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Rik Wanninkhof1, Joaquin Triñanes2, Denis Pierrot3, David Russel Munro4, Colm
Sweeney5, and Amanda R Fay6

1OCD/AOML/NOAA
2Universidad de Santiago de Compostela
3Atlantic Oceanographic and Meteorological Laboratory
4University of Colorado Boulder
5NOAA Global Monitoring Laboratory
6Lamont-Doherty Earth Observatory, Columbia University

November 8, 2023

Abstract

Monthly global sea-air CO2 flux estimates from 1998-2020 are produced by extrapolation of surface water fugacity of CO2

(fCO2w) observations using an Extra-trees (ET) machine learning technique. This new product (AOML ET) is one of the

eleven observation-based submissions to the second REgional Carbon Cycle Assessment and Processes (RECCAP2) effort. The

target variable fCO2w is derived using the predictor variables including date, location, sea surface temperature, mixed layer

depth, and chlorophyll-a. A monthly resolved sea-air CO2 flux product on a 1@ by 1@ grid is created from this fCO2w product

using a bulk flux formulation. Average global sea-air CO2 fluxes from 1998-2020 are -1.7 Pg C yr-1 with a trend of 0.9 Pg C

decade-1. The sensitivity to omitting mixed layer depth or chlorophyll-a as predictors is small but changing the target variable

from fCO2w to air-water fCO2 difference has a large effect, yielding an average flux of -3.6 Pg C yr-1 and a trend of 0.5 Pg

C decade-1. Substituting a spatially resolved marine air CO2 mole fraction product for the commonly used zonally invariant

marine boundary layer CO2 product yield greater influx and less outgassing in the Eastern coastal regions of North America

and Northern Asia but with no effect on the global fluxes. A comparison of AOML ET for 2010 with an updated climatology

following the methods of Takahashi et al. (2009), that extrapolates the surface CO2 values without predictors, shows overall

agreement in global patterns and magnitude.
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Key Points: 22 

 An Extra Trees  machine learning approach, AOML_ET is described used to determine 23 

global sea-air CO2 fluxes. 24 

 25 
 Global sea-air CO2 fluxes from 1998-2020 are -1.7 Pg C yr

-1
 with a trend of 0.9 Pg C 26 

decade
-1

.
 

27 
 28 

 Comparison with other approaches and using different predictor variables show good 29 

agreement in global fluxes but with large regional differences. 30 
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Abstract 32 

Monthly global sea-air CO2 flux estimates from 1998-2020 are produced by extrapolation of 33 

surface water fugacity of CO2 (fCO2w) observations using an Extra-trees (ET) machine learning 34 

technique. This new product (AOML_ET) is one of the eleven observation-based submissions to 35 

the second REgional Carbon Cycle Assessment and Processes (RECCAP2) effort. The target 36 

variable fCO2w is derived using the predictor variables including date, location, sea surface 37 

temperature, mixed layer depth, and chlorophyll-a. A monthly resolved sea-air CO2 flux product 38 

on a 1˚ by 1˚ grid is created from this fCO2w product using a bulk flux formulation. Average 39 

global sea-air CO2 fluxes from 1998-2020 are -1.7 Pg C yr
-1

 with a trend of 0.9 Pg C decade
-1

. 40 

The sensitivity to omitting mixed layer depth or chlorophyll-a as predictors is small but changing 41 

the target variable from fCO2w to air-water fCO2 difference has a large effect, yielding an 42 

average flux of -3.6 Pg C yr
-1

 and a trend of 0.5 Pg C decade
-1

. Substituting a spatially resolved 43 

marine air CO2 mole fraction product for the commonly used zonally invariant marine boundary 44 

layer CO2 product yield greater influx and less outgassing in the Eastern coastal regions of North 45 

