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Abstract

Improved representation of urban processes in Earth System Models (ESMs) is a pressing need for climate modeling and climate-

driven urban energy studies. Despite recent improvements to its fully coupled building energy model, the current Community

Land Model Urban (CLMU) in the Community Earth System Model (CESM) lacks the infrastructure to model air-conditioning

(AC) adoption explicitly. This undermines CESM’s fidelity in modeling urban climate and energy use, and limits its use

in climate and energy risk assessments. Here, we establish an explicit-AC-adoption parameterization scheme in CESM that

represents AC adoption explicitly through an AC adoption rate parameter in the Building Energy Model of CLMU, and build

a present-day, global, survey-based, and spatially explicit AC adoption rate dataset at country and sub-country level that is

integrated within CESM. The new dataset can be leveraged for other ESMs or global-scale models and analyses. The explicit

AC adoption scheme and the AC adoption rate dataset significantly improve the accuracy of anthropogenic heat modeling due

to AC in CESM. The new parameterization scheme makes it possible to evaluate the effects of changing AC adoption on global

urban energy and climate using CESM. These developments enhance CESM in its use for climate impact assessments under

future climate and socioeconomic development scenarios, and represent continued efforts in better representing urban processes

and coupled human-urban-Earth dynamics in ESMs.
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Abstract 24 

Improved representation of urban processes in Earth System Models (ESMs) is a 25 

pressing need for climate modeling and climate-driven urban energy studies. Despite 26 

recent improvements to its fully coupled building energy model, the current Community 27 

Land Model Urban (CLMU) in the Community Earth System Model (CESM) lacks the 28 

infrastructure to model air-conditioning (AC) adoption explicitly. This undermines 29 

CESM’s fidelity in modeling urban climate and energy use, and limits its use in climate 30 

and energy risk assessments. Here, we establish an explicit-AC-adoption 31 

parameterization scheme in CESM that represents AC adoption explicitly through an AC 32 

adoption rate parameter in the Building Energy Model of CLMU, and build a present-33 

day, global, survey-based, and spatially explicit AC adoption rate dataset at country and 34 

sub-country level that is integrated within CESM. The new dataset can be leveraged for 35 

other ESMs or global-scale models and analyses. The explicit AC adoption scheme and 36 

the AC adoption rate dataset significantly improve the accuracy of anthropogenic heat 37 

modeling due to AC in CESM. The new parameterization scheme makes it possible to 38 

evaluate the effects of changing AC adoption on global urban energy and climate using 39 

CESM. These developments enhance CESM in its use for climate impact assessments 40 

under future climate and socioeconomic development scenarios, and represent 41 

continued efforts in better representing urban processes and coupled human-urban-42 

Earth dynamics in ESMs. 43 

  44 
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Key points 45 

1. An explicit air-conditioning adoption scheme is developed for the building energy 46 

model in the Community Land Model Urban 47 

2. A global air-conditioning adoption rate dataset is built for CESM, with potential for 48 

use in other global-scale models and analyses 49 

3. The new scheme and dataset greatly improve model performance and enable 50 

more comprehensive climate and energy risk assessments 51 

 52 

Plain Language Summary 53 

Human activities in cities, such as building energy use, need to be better represented in 54 

models designed to simulate urban climate around the world. The Community Land 55 

Model Urban is one such model that has been continuously improved, but still cannot 56 

effectively model varying air conditioning (AC) adoption rate across countries. This 57 

limitation hinders the model’s ability in simulating urban climate and building energy 58 

use. Here, we improve the model by developing a new explicit-AC-adoption 59 

parameterization that represents the proportions of buildings with AC systems, and 60 

constructing a global AC adoption rate dataset at present-day for all countries and 61 

regions in the world. These improvements help the model simulate the air-conditioning 62 

energy use more accurately, and provide opportunities to evaluate the combined effects 63 

of climate change, population growth, and economic development on building energy 64 

use and climates for cities around the world. 65 

  66 
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MAIN 67 

1. Introduction 68 

There is a growing interest in connecting energy and climate modeling to address the 69 

global challenges of climate change and energy security (Craig et al., 2022). Climate 70 

change is poised to significantly affect climate-exposed energy supply and demand, and 71 

poses significant challenges to climate-sensitive energy system planning and design 72 

(van Ruijven et al., 2019; Schaeffer et al., 2012; Taseska et al., 2012; Yalew et al., 73 

2020). Changes to energy supply and usage, in return, affect the biophysical and 74 

biogeochemical processes in the climate systems, and require sufficient 75 

characterization in models so as to reduce the uncertainties in future climate projections 76 

(Allen et al., 2011; Hadley et al., 2006). Earth System Models (ESMs) were initially 77 

developed for studying broader-scale dynamics and interactions of the climate systems 78 

(Hurrell et al., 2013), and thus their incorporation of human activities, such as urban and 79 

building energy representation, are either missing or very rudimentary. It has been 80 

shown that anthropogenic heat flux can reach tens or hundreds of W/m2 in some urban 81 

centers (Ichinose et al., 1999; Kikegawa et al., 2014; Wang et al., 2018), making 82 

dynamic modeling of urban heating and air conditioning (HAC) energy use vital in 83 

closing the urban surface energy balance. Ignoring the anthropogenic heat 84 

representation will thus undermine ESMs’ fidelity in accurately modeling urban climate. 85 

At the same time, ESMs have been increasingly used for purposes beyond large-scale 86 

climate dynamics, such as characterizing impacts of energy production/use on climate 87 

(Fitch, 2015; Hu et al., 2016; Wang et al., 2019), projecting future energy demand 88 

(Deroubaix et al., 2021), or informing policy making on large-scale energy risks and 89 
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climate adaptions (IPCC, 2022; Reidmiller et al., 2018), where more detailed and 90 

accurate energy and urban parameterizations are necessary. Therefore, improved 91 

representations of coupled human-urban-Earth dynamics in ESMs that capture the 92 

physics behind the energy-climate feedbacks is a pressing need for both climate 93 

modeling and climate-driven urban energy studies (Creutzig et al., 2015; Güneralp et 94 

al., 2017; Sharma et al., 2021). 95 

 96 

The Community Terrestrial Systems Model (CTSM) is a state-of-the-art global land 97 

model that is part of the Community Earth System Model (CESM). It has an urban 98 

module, Community Land Model Urban (CLMU) that simulates the states and fluxes 99 

over urban landscapes and communicates with other CTSM and CESM components. 100 

The CLMU is fully coupled with a simplified Building Energy Model (BEM), where 101 

heating and air-conditioning (HAC) energy demand in urban areas are modeled. The 102 

HAC energy demand is calculated at each time step as the energy needed to increase 103 

(for heating) or decrease (for air conditioning, AC) the interior building temperature to a 104 

setpoint temperature. The waste heat generated from the use of HAC is released into 105 

the urban canyon at each time step, thus completing the feedback between urban 106 

energy use and urban microclimate. The CLMU has been widely evaluated with in-situ 107 

and satellite observations across the world (Demuzere et al., 2008, 2014, 2017; 108 

Demuzere et al., 2013; Fitria et al., 2019; Karsisto et al., 2016; Lin et al., 2016; 109 

Mohammad Harmay & Choi, 2022; Oleson et al., 2008; Oleson & Feddema, 2020; Zhao 110 

et al., 2014, 2021) and continuously improved by the community (Fang et al., 2023).  111 

 112 
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Despite the improvements in urban energy use modeling in CTSM, there is a critical yet 113 

longstanding limitation in the current BEM in CLMU: lack of the infrastructure to model 114 

