 6199–6206. Retrieved from http://doi.wiley.com/10.1002/2014GL060881 Griffith, H. V., Wade, A. J., Lavers, D. A., & Watts, G. (2020). Atmospheric river orientation determines flood occurrence. Hydrological Processes(September), 4547–4555. doi: 10.1002/hyp.13905 Guan, B., & Waliser, D. E. (2015, dec). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120(24), 12514–12535. Retrieved from http://doi.wiley.com/10.1002/2015JD024257

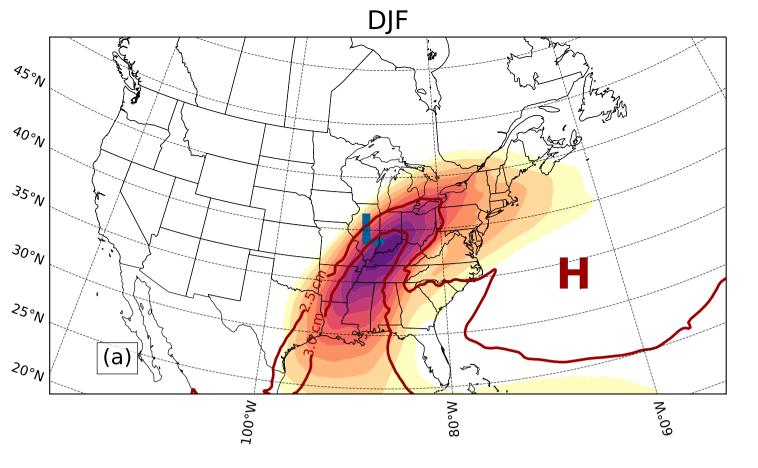
503	342. doi: 10.1175/mwr-d-11-00087.1
504	Guo, Y., Shinoda, T., Guan, B., Waliser, D. E., & Chang, E. K. (2020). Sta-
505	tistical relationship between atmospheric rivers and extratropical cy-
506	clones and anticyclones. Journal of Climate, 33(18), 7817–7834. doi:
507	10.1175/JCLI-D-19-0126.1
508	Gyawali, N. (2022). A Comparative Analysis of the Impact of Low-Level Jets and
509	Atmospheric Rivers in the Central U.S (Doctoral dissertation, State University
510	of New York at Albany). Retrieved from https://proxyiub.uits.iu.edu/
511	login?qurl=https%3A%2F%2Fwww.proquest.com%2Fdissertations
512	-theses%2Fcomparative-analysis-impact-low-level-jets%2Fdocview%
513	2F2708702323%2Fse-2%3Faccountid%3D11620
514	Hagos, S. M., Leung, L. R., Yoon, Jh., Lu, J., & Gao, Y. (2016, feb). A pro-
515	jection of changes in landfalling atmospheric river frequency and extreme
516	precipitation over western North America from the Large Ensemble CESM
517	simulations. Geophysical Research Letters, $43(3)$, 1357–1363. Retrieved from
518	https://onlinelibrary.wiley.com/doi/10.1002/2015GL067392 doi:
519	10.1002/2015 GL067392
520	Hendy, I. L., Napier, T. J., & Schimmelmann, A. (2015, nov). From extreme
521	rainfall to drought: 250 years of annually resolved sediment deposition in
522	Santa Barbara Basin, California. Quaternary International, 387, 3–12. Re-
523	trieved from http://dx.doi.org/10.1016/j.quaint.2015.01.026https://
524	linkinghub.elsevier.com/retrieve/pii/S104061821500049X doi:
525	10.1016/j.quaint.2015.01.026
526	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater,
527	J., Thépaut, J. (2020, jul). The ERA5 global reanalysis. Quarterly
528	Journal of the Royal Meteorological Society, 146(730), 1999–2049. Retrieved
529	from https://onlinelibrary.wiley.com/doi/10.1002/qj.3803 doi:
530	10.1002/qj.3803
	/ ·D
531	Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Re-
531	Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Re-
531 532	Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Re- trieved from https://books.google.com/books?id=fhW5oDv3EPsC
531 532 533	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph,
531 532 533 534	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmo-
531 532 533 534 535	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain
531 532 533 534 535 536	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5),
531 532 533 534 535 536 537	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1
531 532 533 534 535 536 537 538	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph,
531 532 533 534 535 536 537 538 539	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Re-
 531 532 533 534 535 536 537 538 539 540 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/
531 532 533 534 535 536 537 538 539 540 541	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Re-
 531 532 533 534 535 536 537 538 539 540 541 542 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/
 531 532 533 534 535 536 537 538 539 540 541 542 543 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4),
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1 Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. (2016). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43(22),
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1 Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. (2016). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmo-
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1 Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. (2016). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43(22),
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1 Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. (2016). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43(22), 11,852–11,858. doi: 10.1002/2016GL071320 Lavers, D. A., Ralph, F. M., Richardson, D. S., & Pappenberger, F. (2020, dec). Improved forecasts of atmospheric rivers through systematic recon-
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1 Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. (2016). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43(22), 11,852–11,858. doi: 10.1002/2016GL071320 Lavers, D. A., Ralph, F. M., Richardson, D. S., & Pappenberger, F. (2020, dec). Improved forecasts of atmospheric rivers through systematic reconnaissance, better modelling, and insights on conversion of rain to flood-
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1 Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. (2016). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43(22), 11,852–11,858. doi: 10.1002/2016GL071320 Lavers, D. A., Ralph, F. M., Richardson, D. S., & Pappenberger, F. (2020, dec). Improved forecasts of atmospheric rivers through systematic reconnaissance, better modelling, and insights on conversion of rain to flooding. Communications Earth & Environment, 1(1), 39. Retrieved from
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1 Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. (2016). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43(22), 11,852–11,858. doi: 10.1002/2016GL071320 Lavers, D. A., Ralph, F. M., Richardson, D. S., & Pappenberger, F. (2020, dec). Improved forecasts of atmospheric rivers through systematic reconnaissance, better modelling, and insights on conversion of rain to flooding. Communications Earth & Environment, 1(1), 39. Retrieved from http://dx.doi.org/10.1038/s43247-020-00042-1http://www.nature.com/
 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 	 Holton, J. (2004). An introduction to dynamic meteorology. Elsevier Science. Retrieved from https://books.google.com/books?id=fhW5oDv3EPsC Hughes, M., Mahoney, K. M., Neiman, P. J., Moore, B. J., Alexander, M., & Ralph, F. M. (2014). The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. Journal of Hydrometeorology, 15(5), 1954–1974. doi: 10.1175/JHM-D-13-0176.1 Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. (2013, jun). Kinematic and Thermodynamic Structures of Sierra Barrier Jets and Overrunning Atmospheric Rivers during a Landfalling Winter Storm in Northern California. Monthly Weather Review, 141(6), 2015–2036. Retrieved from https://journals.ametsoc.org/view/journals/mwre/141/6/mwr-d-12-00277.1.xml doi: 10.1175/MWR-D-12-00277.1 Knippertz, P., & Wernli, H. (2010). A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. Journal of Climate, 23(4), 987–1003. doi: 10.1175/2009JCLI3333.1 Lavers, D. A., Pappenberger, F., Richardson, D. S., & Zsoter, E. (2016). ECMWF Extreme Forecast Index for water vapor transport: A forecast tool for atmospheric rivers and extreme precipitation. Geophysical Research Letters, 43(22), 11,852–11,858. doi: 10.1002/2016GL071320 Lavers, D. A., Ralph, F. M., Richardson, D. S., & Pappenberger, F. (2020, dec). Improved forecasts of atmospheric rivers through systematic reconnaissance, better modelling, and insights on conversion of rain to flooding. Communications Earth & Environment, 1(1), 39. Retrieved from