America and Northern Asia but with no effect on the global fluxes. A comparison of AOML_ET 46 

for 2010 with an updated climatology following the methods of Takahashi et al. (2009), that 47 

extrapolates the surface CO2 values without predictors, shows overall agreement in global 48 

patterns and magnitude.  49 

Plain Language Summary 50 

Surface water measurements of carbon dioxide (CO2) are used to determine the global sea-air 51 

flux of CO2 across the interface for the time period from 1998-2020. The global flux direction is 52 

into the ocean driven by atmospheric CO2 increases caused by burning of fossil fuels and other 53 

anthropogenic activities which affects the balance of the sea-air CO2 gradient. While an 54 

increasing number of surface ocean CO2 observations are available, the data still requires 55 

significant extrapolation/gap filling to characterize the entire global surface ocean on a monthly 56 

basis. Here we describe a machine leaning (ML) approach to create a monthly resolved surface 57 

water CO2 and flux product on a 1-degree grid using an extreme randomized trees or Extra Trees 58 

approach, referred to as AOML_ET. AOML_ET is one of eleven observation-based submissions 59 

to the second REgional Carbon Cycle Assessment and Processes (RECCAP2) effort. The global 60 

scale results are compared to other available products and the sensitivity to different predictor 61 

and target variables is described. Overall, there is strong agreement between approaches and 62 

sensitivity to omitting certain target variables is small suggesting that on global scales the 63 

approach is robust.  64 

1 Introduction 65 

Sea-air CO2 fluxes are the main conduit for transfer and subsequent storage of anthropogenic 66 

CO2 in the ocean. The resulting increases in surface water CO2 are the cause of surface ocean 67 

acidification (Doney et al., 2020; Lida et al. 2021). Quantifying the fluxes is critical for the 68 

global stocktake which reviews progress towards the Paris Agreement goals every five years 69 

(Magnan et al., 2016), and to assess if the oceanic sink is changing on annual timescales, 70 

particularly in light of the societal goal of reaching “net zero” by 2050 (IPCC, 2018).  71 

Most regional and global sea-air CO2 flux estimates on seasonal to annual scales rely on using 72 

the bulk flux formulation where the flux density is the product of the gas transfer velocity, CO2 73 

solubility, and the fugacity difference of CO2, or ∆fCO2 between water
 
(fCO2w) and air (fCO2a) 74 
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(Eqn. 1). Here we use fCO2 which accounts for the non-ideality of CO2 gas rather than partial 75 

pressure of CO2 (pCO2 ), except in the discussion of the updated Takahashi climatology. 76 

Numerically fCO2 =0.997 pCO2
 
at 25 ˚C and the air-water fCO2 difference, ∆fCO2 is essentially 77 

the same as ∆pCO2, such that the results expressed in terms of ∆pCO2
 
can be directly compared. 78 

The gas transfer velocity is commonly parameterized as a quadratic dependence with wind speed 79 

(Wanninkhof, 2014). Surface water fCO2 values are obtained using automated instrumentation 80 

on a variety of ships and other platforms, such as moorings and autonomous surface vehicles. 81 

The data are quality controlled and collated into communal data holdings, notably the Surface 82 

Ocean CO2 Atlas, SOCAT (Bakker et al., 2016) that is updated annually with an increase of over 83 

1 million unique datapoints for each iteration (https://www.socat.info/wp-84 

content/uploads/2022/06/2022_Poster_SOCATv2022_release.pdf). The fCO2w data are binned, 85 

gridded and interpolated/mapped to provide the foundation for global sea-air CO2 flux fields, 86 

often referred to as CO2 flux maps. The interpolation in space and time is critical to obtain 87 

uniform full coverage over the global ocean.  88 

 89 

The initial interpolations of surface water pCO2 data to estimate global sea-air CO2 fluxes were 90 

performed by Taro Takahashi and colleagues who determined global monthly pCO2 maps and a 91 

sea-air CO2 flux climatology (Takahashi et al., 1997; 2009). The climatologies used much of the 92 

available pCO2 data at the time normalized to a particular year and presented per month on a 4˚ 93 

by 5˚ grid. The empty cells were filled through interpolation to its neighbors aided by a modelled 94 

surface ocean advection scheme (Bryan & Lewis, 1979). Here we present the Takahashi 95 

climatology as submitted to RECCAP2 that is centered on reference year 2010, henceforth 96 

referred to as Tak-2010. This climatology was recently updated by Fay et al. (2023, submitted) 97 

using the same scheme and assumptions but with a larger dataset, the SOCATv2022 data 98 

product. The climatology using a greater dataset and different approach for accounting for fCO2w 99 

increase through time by Fay et al. (2023) shows the same monthly spatial patterns and a global 100 

flux of -1.79 ± 0.6 Pg C in close agreement with Tak-2010 results presented here of -1.86 ± 0.52 101 