AC adoption explicitly. As a global climate model, CESM represents air conditioning in 115 

an average setting for each urban density class in a grid cell, instead of modeling 116 

individual buildings and their AC systems if any. Currently, AC adoption is implicitly 117 

controlled by proxy interior building setpoints, without an explicit AC adoption rate 118 

parameter. This parameterization scheme, although viable, undermines the physical 119 

interpretability of the model. For example, to signal low AC adoption, the building interior 120 

setpoint temperature for AC can be as high as 42°C in some regions (Oleson & 121 

Feddema, 2020), which is much higher than what we experience in reality, and only 122 

offer qualitative insights to the AC adoption rate of the region. This also means that 123 

although the average AC energy flux over an extended period may be accurate, daily or 124 

hourly values, which are necessary for the study of extremes, would be largely different 125 

from what we may observe in reality. This poses challenges to assuring model 126 

accuracy, as the building interior setpoint temperature and AC adoption rate cannot be 127 

tuned separately. One can only rely on heuristics specific to a certain location, instead 128 

of statistics or documentation on thermostat setpoint or AC adoption rate, if one wishes 129 

to fine tune the energy and climate models. This also means that it is not possible to 130 

make future projections incorporating changes in AC adoption under various 131 

socioeconomic development pathways and climate change scenarios using the current 132 

scheme. This further hinders inter-model and inter-regional comparison for climate risk 133 

assessments and energy planning. 134 

 135 
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Climatic and socioeconomic drivers both affect the biophysical feedbacks between 136 

urban climate and urban energy use (Figure 1). Warmer background climates will 137 

increase urban temperatures, and population and economic growth will fuel urban 138 

expansion and higher AC adoption especially in the global south, both of which are 139 

positive drivers to the feedback cycle (Kikegawa et al., 2022; Salamanca et al., 2014). 140 

AC adoption rate (also called penetration rate or ownership rate) is one of the most 141 

widely used parameters in the socioeconomic literature that characterize the changes in 142 

AC ownership, defined as the share of households that own at least one AC equipment 143 

(system or unit). It is a strong function of temperature and income (Davis & Gertler, 144 

2015), and an essential parameter in econometric or integrated assessment models for 145 

making future AC energy use projections (Colelli & Cian, 2020; L. Davis et al., 2021; 146 

Mastrucci et al., 2021). Studies have found that globally, socioeconomic factors tend to 147 

be stronger drivers of energy demand than climate change in the 21st century (Isaac & 148 

van Vuuren, 2009; Rastogi et al., 2019; van Ruijven et al., 2019), which means it will 149 

become increasingly more important to integrate socioeconomic factors into future 150 

urban climate and energy projections in physics-based dynamic models.  151 

 152 
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 153 

Figure 1. Climatic (in yellow, on the left) and socioeconomic drivers (in teal, on the 154 

right) to the biophysical feedbacks between urban climate and urban air-conditioning 155 

energy use (in the center, bolded arrows and boxes). The plus signs indicate positive 156 

effects. 157 

 158 

In this work, we present a new explicit-AC-adoption parameterization scheme in CESM 159 

that explicitly represents AC adoption by introducing an AC adoption rate parameter in 160 

the BEM of CLMU. In support of this, we build a first-of-its-kind global, survey-based, 161 

and spatially explicit AC adoption rate dataset at country and sub-country level 162 

integrated in CTSM, and can be leveraged for other global-scale models and analyses 163 

in the climate, energy, and socioeconomic fields. The explicit AC adoption scheme and 164 

the AC adoption rate dataset together significantly improve the AC energy modeling 165 

performance of CTSM. The new parameterization scheme makes it possible to model 166 

changes in AC adoption rate and their local to global impacts on urban climate and 167 

energy in CESM, where the dynamic interactions between urban climate and energy are 168 

modeled.  169 
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 170 

This paper is organized as follows. Section 2 provides an overview of the CLMU, BEM, 171 

and the current AC scheme. The mathematical model for explicit AC adoption is 172 

presented in Section 3. Section 4 describes the new global AC adoption rate dataset 173 

generated by this work. In Section 5, we describe the simulations we designed to 174 

evaluate and test the explicit-AC-adoption parameterization scheme and demonstrate 175 

new capabilities, as well as datasets used for validation. Results and discussions follow 176 

in Section 6. 177 

 178 

2. Overview of CLMU, its Building Energy Model (BEM) and air-conditioning flux 179 

modeling 180 

The improvements described in this paper are based on the most recent version of 181 

CLMU, first described in Oleson & Feddema (2020), referred to hereinafter as CLMU5. 182 

An overview of CLMU5, its Building Energy Model (BEM) and its air-conditioning flux 183 

parameterization is provided below for the context of discussion.  184 

 185 

Grid cells in CTSM can have up to seven “land units” including three urban density 186 

types as well as natural vegetation, crop, glacier and lake. The CLMU5 is a single-layer 187 

urban canopy model within CTSM that serves as the urban land parameterization for 188 

the three urban land units. An urban land unit is composed of five facets: roof, sunlit 189 

wall, shaded wall, previous and impervious surfaces on the canyon floor. These urban 190 

facets are arranged in an urban canyon configuration (Figure 2a).  191 

 192 
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A present-day global urban extent and urban properties dataset was originally 193 

developed for CESM by Jackson et al. (2010) and subsequently updated in CLMU5 194 

(Oleson & Feddema, 2020). The spatial extent of urban areas is derived from a 195 

population density dataset at 1-km spatial resolution. Each urban pixel is classified as 196 

one of the four urban density classes: tall building district (TBD), high density (HD), 197 

medium density (MD), and low density (LD). The three urban land units corresponding 198 

to TBD, HD, and MD classes are used in current CLMU, which represent city core, 199 

commercial/industrial, and residential areas, respectively. The LD class is currently not 200 

used because these areas tend to be very sparsely built (i.e., closer to a rural setting) 201 

and seem to be better simulated using a vegetation model. Present-day urban 202 

morphological (e.g., building height, street width, pervious ground fraction), thermal 203 

(e.g., heat capacity and thermal conductivity), and radiative (e.g., albedo and emissivity) 204 

properties as well as building interior maximum and minimum thermostat settings 205 

(cooling and heating setpoint temperatures, respectively) that control the need for HAC 206 

are derived (see Figure 1 in Oleson & Feddema, 2020) from a variety of data sources 207 

such as local building codes, municipal documentation and published construction data 208 

and validated against Google Earth imagery (Jackson et al., 2010). They can be defined 209 

uniquely for thirty-three regions of similar physical and social characteristics spanning 210 

the global land surface and for each density class (see Jackson et al., 2010 and Oleson 211 

& Feddema, 2020 for details). The CLMU has been evaluated against remote sensing 212 

and in-situ observations across the globe (Demuzere et al., 2008, 2014, 2017; 213 

