A substorm-dependent negative limit of non-eclipse surface charging of a Chinese geosynchronous satellite

Zhiyi Fu¹, Zhenpeng Su¹, Bin Miao¹, Zhiyong Wu¹, Yiren Li¹, Kai Liu², Xu Shan¹, and Yuming Wang³

¹University of Science and Technology of China ²University of Science & Techology of China ³Univ. of Sci. and Tech. of China

November 8, 2023

Abstract

Surface charging is one of the most common causes of spacecraft anomalies. When and to what potential the spacecraft is charged are two important questions in space weather. Here, for a Chinese geosynchronous navigation satellite, we infer the extreme negative surface charging potentials from the ion differential fluxes measured by a low-energy ion spectrometer. Without the solar eclipse effect away from the midnight, the charging potentials are found to have a negative limit which is determined by the maximum SuperMAG electrojet index in the preceding 2 hr. Such an empirical relation can be reasonably explained by the dependence of 1–50 keV electron fluxes on substorm strength. Similar relations may also exist for other inner magnetospheric spacecraft in the non-eclipse region, which would be useful for spacecraft engineering and space weather alerts.

A substorm-dependent negative limit of non-eclipse surface charging of a Chinese geosynchronous satellite

Zhiyi Fu^{1,2,3}, Zhenpeng Su^{1,2,3*}, Bin Miao^{1,2,3}, Zhiyong Wu^{1,2,3}, Yiren Li^{1,2,3}, Kai Liu^{1,2,3}, Xu Shan^{4*}, and Yuming Wang^{1,2,5}

5	¹ Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and
6	Technology of China, Hefei 230026, China
7	$^2\mathrm{CAS}$ Center for Excellence in Comparative Planetology/CAS Key Laboratory of Geospace
8	Environment/Mengcheng National Geophysical Observatory, University of Science and Technology of
9	China, Hefei 230026, China
10	$^{3}\mathrm{Collaborative}$ Innovation Center of Astronautical Science and Technology, Harbin 150001, China
11	⁴ Hefei National Research Center for Physical Sciences at the Microscale, Department of Modern Physics,
12	University of Science and Technology of China, Hefei 230026, China
13	⁵ Hefei National Laboratory, University of Science and Technology of China, Hefei 230026, China

14 Key Points:

1

2

3

4

Negative surface charging potentials are inferred from ion energy spectrograms for a Chinese geosynchronous navigation satellite. Non-eclipse extreme negative surface charging occurs primarily at the magnetic local times from 0.5 to 9. Non-eclipse surface charging potentials have a negative limit determined by substorm strength.

Corresponding author: Zhenpeng Su and Xu Shan, szpe@mail.ustc.edu.cn and xshan@ustc.edu.cn

21 Abstract

Surface charging is one of the most common causes of spacecraft anomalies. When and 22 to what potential the spacecraft is charged are two important questions in space weather. 23 Here, for a Chinese geosynchronous navigation satellite, we infer the extreme negative 24 surface charging potentials from the ion differential fluxes measured by a low-energy ion 25 spectrometer. Without the solar eclipse effect away from the midnight, the charging po-26 tentials are found to have a negative limit which is determined by the maximum Super-27 MAG electrojet index in the preceding 2 hr. Such an empirical relation can be reason-28 ably explained by the dependence of 1–50 keV electron fluxes on substorm strength. Sim-29 ilar relations may also exist for other inner magnetospheric spacecraft in the non-eclipse 30 region, which would be useful for spacecraft engineering and space weather alerts. 31

32

Plain Language Summary

Spacecraft charging is the charging of spacecraft surfaces or components relative 33 to the surrounding space plasma. Compared to internal charging, surface charging is able 34 to cause more serious spacecraft anomalies. When and to what potential the spacecraft 35 is charged are two important questions in space weather. For a Chinese navigation satel-36 lite in the geosynchronous orbit, we show that the non-eclipse charging potentials have 37 a negative limit determined by the maximum SuperMAG electrojet index in the preced-38 ing 2 hr. Such an empirical relation can be reasonably explained by the dependence of 39 1-50 keV electron fluxes on substorm strength. For other magnetospheric spacecraft, sim-40 ilar relations may also exist and would be useful for spacecraft engineering and space weather 41 alerts. 42

43 1 Introduction

Spacecraft charging is the charging of spacecraft surfaces or components relative to the surrounding space plasma. This can lead to discharges and even catastrophic anomalies (Rosen, 1976; Reagan et al., 1983; Lanzerotti et al., 1998; Choi et al., 2011; Loto'aniu et al., 2015; Ganushkina et al., 2021). When and to what potential the spacecraft is charged are two important questions in space weather.

In general, spacecraft charging can be classified into surface and internal charging
 (Reagan et al., 1983; Czepiela et al., 2000). Compared to internal charging, surface charg-

-2-

ing is able to cause more serious spacecraft anomalies (Koons et al., 1999; Choi et al., 51 2011; Matéo-Vélez et al., 2018; Ganushkina et al., 2021). The surface charging is a re-52 sult of the imbalance between currents exiting and entering the surface (Berry Garrett, 53 1981; Lai & Tautz, 2006a). In the environmental plasma of thermal equilibrium, com-54 pared to ions, electrons have much larger velocities and are easier to attach to the sur-55 face (Reagan et al., 1983; Lai & Della-Rose, 2001; Lai, 2003). In the inner magnetosphere, 56 the enhancements of electrons with energies above keV have been found to cause the high 57 negative surface charging (Olsen, 1983; Mullen et al., 1986; Lai & Tautz, 2006b; Sarno-58 Smith et al., 2016). These electrons are primarily injected by substorms into the region 59 from midnight to dawnside (DeForest & McIlwain, 1971; Moore et al., 1981; Meredith 60 et al., 2004; Forsyth et al., 2016; Ganushkina et al., 2021). When solar photons with suf-61 ficiently high energies strike the surface materials, photoelectrons are emitted from the 62 surface (Grard et al., 1983). In the eclipse region where the sunlight has been blocked 63 by the Earth, spacecraft are more likely to be charged to extremely high negative po-64 tentials (Mullen et al., 1981; Berry Garrett, 1981; Sarno-Smith et al., 2016; Matéo-Vélez 65 et al., 2018). Given the cascading causal relationships of substorms, energetic electrons, 66 and negative surface charging described above, a natural question arises to as whether 67 it is possible to develop an empirical relation between the non-eclipse surface charging 68 potential and the substorm activity strength. 69

In this study, we concentrate on the surface charging of a Chinese navigation satellite in the geosynchronous orbit. We show that the surface charging potentials inferred from the measurements of ion differential fluxes by the Low Energy Ion Spectrometer (LEIS) (Shan et al., 2023a, 2023b) have a substorm-dependent negative limit in the noneclipse region.