Pg C. The Tak-2010 climatology, that is part of the RECCAP2 observation-based data holdings, 102 

is chosen as a comparison in this study as it differs from other interpolation schemes in that the 103 

pCO2 data is interpolated/mapped without use of predictor variables. This is in contrast to the 104 

various machine learning (ML) and linear regression approaches that rely heavily on the 105 

predictor variables (Rödenbeck et al., 2015).  106 

 107 

Much of the efforts in creating global sea-air CO2 flux estimates have focused on approaches to 108 

map fCO2w and subsequent comparisons and syntheses of the methods (Telszewski et al., 2009; 109 

Landschützer et al., 2013; Zeng et al., 2014; Gregor et al., 2019; Stamell et al., 2020; Fay et al., 110 

2021). Significant improvement in these observation-based approaches have been made in the 111 

last decade (Rödenbeck et al., 2015) notably through use of ML approaches for 112 

interpolation/mapping of fCO2w along with an increase in available surface water measurements. 113 

The products are commonly presented per month at 1˚ by 1˚ spatial resolution. These scales are 114 

on the order of the autocorrelation scales of fCO2w (Li et al., 2005). The RECCAP2 analyses 115 

include the output of eleven of such approaches with consistent protocols for nomenclature and 116 

analysis. The recommended time range for the RECCAP2 surface water analysis spans years 117 

from 1985-2018. The product described here covers the time period from October 1997 through 118 

December 2020. The later start date is chosen because both the sparsity of fCO2w data, and the 119 
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inconsistent quality and coverage of predictor variables until the late 90s, most notably remotely 120 

sensed chlorophyll estimates which became available from a common source at the end of 1997. 121 

  122 

The extremely randomized trees or Extra Trees method (ET) used here (AOML_ET) is one of 123 

several ML and regression approaches that use the same community assembled SOCAT 124 

database. The SOCATv2020 product includes over 33 million unique fCO2w observations 125 

collected from 1957 through 2021(www.socat.info). However, for this analysis the gridded 126 

SOCAT data product is used which consists of data collated into monthly 1˚ by 1˚ cells, reducing 127 

the total to approximately 309 thousand data points. The eleven observation-based approaches 128 

included in RECCAP2 regress the fCO2w from predictor variables, or use the predictor variables 129 

in the training step of a ML technique. Interpolation is required due to sparse coverage of the 130 

gridded SOCAT data product which has significant temporal and spatial gaps at the 1˚ by 1˚ 131 

monthly resolution, particularly in the remote sections of the oceans and in winter seasons in the 132 

mid- and high latitude oceans. Indeed, only about 2 % of the monthly 1˚ by 1˚ cells have fCO2w 133 

observations (Stamell et al., 2020). Predictor variables vary amongst approaches but surface 134 

fCO2w values have been seen to closely correlate with sea surface temperature (SST) and mixed 135 

layer depth (MLD). Sea surface salinity (SSS) and Chlorophyll-a (Chl-a) are often used as well. 136 

These variables are known to directly influence fCO2w through biogeochemical and physical 137 

interactions that control fCO2w. Location (latitude, longitude) and time (yearday) are included in 138 

the AOML_ET method to facilitate depiction of regional differences and trends. Atmospheric 139 

mixing ratio of CO2 (XCO2a) has been used by other ML approaches as a time dependent 140 

variable (e.g. Landschützer et al., 2016). Clustering or bagging approaches and delineation of 141 

regions in specific biogeographical provinces or biomes (e.g. Fay & McKinley, 2014) have aided 142 

the training and mapping in some ML and regression approaches but are not used in AOML_ET.  143 

 144 

Different ML methods and other mapping products have been compared notably under the aegis 145 

of the Surface Ocean CO2 Mapping intercomparisons (SOCOM) effort (Rödenbeck et al., 2015) 146 

and used in several assessments, including the global ocean carbon RECCAP2 effort (DeVries et 147 

al., 2023). Detailed regional and global comparisons of different mapping products and ensemble 148 

approaches have been undertaken (e.g. Fay et al., 2021; Gregor et al., 2019; Rödenbeck et al., 149 