Demuzere et al., 2013; Fitria et al., 2019; Karsisto et al., 2016; Lin et al., 2016; 214 
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Mohammad Harmay & Choi, 2022; Oleson et al., 2008; Oleson & Feddema, 2020; Zhao 215 

et al., 2014, 2021). 216 

 217 

The BEM in CLMU is a simplified dynamic model that can operate globally with 218 

sufficient accuracy and within the constraints of available global urban surface data. For 219 

each urban density type in every grid cell that has an urban area, an “average building” 220 

is simulated to represent buildings in that area, with specified geometric, radiative, and 221 

thermal properties based on the CLMU global surface dataset. Processes that are 222 

accounted for in the BEM include heat conduction through building surfaces (roof, sunlit 223 

and shaded walls, and floor), convection (sensible heat exchange) between interior 224 

surfaces and indoor air, longwave radiation exchange between interior surfaces, and 225 

ventilation (natural infiltration and exfiltration) (Figure 2a). Solar heat gain through 226 

windows due to direct solar radiation is neglected in the current version due to a lack of 227 

global data, but the effects of windows on the overall heat transfer properties of walls 228 

are accounted for. The heat storage by internal construction materials and internal heat 229 

gains from appliances and occupants are also not parameterized in the current version 230 

of the CLMU. These factors imply a possible overestimation of heating and 231 

underestimation of air-conditioning energy demand.  232 

 233 

Space air-conditioning (heating) energy demand can be directly output from the BEM 234 

and calculated as the amount of energy flux required to be removed (added) to bring the 235 

interior building temperature down (up) to the cooling (heating) setpoint temperature. 236 

The BEM assumes a single thermal zone and infinite-capacity HAC systems. This 237 
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means the system supplies the amount of energy needed to keep the indoor air 238 

temperature within the specified limits at the time step of the model.  239 

 240 

HAC adoption rates are implicitly modeled by the space heating and cooling setpoints 241 

(hereinafter referred to as proxy setpoints), defined by the urban dataset for each global 242 

region and urban density class. Using AC as an example, regions with higher AC 243 

adoption rates have lower AC proxy setpoints that are closer to what the thermostat 244 

settings would be in an actual building. Having a higher proxy setpoint would mean that 245 

the air conditioners only work during hotter time periods, which approximates having 246 

fewer air conditioners in an urban area (Figure 2a and c). As a result, the AC proxy 247 

setpoints in the original dataset have a large range that spans 27 to 42°C (Oleson & 248 

Feddema, 2020). 249 
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 250 

Figure 2. Schematic diagrams of current implicit-AC-adoption (a, c) and new explicit-251 

AC-adoption (b, d) modeling schemes on an illustrative warm day (a, b) and an 252 

illustrative hot day (c, d) for a place of relatively low AC adoption. Surfaces in the urban 253 

canyon and processes simulated by the BEM are labeled in (a). The sizes of arrows in 254 

(d) are larger than those in (b) to indicate more AC energy flux is produced on a hot 255 

day. The fluxes in the building interior in (b) and (d) are used to update the interior 256 

building temperature after each time step (see Section 3). Fcool, AC energy flux. Fwstht, 257 

losses from inefficiencies in the HAC equipment and in the conversion of primary to end 258 

use energy. They are returned as sensible heat to the canyon floor and distributed to 259 

both pervious and impervious surfaces. Fsat,cool, AC energy flux under saturated AC 260 

adoption. pAC, AC adoption rate. 261 

 262 
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3. Mathematical model for explicit-AC-adoption scheme 263 

Currently, AC adoption rate can be modeled in the BEM embedded in regional-scale 264 

climate models such as the Weather Research and Forecasting model. That BEM is 265 

more detailed and allows control for individual building’s AC setpoints schedules (e.g., 266 

AC will only work during business hours in office buildings) (Salamanca et al., 2009), so 267 

AC adoption can be controlled by turning on/off each building’s HAC system. However, 268 

representing and controlling each individual building is usually neither feasible nor 269 

necessary for global-scale climate models or ESMs. We hence propose an explicit-AC-270 

adoption scheme in CLMU that characterizes AC adoption at each grid cell with an 271 

adoption rate parameter, as illustrated in Figure 2b and d and described below. 272 

 273 

Under the original scheme, the AC flux, 𝐹!""# 	, at each time step is calculated as: 274 

𝐹!""# 	=
𝐻𝜌𝐶$
∆𝑡 	(𝑇%!

& − 𝑇'()	), 𝑓𝑜𝑟	𝑇%!
& > 𝑇'(); 275 

= 	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                                                   (1) 276 

where 𝐻 is building height, 𝜌 is air density, 𝐶$ is the specific heat of dry air, ∆𝑡 is the 277 

timestep of the model simulation, 𝑇%! is the interior building temperature, 𝑇'() is the AC 278 

proxy setpoint, and 𝑡 denotes the timestep. If 𝐹!""# is not zero, the indoor air 279 

temperature at the next is then reset to 𝑇'(): 280 

𝑇%!
&*+ = 𝑇'().       (2) 281 

In the proposed new explicit-AC-adoption paramterization scheme, we add an explicit 282 

AC adoption rate parameter, 𝑝,-, to the current calculation of AC flux. We first calculate 283 

the AC flux under saturated AC adoption (i.e., 𝑝,- = 100%):  284 
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𝐹.(&,!""# =
𝐻𝜌𝐶$
∆𝑡 	(𝑇%!

& − 𝑇.(&,'()	), 𝑓𝑜𝑟	𝑇%!
& > 𝑇.(&,'(); 285 

           = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                       (3) 286 

where 𝑇.(&,'() is the AC setpoint when the AC adoption is saturated. The actual AC flux 287 

being removed from the indoor air is then scaled based on the adoption rate: 288 

𝐹!""# = 𝑝,- ⋅ 𝐹.(&,!""#                                                         (4) 289 

The interior building temperature is then reset as follows: 290 

𝑇%!
&*+ = (+	2	$"#)	4$%&,())*	∆&

67-+
+ 𝑇.(&,'()                           (5) 291 

The anthropogenic heat added to the urban canyon due to AC energy use, 𝐹8.&9&,,-, is 292 

calculated as:  293 

𝐹8.&9&,,- = 𝑤,- ⋅ 𝑝,- ⋅ 𝐹.(&,!""#,                                         (6) 294 

where 𝑤,- is the waste heat factor for AC, determined by the AC equipment coefficient 295 

of performance (𝐶𝑂𝑃,-) and the weighted energy conversion efficiency (𝑃:;;,!""#) from 296 

primary to end use energy. The calculation and assumptions for 𝑤,- remains 297 

unchanged from the original scheme as follows: 298 

𝑤,- =
+

-<="#⋅=,--,())*
,                                                           (7) 299 

Given the default values for 𝐶𝑂𝑃,- and 𝑃:;;,!""# in CLMU, 𝑤,- is approximated as 0.6 300 

globally (Oleson & Feddema, 2020). 301 

 302 

4. New global AC adoption rate data 303 

To support the new explicit AC adoption parameterization scheme, a global, spatially 304 

explicit dataset on the new variable, AC adoption rate (𝑝,-), is needed. There is limited 305 

AC adoption rate data available in the literature (Davis et al., 2021), as such data are 306 
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derived from household-level energy consumption surveys, which are usually conducted 307 

by more affluent countries (Zheng et al., 2014). Substantial efforts are needed to 308 

identify, locate, and access such survey results from various government agencies 309 

across countries. In this study, we compile present-day AC adoption rate data (loosely 310 

defined as between the years of 2010 and 2020) from sources such as International 311 

Energy Agency (IEA), national surveys, scientific literature, and others (see Table S1), 312 

and construct a global, spatially explicit AC adoption rate dataset at country- and sub-313 

country-level that works with CTSM. The new dataset is publicly available in tabular, 314 

geospatial, and gridded formats for use in other Earth system modeling, energy 315 

modeling, socioeconomic analyses, or integrated assessment applications.  316 

 317 

We first collect residential AC adoption rate data from 35 countries (Table S1) which are 318 

directly used in the dataset. These countries provide representative samples of the 319 

world’s countries that cover roughly 53% global land area, 68% of world population, and 320 

