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Abstract

Initialized climate model simulations have proven skillful for near-term predictability of the key physical climate variables.

By comparison, predictions of biogeochemical fields like ocean carbon flux, are still emerging. Initial studies indicate skillful

predictions are possible for lead-times up to six years at global scale for some CMIP6 models. However, unlike core physical

variables, biogeochemical variables are not directly initialized in existing decadal preciction systems, and extensive empirical

parametrization of ocean-biogeochemistry in Earth System Models introduces a significant source of uncertainty. Here, we

propose a new approach for improving the skill of decadal ocean carbon flux predictions using observationally-constrained

statistical models, as alternatives to the ocean-biogeochemistry models. We use observations to train multi-linear and neural-

network models to predict the ocean carbon flux. To account for observational uncertainties, we train using six different

observational estimates of the flux. We then apply these trained statistical models using input predictors from the Canadian

Earth System Model (CanESM5) decadal prediction system to produce new decadal predictions. Our hybrid GCM-statistical

approach significantly improves prediction skill, relative to the raw CanESM5 hindcast predictions over 1990-2019. Our hybrid-

model skill is also larger than that obtained by any available CMIP6 model. Using bias-corrected CanESM5 predictors, we

make forecasts for ocean carbon flux over 2020-2029. Both statistical models predict increases in the ocean carbon flux larger

than the changes predicted from CanESM5 forecasts. Our work highlights the ability to improve decadal ocean carbon flux

predictions by using observationally-trained statistical models together with robust input predictors from GCM-based decadal

predictions.
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Key Points:7

• We use observationally trained statistical models to obtain decadal predictions of8

ocean carbon flux from initialized GCM-based predictors.9
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Abstract14

Initialized climate model simulations have proven skillful for near-term predictability of15

the key physical climate variables. By comparison, predictions of biogeochemical fields16

like ocean carbon flux, are still emerging. Initial studies indicate skillful predictions are17

possible for lead-times up to six years at global scale for some CMIP6 models. However,18

unlike core physical variables, biogeochemical variables are not directly initialized in ex-19

isting decadal preciction systems, and extensive empirical parametrization of ocean-biogeochemistry20

in Earth System Models introduces a significant source of uncertainty. Here we propose21

a new approach for improving the skill of decadal ocean carbon flux predictions using22

observationally-constrained statistical models, as alternatives to the ocean-biogeochemistry23

models. We use observations to train multi-linear and neural-network models to predict24

the ocean carbon flux. To account for observational uncertainties, we train using six dif-25

ferent observational estimates of the flux. We then apply these trained statistical mod-26

els using input predictors from the Canadian Earth System Model (CanESM5) decadal27

prediction system to produce new decadal predictions. Our hybrid GCM-statistical ap-28

proach significantly improves prediction skill, relative to the raw CanESM5 hindcast pre-29

dictions over 1990-2019. Our hybrid-model skill is also larger than that obtained by any30

available CMIP6 model. Using bias-corrected CanESM5 predictors, we make forecasts31

for ocean carbon flux over 2020-2029. Both statistical models predict increases in the32

ocean carbon flux larger than the changes predicted from CanESM5 forecasts. Our work33

highlights the ability to improve decadal ocean carbon flux predictions by using observationally-34

trained statistical models together with robust input predictors from GCM-based decadal35

predictions.36

Plain Language Summary37

Using initialized Earth system model simulations for near term predictions of ocean38

biogeochemichal variables is an emerging field of research. In particular, near term pre-39

dictability of ocean carbon flux is central to efforts for planing and limiting climate change.40

Unlike physical variables whose predictability have been established, these simulations41

are only indirectly initialized and rely on heavily parameterized ocean biogeochemistry42

models. Here, we propose a new approach to acquire decadal predictions of air-sea car-43

bon flux as alternatives to those based on ocean biogeochemistry models. Our method-44

ology combines the explanatory power of statistical models that have widely been used45

for gap filling purposes for informing full coverage ocean carbon flux data products, and46

well established predictability skill of key physical predictors. We provide hybrid GCM-47

statistical ocean carbon flux hindcasts using predictors from CanESM5 and doing so, show48

that we can beat all CMIP6 decadal prediction system hindcast skills. We use our mod-49

els to provide near future hybrid model forecast for ocean carbon flux. Our results shows50

the potential for improving predictability skill of ocean carbon sink by combining GCMs51

and observationally trained statistical models.52

1 Introduction53

The ocean accounts for sequestering nearly 25% percent of human CO2 emissions54

annually (Hauck et al., 2020; Friedlingstein et al., 2022, 2020), playing a key role in mit-55

igating climate change. Future changes in the ocean carbon flux are of direct relevance56

to climate change science (Friedlingstein et al., 2022) and policy making related to cli-57

mate and emissions targets. Ocean carbon uptake has increased substantially over the58

past several decades in response to human induced increases in atmospheric CO2 con-59

centrations (Gooya et al., 2023; Rodgers et al., 2020; Lovenduski et al., 2016; McKin-60

ley et al., 2016; Wang et al., 2016). However, there is also substantial internal variabil-61

ity in the magnitude of the flux on seasonal to decadal time scales both regionally and62

globally (Landschützer et al., 2016; McKinley et al., 2017; Gruber et al., 2019; McKin-63
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ley et al., 2020). Decadal scale variability of ocean carbon flux is believed to be driven64

largely by variability in external forcing (McKinley et al., 2020), and specifically, the de-65

viations of atmospheric growth of CO2 from the long term trend but also changes in cir-66

culation (DeVries et al., 2019; Keppler & Landschützer, 2019). Higher frequency inter-67

annual variability is largely attributable to modes of climate variability such as ENSO68

on global scale and other modes of high latitude variability on regional scales (McKinley69

et al., 2017). Predicting future variations in the ocean carbon sink on inter-annual to decadal70

time scales in the face of these mulitple drivers is therefore challenging.71

Decadal predictions, such as those made under the Decadal Climate Prediction Project72

(DCCP) are produced by Global Climate Models (GCMs) that are that are initialized73

with observations and also driven by external forcing (Kirtman et al., 2013). Predictive74

skill of key physical climate variables from such simulations have been well established75

in the literature (Boer et al., 2016). However, near term predictability of the ocean car-76

bon flux and other biogeochemical variables have only become possible with the recent77

advent of Earth System Models (ESMs) (Meehl et al., 2021) and are still at their infancy.78

Previous studies have shown potential predictability of the ocean carbon flux for up to79

7 years (Li et al., 2019; Séférian et al., 2018) and actual skill versus observation based80

estimates for 2-6 years based on different ESMs (Li et al., 2019; Ilyina et al., 2021). How-81

ever, ESM simulations are subject to biases, drifts (Kharin et al., 2012) and exhibit a82

wide range of prediction skill globally and regionally (Ilyina et al., 2021). Predictions83

of ocean carbon flux using ESMs are especially challenging given that ocean biogeochem-84

ical variables are not directly initialized in current decadal prediction systems (Sospedra-85

Alfonso et al., 2021), and that the ocean biogeochmical models themselves are heavily86

parameterized using empirical parameterizations (Christian et al., 2022).87

Here we propose using observationally-trained statistical models forced by predic-88

tors from GCM/ESM-based decadal predictions, as an alternative to using the raw pre-89

dictions of ocean carbon flux obtained from the ESMs ocean biogeochemistry models.90

It is well established that the surface ocean partial pressure of CO2, and by extension91

the surface carbon flux, is closely related to physical predictors, such as sea-surface tem-92

perature and salinity, atmospheric CO2 concentration and wind speed. These empiri-93

cal relationships are widely exploited in the observational community to infill sparse di-94

rect observations of the ocean carbonate system (e.g., Surface Ocean CO2 Atlas, SOCAT),95

using indirect but more widely sampled physical variables (Landschützer et al., 2016).96

It is also common to post-process raw GCM results to produce more skillful predictions,97

for example through bias correction (Kharin et al., 2012). Our proposal is a logical ex-98

tension of these two established practises that combines the explanatory power that sta-99

tistical models learn from the relationships between observational predictors, and the es-100

tablished prediction skill of the process based physical models. Our principal goal is to101

establish a methodology that allows us to improve near-term predictions of the ocean102

carbon sink over and above the skill obtained from raw ESM predictions.103

We begin by introducing the methodology and our statistical models of choice in104

Section 2. In section 3 we evaluate observational uncertainties and the performance of105

our statistical models when forced by observation based predictors. In section 4, we ap-106

ply the observationally trained statistical models to physical predictors from CanESM5107

simulations, and evaluate the skill of this hybrid approach relative to the raw CanESM5108

predictions over the hindcast period of 1990 to 2019. We go on to provide forecasts for109

ocean carbon flux over the decade 2019 to 2029 in section 5. We conclude by reflecting110

on how our approach could be improved and expanded on in future work.111
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2 Materials and Methods112