75

2 Inference of Surface Charging Potentials

⁷⁶ Onboard the satellite, the LEIS instrument can measure the ion fluxes in the en-⁷⁷ ergy range of 0.05–25 keV/q over a large field of view of 360° azimuthal angles and 90° ⁷⁸ elevation angles (Shan et al., 2023a, 2023b). The elevation angles of incident ions are de-⁷⁹ termined by the deflector voltages, and the incident ions of different azimuthal angles ⁸⁰ are counted at 16 channels (numbered from Ch00 to Ch15). We here use the data from ⁸¹ Ch05 whose view was not obstructed by other spacecraft components. These data have ⁸² a time resolution Δt of 20 s and a relative energy resolution $\frac{\Delta E_k}{E_k}$ of 8.5%.

Figure 1 shows an example of ion differential fluxes recorded by Ch05 of LEIS from 83 15:00 UT to 21:00 UT on 14 October 2021. In the spectrogram, the extreme enhance-84 ment of ion fluxes in a narrow range of energy bins appears like a bright yellow line, which 85 is an indicator of negative surface charging (DeForest, 1972; Sarno-Smith et al., 2016). 86 The low-energy ions are accelerated by the negative potentials when approaching the space-87 craft and then the recorded high-energy ion fluxes exhibit an unusual enhancement. Given 88 that the background ions are mainly protons, the charging potential absolute $|U_s|$ ap-89 proximately equals the energy $E_{\mathbf{k}}$ of bright line divided by the unit charge e. In this event, 90 the charging potential absolute $|U_{\rm s}|$ reached ~ 3900 V near the midnight around 16:19 91 UT and fell to ~ 400 V in the post-midnight region after 17:00 UT. As illustrated in 92 the previous studies (Grard et al., 1983; Ferguson et al., 2015; Matéo-Vélez et al., 2018), 93 the geosynchronous spacecraft experiences the solar eclipses around the midnight near 94 the equinoxes. In this event, the solar eclipse may be the primary cause of extreme neg-95 ative surface charging around 16:19 UT, and the substorm injection may be responsi-96 ble for the rest charging. 97

We have developed an algorithm to automatically recognize the extreme charging events ($|U_{\rm s}| > 100$ V). We identify the energy bins forming the bright lines with the following two empirical criteria: differential fluxes $j(E_{\rm k}) > 10^8 \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{keV}^{-1}$ and normalized gradients of ion count rates along the energy direction $\overline{C}(E_{\rm k}) > 0.7$. At the *i*th energy bin $E_{{\rm k},i}$, the normalized energy gradient $\overline{C}(E_{{\rm k},i})$ of the ion count rate n_i is written as

$$\overline{C}(E_{k,i}) = \frac{C(E_{k,i})}{\max(C(E_{k,j}), \ j = 1, \ 2, \ 3, \cdots)},\tag{1}$$

$$C(E_{k,i}) = \left| \frac{n_i - n_{i-1}}{\log E_{k,i} - \log E_{k,i-1}} \right|.$$
(2)

As exemplified in Figure 1, our algorithm can well identify the charging line. Using this algorithm, we have found 4068 extreme charging events from 24 September 2021 to 25 May 2023 (with a data gap related to the latch-up in the LEIS electronics from 09 May 2022 to 28 December 2022). These extreme charging events ($|U_{\rm s}| > 100$ V) are scattered over 133 days.

109

3 Surface Charging Magnitudes, Locations and Timings

Figure 2 shows the distribution of charging events in terms of magnitude, location, and time. As shown in Figure 2a, these charging events could be classified into two groups

Figure 1. Ion differential fluxes j (color-coded) recorded by Ch05 channel of LEIS from 15:00 UT to 21:00 UT on 14 October 2021. The black circles mark the negative surface charging events identified automatically.

according to their occurring magnetic local times (MLT). One group is located at MLT=22.5-112 0.5, whose potentials $|U_s|$ extend to 10⁴ V. These extreme charging events with $|U_s| >$ 113 2×10^3 V gather near the equinoxes (Figure 2b) and could be triggered by the solar eclipses 114 (Grard et al., 1983; Ferguson et al., 2015; Matéo-Vélez et al., 2018). In contrast, the other 115 group has a lower charging potential limit and occurs primarily in the region counter-116 clockwise from MLT=0.5 to MLT=9. This group should be free from the solar eclipse 117 effect and be directly related to the substorm injection. These spatial distribution char-118 acteristics of the eclipse and non-eclipse events are generally consistent with those for 119 the Van Allen Probes (Mauk et al., 2013; Sarno-Smith et al., 2016). The significant MLT 120 asymmetry of non-eclipse events should be a result of electron drift in the magnetosphere. 121 A statistical study (Li et al., 2010) has shown that the MLT asymmetry of electron fluxes 122 decreases with the increase of energies. These non-eclipse charging could be caused pri-123 marily by electrons with energies from keV to tens of keV (Li et al., 2010). 124

125

4 Substorm Dependent Negative Limit of Charging Potentials

The substorm activities are characterized by the SuperMAG electrojet (SME) index (Newell & Gjerloev, 2011). SME index is the SuperMAG generalization of the tra-

Figure 2. Magnitudes, locations, and timings of surface charging. (a) Extreme negative charging event number N_c (color-coded) as a function of potential absolute $|U_s|$ and magnetic local time (MLT). The radial direction represents $|U_s|$ and the azimuthal direction represents MLT. (b) Scatter plot of extreme negative charging events in the MLT-month plane, with the side panels represent the number of events contained within each interval. The color and size of each point are coded according to $|U_s|$. Note that our data has a gap approximately from June to August.

ditional auroral electrojet (AE) index. Different from AE based on the measurements

- of 12 ground-based magnetometer stations, SME is evaluated with more than 100 sta-
- ¹³⁰ tions. Considering the drift and accumulation of substorm-injected electrons, we intro-
- duce SME*, the maximum SME in the preceding 2 hr. Figure 3 presents a scatter plot
- of 4068 charging events in the $|U_s|$ -SME* plane. Near the midnight (MLT=22.5-0.5),
- the charging potentials $|U_s|$ appear to be distributed irregularly. This feature is reason-
- able because the solar eclipse effect is independent of substorm strength. In contrast, away
- from the midnight, the non-eclipse events are related to the substorm-injected electrons.
- The corresponding charging potentials $|U_s|$ have an upper limit $|\overline{U_s}|$ controlled by SME^{*}.
- 137 Specifically, when SME*< 800 nT, the logarithm of potential upper limit $\log |\overline{U_s}|$ increases
- approximately linearly with SME*; when SME*> 800 nT, $|\overline{U_s}|$ visually reaches a sat-
- ¹³⁹ uration level of 1.3×10^3 V. Overall, we can obtain a simple relation between $|\overline{U_s}|$ and ¹⁴⁰ SME*

$$|\overline{U_{\rm s}}| = 10^{c_1 \tanh \frac{{\rm SME}^* - c_2}{c_3} + c_4} {\rm V},$$
 (3)

with the fitting parameters c_1 , c_2 , c_3 , and c_4 and the determination coefficient R^2 listed in Table 1.

Table 1. Fitting parameters and determination coefficients of the $|\overline{U_s}|$ -SME* and \overline{j} -SME* relations defined in Equations (3) and (4).