70% of global Gross Domestic Product (The World Bank, 2023). To obtain global 321 

coverage, we utilize the number of AC units per household data available from IEA 322 

(Table S1) that covers 195 countries/regions, and derive a linear model with saturation 323 

effect (two-segment piecewise linear fit) between AC adoption rate and number of AC 324 

units per household for 34 common countries/regions where both quantities are 325 

available. The linear model assumes that the line passes through the origin, and over a 326 

certain number of AC units per household (saturation point), AC adoption rate does not 327 

change as the number of AC units per household increases. The saturation point is 328 

determined by minimizing the root mean squared error (RMSE) between the true and 329 
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fitted values (r2 = 0.89, p < 0.001) (Fig. S1). Other factors, such as house/household 330 

size and income inequality, may help explain additional variations, but the simplified 331 

model allows us to obtain reasonably accurate AC adoption rate data for the majority of 332 

global countries/regions with the available information.  333 

 334 

For countries where more detailed data are available, such as the United States, 335 

Australia, and China, the dataset also contains state- or province-level AC adoption rate 336 

data, collected or derived from the statistics released by the respective country’s 337 

government agency (Table S1), to better represent the heterogeneity in these countries 338 

spanning highly diverse climate zones. State-level AC adoption rate data for the United 339 

States and Australia are available from their respective national surveys and are directly 340 

used. For China, data are available on the number of AC units per 100 households per 341 

province. The same linear model with saturation effect derived from the 34 342 

countries/regions is applied to obtain province-level AC adoption rate data.  343 

 344 

The tabular AC adoption rate data are then combined with shapefiles of global 345 

countries/regions and gridded to CTSM grids to produce the spatially explicit AC 346 

adoption rate dataset, as presented in Figure 3a-c. Since all data curated are from the 347 

residential sector, we assign the derived dataset to the MD urban density class that 348 

represents residential areas (Figure 3a). Under the assumption that most TBD classes, 349 

which represent city cores, are affluent commercial districts that universally utilize space 350 

cooling regardless of the socioeconomic status of the country they are in, we assign AC 351 

adoption rate of 1 to all TBD classes globally (Figure 3c). Note that TBD classes are 352 
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only present in 149 out of 4421 urban grid cells under the nominal grids and represent 353 

<1% of grid area. We then assign the simple average of the AC adoption rates from 354 

TBD and MD classes to the HD class of each country/region to represent the 355 

commercial/industrial areas that are transitional from central commercial to residential 356 

areas (Figure 3b). 357 

 358 

For the missing countries, regions, and grid cells, we perform grid-cell-based nearest 359 

neighbor gap filling as detailed in the Supporting Information. This procedure follows the 360 

assumption that locations close to each other are likely to have similar climates, 361 

socioeconomic conditions and/or cultural preferences towards air conditioners. This 362 

allows us to obtain a complete global land coverage that is required by CTSM to 363 

perform simulations. The filled dataset is presented in Figure 3d-f. 364 

 365 
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 366 

Figure 3. AC adoption rate in Tall Building District (TBD), High Density (HD) and 367 

Medium Density (MD) before (a-c) and after (d-f) gap filling. Shown at a spatial 368 

resolution of 0.9375° latitude ×1.25° longitude, the nominal resolution used by CESM for 369 

global simulations. 370 

 371 

We provide both gridded and vector files of the original (before gap filling) data to 372 

support different modeling resolution or configuration requirements. The dataset also 373 

contains a quality control band that denotes the sources of the data and the associated 374 

level of confidence, to help classify the uncertainties in the dataset. We generate the 375 
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gap-filled AC adoption rate data in various resolutions for CTSM applications (latitude × 376 

longitude: 0.23° × 0.31°, 0.47° × 0.63°, 0.9375° ×1.25°). The dataset compiled for this 377 

work, both before and after gap filling, is freely available to the public for use in other 378 

Earth System Models aiming to better parameterize urban building energy, or other 379 

analyses that may benefit from country- or sub-country-level AC adoption rate 380 

information. Users are welcome to adopt the same gap filling procedure or apply a new 381 

one that better serves their needs.  382 

 383 

Since the AC proxy setpoints in the original parameterization also implicitly represent 384 

AC adoption rates, they need to be changed under the explicit AC adoption modeling 385 

scheme so as to represent only building interior setpoints that more closely resemble 386 

realistic building thermostat settings. We use 27°C, the lowest AC setpoint in the 387 

original data which was applied to all three density classes in the southeast U.S., and 388 

apply it to all three density classes globally. This is because the southeast U.S. has one 389 

of the highest, and near-saturated AC adoption rates in the world under the AC adoption 390 

rate dataset (88% - 96% for MD), which offers a good reference point for the AC 391 

saturation behavior in the model. The setpoints can easily be changed when better AC 392 

setpoints datasets become available.  393 

 394 

5. Simulations and validation 395 

We perform a suite of global land-only simulations (i.e., the CTSM is active, while other 396 

components of CESM such as atmosphere, ocean, and sea ice use prescribed data) at 397 

0.9375° latitude ×1.25° longitude spatial resolution to examine the effects of the explicit-398 
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AC-adoption scheme and the spatially explicit AC adoption rate dataset. Simulations are 399 

run from 2000 - 2014 driven by atmospheric forcing (precipitation, incoming solar and 400 

longwave radiation, and air temperature, humidity, wind, and CO2 concentration at the 401 

lowest atmospheric model layer) from the Global Soil Wetness Project forcing dataset 402 

(GSWP3) (http://hydro.iis.u-tokyo.ac.jp/GSWP3/). A control simulation (IMP_AC) is run 403 

with the original, implicit AC adoption parameterization scheme and the proxy AC 404 

thermostat setpoints. Four test simulations are run using the explicit-AC-adoption 405 

parameterization scheme: one with the global, spatially explicit AC adoption rate dataset 406 

(EXP_AC), and three additional ones with AC adoption rate set to 1 (EXP_AC_1), 0.03 407 

(EXP_AC_TINY), and 0 (EXP_AC_0) everywhere for all three urban density classes. 408 

We focus on analyzing monthly average values of urban temperature and AC energy 409 

demand. 410 

 411 

The urban extent (i.e., percent urban area in a grid cell) used in this study is derived 412 

from the historical urban land cover of year 2000 at 1-km resolution as presented in Gao 413 

& O’Neill (2020), which is based on Landsat remote sensing data. The urban extent 414 

dataset is then combined with the urban properties dataset described in Section 2, 415 

aggregated to the desired resolution (0.9375° latitude ×1.25° longitude in this study), 416 

and assigned urban density classes to produce the input data used by the model. 417 

Details on how the surface dataset is generated can be found in Fang et al. (2023).  418 

 419 

We validate the explicit-AC-adoption scheme simulated AC energy demand with 420 

published, observation-based datasets by Varquez et al. (2021) and Flanner (2009) on 421 

http://hydro.iis.u-tokyo.ac.jp/GSWP3/
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anthropogenic heat flux (AHF). The Flanner (2009) dataset is derived from country-422 

specific data of energy consumption from non-renewable sources (coal, petroleum, 423 

natural gas, and nuclear), population density and national boundary data for year 2005. 424 