2.1 Surface CO2 flux data113

For observations of the atmosphere-ocean CO2 flux we use the SeaFlux Ocean car-114

bon sink ensemble product (Gregor & Fay, 2021). SeaFlux contains an ensemble of flux115

estimates, based on six global observation-based mapping products for surface ocean par-116

tial pressure of CO2 (pCO2), and wind speeds from ERA5. The six products include three117

neural-network-derived products (CMEMS-FFNN, MPI-SOMFFN, NIES-FNN), a mixed118

layer scheme product (JENA-MLS), a multiple linear regression (JMA-MLR), and a ma-119

chine learning ensemble (CSIR-ML6) (Fay et al., 2021). We also use the mean across the120

products, which we refer to as SF-MEAN. Given the sparseness of actual pCO2 measure-121

ments, using the ensemble of products allows us to quantify uncertainties associated with122

the data infilling and mapping techniques, and avoids overfitting to a single product.123

All six SeaFlux products show strong agreement in the long term (trended) changes124

in ocean carbon flux (not shown here). Comparing linearly detrended versions of the SeaFlux125

products shows cross correlation coefficients between them ranging from 0.47 to 0.95 (Fig.126

S1). The MPI-SOM-FFN and JENA-MLS are least correlated with others. The lower127

correlation skills for the two show that there are variabilities specific to these products128

that are not common to other datasets, and known biases linked to data sparsity (Gloege129

et al., 2021; Hauck et al., 2023). The averaged SF-MEAN contains signals common to130

all of the products, and we use this as the most reliable estimate moving forward.131

2.2 Statistical models and observed predictors132

For each individual SeaFlux input dataset and SF-MEAN, we train a multi-linear133

regression model and a neural network (NN) model to predict the surface atmosphere134

ocean carbon flux, using three observation-based physical predictors - sea surface tem-135

perature (SST), sea surface salinity (SSS), surface wind speed (sfcWind), one biologi-136

cal predictor -surface chlorophyll concentrations (CHL), as well as atmospheric CO2 con-137

centrations (xCO2) (table S1). These are mainly physical predictors for which full cov-138

erage observational products are available and are believed to drive the variability in ocean139

carbon flux (Landschützer et al., 2016). Linear models are trained for each grid cell on140

a standard one degree grid, while the NN models are trained over 16 biomes (Landschützer141

et al., 2016), as explained further in SI (Sect. S1.1). By combining these biomes, we can142

produce spatially resolved maps of the surface CO2 flux, given the set of five input pre-143

dictors at any point. In total that gives us 14 sets of models (7 set of linear models, and144

7 NN models, one for each SeaFlux target predictand) that are later used to make hind-145

casts and forecasts using modelled predictors from CanESM5. We have chosen to illus-146

trate our approach using the linear and NN models, which have different structures and147

levels of complexity, as illustrative examples. However, alternative models and predic-148

tor variables could be used.149

2.3 Decadal predictions using GCM base predictors150

To make predictions the five predictors from Table S1 are obtained from CanESM5151

simulations (Swart et al., 2019; Sospedra-Alfonso et al., 2021). We use a range of sim-152

ulations, including standard free running CMIP6 historical simulations (Eyring et al.,153

2016), as well as assimilation and hindcast and forecast runs (Boer et al., 2016). In as-154

similation runs, CanESM5 is nudged towards observations for key physical variables (Sospedra-155

Alfonso et al., 2021). For historical, hindcast and forecast simulations, the five predic-156

tors are bias corrected to the same observational predictors used for training the mod-157

els following the approach of (Kharin et al., 2012). This bias correction adjusts the mean158

and trend of the predictors to be consistent with observations. These CanESM5 predic-159

tors are fed to the each of the 14 statistical model sets mentioned above to produce hy-160
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Figure 1. Time series of the global ocean CO2 flux anomalies for the (a) NN model (left

panel) and (b) linear model (right panel) reconstruction using obervational predictors. The

black lines shows reconstruction using models that are trained on mean of SeaFlux products

(SF-MEAN; solid) as well the mean product itself (dashed). The shadings represent the range

estimates from the six different SeaFlux products (grey) and from NN and linear models recon-

structions (green and orange). The numbers in the legends are correlation coefficients between

the solid black lines and dashed black lines (first number) and root mean square error of the two

time series (second number). (c) and (d) are same as (a) and (b) but are linearly detrended.

brid predictions of surface ocean CO2 flux. For hindcasts and forecasts, predictions are161

made for lead years 1 to 10. To test significance of prediction skill differences, we use a162

1000 iteration bootstrap to test of (Goddard et al., 2013).163

3 Evaluation of statistical models164

In this section, we consider the performance of the statistical models trained on the165

SeaFlux ensemble and using observed predictors, for predicting the global mean surface166

carbon flux as defined by SF-MEAN (Fig. 1). When trained on SF-MEAN, both the NN167

and linear models can accurately reconstruct the changes of the SF-MEAN (r> 0.9),168

indicating that the statistical models are able to capture the majority of the variance169

in the global mean surface flux. The NN model shows higher skill in reconstructing SF-170

MEAN relative to the linear model, reflected in higher correlations and lower root mean171

square error (Fig. 1). Similarly, both linear and NN models are able to successfully re-172

produce individual SeaFlux products on which they are trained (Fig. S2), with the NN173

models again achieving tighter fits than the linear models. The orange and green shad-174

ing in Fig. 1 represents the spread across models trained on individual SeaFlux prod-175

ucts. These models are still able to successfully reproduce SF-MEAN, which gives an in-176

dication of their generalizability. The smaller spread for the linear models (Fig. 1b, or-177

ange shading), suggests they may be more generalizable (i.e. successful in predicting data178

they were not trained on) than the NN models. We further explore the idea of gener-179

alizability when using model-derived predictors in the following section.180
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4 Applying statistical models to physical predictors from the ESM181

4.1 Assimilation run182

The CanESM5 assimilation run is relaxed towards the observed physical state of183

the system, which forces physical variables, including our input predictors, to be close184

to observations. However, the detrended CO2 flux from the CanESM5 biogeochemical185

component is not in good agreement with observations (Fig. 2 bottom row). We have186

identified issue in the model derived CO2 flux, including seasonality that is out of phase187

with observations (not shown here), and it appears that the data ingestion in the assim-188

ilation run degrades the biogeochemical models performance. Indeed, previous results189

have shown that atmosphere-ocean CO2 flux predictability is low in CanESM5, and par-190

ticularly poor in the early lead years immediately following the assimilation run (Ilyina191

et al., 2021). A major goal of our effort is to see whether by replacing the CanESM5 bio-192

geochemical model derived flux with one computed based on the statistical models leads193

to improvement.194

We use the linear and NN models previously trained using observed predictors, and195

for each of the six individual SeaFlux products and SF-MEAN as predictands (for a to-196

tal of 14 model sets). We then extract the five input predictors from the (ensemble mean197

of 10) CanESM5 DCPP assimilation runs, apply the statistical models on these GCM-198

based predictors, and compare their skill against the original SeaFlux observational prod-199

ucts (Fig 2).200

The statistical models forced by CanESM5 assimilation predictors obtain similar201

skills in reproducing the individual SeaFlux products to the skills of the reconstructions202

that used predictors from observations (compare Fig. 2 and supplementary Fig. S2). This203

is a somewhat expected result given that assimilation runs assimilate physical predic-204

tors and are very close to the observations, but nonetheless it is first step in applying205

the models on data on which they were not directly trained. For both the linear and NN206

statistical models, the skill is in all cases is significantly higher than than skill of the raw207

CanESM5 CO2 flux. These results indicate that statistical models trained on observa-208

tions can usefully be applied to GCM-derived predictors. By using this approach we are209

able to avoid biases in the CanESM5 biogeochemical model by combining the observa-210

tionally constrained statistical models with the directly initialized physical predictors211

from CanESM.212

We compute the cross-correlation matrix for statistical models trained on one SeaFlux213

product in reproducing all the other five product and SF-MEAN (Fig. 2). This allows214

us to assess the impacts of observational uncertainty, and the potential consequences of215

overfitting statistical models to a single observational product. As expected, the statis-216

tical models are most skillful in reproducing the product on which they were trained (di-217

agonal in Fig. 2). Correlation in reproducing other products can be lower than 0.5. The218

extent to which a model trained on one observational product can be generalized to oth-219

ers is measured with the mean of scores versus all other observational data products (mean220

of rows excluding the diagonal values as indicated in Fig. 2 EXT column). Overall, the221

linear models have larger extendibility scores, while the NN models produce better fits222

for the products on which they were trained. Our results illustrate that care should be223

taken in tightly fitting statistical models to a single observation based CO2 flux prod-224

uct, as uncertainties exist. Moving forward, we will use statistical model trained on the225