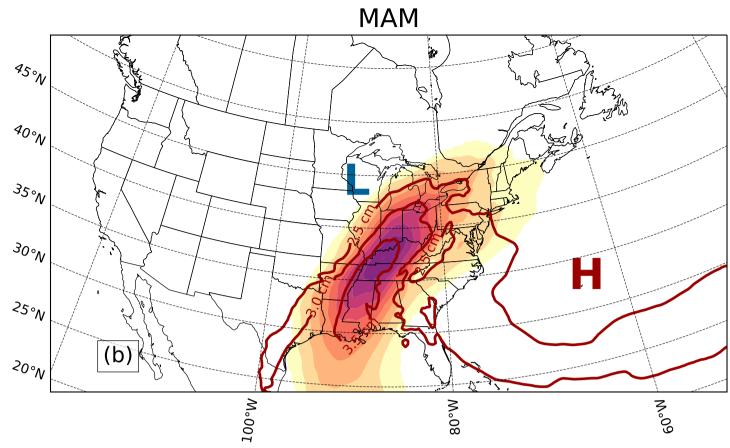
558	the Central United States. Journal of Climate, 26(20), 7829–7836. Retrieved
559	from http://journals.ametsoc.org/doi/10.1175/JCLI-D-13-00212.1 doi: 10.1175/JCLI-D-13-00212.1
560	Lavers, D. A., Villarini, G., Allan, R. P., Wood, E. F., & Wade, A. J. (2012, oct).
561	The detection of atmospheric rivers in atmospheric reanalyses and their links
562 563	to British winter floods and the large-scale climatic circulation. Journal of
564	Geophysical Research Atmospheres, 117(20), 1–13. Retrieved from http://
565	doi.wiley.com/10.1029/2012JD018027 doi: 10.1029/2012JD018027
566	Lavers, D. A., Waliser, D. E., Ralph, F. M., & Dettinger, M. D. (2016). Pre-
567	dictability of horizontal water vapor transport relative to precipitation: En-
568	hancing situational awareness for forecasting western U.S. extreme precipi-
569	tation and flooding. Geophysical Research Letters, 43(5), 2275–2282. doi:
570	10.1002/2016GL067765
571	Leung, LR., & Qian, Y. (2009). Atmospheric rivers induced heavy precipita-
572	tion and flooding in the western U.S. simulated by the WRF regional climate
573	model. Geophysical Research Letters, $36(3)$, 1–6. doi: $10.1029/2008$ GL036445
574	Liang, P., Dong, G., Zhang, H., Zhao, M., & Ma, Y. (2020). Atmospheric rivers as-
575	sociated with summer heavy rainfall over the Yangtze Plain. Journal of South-
576	ern Hemisphere Earth Systems Science. doi: 10.1071/es19028
577	Lora, J. M., Mitchell, J. L., Risi, C., & Tripati, A. E. (2017, jan). North Pacific
578	atmospheric rivers and their influence on western North America at the Last
579	Glacial Maximum. Geophysical Research Letters, 44 (2), 1051–1059. Re-
580	trieved from http://doi.wiley.com/10.1002/2016GL071541https://
581	onlinelibrary.wiley.com/doi/abs/10.1002/2016GL071541 doi:
582	$\frac{10.1002}{2016 \text{GL}071541}$
583	Lora, J. M., Shields, C. A., & Rutz, J. J. (2020, oct). Consensus and Disagreement in Atmospheric River Detection: ARTMIP Global Catalogues. <i>Geophysical Re-</i>
584	search Letters, $47(20)$, 1–10. Retrieved from https://onlinelibrary.wiley
585 586	.com/doi/10.1029/2020GL089302 doi: 10.1029/2020GL089302
587	Lora, J. M., Skinner, C. B., Rush, W. D., & Baek, S. H. (2023). The Hydro-
588	logic Cycle and Atmospheric Rivers in CESM2 Simulations of the Last
589	Glacial Maximum. $Geophysical Research Letters, 50(18), 1-11.$ doi:
590	10.1029/2023GL104805
591	Loring, B., Elbashandy, A., O'Brien, T. A., HarinarayanKrishnan, amandasd, &
592	noel. (2022, June). Lbl-eesa/teca: Teca 5.0.0. Zenodo. Retrieved from
593	https://doi.org/10.5281/zenodo.6640288 doi: 10.5281/zenodo.6640288
594	Ma, W., & Chen, G. (2022, aug). What Controls the Interannual Variability of the
595	Boreal Winter Atmospheric River Activities over the Northern Hemisphere?
596	Journal of Climate, 1-39. Retrieved from https://journals.ametsoc.org/
597	view/journals/clim/aop/JCLI-D-22-0089.1/JCLI-D-22-0089.1.xml doi:
598	10.1175/JCLI-D-22-0089.1
599	Mahoney, K. M., Jackson, D. L., Neiman, P., Hughes, M., Darby, L., Wick, G.,
600	Cifelli, R. (2016). Understanding the role of atmospheric rivers in heavy pre-
601	cipitation in the southeast United States. Monthly Weather Review, 144(4), 1617–1622, doi: 10.1175/MWP.D.15.0270.1
602	1617–1632. doi: 10.1175/MWR-D-15-0279.1 Maggaud F. Maggaud T. Cuan B. Sangupta A. Egninoza V. Da Luna
603	Massoud, E., Massoud, T., Guan, B., Sengupta, A., Espinoza, V., De Luna, M. D., Waliser, D. (2020). Atmospheric Rivers and Precipitation in
604	the Middle East and North Africa (MENA). Water, 12(10), 2863. doi:
605 606	10.3390/w12102863
607	McClenny, E. E., Ullrich, P. A., & Grotjahn, R. (2020, nov). Sensitivity of Atmo-
608	spheric River Vapor Transport and Precipitation to Uniform Sea Surface Tem-
609	perature Increases. Journal of Geophysical Research: Atmospheres, 125(21),
610	1-20. Retrieved from https://onlinelibrary.wiley.com/doi/10.1029/
611	2020JD033421 doi: 10.1029/2020JD033421
612	Moore, B. J., Neiman, P. J., Ralph, F. M., & Barthold, F. E. (2012). Physi-