Name		c_1	c_2 (nT)	c_3 (nT)	c_4	R^2
Charging Po	tential	0.34380	495.03	198.90	2.7223	0.96941
	$1 \ \mathrm{keV}$	0.021213	439.27	266.95	0.81318	0.98872
Electron Flux	$10 \ \mathrm{keV}$	0.75240	-1258.9	686.99	0.0023428	0.94154
	$50 \ \mathrm{keV}$	0.046832	196.18	291.53	0.65568	0.98295

143

144

The $|\overline{U_s}|$ -SME* relation (3) described above can be reasonably explained by the substorm-dependence of energetic electron fluxes. Figure 4 shows the SME*-dependent

- distribution of 1, 10, and 50 keV electron fluxes j measured by the Van Allen Probes (Funsten
- distribution of 1, 10, and 50 keV electron fluxes j measured by the Van Allen Probes (Funst
- et al., 2013; Blake et al., 2013; Spence et al., 2013) from MLT=0 to MLT=9 near the
- geosynchronous orbit during the time range from November 2012 to July 2019. We have
- divided these data into 8 intervals of SME* and then calculate the geometric mean \overline{j} in

Figure 3. Scatter plot of extreme negative surface charging events in the $\text{SME}^* - |U_s|$ plane, with the black color for the eclipse events (MLT=22.5–0.5) and the green color for the non-eclipse events (MLT=18–22.5 and MLT=0.5–9). The green line represents a nonlinear fit to the upper potential limit (green circles) of non-eclipse events.

each interval. It is obvious that, at every energy bin, \overline{j} exhibits a SME*-dependence analogous to $|\overline{U_s}|$. Specifically, there is a monotonic increase of \overline{j} when SME*< 800 nT and a saturation of \overline{j} when SME*> 800 nT. Similar to $|\overline{U_s}|$, \overline{j} can be fitted to a SME*-dependent function

$$\overline{j} = 10^{c_1 \tanh \frac{\text{SME}^* - c_2}{c_3} + c_4} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{keV}^{-1},$$
(4)

with the fitting parameters and determination coefficients listed in Table 1.

154 5 Summary

This study sets out to develop an empirical relation between substorm strength and spacecraft surface charging potential in the non-eclipse region. For the Chinese satellite in the geosynchronous orbit, we infer the extreme negative charging potentials from the charging lines in the ion energy spectrograms measured by the LEIS instrument. The 4068 charing events with the potential absolutes $|U_s| > 100$ V can be classified into two groups: (1) the events close to the midnight, whose charging potentials have been affected by the solar eclipses near the equinoxes, and (2) the other events away from the midnight,

Figure 4. SME*-dependent electron differential fluxes j at (a) 1, (b) 10, and (c) 50 keV measured by the Van Allen Probes from MLT=0 to MLT=9 near the geosynchronous orbit during the time range from November 2012 to July 2019. These data have been divided into 8 intervals of SME*: 0–120 nT, 120–190 nT, 190–300 nT, 300–430 nT, 430–590 nT, 590–760 nT, 760–1100 nT and 1100–2000 nT. In each SME* interval (gray horizontal line), the geometric mean \overline{j} (gray circle) and the corresponding upper and lower quartiles (gray horizontal line) have been calculated. The black lines represent a nonlinear fit to the obtained geometric means of electron fluxes.

162	whose charging potential absolutes have an upper limit $ \overline{U_s} $ determined by the maximum
163	SuperMAG electrojet index in the preceding 2 hr SME*. This simple $ \overline{U_s} $ -SME* rela-
164	tion for the non-eclipse events can be reasonably explained by the dependence of $1-50$
165	$\rm keV$ electron fluxes on SME*. Spacecraft charging depends on the geometry and mate-
166	rial properties of the spacecraft, as well as its orbital characteristics. For other inner mag-
167	netospheric spacecraft in the non-eclipse region, similar relations between the negative
168	charging limit and the substorm strength may also exist. These empirical relations would
169	be useful for spacecraft engineering and space weather alerts.

170 Open Research

LEIS data are available at http://space.ustc.edu.cn/dreams/leis/. Van Allen Probes data are available at https://spdf.gsfc.nasa.gov/pub/data/rbsp/. SME index is available at https://supermag.jhuapl.edu/.

174 Acknowledgments

- ¹⁷⁵ We acknowledge all the collaborators from the Shandong Institute of Space Electronic
- ¹⁷⁶ Technology and China Academy of Space Technology for their help in the fabrication
- and environmental tests of LEIS. We acknowledge ECT teams for the use of Van Allen
- Probes data, and acknowledge the SuperMAG collaborators (http://supermag.jhuapl.edu/info/?page=acknowledg
- ¹⁷⁹ for the use of SME index. This work was supported by the National Natural Science Foun-
- dation of China grants 42188101, 42274198, and 42074222, and the Key Research Pro-
- gram of the Chinese Academy of Sciences grant ZDRE-KT-2021-3.

182 References

- Berry Garrett, H. (1981, November). The Charging of Spacecraft Surfaces (Paper 184 1R1000). Reviews of Geophysics and Space Physics, 19, 577. doi: 10.1029/ 185 RG019i004p00577
- Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R.,
 Dotan, Y., ... Zakrzewski, M. P. (2013, November). The Magnetic Electron
 Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm
- Probes (RBSP) Spacecraft. Space Science Reviews, 179(1-4), 383-421. doi:
 10.1007/s11214-013-9991-8
- Choi, H.-S., Lee, J., Cho, K.-S., Kwak, Y.-S., Cho, I.-H., Park, Y.-D., ... Lee, D.-K.
 (2011, June). Analysis of GEO spacecraft anomalies: Space weather relation ships. Space Weather, 9(6), 06001. doi: 10.1029/2010SW000597
- Czepiela, S. A., McManus, H., & Hastings, D. (2000, September). Charging of Composites in the Space Environment. Journal of Spacecraft and Rockets, 37(5), 556-560. doi: 10.2514/2.3619
- DeForest, S. E. (1972, January). Spacecraft charging at synchronous orbit. Journal
 of Geophysical Research, 77(4), 651. doi: 10.1029/JA077i004p00651
- DeForest, S. E., & McIlwain, C. E. (1971, January). Plasma clouds in the mag netosphere. Journal of Geophysical Research, 76(16), 3587. doi: 10.1029/
 JA076i016p03587
- Ferguson, D. C., Worden, S. P., & Hastings, D. E. (2015, September). The Space
 Weather Threat to Situational Awareness, Communications, and Position ing Systems. *IEEE Transactions on Plasma Science*, 43(9), 3086-3098. doi:
 10.1109/TPS.2015.2412775