SF-MEAN product as the best estimate. Based on the encouraging success so far, in the226

next section we will apply our approach to decadal predictions.227

4.2 Prediction skill of CO2 flux over the hindcast period228

Hindcasts are ESM simulations that use the observationally constrained assimila-229

tion simulation as initial conditions, and which are then run freely under standard CMIP6230
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Figure 2. (a) Correlation matrix for the detrended global ocean carbon flux anomaly. The y

axis indicate the product on which the NN model is trained and the x axis shows the data prod-

ucts against which the skill is evaluated. The EXT column measures the mean of skills excluding

the diagonal element for each row. (b) Same as (a) but for the Linear model.

external forcings for ten years (Boer et al., 2016). Generally, as lead years increase (i.e.231

number of year since initialization) the hindcasts simulations lose memory of initializa-232

ton and drift towards the preferred state of the model (historical simulations). However,233

raw CanESM5 ocean carbon flux DCPP scores show a decrease in the skill after initial-234

ization in hindcast compared to the historical free runs (Ilyina et al., 2021). This is not235

the expected result of initialization and indicates possible discrepancies with interactions236

between initialization and the CanESM5 biogeochemical decadal prediction system (ini-237

tialization ”shocks”).238

As an alternative to the biogeochmical model flux, we apply our SF-MEAN trained239

statistical models on predictors from the CanESM5 hindcast simulations over the period240

1990 to 2019. The hindcast skill from both the linear and NN model when trained and241

evaluated against SF-MEAN are significantly larger than raw CanESM5 skills, with NN242

yielding slightly better scores (Fig. 3). Both statistical models show increase in skill af-243

ter initialization, as expected and seen in physical predictors, and a gradual drop with244

lead time. As an even more stringent test, we compare the skill of the statistical mod-245

els driven by CanESM5 predictors against the skill from all other available CMIP6 mod-246

els that participated in DCPP. The NN model skill is higher than that shown by any raw247

CMIP6 model, when evaluated against SF-MEAN (Fig. S3) over 1990-2017 that is the248

period common to all models. Linear model score are higher than all CMIP6 models on249

all lead years except lead year 3 where CESM1 (Danabasoglu, 2019) yields slightly larger250

score (Fig. S3). These results clearly show the potential of our approach for improving251

the decadal CO2 flux prediction skills.252

To this point we have considered the absolute skill in predicting global mean sur-253

face CO2 flux. An important concept in decadal prediction is the relative contribution254

to the absolute skill that is provided by the initialization. To asses whether initializa-255

tion has added additional value to the predictions, the hindcast simulation skill can be256

compared to that found in standard, non-initialized CMIP6 historical simulations (Fig.257

3). For the linear statistical models, hindcast skills are close to the corresponding his-258

torical skill, and do not show statistically significant improvement. That is, the linear259

model scores do not show significant added skill due to initialization. For the NN model,260

the hindcast skills are significantly larger than the historical skills at least for the first261

three years, based on a bootstrapping test (Fig. 3). This is the range where tempera-262
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Figure 3. (a) Detrended global ocean carbon flux skills versus SF-MEAN for raw CanESM5

model (blue dots) and NN model trained on the SF-MEAN using bias corrected histori-

cal/hindcast predictors from CanESM5 (black dots). The scores that are statistically better

than the raw CanESM5 score based on 1000 iteration bootstrap tests are shown with black boxes

and the lead years where scores are significantly better than the corresponding historical score

are filled. The grey marks in the background show scores from models trained on individual

SeaFlux products versus the SF-MEAN. (b) Same as (a) but for the linear model.

ture variations largely control short term predictability of ocean carbon sink (Li et al.,263

2019). The NN hindcast scores are not significantly better than historical for lead years264

4 to 6, but show re-emergence of significance afterward. NN models consistently show265

better fits to the dataset used for training them (Fig S2), but are also more subject to266

overfitting than the linear models (Fig. 2). While more work is needed to understand267

difference in model structure, our results show that initialization does add value to pre-268

dictions made with the NN models (see also Fig. S4).269

Both the hindcasts and historical run used observed atmospheric CO2 concentra-270

tions (as do our statistical models, as an input predictor). We expect that skills estimated271

from the hindcast are higher than those achievable in true forecasts, because in true fore-272

casts the atmospheric CO2 concentration will not be known. It is not just the background273

rate of increase that is relevant, but deviations in the growth rate of atmospheric CO2274

are also known to be a key driver of decadal scale variability in the ocean CO2 sink (McKinley275

et al., 2020). This is an issue common to any DCPP-style hindcast. Regardless, the im-276

proved skill that the statistical models driven by CanESM5 based predictors show over277

and above CanESM5 or other raw CMIP6 DCPP model hindcast skills encourages us278

to apply our methods to making future predictions in the following section. First how-279

ever, we turn to considering the spatial pattern of skill over the hindcast period.280

We compare spatially resolved temporal correlations between SF-MEAN, the CanESM5281

raw biogeochemical model, and the two statistical models for the historical, assimilation282

and lead years 1 to 10 of the hindcast experiments. Both the NN and linear models show283

large correlations for the detrended flux over the majority of global ocean, when driven284

by predictors from the CanESM5 assimilation run (Fig. 4). Compared to the raw flux285

from the CanESM5 assimilation run, the statistical models significantly improve skill over286

more than 55% of the global ocean (56% for NN and 65% for linear). The linear model287

shows better average grid scale correlation compared to the NN model for assimilation288

and lead year one hindcast. This is most likely due to the high grid scale training res-289

olution of the linear model as opposed to biome scale resolution of the NN model (see290
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Figure 4. Grid wise correlation for the anomalous detrended ocean carbon flux versus SF-

using assimilation, historical as well as lead years 1, 2, 5 10 predictors from CanESM5. The first

column shows raw CanESM5 model skills, while the second and third columns show the NN and

linear model based simulations. Hatches show regions where there is an statistically significant

improvement in skill using a 1000 iteration bootstrap test compared to the raw CanESM5 results.

The numbers on top of each panel are global mean of correlations.
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supplements). Notably, the linear models has improved skill regionally, while the skill291

of the globally integrated sink is better from the NN model. On longer hindcasts lead292

yaers, the mean grid scale skill for the linear models drop faster than NN model and NN293

model beats the linear model with small offsets and more percentage of grid cell (not shown294

here) with significantly improved skills.295

The regions that show significant improvements relative to raw CanESM5 model296

include but are not limited to the highly active regions for the sink (Gooya et al., 2023)297

which makes them important for both the flux magnitude and uncertainty. These are298

regions where the largest sink is concentrated in smallest ocean surface area and where299

internal and model uncertainty tend to be largest. Specifically, significant improvements300

over the Southern Ocean is the common feature to all simulations. The Southern Ocean301

is of key importance for ocean carbon sink (Gruber et al., 2019) where the models dis-302

agree most (Gooya et al., 2023; Frölicher et al., 2015). In the hindcast simulations, skills303

decrease with lead year, approaching the corresponding historical simulation skill on longer304

lead times ( >7), as expected. For all lead years there is significant improvement beyond305

the raw CanESM5 results regionally over more than 30% of the global ocean (hatched306

areas in Fig. 4). Our results offer a potential pathway to better quantification of ocean307

carbon sink predictions both regionally and globally.308

5 Hybrid forecast of the 2020-2029 ocean carbon sink309

The ultimate purpose of decadal prediction systems is to provide forecasts of the310

short term future evolution of the climate system, including the ocean carbon flux. In311

this section, we use the statistical models trained on the SF-MEAN, and evaluated over312

the hindcast period, to make predictions for the near term evolution of ocean carbon flux.313

We extract ensemble means of our five predictors from CanESM5 DCPP forecasts for314

the period 2019-2029, and bias correct them according to lead time following (Kharin315

et al., 2012). We apply the statistical models on these predictors, and include the atmo-316

spheric concentration of CO2 from SSP245 (Eyring et al., 2016), which is the same pro-317

cedure applied to the hindcasts in the previous section.318

Both NN model and linear model based forecasts predict that ocean carbon sink319

is going to grow with a faster than linear rate over the next decade under the SSP245320

scenario (Fig. 5). The linear model predicts slower rate of increase until 2022 compared321

to the NN model, and an accelerated increase after to nearly 1.29 pgC yr−1 relative to322