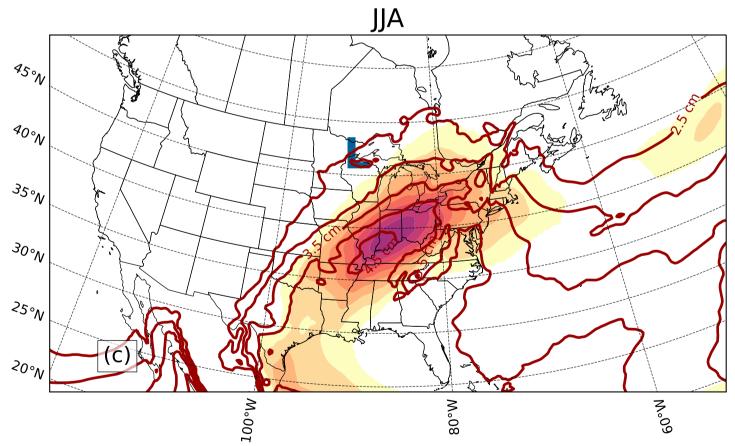
613	cal processes associated with heavy flooding rainfall in nashville, tennessee,
614	and vicinity during 1-2 may 2010: The role of an atmospheric river and
615	mesoscale convective systems. Monthly Weather Review, $140(2)$, $358-378$.
616	doi: 10.1175/MWR-D-11-00126.1
617	Mundhenk, B. D., Barnes, E. A., & Maloney, E. D. (2016). All-season climatology
618	and variability of atmospheric river frequencies over the North Pacific. <i>Journal</i>
619	of Climate, 29(13), 4885–4903. doi: 10.1175/JCLI-D-15-0655.1
620	Mundhenk, B. D., Barnes, E. A., Maloney, E. D., & Baggett, C. F. (2018, dec).
621	Skillful empirical subseasonal prediction of landfalling atmospheric river
622	activity using the Madden–Julian oscillation and quasi-biennial oscilla-
623	tion. <i>npj Climate and Atmospheric Science</i> , 1(1), 20177. Retrieved from
624	http://dx.doi.org/10.1038/s41612-017-0008-2http://www.nature.com/
625	articles/s41612-017-0008-2 doi: 10.1038/s41612-017-0008-2
626	Nakamura, J., Lall, U., Kushnir, Y., Robertson, A. W., & Seager, R. (2013). Dy-
627	namical structure of extreme floods in the U.S. Midwest and the United
628	Kingdom. Journal of Hydrometeorology, 14(2), 485–504. doi: 10.1175/
	JHM-D-12-059.1
629	
630	Nash, D., Carvalho, L. M. V., Jones, C., & Ding, Q. (2021, oct). Winter and spring
631	atmospheric rivers in High Mountain Asia: climatology, dynamics, and vari-
632	ability. <i>Climate Dynamics</i> (0123456789). Retrieved from https://doi.org/
633	10.1007/s00382-021-06008-zhttps://link.springer.com/10.1007/
634	s00382-021-06008-z doi: 10.1007/s00382-021-06008-z
635	Nash, D., Waliser, D., Guan, B., Ye, H., & Ralph, F. M. (2018, jul). The Role
636	of Atmospheric Rivers in Extratropical and Polar Hydroclimate. Journal of
637	Geophysical Research: Atmospheres, 123(13), 6804–6821. Retrieved from
638	https://doi.org/10.1029/2017JD028130.https://onlinelibrary.wiley
639	.com/doi/abs/10.1029/2017JD028130 doi: $10.1029/2017JD028130$
640	Nayak, M. A., Villarini, G., & Allen Bradley, A. (2016). Atmospheric rivers and
641	rainfall during NASA's Iowa Flood Studies (IFloodS) campaign. Journal of
642	Hydrometeorology, 17(1), 257–271. doi: 10.1175/JHM-D-14-0185.1
643	Neiman, P. J., Ralph, F. M., White, A. B., Kingsmill, D. E., & Persson, P. O.
644	(2002). The statistical relationship between upslope flow and rainfall in
645	California's coastal mountains: Observations during CALJET. Monthly
646	Weather Review, 130(6), 1468–1492. doi: 10.1175/1520-0493(2002)130(1468:
647	TSRBUF)2.0.CO;2
648	Neiman, P. J., Ralph, F. M., Wick, G. A., Kuo, Y. H., Wee, T. K., Ma, Z., Det-
649	tinger, M. D. (2008). Diagnosis of an intense atmospheric river impacting
650	the pacific northwest: Storm summary and offshore vertical structure observed
651	with COSMIC satellite retrievals. Monthly Weather Review, 136(11), 4398–
	4420. doi: 10.1175/2008MWR2550.1
652	
653	Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D., & Dettinger, M. D.(2008). Meteorological characteristics and overland precipitation impacts of
654	
655	atmospheric rivers affecting the West coast of North America based on eight
656	years of SSM/I satellite observations. Journal of Hydrometeorology, $9(1)$,
657	22–47. doi: 10.1175/2007JHM855.1
658	Newell, R. E., Newell, N. E., Zhu, Y., & Scott, C. (1992, dec). Tropospheric rivers?
659	- A pilot study. Geophysical Research Letters, 19(24), 2401–2404. Retrieved
660	from http://doi.wiley.com/10.1029/92GL02916 doi: 10.1029/92GL02916
661	Newell, R. E., & Zhu, Y. (1994, jan). Tropospheric rivers: A one-year record and a
662	possible application to ice core data. Geophysical Research Letters, $21(2)$, 113–
663	116. Retrieved from http://doi.wiley.com/10.1029/93GL03113 doi: 10
664	.1029/93GL03113
665	Newman, M., Kiladis, G. N., Weickmann, K. M., Ralph, M. F., & Sardeshmukh,
666	P. D. (2012). Relative contributions of synoptic and low-frequency ed-
667	dies to time-mean atmospheric moisture transport, including the role of at-

	mospheric rivers. Journal of Climate, 25(21), 7341–7361. doi: 10.1175/
668 669	JCLI-D-11-00665.1
670	O'Brien, T. A., Risser, M. D., Loring, B., Elbashandy, A. A., Krishnan, H., Johnson,
671	J., Collins, W. D. (2020, dec). Detection of atmospheric rivers with inline
672	uncertainty quantification: TECA-BARD v1.0.1. Geoscientific Model Devel-
673	opment, 13(12), 6131-6148. Retrieved from https://www.geosci-model-dev
674	-discuss.net/gmd-2020-55/#discussionhttps://gmd.copernicus.org/
675	articles/13/6131/2020/ doi: 10.5194/gmd-13-6131-2020
676	O'Brien, T. A., Wehner, M. F., Payne, A. E., Shields, C. A., Rutz, J. J., Leung, L.,
677	Zhou, Y. (2021, dec). Increases in Future AR Count and Size: Overview
678	of the ARTMIP Tier 2 CMIP5/6 Experiment. Journal of Geophysical Re-
679	search: Atmospheres, 24. Retrieved from https://doi.org/10.1002/
680	essoar.10504170.2https://onlinelibrary.wiley.com/doi/10.1029/
681	2021JD036013 doi: 10.1029/2021JD036013
682	Payne, A. E., Demory, ME., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz,
683	J. J., Ralph, F. M. (2020, mar). Responses and impacts of atmo-
684	spheric rivers to climate change. Nature Reviews Earth & Environment,
685	1(3), 143–157. Retrieved from http://dx.doi.org/10.1038/s43017-020
686	-0030-5http://www.nature.com/articles/s43017-020-0030-5 doi:
687	10.1038/s43017-020-0030-5
688	Payne, A. E., & Magnusdottir, G. (2015, nov). An evaluation of atmospheric
689	rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. Journal of Geophysical Research: Atmospheres, 120(21), 11,173–
690	11,190. Retrieved from http://doi.wiley.com/10.1002/2015JD023586 doi:
691 692	10.1002/2015JD023586
693	Pendergrass, A. G., Gleckler, P. J., Leung, L. R., & Jakob, C. (2020, jun).
694	Benchmarking Simulated Precipitation in Earth System Models. Bulletin
695	of the American Meteorological Society, 101(6), E814–E816. Retrieved
696	from https://journals.ametsoc.org/view/journals/bams/101/6/
697	bamsD190318.xml doi: 10.1175/BAMS-D-19-0318.1
698	Prabhat, Byna, S., Vishwanath, V., Dart, E., Wehner, M., & Collins, W. D. (2015).
699	Teca: Petascale pattern recognition for climate science. In G. Azzopardi &
700	N. Petkov (Eds.), Computer analysis of images and patterns (pp. 426–436).
701	Cham: Springer International Publishing.
702	Ralph, F. M., Coleman, T., Neiman, P. J., Zamora, R. J., & Dettinger, M. D.
703	(2013, apr). Observed Impacts of Duration and Seasonality of Atmospheric-
704	River Landfalls on Soil Moisture and Runoff in Coastal Northern California.
705	Journal of Hydrometeorology, 14(2), 443–459. Retrieved from https://
706	journals.ametsoc.org/jhm/article/14/2/443/5819/Observed-Impacts-of
707	-Duration-and-Seasonality-of doi: 10.1175/JHM-D-12-076.1
708	Ralph, F. M., & Dettinger, M. D. (2012). Historical and national perspectives on
709	extreme west coast precipitation associated with atmospheric rivers during de- cember 2010. Bulletin of the American Meteorological Society, 93(6), 783–790.
710	doi: 10.1175/BAMS-D-11-00188.1
711	Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., & Eylander, J.
712 713	(2018, apr). Defining "Atmospheric River": How the Glossary of Meteorology
713	Helped Resolve a Debate. Bulletin of the American Meteorological Soci-
714	ety, 99(4), 837-839. Retrieved from http://journals.ametsoc.org/doi/
716	10.1175/BAMS-D-17-0157.1 doi: 10.1175/BAMS-D-17-0157.1
717	Ralph, F. M., Neiman, P. J., & Rotunno, R. (2005). Dropsonde observations in
718	low-level jets over the northeastern Pacific Ocean from CALJET-1998 and
719	PACJET-2001: Mean vertical-profile and atmospheric-river characteristics.
720	Monthly Weather Review, 133(4), 889–910. doi: 10.1175/MWR2896.1
721	Ralph, F. M., Neiman, P. J., & Wick, G. A. (2004). Satellite and CALJET aircraft
722	observations of atmospheric rivers over the Eastern North Pacific Ocean during