206	Forsyth, C., Rae, I. J., Murphy, K. R., Freeman, M. P., Huang, C. L., Spence, H. E.,
207	Watt, C. E. J. (2016, July). What effect do substorms have on the con-
208	tent of the radiation belts? Journal of Geophysical Research (Space Physics),
209	121(7), 6292-6306. doi: 10.1002/2016JA022620
210	Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado,
211	J. R., Harper, R. W., Chen, J. (2013, November). Helium, Oxygen,
212	Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt
213	Storm Probes Mission. Space Science Reviews, $179(1-4)$, 423-484. doi:
214	10.1007/s11214-013-9968-7
215	Ganushkina, N. Y., Swiger, B., Dubyagin, S., Matéo-Vélez, J. C., Liemohn, M. W.,
216	Sicard, A., & Payan, D. (2021, September). Worst-Case Severe Environ-
217	ments for Surface Charging Observed at LANL Satellites as Dependent on
218	Solar Wind and Geomagnetic Conditions. Space Weather, $19(9)$, e02732. doi:
219	10.1029/2021SW002732
220	Grard, R., Knott, K., & Pedersen, A. (1983, March). Spacecraft Charging Effects.
221	Space Science Reviews, 34(3), 289-304. doi: 10.1007/BF00175284
222	Koons, H. C., Mazur, J. E., Selesnick, R. S., Blake, J. B., & Fennell, J. F. (1999,
223	July). The Impact of the Space Environment on Space Systems. Technical
224	Report, AD-A376872; TR-99(1670)-1; SMC-TR-00-10 EL Segundo Technical
225	Operations.
226	Lai, S. T. (2003, December). A critical overview on spacecraft charging mitigation
227	methods. IEEE Transactions on Plasma Science, 31(6), 1118-1124. doi: 10
228	.1109/TPS.2003.820969
229	Lai, S. T., & Della-Rose, D. J. (2001, November). Spacecraft Charging at Geosyn-
230	chronous Altitudes: New Evidence of Existence of Critical Temperature. Jour-
231	nal of Spacecraft and Rockets, 38(6), 922-928. doi: 10.2514/2.3764
232	Lai, S. T., & Tautz, M. (2006b, September). High-level spacecraft charging in eclipse
233	at geosynchronous altitudes: A statistical study. Journal of Geophysical Re-
234	search (Space Physics), $111(A9)$, A09201. doi: $10.1029/2004$ JA010733
235	Lai, S. T., & Tautz, M. F. (2006a, October). Aspects of Spacecraft Charging in Sun-
236	light. IEEE Transactions on Plasma Science, $34(5)$, 2053-2061. doi: 10.1109/
237	TPS.2006.883362
238	Lanzerotti, L. J., Breglia, C., Maurer, D. W., Johnson, G. K., & Maclennan,

239	C. G. (1998, January). Studies of spacecraft charging on a geosynchronous
240	telecommunications satellite. Advances in Space Research, $22(1)$, 79-82. doi:
241	10.1016/S0273-1177(97)01104-6
242	Li, W., Thorne, R. M., Nishimura, Y., Bortnik, J., Angelopoulos, V., McFad-
243	den, J. P., Auster, U. (2010, June). THEMIS analysis of observed
244	equatorial electron distributions responsible for the chorus excitation.
245	Journal of Geophysical Research (Space Physics), 115(1), A00F11. doi:
246	10.1029/2009JA014845
247	Loto'aniu, T. M., Singer, H. J., Rodriguez, J. V., Green, J., Denig, W., Biesecker,
248	D., & Angelopoulos, V. (2015, August). Space weather conditions during
249	the Galaxy 15 spacecraft anomaly. Space Weather, 13(8), 484-502. doi:
250	10.1002/2015SW001239
251	Matéo-Vélez, J. C., Sicard, A., Payan, D., Ganushkina, N., Meredith, N. P., & Sil-
252	lanpäa, I. (2018, January). Spacecraft surface charging induced by severe
253	environments at geosynchronous orbit. Space Weather, $16(1)$, 89-106. doi:
254	10.1002/2017SW001689
255	Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy,
256	A. (2013, November). Science Objectives and Rationale for the Radiation
257	Belt Storm Probes Mission. Space Science Reviews, 179(1-4), 3-27. doi:
258	10.1007/s11214-012-9908-y
259	Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., & Anderson, R. R.
260	$(2004, {\rm June}).$ Substorm dependence of plasma spheric hiss. Journal of Geophys-
261	ical Research (Space Physics), 109(A6), A06209. doi: 10.1029/2004JA010387
262	Moore, T. E., Arnoldy, R. L., Feynman, J., & Hardy, D. A. (1981, August). Prop-
263	agating substorn injection fronts. Journal of Geophysical Research, $86(A8)$,
264	6713-6726. doi: $10.1029/JA086iA08p06713$
265	Mullen, E. G., Gussenhoven, M. S., & Garrett, H. B. (1981, July). A worst case
266	spacecraft environment as observed by SCATHA on 24 April 1979.
267	Mullen, E. G., Gussenhoven, M. S., Hardy, D. A., Aggson, T. A., Ledley, B. G.,
268	& Whipple, E. (1986, February). SCATHA survey of high-level spacecraft
269	charging in sunlight. Journal of Geophysical Research, $91(A2)$, 1474-1490. doi:
270	10.1029/JA091iA02p01474
271	Newell, P. T., & Gjerloev, J. W. (2011, December). Substorm and magnetosphere

-12-

272	characteristic scales inferred from the SuperMAG auroral electrojet indices.
273	Journal of Geophysical Research (Space Physics), 116 (A12), A12232. doi:
274	10.1029/2011JA016936
275	Olsen, R. C. (1983, January). A threshold effect for spacecraft charging. Jour-
276	nal of Geophysical Research Supplement, 88(A1), 493-499. doi: 10.1029/
277	JA088iA01p00493
278	Reagan, J. B., Meyerott, R. E., Gaines, E. E., Nightingale, R. W., Filbert, P. C., &
279	Imhof, W. L. (1983). Space charging currents and their effects on spacecraft
280	systems. IEEE Transactions on Electrical Insulation, EI-18(3), 354-365. Re-
281	trieved from https://api.semanticscholar.org/CorpusID:46669343 doi:
282	10.1109/TEI.1983.298625
283	Rosen, A. (1976, December). Spacecraft Charging by Magnetospheric Plasmas.
284	IEEE Transactions on Nuclear Science, 23(6), 1762-1768. doi: 10.1109/TNS
285	.1976.4328575
286	Sarno-Smith, L. K., Larsen, B. A., Skoug, R. M., Liemohn, M. W., Breneman, A.,
287	Wygant, J. R., & Thomsen, M. F. (2016, February). Spacecraft surface charg-
288	ing within geosynchronous orbit observed by the Van Allen Probes. Space
289	Weather, $14(2)$, 151-164. doi: $10.1002/2015$ SW001345
290	Shan, X., Miao, B., Cao, Z., Sun, Z., Li, Y., Liu, K., Wang, Y. (2023a, May).
291	First results of the low energy ion spectrometer onboard a Chinese geosyn-
292	chronous satellite. Science in China E: Technological Sciences, 66(5), 1378-
293	1384. doi: 10.1007/s11431-022-2143-6
294	Shan, X., Miao, B., Cao, Z., Sun, Z., Li, Y., Liu, K., Wang, Y. (2023b, Febru-
295	ary). A low-energy ion spectrometer with large field of view and wide energy
296	range onboard a Chinese GEO satellite. Open Astronomy, $32(1)$, 210. doi: 10
297	.1515/astro-2022-0210
298	Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S.,
299	Thorne, R. M. (2013, November). Science Goals and Overview of the
300	Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and
301	Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission. Space
302	Science Reviews, 179(1-4), 311-336. doi: 10.1007/s11214-013-0007-5