2019 by 2029. The rate of change in the linear model is consistent with the rate of change323

of the atmospheric CO2 concentrations under the SSP245 scenario. The NN model pre-324

dicts a more steady yet faster than linear increase of approximately 1.09 pgC yr−1 in global325

ocean carbon sink relative to 2019. Both models are in close agreement regarding decadal326

scale changes in the flux and predict larger changes compared to the bias corrected flux327

from the CanESM5 biogeochemical component. The fact that the results show are largely328

consistent between the two statistical models over 1990-2019 as well as the future fore-329

cast globally and regionally (Fig. S5), increases our confidence in the results. Based on330

the skill demonstrated in the hindcasts, we assert that our hybrid statistical-GCM pre-331

dictions represent a more reliable estimate of future changes in the ocean carbon flux than332

the raw model predictions.333

6 Discussion and conclusions334

We have proposed a methodology to improve the decadal predictability of the ocean335

carbon flux by using statistical models as alternatives to the ocean biogeochemistry com-336

ponents of decadal prediction systems. Through their training, the statistical models en-337

code the relationships between physical predictors and the surface carbon flux found in338

observations. Predictions are made by applying these observationally trained statisti-339

cal models on (largely) physical predictors obtained from the GCM-based decadal pre-340
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Figure 5. Global ocean carbon flux decadal forecast based on bias corrected CanESM5

(olive), NN model (green), and linear model (blue) trained on SF-MEAN. The dashed black

line shows SF-MEAN over the period of 1990-2019. The Forecasts show assimilation runs over

this period and forecast initialized in 2019 after. The subplot shows anomalies relative to the

2019 ocean carbon flux on each product and shows the predicted changes until 2029 from differ-

ent estimates. All global timeseries are scaled based on the spatial coverage of the SF-MEAN to

account for differences in coverage.

diction systems. Unlike biogeochemical variables, the physical variables are directly ini-341

tialized in current prediction systems, have a more established track record of skill, and342

are based on less heavily parameterized processes than ocean biogeochemistry. In prin-343

cipal, our approach can be thought of as an extension of traditional bias correction (Kharin344

et al., 2012). Statistical bias correction schemes using linear/NN algorithms have pre-345

viously been used for physical parameters in decadal prediction system (citation). Un-346

like those, our approach does not use the same variable that is being bias corrected. In-347

stead, it relies primarily on key physical predictors whose predictability have been well348

evaluated.349

We have demonstrated that in hindcasts, our hybrid statistical-GCM system im-350

proves prediction skill for the surface ocean carbon flux relative to the ocean biogeochem-351

ical model, both in the global mean, and regionally over broad areas of the ocean. In-352

deed, for the global mean flux, our hybrid skills based on CanESM5 predictors beat all353

available CMIP6 DCPP models. Globally, the NN model can retain the memory of ini-354

tialization of the predictors at least up to lead year three after initialization.355

We have demonstrated our approach using two examples of observationally con-356

strained statistical models of different complexities; a linear and a neural network model.357

The two statistical models used here have different structures and use different combi-358

nations of predictors. Both statistical models are able to reconstruct observed CO2 fluxes359

when forced by observed predictors, and both perform well in hindcast evaluations driven360

by CanESM5-based predictoris (i.e. beating the skill of the raw CanESM5 flux). In gen-361

eral, the NN model was able to achieve higher correlations when trained and evaluated362

against a given surface flux product, but the linear model showed more ”generalizabil-363

ity” across products. In addition, while the linear model was quite robust to changes in364

structure (predictors), the NN model was quite sensitive to changes in the number of pre-365

dictors or neurons used. This shows the need for carefully adjusting such complex mod-366

els and validation against other such models to avoid possible overfitting and to make367

reliable estimates.368
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We emphasize that the two statistical models we have used are just examples of369

our more general approach of applying observationally trained statistical models to GCM370

predictors. Our method is not limited to the choice of ESM, observation based product,371

or to the choice of the alternative model. Future work should test the ability of differ-372

ent types of statistical models to improve upon our results, and could draw upon the large373

body of work in developing empirical relationships for the purposes of infilling sparse pCO2374

observations (Fay et al., 2021). Currently, CanESM5 is the only model with sufficient375

number of simulations publicly available for 10-year hindcasts and forecast for all of the376

required predictors. More robust estimates of the future changes of ocean carbon sink377

would be possible with multimodel averages of predictors, since such multi-model pre-378

dictions are generally more skillful (Tebaldi & Knutti, 2007). We also note that our ap-379

proach is not limited to surface ocean carbon flux, but could also be applied to other bio-380

geochemical predictors, or even less certain physical variables that could benefit from381

exploiting empirical relationships based on well predicted quantities such as SST.382

Based on the demonstrated skill of our hybrid approach in hindcasts, we have made383

forecasts of the near term evolution of ocean carbon flux using both the linear and NN384

models under ssp245 scenario. Both hybrid statistical models show consistent changes385

over the period of 2019-2029 with faster than linear increase in the sink that are larger386

than bias corrected CanESM5 forecasts. This information about predicted future changes387

in the ocean carbon sink might be useful to climate science and policy effort, for exam-388

ple the assessment of the global carbon budget (Friedlingstein et al., 2022). Moving for-389

ward we encourage further research into improving decadal predictions by optimally ex-390

ploiting all available observational information, and data science techniques, in conjunc-391

tion with traditional GCM based predictions.392
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Séférian, R. (2019). Decadal trends in the ocean carbon sink. Proceed-422

ings of the National Academy of Sciences, 116 (24), 11646-11651. Retrieved423

from https://www.pnas.org/doi/abs/10.1073/pnas.1900371116 doi:424

10.1073/pnas.1900371116425

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &426

Taylor, K. E. (2016, May). Overview of the Coupled Model Intercomparison427

Project Phase 6 (CMIP6) experimental design and organization. Geoscientific428

Model Development , 9 (5), 1937–1958. Retrieved 2022-05-25, from https://429

gmd.copernicus.org/articles/9/1937/2016/gmd-9-1937-2016.html (Pub-430

lisher: Copernicus GmbH) doi: 10.5194/gmd-9-1937-2016431

Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M.,432

. . . Zeng, J. (2021). Seaflux: harmonization of air–sea co2 fluxes from sur-433

face pco2 data products using a standardized approach. Earth System Science434

Data, 13 (10), 4693–4710. Retrieved from https://essd.copernicus.org/435

articles/13/4693/2021/ doi: 10.5194/essd-13-4693-2021436

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck,437

J., . . . Zheng, B. (2022, November). Global Carbon Budget 2022. Earth438

System Science Data, 14 (11), 4811–4900. Retrieved 2023-04-19, from439

https://essd.copernicus.org/articles/14/4811/2022/ (Publisher:440

Copernicus GmbH) doi: 10.5194/essd-14-4811-2022441

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen,442

A., . . . Zaehle, S. (2020). Global carbon budget 2020. Earth System Science443

Data, 12 (4), 3269–3340. Retrieved from https://essd.copernicus.org/444

articles/12/3269/2020/ doi: 10.5194/essd-12-3269-2020445
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Abstract14

Initialized climate model simulations have proven skillful for near-term predictability of15

the key physical climate variables. By comparison, predictions of biogeochemical fields16

like ocean carbon flux, are still emerging. Initial studies indicate skillful predictions are17

possible for lead-times up to six years at global scale for some CMIP6 models. However,18

unlike core physical variables, biogeochemical variables are not directly initialized in ex-19

isting decadal preciction systems, and extensive empirical parametrization of ocean-biogeochemistry20

in Earth System Models introduces a significant source of uncertainty. Here we propose21

a new approach for improving the skill of decadal ocean carbon flux predictions using22

observationally-constrained statistical models, as alternatives to the ocean-biogeochemistry23

models. We use observations to train multi-linear and neural-network models to predict24

the ocean carbon flux. To account for observational uncertainties, we train using six dif-25

ferent observational estimates of the flux. We then apply these trained statistical mod-26

els using input predictors from the Canadian Earth System Model (CanESM5) decadal27

prediction system to produce new decadal predictions. Our hybrid GCM-statistical ap-28

proach significantly improves prediction skill, relative to the raw CanESM5 hindcast pre-29

dictions over 1990-2019. Our hybrid-model skill is also larger than that obtained by any30

available CMIP6 model. Using bias-corrected CanESM5 predictors, we make forecasts31

for ocean carbon flux over 2020-2029. Both statistical models predict increases in the32

ocean carbon flux larger than the changes predicted from CanESM5 forecasts. Our work33

highlights the ability to improve decadal ocean carbon flux predictions by using observationally-34

trained statistical models together with robust input predictors from GCM-based decadal35

predictions.36

Plain Language Summary37

Using initialized Earth system model simulations for near term predictions of ocean38

biogeochemichal variables is an emerging field of research. In particular, near term pre-39

dictability of ocean carbon flux is central to efforts for planing and limiting climate change.40