2022; Chau  et al., 2022). The analysis by Gregor et al. (2019) includes several different ML 150 

approaches and suggests that overall skill of the methods at the global scale is similar and that 151 

the skill for any given approach is mainly limited by fCO2w data availability in undersampled 152 

regions and seasons. Gregor et al. (2019) also show broad similarity in magnitude and 153 

interannual variability of fCO2w for the various ML approaches. In particular, the Northern 154 

Hemisphere oceans show agreement between methods while areas with fewer fCO2w 155 

observations such as the mid- and high-latitude Southern Hemisphere oceans, and regions with 156 

large interannual variability such as the Equatorial Pacific show greater differences between 157 

approaches. Inconsistencies in modeled surface areas, wind speed products and the method of 158 

calculation of fluxes contribute to differences. To account for these differences area 159 

normalization and ensembles (or multi-product averages) are increasingly common in 160 

intercomparison studies and improve consistency (Fay et al., 2021; Roobaert et al., 2018). A 161 

summary of the annual global sea-air CO2 fluxes for different ML approaches used in the Global 162 

Carbon Budget (Friedlingstein et al., 2022) is provided in Figure 1 that show correspondence 163 

over time between the observation-based methods at the global scale.  164 

 165 
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To date comparisons have often focused on the differences in the mapped fCO2w fields for the 166 

different ML approaches, and the sea-air CO2 fluxes derived from these fields using standard 167 

indicators such as root mean square error (RMSE), bias, and the ability of the methods to 168 

reproduce seasonal and interannual variability and trends at global and basin scales (Rödenbeck 169 

et al., 2015; Gregor et al., 2019). Differences in flux products from other parameters used in the 170 

bulk flux equation such as the gas transfer parameterization, as well as the sensitivity to different 171 

predictor variables have been explored to lesser extent. The ET approach used here is 172 

computationally efficient so that it lends itself to exploration of the impact of different variables. 173 

Potential drawbacks of the ET method include that it can be more prone to bias in data sparse 174 

regions compared to other ML methods. More specifically, with the ET approach observations in 175 

regions with few data are viewed as outliers such that adjacent data further removed in time and 176 

space receive greater weight (Gregor et al., 2019). It also shows a greater sensitivity to 177 

overfitting than other commonly used ML approaches (Stamell et al., 2020; Gregor et al., 2019).  178 

 179 

The paper is structured as follows: in the methods section we lay out the approach to determine 180 

the sea-air CO2 flux using the bulk flux formulation. The mapping of monthly fCO2w fields is 181 

described using the analysis called AOML_EXTRAT_1998-2020, or AOML_ET for short. This 182 

serves in part as documentation for the product submitted to RECCAP2. Of note is that the 183 

AOML_ET RECCAP2 submission covers the time period 1998-2018 and this analysis is 184 

extended by two years using the same procedures but with an updated SOCAT gridded dataset 185 

(SOCATv2021). Different adaptions and predictor /target variables are described. The discussion 186 

focusses on the seasonal and regional patterns observed in the AOML_ET product using an 187 

analyses spanning a 22-year time series. A comparison with an updated climatology based on the 188 

methods of Takahashi et al. (2009), Tak-2010, that was also submitted to RECCAP2 (DeVries et 189 

al., 2023) is included. This climatological product is centered on 2010 and uses SOCAT data 190 

from 1985-2018. The sensitivity of predictors to develop the fCO2w fields in AOML_ET 191 

approach is discussed. Two different estimates of the mole fraction of CO2 in air (XCO2a) are 192 

applied to determine the sensitivity of sea-air CO2 fluxes to XCO2a. The zonal-mean MBL 193 

reference surface (MBL-RS) (Dlugokencky et al., 2021) that is used in many previous global 194 

CO2 flux estimates, including RECCAP2, is compared with the XCO2a derived from an 195 

atmospheric CO2 model, Carbon Tracker (Jacobson et al., 2020). The impact of two different gas 196 

transfer-wind speed formulations is provided to illustrate the impact of the kinetic forcing of 197 

fluxes which are not always considered when comparing the agreements of different sea-air CO2 198 

flux products. Some large scale diagnostics for sea-air fugacity difference and fluxes are also 199 

presented. Fluxes presented are net CO2 fluxes.  200 

2 Methodology 201 

2.1 Determination of fluxes 202 

 203 

The fCO2w measurements are the foundation for determining the sea-air CO2 fluxes but flux 204 

estimates require other inputs such as the rate of CO2 transfer across the sea-air interface and 205 