The Varquez et al. (2021) dataset uses the energy consumption data for the 2010s from 425 

the Shared Socioeconomic Pathways (SSP) framework, the energy balance statistics 426 

from IEA, and adjusted AHF distribution with nightlight satellite imagery. To obtain AHF 427 

due to AC, we collect AC energy use and total primary energy consumption data and 428 

derive an AC energy fraction (𝑓) for each country/region where the required data are 429 

available (see Supporting Information). While total primary energy consumption data are 430 

readily available for most countries/regions, AC energy consumption data are sparse, 431 

which limits the coverage of possible 𝑓 data. By leveraging publicly available datasets 432 

from the IEA and U.S. Energy Information Administration, we are able to obtain required 433 

data and calculate 𝑓 for 14 countries/regions and 50 U.S. states. We then multiply these 434 

fractions with the AHF data to obtain estimates of AHF due to AC. The validation results 435 

are shown in Figures 4-6 and S2-4, and discussed in Section 6 below. 436 

 437 

6. Results and Discussions 438 

6.1 Improved modeling of AC energy flux in CLMU  439 

The new explicit-AC-adoption parameterization and dataset improve the performance of 440 

AC energy flux simulation both in magnitude of AHF due to AC and in spatial variability. 441 

For the 14 countries/regions and 50 U.S. states where AHF due to AC energy use can 442 

be calculated (see Section 5 above and Supporting Information), the total annual AHF 443 

from AC is 0.12 TW (Figure 4c) in the EXP_AC run, whereas the IMP_AC run produces 444 
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0.04 TW (Figure 4c). This underestimation is due primarily to the effective AC adoption 445 

rate in the original dataset being lower than the real-world values (Oleson & Feddema, 446 

2020). The explicit AC adoption scheme and dataset are able to improve the 447 

underestimation, and increase the total annual AHF due to AC to 0.08 TW. The spatial 448 

correlation between the modeled results and the observations are also improved from 449 

0.38 to 0.58.  450 

 451 



24 
 

Figure 4. Improvements in modeled anthropogenic heat flux due to AC for available 452 

countries/regions in 2010 - 2014. (a) observational estimates derived from Varquez et 453 

al., (2021), (b) modeled AHF due to AC using the new explicit-AC-adoption scheme 454 

(EXP_AC), and (c) modeled AHF due to AC in using the original implicit-AC-adoption 455 

scheme (IMP_AC). Numbers in panels represent the total anthropogenic heat plotted in 456 

each panel. R is the pattern correlation between each panel and panel (a). 457 

 458 

The performance improvements are also visible regionally. The total AHF due to AC in 459 

contiguous U.S. and parts of Canada increased from 0.04 TW (Figure 5c) to 0.06 TW 460 

(Figure 5b), as compared to 0.09 TW (Figure 5a) in the validation data. The spatial 461 

correlation between modeled and observed AHF also improved from 0.41 to 0.57, with 462 

most significant improvements in the north and southwest parts of the contiguous U.S. 463 

Major urban centers like New York, Chicago, Minneapolis, San Francisco, and Los 464 

Angeles had near-zero AC-induced AHF release in the IMP_AC run under the original 465 

scheme, and become clearly discernible under the explicit AC adoption scheme. For 466 

some European and North African countries (Figure 6a-c), the new scheme increased 467 

the annual total AHF due to AC from 0 (Figure 6c) to 0.003 TW (Figure 6b), as 468 

compared to the observational estimates of 0.01 TW (Figure 6a). The original scheme 469 

estimates all grid cell to be near-zero in AC use, and does not capture the spatial 470 

variations of the observations (spatial correlation R = −0.07). The explicit AC adoption 471 

scheme is able to capture some of the variations (R = 0.28) in Italy and south Spain, 472 

and of large urban centers such as Madrid and Paris. There seems to be an 473 

overestimation in Morocco’s AHF from AC energy use under the explicit-AC-adoption 474 
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scheme, likely due to the assumptions made in urban thermal and radiative properties in 475 

the model. The AHF performance in Japan (Figure 6d-f) under the explicit-AC-adoption 476 

scheme is the best and the most improved among all regions, both in total AHF and the 477 

spatial correlations. The explicit AC adoption scheme improved the estimate of total 478 

AHF due to AC from 0 (Figure 6f) to 0.006 TW (Figure 6e), very close to the 479 

observational estimate of 0.008 TW (Figure 6d). The spatial correlation is improved from 480 

0.17 to 0.92, suggesting most of the spatial variations can now be captured by the 481 

explicit AC adoption scheme. In general, the modeled AHF varies in a larger range than 482 

the observational estimates. While we acknowledge the possible limitations and 483 

assumptions of the model, another possible cause for the discrepancies stems from the 484 

use of nightlights in observational estimates of the AHF. The total energy consumption 485 

is distributed spatially by population and adjusted based on nightlight intensity (Varquez 486 

et al., 2021). This approach is subject to saturation effect (on high light intensity) and 487 

detection limit (on low light intensity) (M. Zhao et al., 2019), which can be reflected as 488 

smaller extremes in AHF variations than in reality.  489 

 490 
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 491 

Figure 5. As in Figure 4 but for Contiguous US and parts of Canada.  492 

 493 
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 494 

Figure 6. As in Figure 4 but for (a-c) Europe and North Africa, and (d-f) Japan. 495 

  496 

6.2 Effects on other urban climate variables 497 

We compare results for other urban climate variables including urban 2-meter air 498 

temperature, AC and heating energy flux, and waste heat flux, to illustrate the effects of 499 

the explicit-AC-adoption scheme and the AC adoption rate dataset. Comparing 500 

EXP_AC with IMP_AC, the global mean urban 2-meter air temperature does not 501 

change, but some regions are shown to experience slight temperature increase, such 502 



28 
 

as in the Middle East, Indian Peninsula, Middle America, and Southeast Asia (Figure 503 

7a). This is a result of waste heat flux increase in these regions (Figure 7b), totaling 504 

0.37 TW globally. The waste heat flux increase is driven by AC energy flux increase in 505 

the same areas (Figure 7c), as evidenced by the geospatial correlation between Figure 506 

7b and 7c. Heating energy flux is essentially unchanged, with minimal decrease in the 507 

Midwest in the U.S. and Central-Eastern China (Figure 7d). These regions have an 508 

increased waste heat flux in the urban environment due to an increase in AC energy 509 

flux, thus requiring less heating during large diurnal temperature variations when both 510 

AC and heating energy fluxes are produced within a short period of time. This is due to 511 

the limitation that there is no seasonal schedule in the model which precludes AC or 512 

heating use from one another, whereas in reality, either AC or heating system in a 513 

building is usually active at a given time, not both. Note that the most substantial 514 

decrease in heating energy flux is about three orders of magnitude smaller than the 515 

usual heating energy flux during heating seasons, suggesting that the decrease is 516 

trivial.  517 
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 518 

Figure 7. Mean differences between the results from the new explicit-AC-adoption 519 

scheme (EXP_AC) and the original implicit-AC-adoption scheme (IMP_AC) on (a) urban 520 

2-meter air temperature, (b) waste heat flux, (c) AC energy flux, and (d) heating energy 521 

flux, for 2005 - 2014. The number in (a) represents the area-weighted global mean, and 522 

numbers in (b-d) represent the global total differences. 523 

 524 

6.3 New capabilities of the explicit-AC-adoption scheme  525 

The new explicit-AC-adoption scheme makes it possible to conduct global-scale 526 

experiments using CTSM on the effects of AC adoption on urban energy and climate 527 

through dynamic modeling. We conduct three experiments under the present-day 528 

climate for idealized (100% adoption, EXP_AC_1), very low (3%, EXP_AC_TINY), and 529 

zero AC adoption (EXP_AC_0), and compare them with the result from the EXP_AC run 530 
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where present-day AC adoption rates are used. Compared with the current world under 531 

the present-day adoption rates, an idealized world where AC adoption is saturated 532 