Unlike physical variables whose predictability have been established, these simulations41

are only indirectly initialized and rely on heavily parameterized ocean biogeochemistry42

models. Here, we propose a new approach to acquire decadal predictions of air-sea car-43

bon flux as alternatives to those based on ocean biogeochemistry models. Our method-44

ology combines the explanatory power of statistical models that have widely been used45

for gap filling purposes for informing full coverage ocean carbon flux data products, and46

well established predictability skill of key physical predictors. We provide hybrid GCM-47

statistical ocean carbon flux hindcasts using predictors from CanESM5 and doing so, show48

that we can beat all CMIP6 decadal prediction system hindcast skills. We use our mod-49

els to provide near future hybrid model forecast for ocean carbon flux. Our results shows50

the potential for improving predictability skill of ocean carbon sink by combining GCMs51

and observationally trained statistical models.52

1 Introduction53

The ocean accounts for sequestering nearly 25% percent of human CO2 emissions54

annually (Hauck et al., 2020; Friedlingstein et al., 2022, 2020), playing a key role in mit-55

igating climate change. Future changes in the ocean carbon flux are of direct relevance56

to climate change science (Friedlingstein et al., 2022) and policy making related to cli-57

mate and emissions targets. Ocean carbon uptake has increased substantially over the58

past several decades in response to human induced increases in atmospheric CO2 con-59

centrations (Gooya et al., 2023; Rodgers et al., 2020; Lovenduski et al., 2016; McKin-60

ley et al., 2016; Wang et al., 2016). However, there is also substantial internal variabil-61

ity in the magnitude of the flux on seasonal to decadal time scales both regionally and62

globally (Landschützer et al., 2016; McKinley et al., 2017; Gruber et al., 2019; McKin-63
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ley et al., 2020). Decadal scale variability of ocean carbon flux is believed to be driven64

largely by variability in external forcing (McKinley et al., 2020), and specifically, the de-65

viations of atmospheric growth of CO2 from the long term trend but also changes in cir-66

culation (DeVries et al., 2019; Keppler & Landschützer, 2019). Higher frequency inter-67

annual variability is largely attributable to modes of climate variability such as ENSO68

on global scale and other modes of high latitude variability on regional scales (McKinley69

et al., 2017). Predicting future variations in the ocean carbon sink on inter-annual to decadal70

time scales in the face of these mulitple drivers is therefore challenging.71

Decadal predictions, such as those made under the Decadal Climate Prediction Project72

(DCCP) are produced by Global Climate Models (GCMs) that are that are initialized73

with observations and also driven by external forcing (Kirtman et al., 2013). Predictive74

skill of key physical climate variables from such simulations have been well established75

in the literature (Boer et al., 2016). However, near term predictability of the ocean car-76

bon flux and other biogeochemical variables have only become possible with the recent77

advent of Earth System Models (ESMs) (Meehl et al., 2021) and are still at their infancy.78

Previous studies have shown potential predictability of the ocean carbon flux for up to79

7 years (Li et al., 2019; Séférian et al., 2018) and actual skill versus observation based80

estimates for 2-6 years based on different ESMs (Li et al., 2019; Ilyina et al., 2021). How-81

ever, ESM simulations are subject to biases, drifts (Kharin et al., 2012) and exhibit a82

wide range of prediction skill globally and regionally (Ilyina et al., 2021). Predictions83

of ocean carbon flux using ESMs are especially challenging given that ocean biogeochem-84

ical variables are not directly initialized in current decadal prediction systems (Sospedra-85

Alfonso et al., 2021), and that the ocean biogeochmical models themselves are heavily86

parameterized using empirical parameterizations (Christian et al., 2022).87

Here we propose using observationally-trained statistical models forced by predic-88

tors from GCM/ESM-based decadal predictions, as an alternative to using the raw pre-89

dictions of ocean carbon flux obtained from the ESMs ocean biogeochemistry models.90

It is well established that the surface ocean partial pressure of CO2, and by extension91

the surface carbon flux, is closely related to physical predictors, such as sea-surface tem-92

perature and salinity, atmospheric CO2 concentration and wind speed. These empiri-93

cal relationships are widely exploited in the observational community to infill sparse di-94

rect observations of the ocean carbonate system (e.g., Surface Ocean CO2 Atlas, SOCAT),95

using indirect but more widely sampled physical variables (Landschützer et al., 2016).96

It is also common to post-process raw GCM results to produce more skillful predictions,97

for example through bias correction (Kharin et al., 2012). Our proposal is a logical ex-98

tension of these two established practises that combines the explanatory power that sta-99

tistical models learn from the relationships between observational predictors, and the es-100

tablished prediction skill of the process based physical models. Our principal goal is to101

establish a methodology that allows us to improve near-term predictions of the ocean102

carbon sink over and above the skill obtained from raw ESM predictions.103

We begin by introducing the methodology and our statistical models of choice in104

Section 2. In section 3 we evaluate observational uncertainties and the performance of105

our statistical models when forced by observation based predictors. In section 4, we ap-106

ply the observationally trained statistical models to physical predictors from CanESM5107

simulations, and evaluate the skill of this hybrid approach relative to the raw CanESM5108

predictions over the hindcast period of 1990 to 2019. We go on to provide forecasts for109

ocean carbon flux over the decade 2019 to 2029 in section 5. We conclude by reflecting110

on how our approach could be improved and expanded on in future work.111
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2 Materials and Methods112

2.1 Surface CO2 flux data113

For observations of the atmosphere-ocean CO2 flux we use the SeaFlux Ocean car-114

bon sink ensemble product (Gregor & Fay, 2021). SeaFlux contains an ensemble of flux115

estimates, based on six global observation-based mapping products for surface ocean par-116

tial pressure of CO2 (pCO2), and wind speeds from ERA5. The six products include three117

neural-network-derived products (CMEMS-FFNN, MPI-SOMFFN, NIES-FNN), a mixed118

layer scheme product (JENA-MLS), a multiple linear regression (JMA-MLR), and a ma-119

chine learning ensemble (CSIR-ML6) (Fay et al., 2021). We also use the mean across the120

products, which we refer to as SF-MEAN. Given the sparseness of actual pCO2 measure-121

ments, using the ensemble of products allows us to quantify uncertainties associated with122

the data infilling and mapping techniques, and avoids overfitting to a single product.123

All six SeaFlux products show strong agreement in the long term (trended) changes124

in ocean carbon flux (not shown here). Comparing linearly detrended versions of the SeaFlux125

products shows cross correlation coefficients between them ranging from 0.47 to 0.95 (Fig.126

S1). The MPI-SOM-FFN and JENA-MLS are least correlated with others. The lower127

correlation skills for the two show that there are variabilities specific to these products128

that are not common to other datasets, and known biases linked to data sparsity (Gloege129

et al., 2021; Hauck et al., 2023). The averaged SF-MEAN contains signals common to130

all of the products, and we use this as the most reliable estimate moving forward.131

2.2 Statistical models and observed predictors132

For each individual SeaFlux input dataset and SF-MEAN, we train a multi-linear133

regression model and a neural network (NN) model to predict the surface atmosphere134

ocean carbon flux, using three observation-based physical predictors - sea surface tem-135

perature (SST), sea surface salinity (SSS), surface wind speed (sfcWind), one biologi-136

cal predictor -surface chlorophyll concentrations (CHL), as well as atmospheric CO2 con-137

centrations (xCO2) (table S1). These are mainly physical predictors for which full cov-138

erage observational products are available and are believed to drive the variability in ocean139

carbon flux (Landschützer et al., 2016). Linear models are trained for each grid cell on140

a standard one degree grid, while the NN models are trained over 16 biomes (Landschützer141

et al., 2016), as explained further in SI (Sect. S1.1). By combining these biomes, we can142

produce spatially resolved maps of the surface CO2 flux, given the set of five input pre-143

dictors at any point. In total that gives us 14 sets of models (7 set of linear models, and144

7 NN models, one for each SeaFlux target predictand) that are later used to make hind-145

casts and forecasts using modelled predictors from CanESM5. We have chosen to illus-146

trate our approach using the linear and NN models, which have different structures and147

levels of complexity, as illustrative examples. However, alternative models and predic-148

tor variables could be used.149

2.3 Decadal predictions using GCM base predictors150

To make predictions the five predictors from Table S1 are obtained from CanESM5151

simulations (Swart et al., 2019; Sospedra-Alfonso et al., 2021). We use a range of sim-152

ulations, including standard free running CMIP6 historical simulations (Eyring et al.,153

2016), as well as assimilation and hindcast and forecast runs (Boer et al., 2016). In as-154

similation runs, CanESM5 is nudged towards observations for key physical variables (Sospedra-155

Alfonso et al., 2021). For historical, hindcast and forecast simulations, the five predic-156

tors are bias corrected to the same observational predictors used for training the mod-157

els following the approach of (Kharin et al., 2012). This bias correction adjusts the mean158

and trend of the predictors to be consistent with observations. These CanESM5 predic-159

tors are fed to the each of the 14 statistical model sets mentioned above to produce hy-160
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Figure 1. Time series of the global ocean CO2 flux anomalies for the (a) NN model (left

panel) and (b) linear model (right panel) reconstruction using obervational predictors. The

black lines shows reconstruction using models that are trained on mean of SeaFlux products