A substorm-dependent negative limit of non-eclipse surface charging of a Chinese geosynchronous satellite

Zhiyi Fu^{1,2,3}, Zhenpeng Su^{1,2,3*}, Bin Miao^{1,2,3}, Zhiyong Wu^{1,2,3}, Yiren Li^{1,2,3}, Kai Liu^{1,2,3}, Xu Shan^{4*}, and Yuming Wang^{1,2,5}

5	¹ Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and
6	Technology of China, Hefei 230026, China
7	$^2\mathrm{CAS}$ Center for Excellence in Comparative Planetology/CAS Key Laboratory of Geospace
8	Environment/Mengcheng National Geophysical Observatory, University of Science and Technology of
9	China, Hefei 230026, China
10	$^{3}\mathrm{Collaborative}$ Innovation Center of Astronautical Science and Technology, Harbin 150001, China
11	⁴ Hefei National Research Center for Physical Sciences at the Microscale, Department of Modern Physics,
12	University of Science and Technology of China, Hefei 230026, China
13	⁵ Hefei National Laboratory, University of Science and Technology of China, Hefei 230026, China

14 Key Points:

1

2

3

4

Negative surface charging potentials are inferred from ion energy spectrograms for a Chinese geosynchronous navigation satellite. Non-eclipse extreme negative surface charging occurs primarily at the magnetic local times from 0.5 to 9. Non-eclipse surface charging potentials have a negative limit determined by substorm strength.

Corresponding author: Zhenpeng Su and Xu Shan, szpe@mail.ustc.edu.cn and xshan@ustc.edu.cn

21 Abstract

Surface charging is one of the most common causes of spacecraft anomalies. When and 22 to what potential the spacecraft is charged are two important questions in space weather. 23 Here, for a Chinese geosynchronous navigation satellite, we infer the extreme negative 24 surface charging potentials from the ion differential fluxes measured by a low-energy ion 25 spectrometer. Without the solar eclipse effect away from the midnight, the charging po-26 tentials are found to have a negative limit which is determined by the maximum Super-27 MAG electrojet index in the preceding 2 hr. Such an empirical relation can be reason-28 ably explained by the dependence of 1–50 keV electron fluxes on substorm strength. Sim-29 ilar relations may also exist for other inner magnetospheric spacecraft in the non-eclipse 30 region, which would be useful for spacecraft engineering and space weather alerts. 31

32

Plain Language Summary

Spacecraft charging is the charging of spacecraft surfaces or components relative 33 to the surrounding space plasma. Compared to internal charging, surface charging is able 34 to cause more serious spacecraft anomalies. When and to what potential the spacecraft 35 is charged are two important questions in space weather. For a Chinese navigation satel-36 lite in the geosynchronous orbit, we show that the non-eclipse charging potentials have 37 a negative limit determined by the maximum SuperMAG electrojet index in the preced-38 ing 2 hr. Such an empirical relation can be reasonably explained by the dependence of 39 1-50 keV electron fluxes on substorm strength. For other magnetospheric spacecraft, sim-40 ilar relations may also exist and would be useful for spacecraft engineering and space weather 41 alerts. 42

43 1 Introduction

Spacecraft charging is the charging of spacecraft surfaces or components relative to the surrounding space plasma. This can lead to discharges and even catastrophic anomalies (Rosen, 1976; Reagan et al., 1983; Lanzerotti et al., 1998; Choi et al., 2011; Loto'aniu et al., 2015; Ganushkina et al., 2021). When and to what potential the spacecraft is charged are two important questions in space weather.

In general, spacecraft charging can be classified into surface and internal charging
 (Reagan et al., 1983; Czepiela et al., 2000). Compared to internal charging, surface charg-

-2-

ing is able to cause more serious spacecraft anomalies (Koons et al., 1999; Choi et al., 51 2011; Matéo-Vélez et al., 2018; Ganushkina et al., 2021). The surface charging is a re-52 sult of the imbalance between currents exiting and entering the surface (Berry Garrett, 53 1981; Lai & Tautz, 2006a). In the environmental plasma of thermal equilibrium, com-54 pared to ions, electrons have much larger velocities and are easier to attach to the sur-55 face (Reagan et al., 1983; Lai & Della-Rose, 2001; Lai, 2003). In the inner magnetosphere, 56 the enhancements of electrons with energies above keV have been found to cause the high 57 negative surface charging (Olsen, 1983; Mullen et al., 1986; Lai & Tautz, 2006b; Sarno-58 Smith et al., 2016). These electrons are primarily injected by substorms into the region 59 from midnight to dawnside (DeForest & McIlwain, 1971; Moore et al., 1981; Meredith 60 et al., 2004; Forsyth et al., 2016; Ganushkina et al., 2021). When solar photons with suf-61 ficiently high energies strike the surface materials, photoelectrons are emitted from the 62 surface (Grard et al., 1983). In the eclipse region where the sunlight has been blocked 63 by the Earth, spacecraft are more likely to be charged to extremely high negative po-64 tentials (Mullen et al., 1981; Berry Garrett, 1981; Sarno-Smith et al., 2016; Matéo-Vélez 65 et al., 2018). Given the cascading causal relationships of substorms, energetic electrons, 66 and negative surface charging described above, a natural question arises to as whether 67 it is possible to develop an empirical relation between the non-eclipse surface charging 68 potential and the substorm activity strength. 69

In this study, we concentrate on the surface charging of a Chinese navigation satellite in the geosynchronous orbit. We show that the surface charging potentials inferred from the measurements of ion differential fluxes by the Low Energy Ion Spectrometer (LEIS) (Shan et al., 2023a, 2023b) have a substorm-dependent negative limit in the noneclipse region.

75

2 Inference of Surface Charging Potentials

⁷⁶ Onboard the satellite, the LEIS instrument can measure the ion fluxes in the en-⁷⁷ ergy range of 0.05–25 keV/q over a large field of view of 360° azimuthal angles and 90° ⁷⁸ elevation angles (Shan et al., 2023a, 2023b). The elevation angles of incident ions are de-⁷⁹ termined by the deflector voltages, and the incident ions of different azimuthal angles ⁸⁰ are counted at 16 channels (numbered from Ch00 to Ch15). We here use the data from ⁸¹ Ch05 whose view was not obstructed by other spacecraft components. These data have ⁸² a time resolution Δt of 20 s and a relative energy resolution $\frac{\Delta E_k}{E_k}$ of 8.5%.