723	the winter of $1997/98$. Monthly Weather Review, $132(7)$, $1721-1745$. doi:
724	10.1175/1520-0493(2004)132(1721:SACAOO)2.0.CO;2
725	Ralph, F. M., Neiman, P. J., Wick, G. A., Gutman, S. I., Dettinger, M. D., Cayan,
726	D. R., & White, A. B. (2006). Flooding on California's Russian River: Role of
727	atmospheric rivers. Geophysical Research Letters, 33(13), L13801. Retrieved
728	<pre>from https://doi.org/10.1029/2006GL026689.http://doi.wiley.com/</pre>
729	10.1029/2006GL026689 doi: 10.1029/2006GL026689
730	Ralph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M., Reynolds,
731	D., Smallcomb, C. (2019, feb). A Scale to Characterize the Strength and
732	Impacts of Atmospheric Rivers. Bulletin of the American Meteorological Soci-
733	ety, 100(2), 269-289. Retrieved from https://journals.ametsoc.org/bams/
734	article/100/2/269/69196/A-Scale-to-Characterize-the-Strength-and
735	-Impacts doi: 10.1175/BAMS-D-18-0023.1
736	Ralph, F. M., Wilson, A. M., Shulgina, T., Kawzenuk, B., Sellars, S., Rutz, J. J.,
737	Wick, G. A. (2019, apr). ARTMIP-early start comparison of atmospheric river
738	detection tools: how many atmospheric rivers hit northern California's Russian
739	River watershed? Climate Dynamics, 52(7-8), 4973–4994. Retrieved from
740	https://doi.org/10.1007/s00382-018-4427-5.,http://link.springer
741	.com/10.1007/s00382-018-4427-5 doi: 10.1007/s00382-018-4427-5
742	Rauber, R. M., Hu, H., Dominguez, F., Nesbitt, S. W., McFarquhar, G. M.,
743	Zaremba, T. J., & Finlon, J. A. (2020). Structure of an Atmospheric River
744	Over Australia and the Southern Ocean. Part I: Tropical and Midlatitude Wa-
745	ter Vapor Fluxes. Journal of Geophysical Research: Atmospheres, 125(18),
746	1–18. doi: 10.1029/2020JD032513
747	Reid, K. J., O'Brien, T. A., King, A. D., & Lane, T. P. (2021, nov). Extreme Wa-
748	ter Vapor Transport During the March 2021 Sydney Floods in the Context of
749	Climate Projections. Geophysical Research Letters, $48(22)$, 1–8. Retrieved from https://onlinelibrary.wiley.com/doi/10.1029/2021GL095335 doi:
750	10.1029/2021GL095335
751	Rhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O'Brien, T. A., Patricola,
752 753	C. M., Zhou, Y. (2020). The Shifting Scales of Western U.S. Landfalling
754	Atmospheric Rivers Under Climate Change. Geophysical Research Letters,
755	47(17), 1–14. doi: 10.1029/2020GL089096
756	Rutz, J. J., James Steenburgh, W., & Martin Ralph, F. (2014, feb). Climato-
757	logical characteristics of atmospheric rivers and their inland penetration
758	over the western united states. Monthly Weather Review, 142(2), 905–
759	921. Retrieved from https://journals.ametsoc.org/mwr/article/142/
760	2/905/71947/Climatological-Characteristics-of-Atmospheric doi:
761	10.1175/MWR-D-13-00168.1
762	Rutz, J. J., Shields, C. A., Lora, J. M., Payne, A. E., Guan, B., Ullrich, P.,
763	Viale, M. (2019, dec). The Atmospheric River Tracking Method Inter-
764	comparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric
765	River Climatology. Journal of Geophysical Research: Atmospheres, 124 (24),
766	13777-13802. Retrieved from https://onlinelibrary.wiley.com/doi/abs/
767	10.1029/2019JD030936 doi: 10.1029/2019JD030936
768	Ryoo, J. M., Kaspi, Y., Waugh, D. W., Kiladis, G. N., Waliser, D. E., Fetzer, E. J.,
769	& Kim, J. (2013). Impact of rossby wave breaking on U.S. west coast winter
770	precipitation during ENSO events. Journal of Climate, $26(17)$, 6360–6382. doi:
771	10.1175/JCLI-D-12-00297.1
772	Shaw, T. A. (2019). Mechanisms of Future Predicted Changes in the Zonal Mean
773	Mid-Latitude Circulation. Current Climate Change Reports, 5(4), 345–357.
774	doi: 10.1007/s40641-019-00145-8
775	Shaw, T. A., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C. I., Hwang,
776	Y. T., Voigt, A. (2016). Storm track processes and the opposing influences
777	of climate change. Nature Geoscience, $9(9)$, 656–664. doi: 10.1038/ngeo2783


778	Shields, C. A., Rutz, J. J., Leung, LY., Ralph, F. M., Wehner, M., Kawzenuk,
779	B., Nguyen, P. (2018, jun). Atmospheric River Tracking Method
780	Intercomparison Project (ARTMIP): project goals and experimental de-
781	sign. <i>Geoscientific Model Development</i> , 11(6), 2455–2474. Retrieved from
782	https://www.geosci-model-dev.net/11/2455/2018/ doi: 10.5194/
783	gmd-11-2455-2018
784	Skinner, C. B., Lora, J. M., Payne, A. E., & Poulsen, C. J. (2020). Atmospheric
785	river changes shaped mid-latitude hydroclimate since the mid-Holocene.
786	Earth and Planetary Science Letters, 541, 116293. Retrieved from https://
787	doi.org/10.1016/j.epsl.2020.116293 doi: 10.1016/j.epsl.2020.116293
	Skinner, C. B., Lora, J. M., Tabor, C., & Zhu, J. (2023). Atmospheric River Con-
788	tributions to Ice Sheet Hydroclimate at the Last Glacial Maximum. <i>Geophysi</i> -
789	cal Research Letters, $50(1)$, 1–12. doi: $10.1029/2022$ GL101750
790	Slinskey, E. A., Loikith, P. C., Waliser, D. E., Guan, B., & Martin, A. (2020,
791	
792	nov). A Climatology of Atmospheric Rivers and Associated Precipita- tion for the Seven U.S. National Climate Assessment Regions. Jour-
793	
794	nal of Hydrometeorology, 21(11), 2439–2456. Retrieved from https://
795	journals.ametsoc.org/view/journals/hydr/21/11/JHM-D-20-0039.1.xml
796	doi: 10.1175/JHM-D-20-0039.1
797	Smith, B. L., Yuter, S. E., Neiman, P. J., & Kingsmill, D. E. (2010). Water vapor
798	fluxes and orographic precipitation over northern california associated with a
799	landfalling atmospheric river. Monthly Weather Review, 138(1), 74–100. doi:
800	10.1175/2009MWR2939.1
801	Smith, L. M., & Stechmann, S. N. (2017). Precipitating quasigeostrophic equa-
802	tions and potential vorticity inversion with phase changes. Journal of the At-
803	mospheric Sciences, 74(10), 3285–3303. doi: 10.1175/JAS-D-17-0023.1
804	Sodemann, H., & Stohl, A. (2013). Moisture origin and meridional transport in
805	atmospheric rivers and their association with multiple cyclones. Monthly
806	Weather Review, 141(8), 2850–2868. doi: 10.1175/MWR-D-12-00256.1
807	Stohl, A., Forster, C., & Sodemann, H. (2008). Remote sources of water vapor
808	forming precipitation on the Norwegian west coast at 60°N - A tale of hurri-
809	canes and an atmospheric river. Journal of Geophysical Research Atmospheres,
810	113(5), 1-13. Retrieved from http://dx.doi.org/10.1029/2007JD009006
811	doi: 10.1029/2007JD009006
812	Strong, C., & Magnusdottir, G. (2008a). How Rossby wave breaking over the Pacific
813	forces the North Atlantic Oscillation. Geophysical Research Letters, 35(10), 1–
814	5. doi: 10.1029/2008GL033578
815	Strong, C., & Magnusdottir, G. (2008b, sep). Tropospheric Rossby Wave Break-
816	ing and the NAO/NAM. Journal of the Atmospheric Sciences, 65(9), 2861–
817	2876. Retrieved from https://journals.ametsoc.org/jas/article/65/9/
818	2861/26245/Tropospheric-Rossby-Wave-Breaking-and-the-NAONAM doi: 10
819	.1175/2008JAS2632.1
820	Sun, C., Shanahan, T. M., DiNezio, P. N., McKay, N. P., & Roy, P. D. (2021).
821	Great Plains storm intensity since the last glacial controlled by spring
822	surface warming. Nature Geoscience, 14(12), 912–917. doi: 10.1038/
823	s41561-021-00860-8
824	Viale, M., & Nuñez, M. N. (2011). Climatology of winter orographic precipi-
825	tation over the subtropical central Andes and associated synoptic and re-
826	gional characteristics. Journal of Hydrometeorology, $12(4)$, $481-507$. doi:
827	10.1175/2010JHM1284.1
828	Waliser, D., & Guan, B. (2017, mar). Extreme winds and precipitation during land-
829	fall of atmospheric rivers. Nature Geoscience, $10(3)$, 179–183. Retrieved from
830	https://doi.org/10.1038/ngeo2894.http://www.nature.com/articles/
831	ngeo2894 doi: 10.1038/ngeo2894
832	Warner, M. D., & Mass, C. F. (2017, aug). Changes in the climatology, struc-