(SF-MEAN; solid) as well the mean product itself (dashed). The shadings represent the range

estimates from the six different SeaFlux products (grey) and from NN and linear models recon-

structions (green and orange). The numbers in the legends are correlation coefficients between

the solid black lines and dashed black lines (first number) and root mean square error of the two

time series (second number). (c) and (d) are same as (a) and (b) but are linearly detrended.

brid predictions of surface ocean CO2 flux. For hindcasts and forecasts, predictions are161

made for lead years 1 to 10. To test significance of prediction skill differences, we use a162

1000 iteration bootstrap to test of (Goddard et al., 2013).163

3 Evaluation of statistical models164

In this section, we consider the performance of the statistical models trained on the165

SeaFlux ensemble and using observed predictors, for predicting the global mean surface166

carbon flux as defined by SF-MEAN (Fig. 1). When trained on SF-MEAN, both the NN167

and linear models can accurately reconstruct the changes of the SF-MEAN (r> 0.9),168

indicating that the statistical models are able to capture the majority of the variance169

in the global mean surface flux. The NN model shows higher skill in reconstructing SF-170

MEAN relative to the linear model, reflected in higher correlations and lower root mean171

square error (Fig. 1). Similarly, both linear and NN models are able to successfully re-172

produce individual SeaFlux products on which they are trained (Fig. S2), with the NN173

models again achieving tighter fits than the linear models. The orange and green shad-174

ing in Fig. 1 represents the spread across models trained on individual SeaFlux prod-175

ucts. These models are still able to successfully reproduce SF-MEAN, which gives an in-176

dication of their generalizability. The smaller spread for the linear models (Fig. 1b, or-177

ange shading), suggests they may be more generalizable (i.e. successful in predicting data178

they were not trained on) than the NN models. We further explore the idea of gener-179

alizability when using model-derived predictors in the following section.180
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4 Applying statistical models to physical predictors from the ESM181

4.1 Assimilation run182

The CanESM5 assimilation run is relaxed towards the observed physical state of183

the system, which forces physical variables, including our input predictors, to be close184

to observations. However, the detrended CO2 flux from the CanESM5 biogeochemical185

component is not in good agreement with observations (Fig. 2 bottom row). We have186

identified issue in the model derived CO2 flux, including seasonality that is out of phase187

with observations (not shown here), and it appears that the data ingestion in the assim-188

ilation run degrades the biogeochemical models performance. Indeed, previous results189

have shown that atmosphere-ocean CO2 flux predictability is low in CanESM5, and par-190

ticularly poor in the early lead years immediately following the assimilation run (Ilyina191

et al., 2021). A major goal of our effort is to see whether by replacing the CanESM5 bio-192

geochemical model derived flux with one computed based on the statistical models leads193

to improvement.194

We use the linear and NN models previously trained using observed predictors, and195

for each of the six individual SeaFlux products and SF-MEAN as predictands (for a to-196

tal of 14 model sets). We then extract the five input predictors from the (ensemble mean197

of 10) CanESM5 DCPP assimilation runs, apply the statistical models on these GCM-198

based predictors, and compare their skill against the original SeaFlux observational prod-199

ucts (Fig 2).200

The statistical models forced by CanESM5 assimilation predictors obtain similar201

skills in reproducing the individual SeaFlux products to the skills of the reconstructions202

that used predictors from observations (compare Fig. 2 and supplementary Fig. S2). This203

is a somewhat expected result given that assimilation runs assimilate physical predic-204

tors and are very close to the observations, but nonetheless it is first step in applying205

the models on data on which they were not directly trained. For both the linear and NN206

statistical models, the skill is in all cases is significantly higher than than skill of the raw207

CanESM5 CO2 flux. These results indicate that statistical models trained on observa-208

tions can usefully be applied to GCM-derived predictors. By using this approach we are209

able to avoid biases in the CanESM5 biogeochemical model by combining the observa-210

tionally constrained statistical models with the directly initialized physical predictors211

from CanESM.212

We compute the cross-correlation matrix for statistical models trained on one SeaFlux213

product in reproducing all the other five product and SF-MEAN (Fig. 2). This allows214

us to assess the impacts of observational uncertainty, and the potential consequences of215

overfitting statistical models to a single observational product. As expected, the statis-216

tical models are most skillful in reproducing the product on which they were trained (di-217

agonal in Fig. 2). Correlation in reproducing other products can be lower than 0.5. The218

extent to which a model trained on one observational product can be generalized to oth-219

ers is measured with the mean of scores versus all other observational data products (mean220

of rows excluding the diagonal values as indicated in Fig. 2 EXT column). Overall, the221

linear models have larger extendibility scores, while the NN models produce better fits222

for the products on which they were trained. Our results illustrate that care should be223

taken in tightly fitting statistical models to a single observation based CO2 flux prod-224

uct, as uncertainties exist. Moving forward, we will use statistical model trained on the225

SF-MEAN product as the best estimate. Based on the encouraging success so far, in the226

next section we will apply our approach to decadal predictions.227

4.2 Prediction skill of CO2 flux over the hindcast period228

Hindcasts are ESM simulations that use the observationally constrained assimila-229

tion simulation as initial conditions, and which are then run freely under standard CMIP6230
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Figure 2. (a) Correlation matrix for the detrended global ocean carbon flux anomaly. The y

axis indicate the product on which the NN model is trained and the x axis shows the data prod-

ucts against which the skill is evaluated. The EXT column measures the mean of skills excluding

the diagonal element for each row. (b) Same as (a) but for the Linear model.

external forcings for ten years (Boer et al., 2016). Generally, as lead years increase (i.e.231

number of year since initialization) the hindcasts simulations lose memory of initializa-232

ton and drift towards the preferred state of the model (historical simulations). However,233

raw CanESM5 ocean carbon flux DCPP scores show a decrease in the skill after initial-234

ization in hindcast compared to the historical free runs (Ilyina et al., 2021). This is not235

the expected result of initialization and indicates possible discrepancies with interactions236

between initialization and the CanESM5 biogeochemical decadal prediction system (ini-237

tialization ”shocks”).238

As an alternative to the biogeochmical model flux, we apply our SF-MEAN trained239

statistical models on predictors from the CanESM5 hindcast simulations over the period240

1990 to 2019. The hindcast skill from both the linear and NN model when trained and241

evaluated against SF-MEAN are significantly larger than raw CanESM5 skills, with NN242

yielding slightly better scores (Fig. 3). Both statistical models show increase in skill af-243

ter initialization, as expected and seen in physical predictors, and a gradual drop with244

lead time. As an even more stringent test, we compare the skill of the statistical mod-245

els driven by CanESM5 predictors against the skill from all other available CMIP6 mod-246

els that participated in DCPP. The NN model skill is higher than that shown by any raw247

CMIP6 model, when evaluated against SF-MEAN (Fig. S3) over 1990-2017 that is the248

period common to all models. Linear model score are higher than all CMIP6 models on249

all lead years except lead year 3 where CESM1 (Danabasoglu, 2019) yields slightly larger250

score (Fig. S3). These results clearly show the potential of our approach for improving251

the decadal CO2 flux prediction skills.252

To this point we have considered the absolute skill in predicting global mean sur-253

face CO2 flux. An important concept in decadal prediction is the relative contribution254

to the absolute skill that is provided by the initialization. To asses whether initializa-255

tion has added additional value to the predictions, the hindcast simulation skill can be256

compared to that found in standard, non-initialized CMIP6 historical simulations (Fig.257

3). For the linear statistical models, hindcast skills are close to the corresponding his-258

torical skill, and do not show statistically significant improvement. That is, the linear259

model scores do not show significant added skill due to initialization. For the NN model,260

the hindcast skills are significantly larger than the historical skills at least for the first261

three years, based on a bootstrapping test (Fig. 3). This is the range where tempera-262
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Figure 3. (a) Detrended global ocean carbon flux skills versus SF-MEAN for raw CanESM5

model (blue dots) and NN model trained on the SF-MEAN using bias corrected histori-

cal/hindcast predictors from CanESM5 (black dots). The scores that are statistically better

than the raw CanESM5 score based on 1000 iteration bootstrap tests are shown with black boxes

and the lead years where scores are significantly better than the corresponding historical score

are filled. The grey marks in the background show scores from models trained on individual

SeaFlux products versus the SF-MEAN. (b) Same as (a) but for the linear model.

ture variations largely control short term predictability of ocean carbon sink (Li et al.,263

2019). The NN hindcast scores are not significantly better than historical for lead years264