CO2 air concentrations as well. The sea-air CO2 fluxes on regional to global scales are 206 

determined using a bulk flux formulation where the flux density (Fsa) is defined as the product of 207 

a thermodynamic term, the gradient across the interface (∆fCO2), and a kinetic term, the gas 208 

transfer velocity (k). The interpolation and gap filling methods focus on creating fCO2w fields, 209 
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and use canonical estimates for fCO2a and gas transfer parameterizations. The following 210 

expression for the bulk flux equation is applicable: 211 

 212 

Fsa = k K0 (fCO2w-fCO2a) = k K0 ∆fCO2        (1) 213 

 214 

where K0 is the solubility of CO2 in seawater. The ∆fCO2 is the difference between the fugacity 215 

that would be in equilibrium with water at 1 to 6 m below the interface, fCO2w and air, fCO2a. 216 

The fCO2a is derived from a latitudinal averaged time series of mole fraction XCO2a of the 217 

marine boundary layer, MBL-RS (Dlugokencky et al., 2021). The overbar depicts the integrated 218 

quantity.  219 

 220 

When calculating flux densities, the monthly ∆fCO2 fields at 1˚ by 1˚ grid are multiplied by the 221 

product of gas transfer velocity and solubility, thereby changing Eqn. (1) to: 222 

  223 

 Fsa = k K0 ∆fCO2          (2) 224 

  225 

The Taylor expansion from the average of the product to averages of the individual terms has 226 

cross-correlation terms of k’ and ∆fCO2’ but they are not included as they have a small influence 227 

on the overall results for determination of monthly global fluxes on scales of 1˚ (Wanninkhof et 228 

al., 2011).  229 

 230 

The k is commonly parameterized as the square of wind speed (Wanninkhof et al., 2009):  231 

 232 

k = 0.251 <u
2
> (Sc/660)

-1/2 
or k660

 
= 0.251 <u

2
>

      
(3) 233 

 234 

where <u
2
> is the 2

nd
 moment of the wind at 10-m height calculated from 6-hourly winds at ¼ ˚ 235 

resolution (Hersbach et al., 2020); Sc is the Schmidt number, and 660 is the nominal Schmidt 236 

number of CO2 at 20 ˚C. The coefficient 0.251 is determined from scaling the gas transfer-wind 237 

speed relationship to the global average the 2
nd

 moment of the wind and the inventory of bomb 238 
14

C in the ocean (Sweeney et al., 2007). 239 

 240 

The Fsa (mol m
-2

 y
-1

) are aggregated into regional or global fluxes, with the flux expressed in Tg 241 

C (10
12

 g) or Pg C (10
15

 g = Gigaton). In the terrestrial and atmospheric communities bulk fluxes 242 

are often expressed as Tg or Pg of CO2 where 1 Tg CO2 equals 0.27 Tg C. For RECCAP2 the 243 

recommendation is that the sea-air flux be positive if the net flux is into the ocean, while in the 244 

oceanography community, and in this manuscript, the flux into the ocean (uptake) is presented as 245 

a negative value. The differences in conventions are summarized in Table A1. 246 

 247 

For the AOML_ET method monthly maps, or fields, of fCO2w are created after a training step 248 

and using predictor variables to determine the target fCO2w on monthly 1˚ by 1˚ grids. The ET 249 

ML algorithm is described in detail in Geurts et al. (2006). In short, it is based on a decision tree 250 

approach of learning much like the Random Forest approach. Its training uses a tree-based 251 

ensemble where nodes are split at random cut points using all observations to build the model.  252 

 253 

At a 1˚ by 1˚ monthly grid spacing there are 11.28 M possible grid nodes from October 1997 254 

through December 2020, but even for the best sampled months only a small fraction have fCO2w 255 
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observations in the gridded in SOCATv2021 product.  The maximum coverage is  4.3 % of all 256 

cells for August 2011. For AOML_ET, 70 % of the data are placed into a training dataset, and 30 257 