32	Warner, M. D.,	& Mass, C.	F. (2017, aug).	Ch	anges in t	he climatolo	gy, struc-
----	----------------	------------	------	-------------	----	------------	--------------	------------


833	ture, and seasonality of northeast pacific atmospheric rivers in CMIP5 climate
834	simulations. Journal of Hydrometeorology, 18(8), 2131–2141. Retrieved
835	from http://journals.ametsoc.org/doi/10.1175/JHM-D-16-0200.1 doi:
836	10.1175/JHM-D-16-0200.1
837	Warner, M. D., Mass, C. F., & Salathé, E. P. (2015). Changes in Winter At-
838	mospheric Rivers along the North American West Coast in CMIP5 Climate
839	Models. Journal of Hydrometeorology, 16(1), 118–128. Retrieved from
840	http://journals.ametsoc.org/doi/10.1175/JHM-D-14-0080.1 doi:
841	10.1175/JHM-D-14-0080.1
842	Warner, M. D., Mass, C. F., & Salatheé, E. P. (2012). Wintertime extreme
843	precipitation events along the Pacific Northwest Coast: Climatology and
844	synoptic evolution. Monthly Weather Review, $140(7)$, 2021–2043. doi:
845	10.1175/MWR-D-11-00197.1
846	Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J., Agosta, C.,
847	& Codron, F. (2019). West Antarctic surface melt triggered by atmo-
848	spheric rivers. Nature Geoscience, 12(11), 911–916. Retrieved from http://
849	dx.doi.org/10.1038/s41561-019-0460-1 doi: 10.1038/s41561-019-0460-1
850	Xu, L., Zhang, H., He, W., Ye, C., Moise, A., & Rodríguez, J. M. (2020). Poten-
851	tial connections between atmospheric rivers in China and Australia. Journal
852	of Southern Hemisphere Earth Systems Science. Retrieved from http://www
853	.publish.csiro.au/?paper=ES19027 doi: 10.1071/ES19027
854	Xu, Y., Zhang, H., Liu, Y., Han, Z., & Zhou, B. (2020). Atmospheric rivers
855	in the Australia–Asian region under current and future climate in CMIP5
856	models. Journal of Southern Hemisphere Earth Systems Science. doi:
857	10.1071/es19044
858	Zhang, H., Ye, C., & Moise, A. (2020). Atmospheric Rivers in the Australia-
859	Asian Region: A BoM-CMA Collaborative Study. Journal of Southern
860	Hemisphere Earth Systems Science(January), 73. Retrieved from https://
861	drive.google.com/file/d/1EbLLo9SRtnu0etnB5PwJ6xRrQtU-U2D0/view
862	doi: 10.1071/ES19025
863	Zhang, Z., Ralph, F. M., & Zheng, M. (2019, feb). The Relationship Between
864	Extratropical Cyclone Strength and Atmospheric River Intensity and Po-
865	sition. $Geophysical Research Letters, 46(3), 1814–1823.$ Retrieved from
866	https://onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079071 doi:
867	10.1029/2018GL079071
868	Zheng, M., Delle Monache, L., Cornuelle, B. D., Ralph, F. M., Tallapragada, V. S.,
869	Subramanian, A., DeHaan, L. (2021). Improved Forecast Skill Through the
870	Assimilation of Dropsonde Observations From the Atmospheric River Recon-
871	naissance Program. Journal of Geophysical Research: Atmospheres, 126(21).
872	doi: 10.1029/2021JD034967
873	Zhou, Y., Kim, H., & Guan, B. (2018). Life Cycle of Atmospheric Rivers: Identifica-
874	tion and Climatological Characteristics. Journal of Geophysical Research: At-
875	mospheres, 123(22), 12,715-12,725. doi: $10.1029/2018$ JD029180
876	Zhou, Y., & Kim, HM. (2018, sep). Prediction of atmospheric rivers over the
877	North Pacific and its connection to ENSO in the North American multi-model
878	ensemble (NMME). <i>Climate Dynamics</i> , 51(5-6), 1623–1637. Retrieved from
879	http://dx.doi.org/10.1007/s00382-017-3973-6http://link.springer
880	.com/10.1007/s00382-017-3973-6 doi: 10.1007/s00382-017-3973-6
881	Zhou, Y., O'Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., &
882	Rhoades, A. M. (2021, apr). Uncertainties in Atmospheric River Life-
883	cycles by Detection Algorithms: Climatology and Variability. Journal
884	of Geophysical Research: Atmospheres, 126(8), 1–22. Retrieved from
885	https://onlinelibrary.wiley.com/doi/10.1029/2020JD033711 doi:
886	$\frac{10.1029/2020JD033711}{2}$
887	Zhu, Y., & Newell, R. E. (1994, sep). Atmospheric rivers and bombs. <i>Geophysical</i>