4 to 6, but show re-emergence of significance afterward. NN models consistently show265

better fits to the dataset used for training them (Fig S2), but are also more subject to266

overfitting than the linear models (Fig. 2). While more work is needed to understand267

difference in model structure, our results show that initialization does add value to pre-268

dictions made with the NN models (see also Fig. S4).269

Both the hindcasts and historical run used observed atmospheric CO2 concentra-270

tions (as do our statistical models, as an input predictor). We expect that skills estimated271

from the hindcast are higher than those achievable in true forecasts, because in true fore-272

casts the atmospheric CO2 concentration will not be known. It is not just the background273

rate of increase that is relevant, but deviations in the growth rate of atmospheric CO2274

are also known to be a key driver of decadal scale variability in the ocean CO2 sink (McKinley275

et al., 2020). This is an issue common to any DCPP-style hindcast. Regardless, the im-276

proved skill that the statistical models driven by CanESM5 based predictors show over277

and above CanESM5 or other raw CMIP6 DCPP model hindcast skills encourages us278

to apply our methods to making future predictions in the following section. First how-279

ever, we turn to considering the spatial pattern of skill over the hindcast period.280

We compare spatially resolved temporal correlations between SF-MEAN, the CanESM5281

raw biogeochemical model, and the two statistical models for the historical, assimilation282

and lead years 1 to 10 of the hindcast experiments. Both the NN and linear models show283

large correlations for the detrended flux over the majority of global ocean, when driven284

by predictors from the CanESM5 assimilation run (Fig. 4). Compared to the raw flux285

from the CanESM5 assimilation run, the statistical models significantly improve skill over286

more than 55% of the global ocean (56% for NN and 65% for linear). The linear model287

shows better average grid scale correlation compared to the NN model for assimilation288

and lead year one hindcast. This is most likely due to the high grid scale training res-289

olution of the linear model as opposed to biome scale resolution of the NN model (see290
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Figure 4. Grid wise correlation for the anomalous detrended ocean carbon flux versus SF-

using assimilation, historical as well as lead years 1, 2, 5 10 predictors from CanESM5. The first

column shows raw CanESM5 model skills, while the second and third columns show the NN and

linear model based simulations. Hatches show regions where there is an statistically significant

improvement in skill using a 1000 iteration bootstrap test compared to the raw CanESM5 results.

The numbers on top of each panel are global mean of correlations.
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supplements). Notably, the linear models has improved skill regionally, while the skill291

of the globally integrated sink is better from the NN model. On longer hindcasts lead292

yaers, the mean grid scale skill for the linear models drop faster than NN model and NN293

model beats the linear model with small offsets and more percentage of grid cell (not shown294

here) with significantly improved skills.295

The regions that show significant improvements relative to raw CanESM5 model296

include but are not limited to the highly active regions for the sink (Gooya et al., 2023)297

which makes them important for both the flux magnitude and uncertainty. These are298

regions where the largest sink is concentrated in smallest ocean surface area and where299

internal and model uncertainty tend to be largest. Specifically, significant improvements300

over the Southern Ocean is the common feature to all simulations. The Southern Ocean301

is of key importance for ocean carbon sink (Gruber et al., 2019) where the models dis-302

agree most (Gooya et al., 2023; Frölicher et al., 2015). In the hindcast simulations, skills303

decrease with lead year, approaching the corresponding historical simulation skill on longer304

lead times ( >7), as expected. For all lead years there is significant improvement beyond305

the raw CanESM5 results regionally over more than 30% of the global ocean (hatched306

areas in Fig. 4). Our results offer a potential pathway to better quantification of ocean307

carbon sink predictions both regionally and globally.308

5 Hybrid forecast of the 2020-2029 ocean carbon sink309

The ultimate purpose of decadal prediction systems is to provide forecasts of the310

short term future evolution of the climate system, including the ocean carbon flux. In311

this section, we use the statistical models trained on the SF-MEAN, and evaluated over312

the hindcast period, to make predictions for the near term evolution of ocean carbon flux.313

We extract ensemble means of our five predictors from CanESM5 DCPP forecasts for314

the period 2019-2029, and bias correct them according to lead time following (Kharin315

et al., 2012). We apply the statistical models on these predictors, and include the atmo-316

spheric concentration of CO2 from SSP245 (Eyring et al., 2016), which is the same pro-317

cedure applied to the hindcasts in the previous section.318

Both NN model and linear model based forecasts predict that ocean carbon sink319

is going to grow with a faster than linear rate over the next decade under the SSP245320

scenario (Fig. 5). The linear model predicts slower rate of increase until 2022 compared321

to the NN model, and an accelerated increase after to nearly 1.29 pgC yr−1 relative to322

2019 by 2029. The rate of change in the linear model is consistent with the rate of change323

of the atmospheric CO2 concentrations under the SSP245 scenario. The NN model pre-324

dicts a more steady yet faster than linear increase of approximately 1.09 pgC yr−1 in global325

ocean carbon sink relative to 2019. Both models are in close agreement regarding decadal326

scale changes in the flux and predict larger changes compared to the bias corrected flux327

from the CanESM5 biogeochemical component. The fact that the results show are largely328

consistent between the two statistical models over 1990-2019 as well as the future fore-329

cast globally and regionally (Fig. S5), increases our confidence in the results. Based on330

the skill demonstrated in the hindcasts, we assert that our hybrid statistical-GCM pre-331

dictions represent a more reliable estimate of future changes in the ocean carbon flux than332

the raw model predictions.333

6 Discussion and conclusions334

We have proposed a methodology to improve the decadal predictability of the ocean335

carbon flux by using statistical models as alternatives to the ocean biogeochemistry com-336

ponents of decadal prediction systems. Through their training, the statistical models en-337

code the relationships between physical predictors and the surface carbon flux found in338

observations. Predictions are made by applying these observationally trained statisti-339

cal models on (largely) physical predictors obtained from the GCM-based decadal pre-340
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Figure 5. Global ocean carbon flux decadal forecast based on bias corrected CanESM5

(olive), NN model (green), and linear model (blue) trained on SF-MEAN. The dashed black

line shows SF-MEAN over the period of 1990-2019. The Forecasts show assimilation runs over

this period and forecast initialized in 2019 after. The subplot shows anomalies relative to the

2019 ocean carbon flux on each product and shows the predicted changes until 2029 from differ-

ent estimates. All global timeseries are scaled based on the spatial coverage of the SF-MEAN to

account for differences in coverage.

diction systems. Unlike biogeochemical variables, the physical variables are directly ini-341

tialized in current prediction systems, have a more established track record of skill, and342

are based on less heavily parameterized processes than ocean biogeochemistry. In prin-343

cipal, our approach can be thought of as an extension of traditional bias correction (Kharin344

et al., 2012). Statistical bias correction schemes using linear/NN algorithms have pre-345

viously been used for physical parameters in decadal prediction system (citation). Un-346

like those, our approach does not use the same variable that is being bias corrected. In-347

stead, it relies primarily on key physical predictors whose predictability have been well348

evaluated.349

We have demonstrated that in hindcasts, our hybrid statistical-GCM system im-350

proves prediction skill for the surface ocean carbon flux relative to the ocean biogeochem-351

ical model, both in the global mean, and regionally over broad areas of the ocean. In-352

deed, for the global mean flux, our hybrid skills based on CanESM5 predictors beat all353

available CMIP6 DCPP models. Globally, the NN model can retain the memory of ini-354

tialization of the predictors at least up to lead year three after initialization.355

We have demonstrated our approach using two examples of observationally con-356

strained statistical models of different complexities; a linear and a neural network model.357

The two statistical models used here have different structures and use different combi-358

nations of predictors. Both statistical models are able to reconstruct observed CO2 fluxes359

when forced by observed predictors, and both perform well in hindcast evaluations driven360

by CanESM5-based predictoris (i.e. beating the skill of the raw CanESM5 flux). In gen-361

eral, the NN model was able to achieve higher correlations when trained and evaluated362

against a given surface flux product, but the linear model showed more ”generalizabil-363

ity” across products. In addition, while the linear model was quite robust to changes in364

structure (predictors), the NN model was quite sensitive to changes in the number of pre-365

dictors or neurons used. This shows the need for carefully adjusting such complex mod-366

els and validation against other such models to avoid possible overfitting and to make367

reliable estimates.368
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We emphasize that the two statistical models we have used are just examples of369

our more general approach of applying observationally trained statistical models to GCM370

predictors. Our method is not limited to the choice of ESM, observation based product,371

or to the choice of the alternative model. Future work should test the ability of differ-372

ent types of statistical models to improve upon our results, and could draw upon the large373

body of work in developing empirical relationships for the purposes of infilling sparse pCO2374

observations (Fay et al., 2021). Currently, CanESM5 is the only model with sufficient375

number of simulations publicly available for 10-year hindcasts and forecast for all of the376

required predictors. More robust estimates of the future changes of ocean carbon sink377

would be possible with multimodel averages of predictors, since such multi-model pre-378

dictions are generally more skillful (Tebaldi & Knutti, 2007). We also note that our ap-379

proach is not limited to surface ocean carbon flux, but could also be applied to other bio-380

geochemical predictors, or even less certain physical variables that could benefit from381

exploiting empirical relationships based on well predicted quantities such as SST.382