Figure 1 shows an example of ion differential fluxes recorded by Ch05 of LEIS from 83 15:00 UT to 21:00 UT on 14 October 2021. In the spectrogram, the extreme enhance-84 ment of ion fluxes in a narrow range of energy bins appears like a bright yellow line, which 85 is an indicator of negative surface charging (DeForest, 1972; Sarno-Smith et al., 2016). 86 The low-energy ions are accelerated by the negative potentials when approaching the space-87 craft and then the recorded high-energy ion fluxes exhibit an unusual enhancement. Given 88 that the background ions are mainly protons, the charging potential absolute $|U_s|$ ap-89 proximately equals the energy $E_{\mathbf{k}}$ of bright line divided by the unit charge e. In this event, 90 the charging potential absolute $|U_{\rm s}|$ reached ~ 3900 V near the midnight around 16:19 91 UT and fell to ~ 400 V in the post-midnight region after 17:00 UT. As illustrated in 92 the previous studies (Grard et al., 1983; Ferguson et al., 2015; Matéo-Vélez et al., 2018), 93 the geosynchronous spacecraft experiences the solar eclipses around the midnight near 94 the equinoxes. In this event, the solar eclipse may be the primary cause of extreme neg-95 ative surface charging around 16:19 UT, and the substorm injection may be responsi-96 ble for the rest charging. 97

We have developed an algorithm to automatically recognize the extreme charging events ($|U_{\rm s}| > 100$ V). We identify the energy bins forming the bright lines with the following two empirical criteria: differential fluxes $j(E_{\rm k}) > 10^8 \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{keV}^{-1}$ and normalized gradients of ion count rates along the energy direction $\overline{C}(E_{\rm k}) > 0.7$. At the *i*th energy bin $E_{{\rm k},i}$, the normalized energy gradient $\overline{C}(E_{{\rm k},i})$ of the ion count rate n_i is written as

$$\overline{C}(E_{k,i}) = \frac{C(E_{k,i})}{\max(C(E_{k,j}), \ j = 1, \ 2, \ 3, \cdots)},\tag{1}$$

$$C(E_{k,i}) = \left| \frac{n_i - n_{i-1}}{\log E_{k,i} - \log E_{k,i-1}} \right|.$$
(2)

As exemplified in Figure 1, our algorithm can well identify the charging line. Using this algorithm, we have found 4068 extreme charging events from 24 September 2021 to 25 May 2023 (with a data gap related to the latch-up in the LEIS electronics from 09 May 2022 to 28 December 2022). These extreme charging events ($|U_{\rm s}| > 100$ V) are scattered over 133 days.

109

3 Surface Charging Magnitudes, Locations and Timings

Figure 2 shows the distribution of charging events in terms of magnitude, location, and time. As shown in Figure 2a, these charging events could be classified into two groups

Figure 1. Ion differential fluxes j (color-coded) recorded by Ch05 channel of LEIS from 15:00 UT to 21:00 UT on 14 October 2021. The black circles mark the negative surface charging events identified automatically.

according to their occurring magnetic local times (MLT). One group is located at MLT=22.5-112 0.5, whose potentials $|U_s|$ extend to 10⁴ V. These extreme charging events with $|U_s| >$ 113 2×10^3 V gather near the equinoxes (Figure 2b) and could be triggered by the solar eclipses 114 (Grard et al., 1983; Ferguson et al., 2015; Matéo-Vélez et al., 2018). In contrast, the other 115 group has a lower charging potential limit and occurs primarily in the region counter-116 clockwise from MLT=0.5 to MLT=9. This group should be free from the solar eclipse 117 effect and be directly related to the substorm injection. These spatial distribution char-118 acteristics of the eclipse and non-eclipse events are generally consistent with those for 119 the Van Allen Probes (Mauk et al., 2013; Sarno-Smith et al., 2016). The significant MLT 120 asymmetry of non-eclipse events should be a result of electron drift in the magnetosphere. 121 A statistical study (Li et al., 2010) has shown that the MLT asymmetry of electron fluxes 122 decreases with the increase of energies. These non-eclipse charging could be caused pri-123 marily by electrons with energies from keV to tens of keV (Li et al., 2010). 124

125

4 Substorm Dependent Negative Limit of Charging Potentials

The substorm activities are characterized by the SuperMAG electrojet (SME) index (Newell & Gjerloev, 2011). SME index is the SuperMAG generalization of the tra-

Figure 2. Magnitudes, locations, and timings of surface charging. (a) Extreme negative charging event number N_c (color-coded) as a function of potential absolute $|U_s|$ and magnetic local time (MLT). The radial direction represents $|U_s|$ and the azimuthal direction represents MLT. (b) Scatter plot of extreme negative charging events in the MLT-month plane, with the side panels represent the number of events contained within each interval. The color and size of each point are coded according to $|U_s|$. Note that our data has a gap approximately from June to August.

ditional auroral electrojet (AE) index. Different from AE based on the measurements

- of 12 ground-based magnetometer stations, SME is evaluated with more than 100 sta-
- ¹³⁰ tions. Considering the drift and accumulation of substorm-injected electrons, we intro-
- duce SME*, the maximum SME in the preceding 2 hr. Figure 3 presents a scatter plot
- of 4068 charging events in the $|U_s|$ -SME* plane. Near the midnight (MLT=22.5-0.5),
- the charging potentials $|U_s|$ appear to be distributed irregularly. This feature is reason-
- able because the solar eclipse effect is independent of substorm strength. In contrast, away
- from the midnight, the non-eclipse events are related to the substorm-injected electrons.
- The corresponding charging potentials $|U_s|$ have an upper limit $|\overline{U_s}|$ controlled by SME^{*}.
- 137 Specifically, when SME*< 800 nT, the logarithm of potential upper limit $\log |\overline{U_s}|$ increases
- approximately linearly with SME*; when SME*> 800 nT, $|\overline{U_s}|$ visually reaches a sat-
- ¹³⁹ uration level of 1.3×10^3 V. Overall, we can obtain a simple relation between $|\overline{U_s}|$ and ¹⁴⁰ SME*

$$|\overline{U_{\rm s}}| = 10^{c_1 \tanh \frac{{\rm SME}^* - c_2}{c_3} + c_4} {\rm V},$$
 (3)

with the fitting parameters c_1 , c_2 , c_3 , and c_4 and the determination coefficient R^2 listed in Table 1.

Table 1. Fitting parameters and determination coefficients of the $|\overline{U_s}|$ -SME* and \overline{j} -SME* relations defined in Equations (3) and (4).