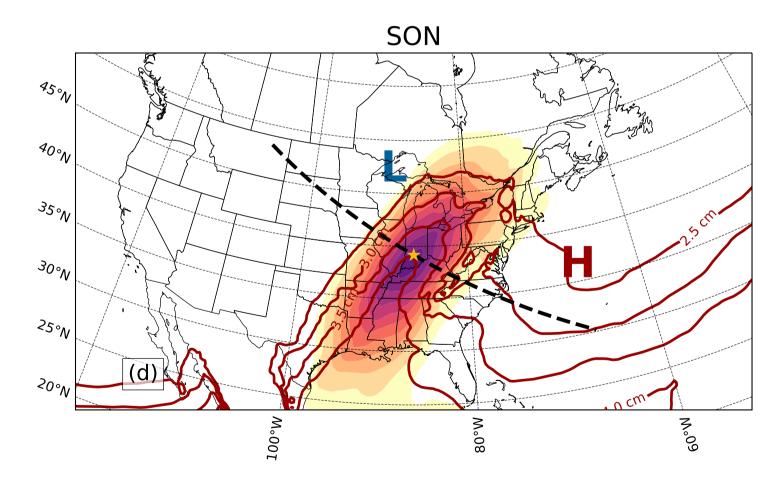
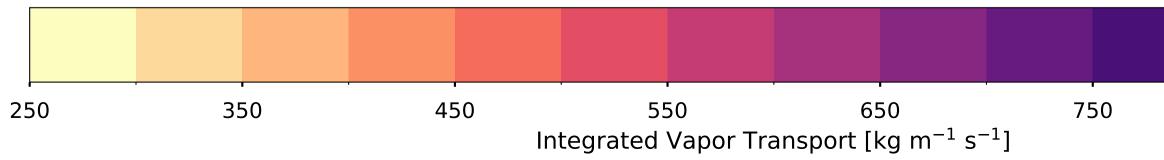
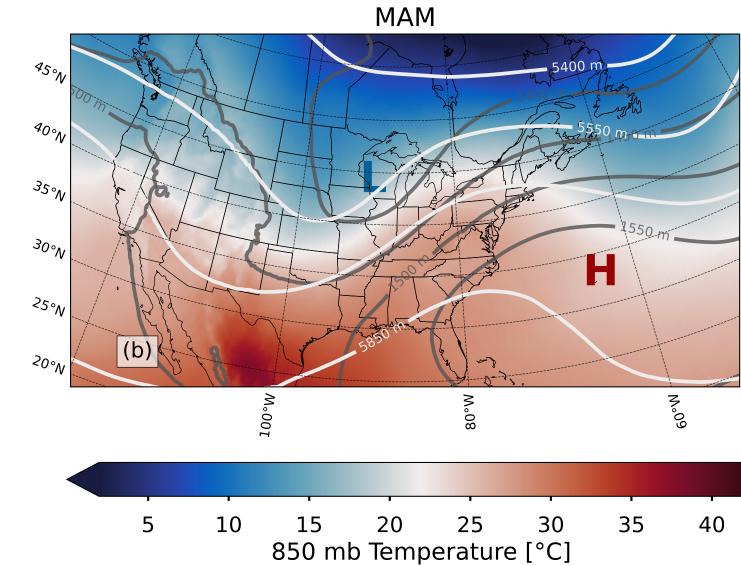
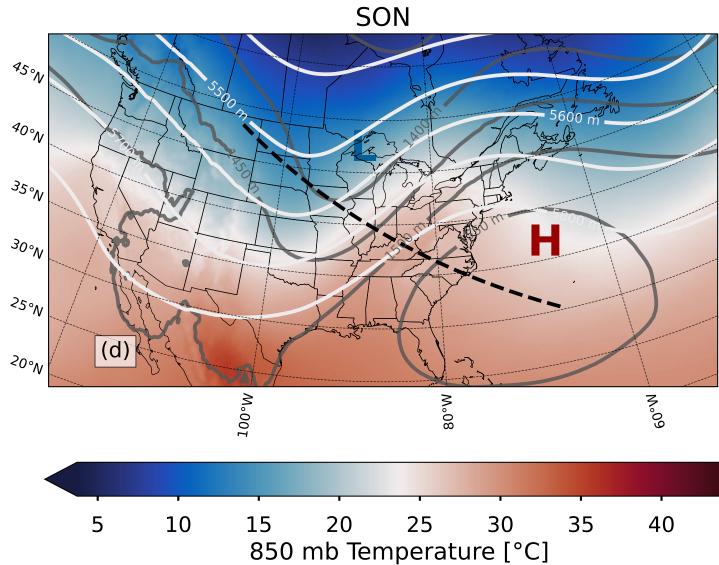

888	Research Letters, $21(18)$, 1999–2002. I	Retrieved from http://doi.wiley.com/
889	10.1029/94GL01710 doi: 10.1029/94G	L01710
890	Zhu, Y., & Newell, R. E. (1998, mar).	A Proposed Algorithm for Moisture
891	Fluxes from Atmospheric Rivers.	Monthly Weather Review, $126(3)$,
892	725–735. Retrieved from htt	tp://journals.ametsoc.org/doi/abs/
893	10.1175/1520-0493%281998%29126%3C0725%3AAPAFMF%3E2.0.C0%3B2 doi:	
894	$10.1175/1520-0493(1998)126\langle 0725: APA$	$FMF\rangle 2.0.CO;2$

Figure 1.