(100%) everywhere would mean a drastic increase in AC adoption for warmer climates 533 

and less affluent regions such as most of Africa, Middle and South America, Central 534 

Asia, India, and Southeast Asia, as well as in cooler climates such as most of Europe, 535 

New Zealand, and Northern Asia (Figure 8a). The increase in AC adoption does not 536 

translate equally to an increase in AC energy flux in all regions (Figure 8d). AC energy 537 

flux increase is concentrated around Central Africa, India, and Southeast Asia, as the 538 

warmer present-day climates in these regions mean that AC use can be easily 539 

triggered, thus highlighting the effect of saturated AC adoption. We can expect that the 540 

effect of saturated AC adoption will become more pronounced in the future under 541 

climate change for currently cooler regions, where higher summer temperatures may 542 

necessitate the use of AC. The increase in AC energy flux causes an average regional 543 

warming of up to 0.09 K (Figure 8g). Under a very low adoption rate scenario, most 544 

countries would have a lower AC adoption rate than present day, with the U.S., Japan, 545 

South Korea, coastal regions of China, Australia, and Greece having the largest 546 

differences (Figure 8b). Some regions (white in Figure 8b) currently have AC adoption 547 

rates lower than 3%, which means their adoption rates are increased in this scenario, 548 

albeit minutely. The AC energy flux differences are the most pronounced for regions 549 

with the largest adoption rate differences, but are also prominent around the Middle 550 

East, India, and Southeast Asia, despite only a minor difference in adoption rate 551 

between the two scenarios (2% increase in the case of India) (Figure 8e). This means 552 

that even minor increases in AC adoption rate in these regions could lead to 553 
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substantially more AC energy use. Moreover, the temperature differences induced by 554 

the higher AC energy flux are higher in these regions (Figure 8h), even when the AC 555 

flux differences are on the same order of magnitude as those with the highest adoption 556 

rate differences. This suggests that not only is the AC energy flux in these regions more 557 

sensitive to AC adoption rate change, but their urban temperature is also more sensitive 558 

to anthropogenic heat than in other regions. Comparing the very low adoption rate 559 

scenario with the no-AC scenario, most of the regions show marginal differences in AC 560 

energy flux or urban temperature, except for a few spots visible around the equator. 561 

These experiments demonstrate that the explicit-AC-adoption scheme opens doors to 562 

further investigation into urban climate-energy feedbacks, and sets up the groundwork 563 

for incorporating AC adoption rate changes due to climate change and socioeconomic 564 

development in CESM’s future energy and climate projections.  565 
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 566 

Figure 8. Mean differences in (a-c) AC adoption rate (showing medium density), (d-f) 567 

monthly mean AC energy flux, and (g-i) monthly mean urban 2-meter air temperature 568 

between the results from (a, d, g) idealized adoption (100%, EXP_AC_1) and current 569 

adoption (EXP_AC), (b, e, h) current (EXP_AC) and very low adoption (3%, 570 

EXP_AC_TINY), and (c, f, i) very low (EXP_AC_TINY) and no adoption (EXP_AC_0), 571 

for 2005 - 2014. 572 

 573 

7. Conclusions 574 

The CLMU in CTSM is one of the few dynamic urban parameterizations in ESMs with a 575 

fully coupled, physics-based building energy model. Despite its recent development and 576 

improvement in performance, a critical limitation still remains, where AC adoption is 577 

modeled implicitly with the use of proxy interior building thermostat setpoints. This 578 
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undermines the physical interpretability of the model, poses challenges for ensuring 579 

model accuracy, limits the model’s capability in integrating socioeconomic and climate 580 

change impact on urban energy, and hinders inter-model and inter-regional climate risk 581 

assessments. In this work, we establish a new explicit AC adoption parameterization 582 

scheme by adding an AC adoption rate parameter. This scheme separates building 583 

thermostat setpoint and AC adoption rate into independent parameters that can be 584 

tuned separately. In support of the new scheme, we develop a present-day global 585 

spatially explicit AC adoption rate dataset for use in CTSM and that can be leveraged in 586 

other climate and energy modeling applications and socioeconomic or integrated 587 

assessment analyses.  588 

 589 

The explicit-AC-adoption parameterization scheme and the global AC adoption rate 590 

dataset significantly improve the CTSM’s performance in modeling building AC energy 591 

flux, both in magnitude and spatial variability. The new scheme makes it possible to 592 

conduct global-scale experiments on the effects of changing AC adoption rate that help 593 

reveal the inter-regional differences in urban energy-climate feedbacks. These 594 

developments help improve the climate simulations and enhance CESM’s ability to 595 

simulate urban energy use in response to and affecting local to regional climate. 596 

Although these developments are implemented in CTSM, the concept, mathematical 597 

model, and the dataset could be easily adapted to other ESMs. This work represents a 598 

step forward in interlinking climate and energy modeling at a global scale and better 599 

representations of coupled human-urban-Earth dynamics in ESMs. 600 

 601 
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As urban areas garner increased attention in national and international climate impact, 602 

adaptation and vulnerability assessments (IPCC, 2022; Reidmiller et al., 2018), the new 603 

explicit-AC-adoption parameterization makes CESM a valuable tool in urban climate 604 

and energy assessmenta on a global scale. The explicit AC adoption scheme sets up 605 

the infrastructure for making global future projections of urban energy and climate under 606 

various climate and socioeconomic scenarios, e.g., the SSP-Representative 607 

Concentration Pathways (RCP) scenario framework. As a global-scale model, CESM 608 

can generate globally coherent results that enable inter-regional comparison and 609 

knowledge transfer. If coupled with other CESM components for dynamic, fully coupled 610 

simulations, CTSM would be able to reveal the indirect impacts of AC adoption rate 611 

changes on large-scale dynamics due to teleconnections that may be amplified under 612 

climate change, which cannot be achieved by regional or local scale models.  613 

 614 

The new present-day AC adoption rate dataset constructed in this study fills the gap in 615 

the literature (Davis et al., 2021) by providing global coverage for AC adoption rate data. 616 

It could be leveraged in other ESMs for better parameterization of urban building energy 617 

use, as well as other large-scale models (such as Integrated Assessment Models) or 618 

analyses. It can be used to calibrate existing AC adoption rate models (such as in Isaac 619 

& van Vuuren, 2009) and as base values to project AC adoption rate under various 620 

SSP-RCP scenarios, using AC adoption rate models based on climate (mostly cooling 621 

degree days) and income (such as in Sailor & Pavlova, 2003, and McNeil & Letschert, 622 

2010).  623 

 624 
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A few potential development pathways may further improve CTSM’s performance in AC 625 

energy flux modeling. More intra-country AC adoption rate data and global building 626 

thermostat settings data could be readily incorporated when they become available. 627 

Improvements in the resolution and accuracy of the urban surface data, such as the 628 

urban radiative, thermal, and morphological properties, are expected to further improve 629 

the magnitude and spatial correlation of simulated anthropogenic heat due to AC.  630 

 631 

Model and tools availability  632 

The CTSM code used in this study is publicly available at [URL to be released upon 633 

publication]. It will be incorporated as part of a future release through the Community 634 

Terrestrial System Model (CTSM) git repository (https://github.com/ESCOMP/ctsm). 635 
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The AC adoption rate data and simulation results are archived and publicly available at 638 

[URL and doi to be released upon publication]. 639 
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Supporting Information 835 