Based on the demonstrated skill of our hybrid approach in hindcasts, we have made383

forecasts of the near term evolution of ocean carbon flux using both the linear and NN384

models under ssp245 scenario. Both hybrid statistical models show consistent changes385

over the period of 2019-2029 with faster than linear increase in the sink that are larger386

than bias corrected CanESM5 forecasts. This information about predicted future changes387

in the ocean carbon sink might be useful to climate science and policy effort, for exam-388

ple the assessment of the global carbon budget (Friedlingstein et al., 2022). Moving for-389

ward we encourage further research into improving decadal predictions by optimally ex-390

ploiting all available observational information, and data science techniques, in conjunc-391

tion with traditional GCM based predictions.392
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S1. Statistical models

S1.1. Linear model

The linear model used in this study is a least square multi linear regression model.6

For this model, training is done on monthly mean time resolution at each grid cell on a7

normal one-by-one grid. The predictands are deseasonalized monthly mean ocean carbon8

flux time series at each ocean grid cell. For the linear model, the predictors are: SST,9

SSS, log(CHL), sfcWind squared, linear xCO2 trend, and detrended xCO2. Each of the10

predictors are monthly mean time series that are deseasonalized using a repeating seasonal11

cycle over 1990-2019 period. This combination of predictors was chosen to represent12

variability across different time scales. For instance, the linear atmospheric trend is the13

dominant driver of long term changes in ocean carbon flux, deviations of atmospheric14
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forcing from the trend are the main drivers of the decadal variability of the sink, and15

other predictors are believed to drive variabilities on inter-annual to sub decadal scales.16

After trial and error with different combinations of our five predictors, this combination17

yielded best skills of reconstruction. Moreover, a repeating seasonal cycle over the period18

of study is removed to acquire the deseasonalized time series to reduce the variability of19

the variables. This showed however, to only marginally increase the skills. Finally, the20

training was done once with CHL and once without CHL and the results were combined21

with priority given to the model with CHL. This step was taken to account for possible22

missing CHL data point as satellite imaging of surface chlorophyll concentrations is not23

possible in time and space grids where clouds block the surface ocean.24

S1.2. Neural Network model

NN models establish non-linear relationships between the target variable and the pre-25

dictors through the use of non-linear activation functions and interconnected networks of26

neurons. Here, the predictant is the annual mean ocean carbon flux anomaly relative to27

the 1990-2019 period coming from each of the six SeaFlux data products (Fay et al., 2021).28

The predictors are annual mean anomalies of SST, SSS, log(CHL), sfcWind square, xCO229

over the same period of time. These predictors are sufficient to reproduce the variability30

on different time scales on each data product with very high skill (Fig. S2). The NN31

model used in this study is a modified and simplified version of the SOM-FFN model32

from (Landschützer et al., 2016). The network was designed using Python Tensorflow as33

a dense fully connected Keras model with one hidden layer with sigmoid activation and34

an output layer with linear activation function. The criteria for the number of hidden35

layer neurons is not only minimizing the root mean square error in a randomly generated36



evaluation sample from training data, but more importantly, not overfitting over the fore-37

cast period, i.e., consistency of the forecast with the expected near term future behaviour38

of the global flux based on the evolution of the atmospheric forcing. More concisely, we39

already have observational references over the historical period. What we want are mod-40

els that are consistent with these observation based estimates over the historical period,41

yet, are not overfitting to the same period of training and are extendable to future time42

period for actual forecasts. This is the ultimate goal of decadal prediction systems. The43

number of neurons was set to 15 after trial and error with a variety of neuron numbers.44

Comparison with the linear model where a different combination for external forcing is45

utilized, serve as a validation tool for the products, and against what theory suggests.46

Unlike the linear model, the training resolution of the NN model is not grid scale.47

Here, data points are grouped into ocean biomes as used in the version 2021 of MPI-48

SOM-FFN product (Landschützer et al., 2020) and training is done at each biome. These49

biomes are acquired by a self organizing map that divides the ocean into 16 regions50

based on statistical similarities in the seasonal cycles of SST, SSS, mixed layer depth51

and surface partial pressure of CO2. The details of the SOM-FFN method can be found52

in (Landschützer et al., 2016). This choice was made because grid scale resolution does53

not provide enough data point for the complex NN model and would end up in large54

overfitting. On biome scale resolution, training with monthly timeseries was very costly55

in terms of computational resources. Hence, annual means were used. The output of the56

NN model is comparable with the simple linear model both over the 1990-2019 period57

and for forecasts (refer to the manuscript). Finally, the method is not limited to the58

choice of biomes. For instance, we used (Fay & McKinley, 2014) biomes and trained59



the network using MPI-SOM-FFN as the target (not shown here). The results showed60

similar skill of reconstruction on the global scale, while differences were more detectable61

on regional scales. Lastly, to avoid sharp changes over the edges of the biomes, a 3-by-362

lat-lon moving window spatial smoothing was applied to the NN outputs after biomes63

were combined (Landschützer et al., 2016).64

S2. Preprocessing of CanESM5 predictors

Except for the atmospheric CO2 concentrations that is the same xCO2 as seen by65

CanESM, when making historical, assimilation, hindcast, and forecast simulations using66

the statistical models, ensemble means of CanESM5 predictors from the corresponding67

model runs where selected. These predictors were regridded into normal one-by-one degree68

resolution for compatibility. The CHL obsearvational data used for training (table S1),69

only extends back to 1998. To acquire estimates prior to this date (1982-1998), the time70

series are extended using the mean seasonal cycle of the observed period (Landschützer71

et al., 2016). To maintain consistency between the data that is used for training the sta-72

tistical models and predictions using CanESM5 predictors, the same procedure is applied73

to CanESM5 CHL predictors.74

Studies with ESMs have shown that initialized hindcasts simulations have biases and75

systematic errors when compared to the observations as a function of lead time (Kharin et76

al., 2012). Consequently, post processing bias correction is common practice for seasonal77

to decadal predictions. For each of the physical predictors and as a function of the lead78

time (number of years between the initialization year and prediction year), we perform a79

grid wise mean and trend adjustment to the corresponding observational data. The mean80

adjustment corrects for the mismatch between the mean over the period of the prediction81



at each grid cell with the mean of observations. Additionally, ESM hindcasts drift towards82

the preferred state of the model as represented in the historical simulation (Kharin et al.,83

2012). To counter this, trend adjustment based on the lead time is done to adjust for the84

systematic drifts of the predictors as a function of lead time. Please refer to (Kharin et al.,85

2012) for further details on the bias correction scheme. For CHL, only mean adjustment86

to the observation is applied as CHL does not exhibit a clear trend.87
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Table S1. Observational products used for training

Variable Source
Sea surface temperature (Reynolds et al., 2002)
Sea surface salinity Hadley centre EN4a

Surface Chlorophyll − a concentration GlobColour project
Surface wind speed ERA5 b

Atmospheric CO2 concentrations NOAA ESRL
a (Good et al., 2013)

b (Copernicus Climate Change Service (C3S), 2017)
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Figure S1. Cross-correlation matrix for detrended global SeaFlux observation-based ocean

carbon flux products using ERA5 wind product.
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Figure S2. Time series of the detrended global ocean carbon flux reconstruction using ob-

servational predictors. Columns represent NN and linear models trained on individual products.

Numbers in the legends are correlation (first number) skills versus the same product as used

for training (dashed black lines), and root mean square error for the same time series (second

number).
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Figure S3. Detrended global ocean carbon flux skills based on bias corrected histori-

cal/hindcast predictors from CanESM5 (black dots) as well as raw CanESM5 scores (blue dots)

for the hybrid model trained and evaluated using SF-MEAN. The scores that are statistically

better than the raw CanESM5 score based on 1000 iteration bootstrap tests are shown with black

boxes and the lead years where scores are significantly better than the historical score are filled.

Colored dots are hidncast skills from ensemble means of all available CMIP6 models. The time

period of this analysis is 1990-2017 as this is the common time period to all available CMIP6

models and our hybrid models.
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Figure S4. Detrended global ocean carbon flux time series for assimilation, hindcast years 1, 2,

5, 10, and historical simulations from NN (left column) and Linear (right column) models trained

on SF-MEAN. The dashed line in the background is the detrended SF-MEAN and numbers in

legends are correlation coefficients (first number) and root mean square error of the time series

(second number). The plot shows how on longer lead times, the time series grow smoother and

more similar to the historical time-series. They indicate less year to year variability, and are

closer to the smooth decadal scale signal.
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Figure S5. Regional patterns of forecasted changes in the ocean carbon flux for bias corrected

CanESM5 (left column), hybrid NN model trained on SF-MEAN (middle column), and hybrid

linear model trained on SF-MEAN (right column), relative to each product’s 2019 projection.

Numbers above each panel are global ocean carbon flux anomaly relative each product’s 2019 in

Pg C yr−1 over the same time periods of the maps.