Name		c_1	c_2 (nT)	c_3 (nT)	c_4	R^2
Charging Po	tential	0.34380	495.03	198.90	2.7223	0.96941
	$1 \ \mathrm{keV}$	0.021213	439.27	266.95	0.81318	0.98872
Electron Flux	$10 \ \mathrm{keV}$	0.75240	-1258.9	686.99	0.0023428	0.94154
	$50 \ \mathrm{keV}$	0.046832	196.18	291.53	0.65568	0.98295

143

144

The $|\overline{U_s}|$ -SME* relation (3) described above can be reasonably explained by the substorm-dependence of energetic electron fluxes. Figure 4 shows the SME*-dependent

- distribution of 1, 10, and 50 keV electron fluxes j measured by the Van Allen Probes (Funsten
- distribution of 1, 10, and 50 keV electron fluxes j measured by the Van Allen Probes (Funst
- et al., 2013; Blake et al., 2013; Spence et al., 2013) from MLT=0 to MLT=9 near the
- geosynchronous orbit during the time range from November 2012 to July 2019. We have
- divided these data into 8 intervals of SME* and then calculate the geometric mean \overline{j} in

Figure 3. Scatter plot of extreme negative surface charging events in the $\text{SME}^* - |U_s|$ plane, with the black color for the eclipse events (MLT=22.5–0.5) and the green color for the non-eclipse events (MLT=18–22.5 and MLT=0.5–9). The green line represents a nonlinear fit to the upper potential limit (green circles) of non-eclipse events.

each interval. It is obvious that, at every energy bin, \overline{j} exhibits a SME*-dependence analogous to $|\overline{U_s}|$. Specifically, there is a monotonic increase of \overline{j} when SME*< 800 nT and a saturation of \overline{j} when SME*> 800 nT. Similar to $|\overline{U_s}|$, \overline{j} can be fitted to a SME*-dependent function

$$\overline{j} = 10^{c_1 \tanh \frac{\text{SME}^* - c_2}{c_3} + c_4} \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{keV}^{-1},$$
(4)

with the fitting parameters and determination coefficients listed in Table 1.

154 5 Summary

This study sets out to develop an empirical relation between substorm strength and spacecraft surface charging potential in the non-eclipse region. For the Chinese satellite in the geosynchronous orbit, we infer the extreme negative charging potentials from the charging lines in the ion energy spectrograms measured by the LEIS instrument. The 4068 charing events with the potential absolutes $|U_s| > 100$ V can be classified into two groups: (1) the events close to the midnight, whose charging potentials have been affected by the solar eclipses near the equinoxes, and (2) the other events away from the midnight,

Figure 4. SME*-dependent electron differential fluxes j at (a) 1, (b) 10, and (c) 50 keV measured by the Van Allen Probes from MLT=0 to MLT=9 near the geosynchronous orbit during the time range from November 2012 to July 2019. These data have been divided into 8 intervals of SME*: 0–120 nT, 120–190 nT, 190–300 nT, 300–430 nT, 430–590 nT, 590–760 nT, 760–1100 nT and 1100–2000 nT. In each SME* interval (gray horizontal line), the geometric mean \overline{j} (gray circle) and the corresponding upper and lower quartiles (gray horizontal line) have been calculated. The black lines represent a nonlinear fit to the obtained geometric means of electron fluxes.

whose charging potential absolutes have an upper limit $|\overline{U}_{s}|$ determined by the maximum 162 SuperMAG electrojet index in the preceding 2 hr SME^{*}. This simple $|\overline{U_s}|$ -SME^{*} rela-163 tion for the non-eclipse events can be reasonably explained by the dependence of 1-50164 keV electron fluxes on SME*. Spacecraft charging depends on the geometry and mate-165 rial properties of the spacecraft, as well as its orbital characteristics. For other inner mag-166 netospheric spacecraft in the non-eclipse region, similar relations between the negative 167 charging limit and the substorm strength may also exist. These empirical relations would 168 be useful for spacecraft engineering and space weather alerts. 169

170 Open Research

LEIS data are available at http://space.ustc.edu.cn/dreams/leis/. Van Allen Probes data are available at https://spdf.gsfc.nasa.gov/pub/data/rbsp/. SME index is available at https://supermag.jhuapl.edu/.

174 Acknowledgments

- ¹⁷⁵ We acknowledge all the collaborators from the Shandong Institute of Space Electronic
- ¹⁷⁶ Technology and China Academy of Space Technology for their help in the fabrication
- and environmental tests of LEIS. We acknowledge ECT teams for the use of Van Allen
- Probes data, and acknowledge the SuperMAG collaborators (http://supermag.jhuapl.edu/info/?page=acknowledg
- ¹⁷⁹ for the use of SME index. This work was supported by the National Natural Science Foun-
- dation of China grants 42188101, 42274198, and 42074222, and the Key Research Pro-
- gram of the Chinese Academy of Sciences grant ZDRE-KT-2021-3.

182 References

- Berry Garrett, H. (1981, November). The Charging of Spacecraft Surfaces (Paper 184 1R1000). Reviews of Geophysics and Space Physics, 19, 577. doi: 10.1029/ 185 RG019i004p00577
- Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R.,
 Dotan, Y., ... Zakrzewski, M. P. (2013, November). The Magnetic Electron
 Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm
- Probes (RBSP) Spacecraft. Space Science Reviews, 179(1-4), 383-421. doi:
 10.1007/s11214-013-9991-8
- Choi, H.-S., Lee, J., Cho, K.-S., Kwak, Y.-S., Cho, I.-H., Park, Y.-D., ... Lee, D.-K.
 (2011, June). Analysis of GEO spacecraft anomalies: Space weather relation ships. Space Weather, 9(6), 06001. doi: 10.1029/2010SW000597
- Czepiela, S. A., McManus, H., & Hastings, D. (2000, September). Charging of Composites in the Space Environment. Journal of Spacecraft and Rockets, 37(5), 556-560. doi: 10.2514/2.3619
- DeForest, S. E. (1972, January). Spacecraft charging at synchronous orbit. Journal
 of Geophysical Research, 77(4), 651. doi: 10.1029/JA077i004p00651
- DeForest, S. E., & McIlwain, C. E. (1971, January). Plasma clouds in the mag netosphere. Journal of Geophysical Research, 76(16), 3587. doi: 10.1029/
 JA076i016p03587
- Ferguson, D. C., Worden, S. P., & Hastings, D. E. (2015, September). The Space
 Weather Threat to Situational Awareness, Communications, and Position ing Systems. *IEEE Transactions on Plasma Science*, 43(9), 3086-3098. doi:
 10.1109/TPS.2015.2412775