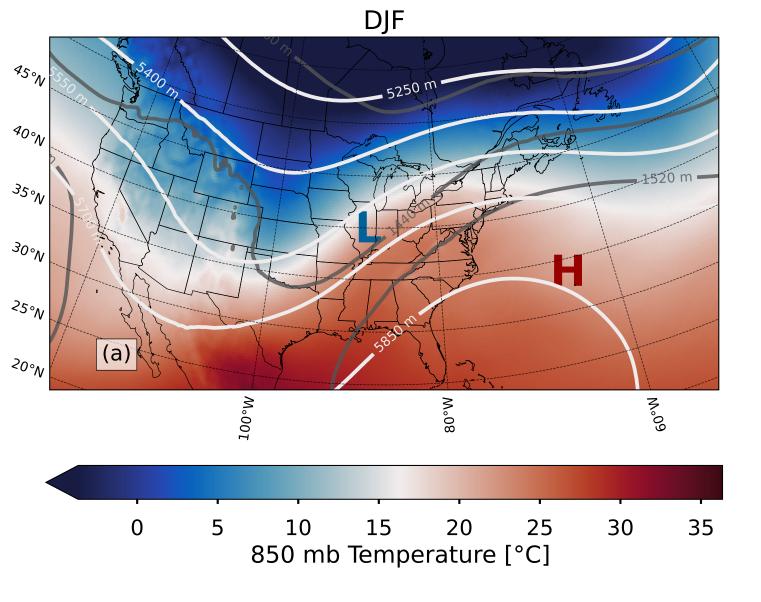
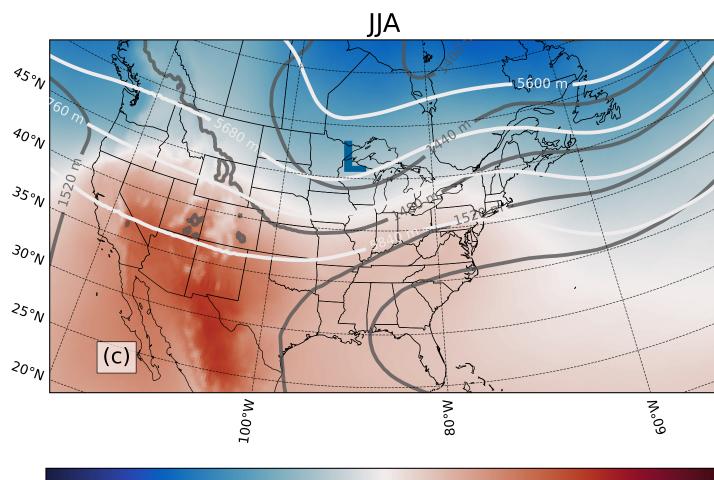
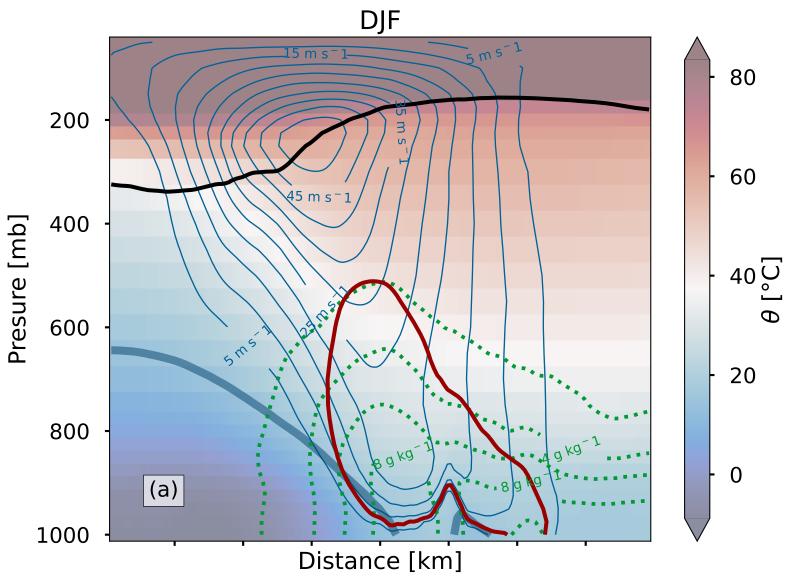
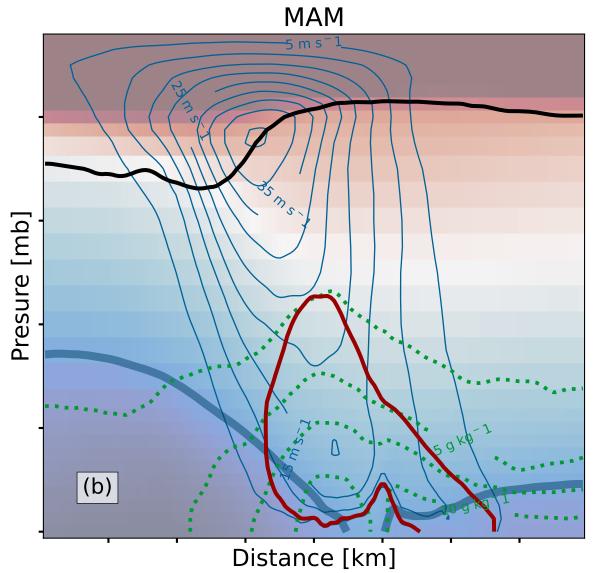
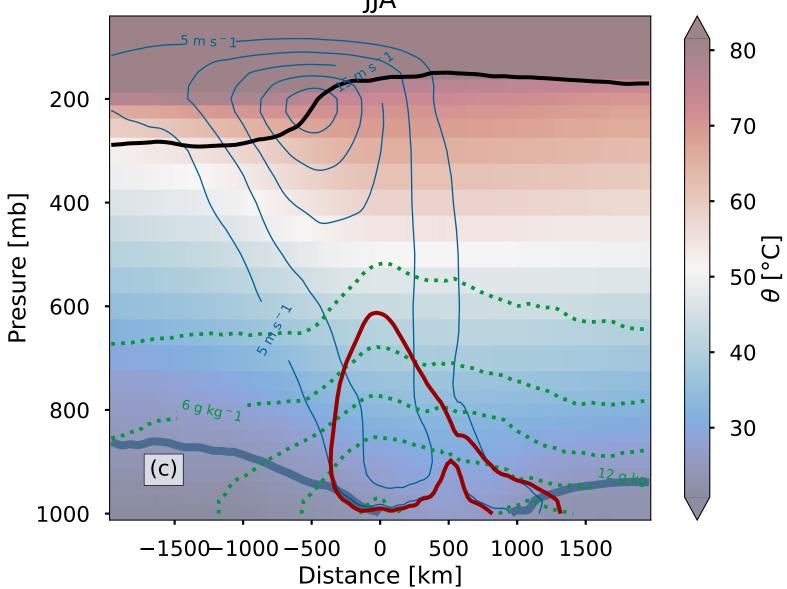
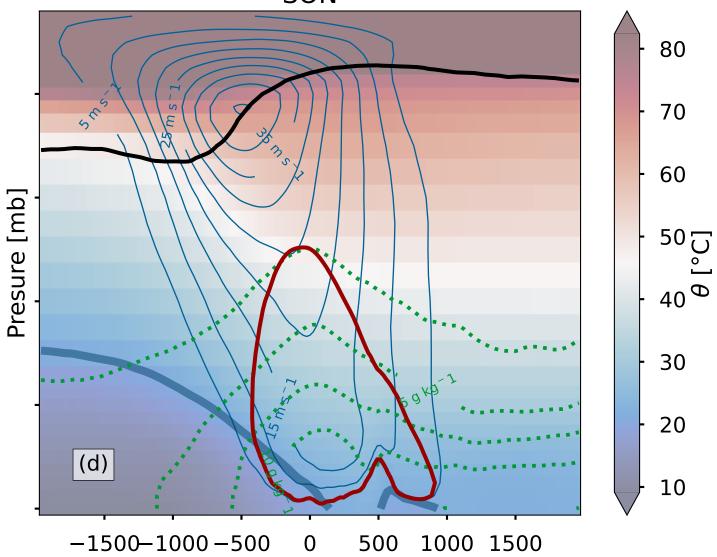
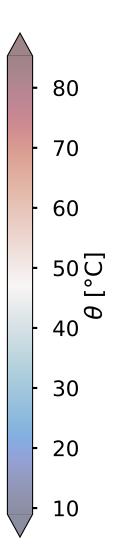


Figure 2.

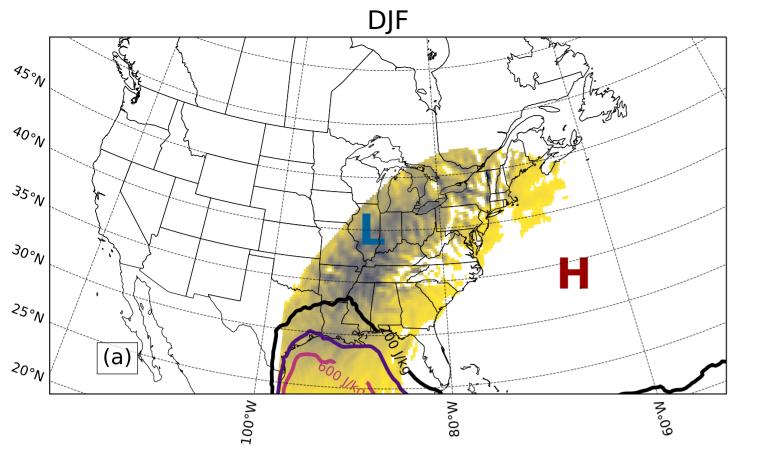




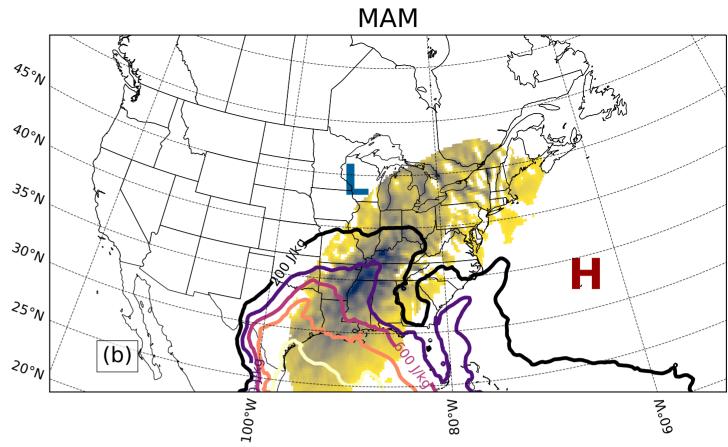


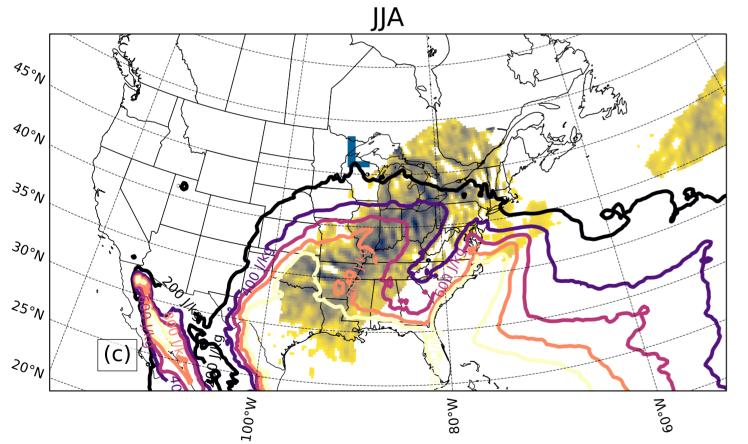

Figure 3.