Grid-cell-based nearest neighbor gap filling 836 

To fill the missing countries and regions in the air-conditioning (AC) adoption rate (𝑝,-) 837 

dataset derived from the original data sources (Table S1), we perform grid-cell-based 838 

nearest neighbor gap filling with reference to the 33 regions in the original urban surface 839 

dataset (Jackson et al., 2010). The steps are described below. 840 

1. Fill Greenland, which lies mostly in the arctic circle and is represented by a single 841 

region in the original dataset, with 𝑝,- = 0.  842 

2. Identify regions that contain a single country, and fill all missing grid cells in the 843 

region with that country’s 𝑝,- value. These countries include Brazil, Canada, 844 

India, and Russia. 845 

3. Iterate through grid cells with missing values, starting from the southwest (bottom 846 

left) corner of the global map. Identify its four immediate neighbors: left, right, up, 847 

and down. Check whether a neighbor is filled (i.e., contains a value) in this order: 848 

left, right, down, and then up. As soon as a filled neighbor is encountered, assign 849 

the neighbor’s value to the missing grid cell, and move on to the next missing 850 

grid cell. After this step, missing grid cells on the east coasts of the continents, 851 

and missing countries/regions with filled neighbors to the west are filled. 852 

4. For the remaining grid cells with missing values, repeat Step 3 but start the 853 

iteration from the northeast (top right), and check the neighbors in this order 854 

instead: up, down, right, and then left. After this step, missing grid cells on the 855 

west coasts of the continents, and missing countries/regions with filled neighbors 856 
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to the east are filled. The remaining grid cells are islands isolated from the land 857 

mass. 858 

5. All remaining missing grid cells in Japan are assigned Japan’s 𝑝,- value. This is 859 

a special handling step before the final sweep, due to the fact that the region 860 

Japan is part of contains also South Korea and North Korea, where the 𝑝,- 861 

values vary between 0% and 91%. Assigning the median of this region would 862 

misrepresent the 𝑝,- values of the islands in Japan. 863 

6. Iterate through the 33 regions, and assign the median 𝑝,- value of all available 864 

countries in each region to all missing grid cells in that region. We use median 865 

instead of mean to better represent the average behavior in regions with extreme 866 

(outlier) adoption rate values. We choose the median of all available countries, 867 

instead of all available grid cells in the region, to prevent the 𝑝,- value being 868 

dominated by the countries of larger areas. 869 

 870 

Deriving AC energy use fractions 871 

The AC energy use fractions (𝑓) are defined as the fraction of AC energy consumption 872 

over the total energy consumption for a given country/region. They are used to scale the 873 

total anthropogenic heat flux (AHF) data from Varquez et al. (2021) and Flanner (2009), 874 

which are based on total energy consumption in each country/region, to obtain the AHF 875 

due to AC used for validation in this study (Figures 4 - 6, and Figures S2 - S4). While 876 

total energy consumption data by country/region are readily available, AC energy 877 

consumption data are sparse, which limits the coverage of possible 𝑓 data. By 878 

leveraging publicly available datasets from the International Energy Agency (IEA) and 879 



47 
 

U.S. Energy Information Administration (EIA), we are able to obtain required data and 880 

calculate 𝑓 for 14 countries and 50 U.S. states using the methods detailed below. 881 

 882 

Country-level data come from two free IEA datasets: 1) Energy Efficiency Indicators 883 

Highlights (EEI) (https://www.iea.org/data-and-statistics/data-product/energy-efficiency-884 

indicators-highlights), which contains annual sectorial (residential, commercial, industry 885 

and transportation) and end-use final energy consumption (including AC energy 886 

consumption for residential and commercial sectors) for select countries; and 2) World 887 

Energy Balances Highlights (WEB) (https://www.iea.org/data-and-statistics/data-888 

product/world-energy-balances-highlights), which contains annual total primary and final 889 

energy consumption for select countries. A total of 15 countries/regions (including the 890 

U.S.) have AC energy consumption data in EEI. We calculate country-level 𝑓 for the 14 891 

countries/regions excluding the U.S. 892 

 893 

Among these 14 countries/regions, 11 have total energy consumption data available in 894 

WEB. These are: South Korea, Germany, Japan, France, Portugal, New Zealand, Italy, 895 

Morocco, Netherlands, Canada, and Spain. For each of these countries/regions, 𝑓 is 896 

calculated as: 897 

𝑓	 = 	 ?"#,.,$	*	?"#,()/
?&)&

,           (S1) 898 

where 𝐸,-,@:. and 	𝐸,-,!"' are average annual AC energy consumption for residential 899 

and commercial sectors, respectively, and 𝐸&"& is the average annual total primary 900 

energy consumption. The average is computed for 2010 - 2019 ignoring missing years. 901 

 902 

https://www.iea.org/data-and-statistics/data-product/energy-efficiency-indicators-highlights
https://www.iea.org/data-and-statistics/data-product/energy-efficiency-indicators-highlights
https://www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights
https://www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights
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For the remaining 3 countries/regions without 𝐸&"& data, which include Uruguay, Taiwan, 903 

and Hong Kong, we approximate total primary energy consumption with total final 904 

energy consumption (i.e., energy conversion and transmission losses are excluded), 905 

and calculate 𝑓 as: 906 

𝑓	 = 	 ?"#,.,$	*	?"#,()/
?.,$	*	?()/*?012	*	?&.%

,      (S2) 907 

where 𝐸@:., 𝐸!"', 𝐸%AB and 𝐸&@( are average annual total energy consumption for 908 

residential, commercial, industrial, and transportation sectors, respectively.  909 

 910 

U.S. subcountry-level data come from three EIA datasets: 1) 2015 Residential Energy 911 

Consumption Survey (RECS) (https://www.eia.gov/consumption/residential/data/2015/), 912 

which include the annual final end-use (including AC) energy consumption in the 913 

residential sector at the census division level (the 50 U.S. states are grouped into 9 914 

census divisions); 2) 2018 Commercial Buildings Energy Consumption Survey (CBECS) 915 

(https://www.eia.gov/consumption/commercial/data/2018/), which include the annual 916 

final end-use (including AC) energy consumption in the commercial sector at the census 917 

division level, and 3) 2020 State Profiles and Energy Estimates 918 

(https://www.eia.gov/state/), which include annual total primary energy consumption for 919 

all sectors (including residential, commercial, transportation, and industrial) at the state 920 

level. 921 

 922 

We combine the three datasets and calculate 𝑓 for each state as: 923 

𝑓	 = 	 ?
3
"#,.,$	
?3.,$	

⋅ ?.,$	
?&)&

+ ?3"#,()/	
?3()/	

⋅ 	?()/
?&)&

,          (S3) 924 

https://www.eia.gov/consumption/residential/data/2015/
https://www.eia.gov/consumption/commercial/data/2018/
https://www.eia.gov/state/
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where the prime symbol denotes the census-division value of the respective quantity is 925 

used. This allows us to obtain state-level estimates of 𝑓 by leveraging census-division 926 

level statistics where state-level information is missing. 927 

 928 

 929 

Figure S1. The linear model fit between AC adoption rate and number of AC units per 930 

household for 34 countries. 931 

 932 
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 933 

Figure S2. Improvements in modeled anthropogenic heat flux due to AC for available 934 

countries/regions in 2010 - 2014. (a), observational estimates derived from Flanner 935 