206	Forsyth, C., Rae, I. J., Murphy, K. R., Freeman, M. P., Huang, C. L., Spence, H. E.,
207	Watt, C. E. J. (2016, July). What effect do substorms have on the con-
208	tent of the radiation belts? Journal of Geophysical Research (Space Physics),
209	121(7), 6292-6306. doi: 10.1002/2016JA022620
210	Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado,
211	J. R., Harper, R. W., Chen, J. (2013, November). Helium, Oxygen,
212	Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt
213	Storm Probes Mission. Space Science Reviews, $179(1-4)$, 423-484. doi:
214	10.1007/s11214-013-9968-7
215	Ganushkina, N. Y., Swiger, B., Dubyagin, S., Matéo-Vélez, J. C., Liemohn, M. W.,
216	Sicard, A., & Payan, D. (2021, September). Worst-Case Severe Environ-
217	ments for Surface Charging Observed at LANL Satellites as Dependent on
218	Solar Wind and Geomagnetic Conditions. Space Weather, $19(9)$, e02732. doi:
219	10.1029/2021SW002732
220	Grard, R., Knott, K., & Pedersen, A. (1983, March). Spacecraft Charging Effects.
221	Space Science Reviews, 34(3), 289-304. doi: 10.1007/BF00175284
222	Koons, H. C., Mazur, J. E., Selesnick, R. S., Blake, J. B., & Fennell, J. F. (1999,
223	July). The Impact of the Space Environment on Space Systems. Technical
224	Report, AD-A376872; TR-99(1670)-1; SMC-TR-00-10 EL Segundo Technical
225	Operations.
226	Lai, S. T. (2003, December). A critical overview on spacecraft charging mitigation
227	methods. IEEE Transactions on Plasma Science, 31(6), 1118-1124. doi: 10
228	.1109/TPS.2003.820969
229	Lai, S. T., & Della-Rose, D. J. (2001, November). Spacecraft Charging at Geosyn-
230	chronous Altitudes: New Evidence of Existence of Critical Temperature. Jour-
231	nal of Spacecraft and Rockets, 38(6), 922-928. doi: 10.2514/2.3764
232	Lai, S. T., & Tautz, M. (2006b, September). High-level spacecraft charging in eclipse
233	at geosynchronous altitudes: A statistical study. Journal of Geophysical Re-
234	search (Space Physics), $111(A9)$, A09201. doi: $10.1029/2004$ JA010733
235	Lai, S. T., & Tautz, M. F. (2006a, October). Aspects of Spacecraft Charging in Sun-
236	light. IEEE Transactions on Plasma Science, $34(5)$, 2053-2061. doi: 10.1109/
237	TPS.2006.883362
238	Lanzerotti, L. J., Breglia, C., Maurer, D. W., Johnson, G. K., & Maclennan,

239	C. G. (1998, January). Studies of spacecraft charging on a geosynchronous
240	telecommunications satellite. Advances in Space Research, $22(1)$, 79-82. doi:
241	10.1016/S0273-1177(97)01104-6
242	Li, W., Thorne, R. M., Nishimura, Y., Bortnik, J., Angelopoulos, V., McFad-
243	den, J. P., Auster, U. (2010, June). THEMIS analysis of observed
244	equatorial electron distributions responsible for the chorus excitation.
245	Journal of Geophysical Research (Space Physics), 115(1), A00F11. doi:
246	10.1029/2009JA014845
247	Loto'aniu, T. M., Singer, H. J., Rodriguez, J. V., Green, J., Denig, W., Biesecker,
248	D., & Angelopoulos, V. (2015, August). Space weather conditions during
249	the Galaxy 15 spacecraft anomaly. Space Weather, 13(8), 484-502. doi:
250	10.1002/2015SW001239
251	Matéo-Vélez, J. C., Sicard, A., Payan, D., Ganushkina, N., Meredith, N. P., & Sil-
252	lanpäa, I. (2018, January). Spacecraft surface charging induced by severe
253	environments at geosynchronous orbit. Space Weather, $16(1)$, 89-106. doi:
254	10.1002/2017SW001689
255	Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy,
256	A. (2013, November). Science Objectives and Rationale for the Radiation
257	Belt Storm Probes Mission. Space Science Reviews, 179(1-4), 3-27. doi:
258	10.1007/s11214-012-9908-y
259	Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., & Anderson, R. R.
260	(2004, June). Substorm dependence of plasma spheric hiss. Journal of Geophys-
261	ical Research (Space Physics), $109(A6)$, A06209. doi: $10.1029/2004$ JA010387
262	Moore, T. E., Arnoldy, R. L., Feynman, J., & Hardy, D. A. (1981, August). Prop-
263	agating substorn injection fronts. Journal of Geophysical Research, $86(A8)$,
264	6713-6726. doi: $10.1029/JA086iA08p06713$
265	Mullen, E. G., Gussenhoven, M. S., & Garrett, H. B. (1981, July). A worst case
266	spacecraft environment as observed by SCATHA on 24 April 1979.
267	Mullen, E. G., Gussenhoven, M. S., Hardy, D. A., Aggson, T. A., Ledley, B. G.,
268	& Whipple, E. (1986, February). SCATHA survey of high-level spacecraft
269	charging in sunlight. Journal of Geophysical Research, $91(A2)$, 1474-1490. doi:
270	10.1029/JA091iA02p01474
271	Newell, P. T., & Gjerloev, J. W. (2011, December). Substorm and magnetosphere

-12-

272	characteristic scales inferred from the SuperMAG auroral electrojet indices.
273	Journal of Geophysical Research (Space Physics), 116 (A12), A12232. doi:
274	10.1029/2011JA016936
275	Olsen, R. C. (1983, January). A threshold effect for spacecraft charging. Jour-
276	nal of Geophysical Research Supplement, 88(A1), 493-499. doi: 10.1029/
277	$\rm JA088iA01p00493$
278	Reagan, J. B., Meyerott, R. E., Gaines, E. E., Nightingale, R. W., Filbert, P. C., &
279	Imhof, W. L. (1983). Space charging currents and their effects on spacecraft
280	systems. IEEE Transactions on Electrical Insulation, EI-18(3), 354-365. Re-
281	trieved from https://api.semanticscholar.org/CorpusID:46669343 doi:
282	10.1109/TEI.1983.298625
283	Rosen, A. (1976, December). Spacecraft Charging by Magnetospheric Plasmas.
284	IEEE Transactions on Nuclear Science, 23(6), 1762-1768. doi: 10.1109/TNS
285	.1976.4328575
286	Sarno-Smith, L. K., Larsen, B. A., Skoug, R. M., Liemohn, M. W., Breneman, A.,
287	Wygant, J. R., & Thomsen, M. F. (2016, February). Spacecraft surface charg-
288	ing within geosynchronous orbit observed by the Van Allen Probes. Space
289	Weather, $14(2)$, 151-164. doi: 10.1002/2015SW001345
290	Shan, X., Miao, B., Cao, Z., Sun, Z., Li, Y., Liu, K., Wang, Y. (2023a, May).
291	First results of the low energy ion spectrometer onboard a Chinese geosyn-
292	chronous satellite. Science in China E: Technological Sciences, $66(5)$, 1378-
293	1384. doi: 10.1007/s11431-022-2143-6
294	Shan, X., Miao, B., Cao, Z., Sun, Z., Li, Y., Liu, K., \dots Wang, Y. (2023b, Febru-
295	ary). A low-energy ion spectrometer with large field of view and wide energy
296	range onboard a Chinese GEO satellite. Open Astronomy, $32(1)$, 210. doi: 10
297	.1515/astro-2022-0210
298	Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S.,
299	Thorne, R. M. (2013, November). Science Goals and Overview of the
300	Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and
301	Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission. $Space$
302	Science Reviews, 179(1-4), 311-336. doi: 10.1007/s11214-013-0007-5