JJA




-1500-1000-500 Distance [km]



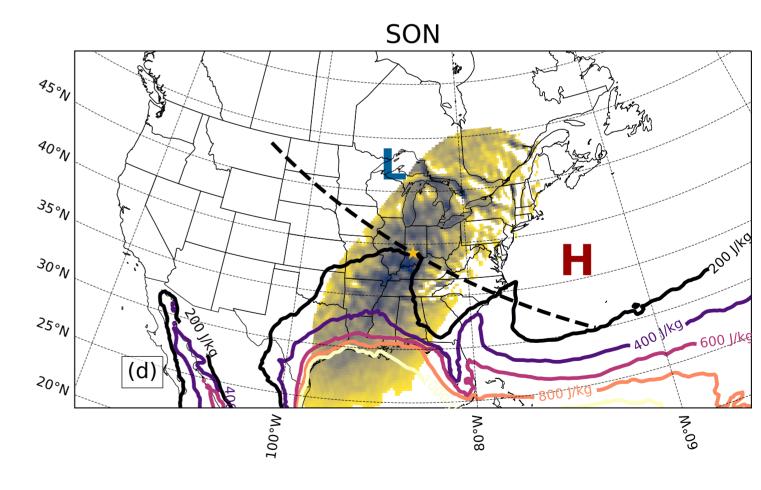
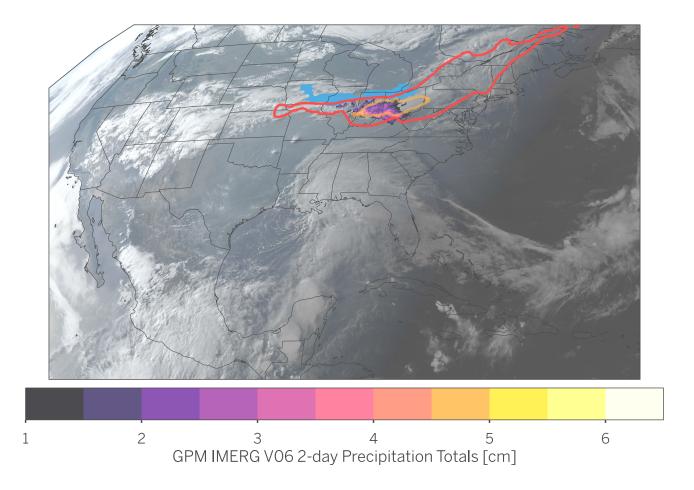

SON

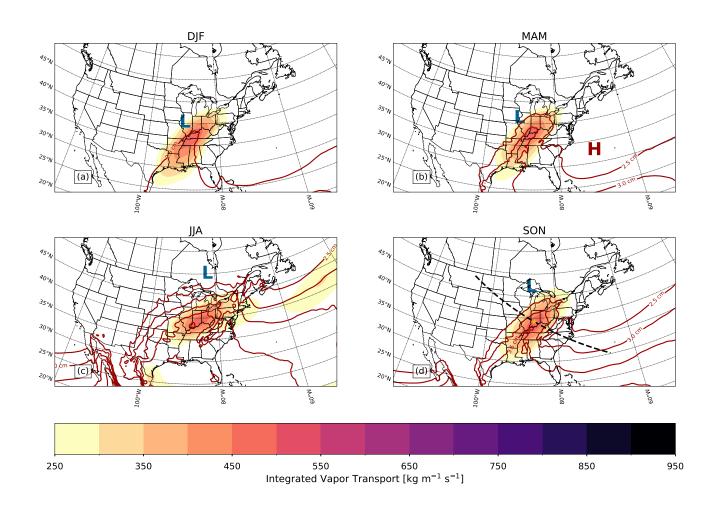
Figure 4.

-0.25 -0.20 -0.15 -0.35 -0.30 -0.10Vertical Velocity at 700 hPa [hPa/s]

Travis A. O'Brien, ¹²Burlen Loring, ³Amanda Dufek, ⁴Mohammad Rubaiat

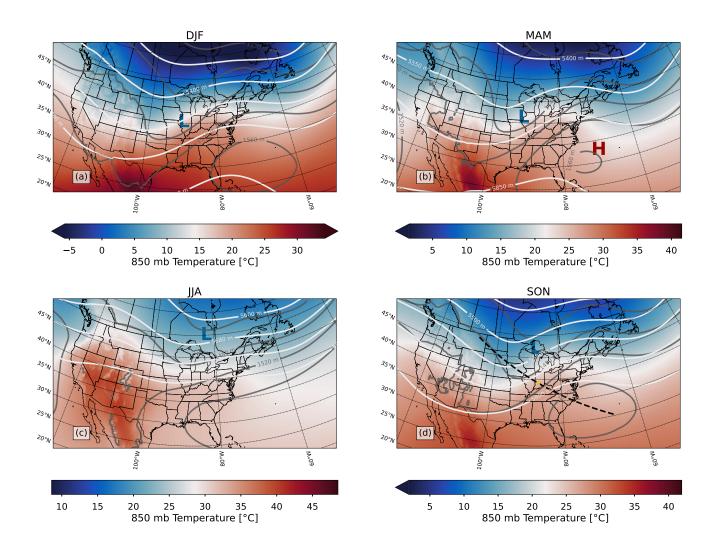

Islam,¹Diya Kamnani,¹Kwesi Quagraine¹,Cody Kirkpatrick¹

epartment o arth and tmospheric ciences, ndiana niversit , loom ington, N, limate and cos stem ciences ivision, awrence er ele National ab, er ele , , ³ om putational esearch ivision, awrence er ele National ab, er ele , , National nerg esearch upercomputing enter, awrence er ele National ab, er el

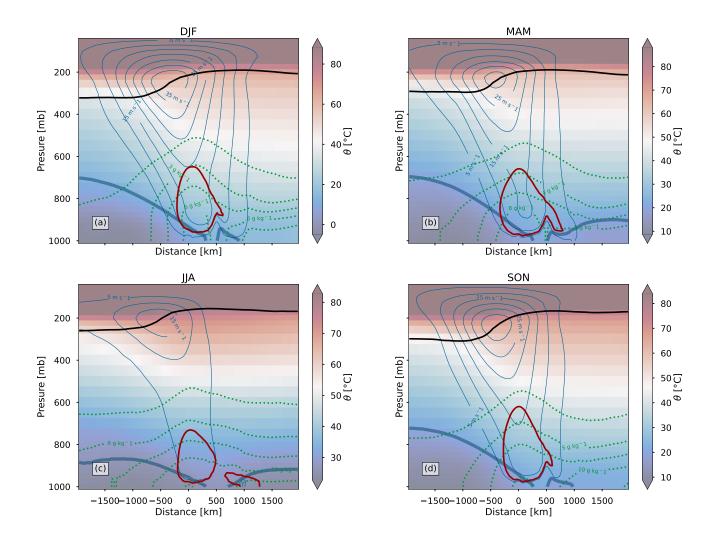

1. Figures S1 to S9

This supporting information le provides (1) a satellite overview of a speci c Midwestern US AR event discussed in the introduction and discussion sections, provided to give context for those unfamiliar with the event; and (2) duplicates of Figure 1{4 in the main that show the sensitivity of the composites to choice of atmospheric river detection tool (ARDT) and to the choice of location on which the composites are centered. Tan, J., Hu man, G. J., Bolvin, D. T., & Nelkin, E. J. (2019, dec). IMERG V06:

Changes to the Morphing Algorithm.



1 An objectively-detected frontal zone (blue shading), mesoscale convective complex (orange contour) and AR (red contour), detected in ERA5, overlain on geostationary satellite imagery from 03 UTC on June 19, 2021. Two-day precipitation totals from Global Precipitation Measurement mission (GPM) IMERG V06B (Tan et al., 2019), associated with this event, are shown as shaded contours.


2 As in Figure 1, but using the guanwaliser ARDT and centered on Bloomington,

IN.

3 As in Figure 2, but using the guanwaliser ARDT and centered on Bloomington,

IN.

4 As in Figure 3, but using the guanwaliser ARDT and centered on Bloomington,

IN.

Figure S5. As in Figure 4, but using the guanwaliser ARDT and centered on Bloomington, IN.

November 9, 2023, 6:57am