(2009), (b) modeled AHF due to AC using the new explicit-AC-adoption scheme 936 

(EXP_AC), and (c) modeled AHF due to AC using the original implicit-AC-adoption 937 
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scheme (IMP_AC). Numbers in panels represent the total anthropogenic heat plotted in 938 

each panel. R is the pattern correlation between each panel and panel (a). 939 

 940 

 941 

Figure S3. As in Figure S2 but for Contiguous US and parts of Canada.  942 

 943 



52 
 

 944 

Figure S4. As in Figure S2 but for (a-c) Europe and North Africa, and (d-f) Japan. 945 

  946 
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Table S1. Air-conditioning (AC) adoption rate data sources. 947 

Country/region Data year Data source 

AC adoption rate 

Japan 

2018 

IEA, Percentage of households equipped with AC in selected countries, 
2018, IEA, Paris https://www.iea.org/data-and-statistics/charts/percentage-
of-households-equiped-with-ac-in-selected-countries-2018, IEA. License: 
CC BY 4.0 

United States 
(country level) 

Korea 

Saudi Arabia 

China 
(country level) 

Mexico 

Brazil 

Indonesia 

South Africa 

India 

Argentina 

2010 
Davis, L., Gertler, P., Jarvis, S. & Wolfram, C. Air conditioning and global 
inequality. Global Environmental Change 69, 102299 (2021). 
https://doi.org/10.1016/j.gloenvcha.2021.102299 

El Salvador 

Germany 

Ghana 

Nigeria 

Pakistan 

Paraguay 

Russia 

Sierra Leone 

Uruguay 

https://www.iea.org/data-and-statistics/charts/percentage-of-households-equiped-with-ac-in-selected-countries-2018
https://www.iea.org/data-and-statistics/charts/percentage-of-households-equiped-with-ac-in-selected-countries-2018
https://www.iea.org/data-and-statistics/charts/percentage-of-households-equiped-with-ac-in-selected-countries-2018
https://doi.org/10.1016/j.gloenvcha.2021.102299
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Hong Kong 2012 

Gao, Y., Chan, E. Y. Y., Lam, H. C. Y., & Wang, A. (2020). Perception of 
Potential Health Risk of Climate Change and Utilization of Fans and Air 
Conditioners in a Representative Population of Hong Kong. International 
Journal of Disaster Risk Science, 11(1), 105–118. 
https://doi.org/10.1007/s13753-020-00256-z 

Canada 2019 
Statistics Canada, Environment, Energy and Transportation Statistics 
Division, Air Conditioners, 2023. 
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810001901 

Australia 
(country and 
state levels) 

2014 
Australia Bureau of Statistics, Environmental Issues: Energy Use and 
Conservation, 2014, Table 5. 
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/4602.0.55.001
Mar%202014?OpenDocument 

Israel 2015 
Israel Central Bureau of Statistics, Table 14, Ownership of Durable Goods 
in Deciles of Households by Net Income Per Standard Person, 2015, 
https://www.cbs.gov.il/he/publications/DocLib/2017/1677/t14.pdf 

Singapore 2017/18 

Singapore Department of Statistics, Report on the Household Expenditure 
Survey, 2019, Chart 3.6. 
https://www.singstat.gov.sg/-
/media/files/publications/households/hes201718.ashx 

Malta 2010 
Malta National Statistics Office, Development of Detailed Statistics 
on Energy Consumption in Households, Table 4, https://cros-
legacy.ec.europa.eu/system/files/SECH_Project_Malta.pdf 

Bangladesh 
2019 

Asia Frontier Capital, AFC Asia Frontier Fund: 2019 Review and Outlook 
for 2020, 2019. https://www.asiafrontiercapital.com/2019/406-newsletter-
issue-103-review-2019-and-outlook-2020.html Sri Lanka 

Thailand 

Between 
2010 and 
2019 

Enerdata, The Future of Air-Conditioning, 2019, Figure 2. 
https://www.enerdata.net/publications/executive-briefing/the-future-air-
conditioning-global-demand.html 

Malaysia 

Spain 

Turkey 

Italy Enerdata and Davis et al. (2021) 

Greece 2015 
The Seattle Times, Hotter days, but much of Europe still cool toward air 
conditioning, 2015. https://www.seattletimes.com/nation-world/hotter-days-
but-much-of-europe-still-cool-toward-air-conditioning/ 

Taiwan 2015 National Bureau of Statistics of China, China Statistical Yearbook 2016, 
Chapter 28. http://www.stats.gov.cn/sj/ndsj/2016/indexeh.htm 

United States 
(by state) 2020 

U.S. Energy Information Administration, Residential Energy Consumption 
Survey 2020, Highlights for air conditioning in U.S. homes by state, 2020, 
https://www.eia.gov/consumption/residential/data/2020/index.php?view=sta
te 

Number of AC units per household 

https://doi.org/10.1007/s13753-020-00256-z
https://doi.org/10.1007/s13753-020-00256-z
https://doi.org/10.1007/s13753-020-00256-z
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810001901
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810001901
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810001901
https://www.cbs.gov.il/he/publications/DocLib/2017/1677/t14.pdf
https://www.cbs.gov.il/he/publications/DocLib/2017/1677/t14.pdf
https://www.cbs.gov.il/he/publications/DocLib/2017/1677/t14.pdf
https://www.singstat.gov.sg/-/media/files/publications/households/hes201718.ashx
https://www.singstat.gov.sg/-/media/files/publications/households/hes201718.ashx
https://cros-legacy.ec.europa.eu/system/files/SECH_Project_Malta.pdf
https://cros-legacy.ec.europa.eu/system/files/SECH_Project_Malta.pdf
https://cros-legacy.ec.europa.eu/system/files/SECH_Project_Malta.pdf
https://www.asiafrontiercapital.com/2019/406-newsletter-issue-103-review-2019-and-outlook-2020.html
https://www.asiafrontiercapital.com/2019/406-newsletter-issue-103-review-2019-and-outlook-2020.html
https://www.asiafrontiercapital.com/2019/406-newsletter-issue-103-review-2019-and-outlook-2020.html
https://www.enerdata.net/publications/executive-briefing/the-future-air-conditioning-global-demand.html
https://www.enerdata.net/publications/executive-briefing/the-future-air-conditioning-global-demand.html
https://www.enerdata.net/publications/executive-briefing/the-future-air-conditioning-global-demand.html
https://www.enerdata.net/publications/executive-briefing/the-future-air-conditioning-global-demand.html
https://www.seattletimes.com/nation-world/hotter-days-but-much-of-europe-still-cool-toward-air-conditioning/
https://www.seattletimes.com/nation-world/hotter-days-but-much-of-europe-still-cool-toward-air-conditioning/
https://www.seattletimes.com/nation-world/hotter-days-but-much-of-europe-still-cool-toward-air-conditioning/
http://www.stats.gov.cn/sj/ndsj/2016/indexeh.htm
http://www.stats.gov.cn/sj/ndsj/2016/indexeh.htm
https://www.eia.gov/consumption/residential/data/2020/index.php?view=state
https://www.eia.gov/consumption/residential/data/2020/index.php?view=state
https://www.eia.gov/consumption/residential/data/2020/index.php?view=state
https://www.eia.gov/consumption/residential/data/2020/index.php?view=state
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196 Countries 2010 - 
2018 

IEA, Is cooling the future of heating?, 2020, IEA, Paris 
https://www.iea.org/commentaries/is-cooling-the-future-of-heating, IEA. 
License: CC BY 4.0 

China 
(by province) 2015 National Bureau of Statistics of China, China Statistical Yearbook 2016, 

Chapter 6. http://www.stats.gov.cn/sj/ndsj/2016/indexeh.htm 
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