% are reserved for the testing dataset to determine bias and uncertainty expressed as a root mean 258 

square error (RSME). Testing data include all the fCO2w observations from years 2000, 2005, 259 

2010 and 2015. Omitting data from whole years is better than randomly withholding data points 260 

for testing since this could lead to favoring test data in well sampled areas and seasons causing 261 

uncertainty to not being appropriately represented. 262 

 263 

2.2 The Takahashi 2010 climatology 264 

 265 

To investigate seasonal and regional differences in sea-air CO2 fluxes between approaches a 266 

comparison is made between the AOML_ET for 2010 and the updated monthly Takahashi 267 

climatology centered on 2010 (Tak-2010) created on a native resolution on a 4˚ by 5˚ grid and 268 

subsequently sub-gridded to 1˚ resolution that is submitted to RECCAP2 (DeVries et al., 2023). 269 

The creation of Tak-2010 follows the same procedures as the previous climatology centered on 270 

year 2000 (Takahashi et al., 2009). It uses the same SOCAT dataset for pCO2w as the AOML_ET 271 

analysis. In Tak-2010, the pCO2w values are adjusted to 2010 by assuming that pCO2w increases 272 

at a similar rate as the atmospheric increase. Therefore, for pCO2w data between 1957 and 1979, 273 

1 µatm y
-1 

was added to each pCO2w observation; for 1980 through 2000, 1.5 µatm y
-1 

was 274 

added; from 2001 through 2009, 2 µatm y
-1

 was added; and between 2011-2018, 2 µatm y
-1 

was
 

275 

subtracted to normalize the pCO2w to the virtual year of 2010. The MBL-RS XCO2a, P and SST 276 

values for 2010 were used in the creation of flux maps. The interpolation in Takahashi et al. 277 

(2009) is different from the gap filling in the ML and regression approaches in that it is done by 278 

using a surface water advection scheme from a coarse resolution model (Bryan & Lewis, 1979) 279 

without predictor variables. In contrast, all ML and regression methods used in RECCAP2 the 280 

fCO2w rely on interpolated and gap filling using predictor variables.  281 

 282 

2.3 Sensitivity of sea-air CO2 fluxes to different input variables 283 

 284 

Several adaptations of the AOML_ET default configuration are implemented to assess sensitivity 285 

to procedures and predictor variables. The following changes are applied to the default 286 

configuration of AOML_ET that uses location, time, SST, SSS, MLD, and Chl-a: The algorithm 287 

was trained without Chl-a or without MLD; <u
2
> was added as a predictor; the algorithm was 288 

trained against the target variable ∆fCO2 instead of fCO2w. Using ∆fCO2 largely eliminates the 289 

externally forced component, as fCO2w closely follows atmospheric CO2 increases in the global 290 

ocean (McKinley et al., 2020; Fay et al., 2023, submitted). Most of the adaptations did not yield 291 

meaningful differences on global scales. A notable exception is substituting the target fCO2w for 292 

∆fCO2. 293 

 294 

To determine the effect of data quality and quantity, a training dataset was created using only the 295 

datasets flagged A and B in SOCATv2021 that have a stated accuracy of better than 2 µatm, 296 

compared to the default dataset that includes data flagged A-D where the C and D datasets are 297 

estimated to be good to within 5 µatm (Wanninkhof et al., 2013). This decreases the total number 298 

of grid cells with available data from 309,100 to 188,873 (Figure S1) and decreases coverage in 299 

time, with no A, B data before 1990, and less data in high latitude and coastal regions (Figure 300 

S2). As the uncertainty of the observations is not explicitly incorporated into the analyses, the 301 
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differences will primarily show up in lower data count and regional coverage, with a decrease in 302 

average number of cells with observations  from 2.2 % to 1.5 % using only A and B data. 303 

 304 

For investigating the impact of other variables needed to determine fluxes beyond those used to 305 

create fCO2w fields, the effect of using a different XCO2a product is investigated as regional 306 

differences in XCO2a can impact the fluxes (Wanninkhof et al., 2019). In the RECCAP2 307 

protocol, XCO2a values from the MBL-RS are used with samples for XCO2a taken weekly at 60 308 

sites around the globe forming the basis of this product 309 

(https://gml.noaa.gov/ccgg/about/global_means.html, Dlugokencky, 2021). These zonal averages 310 

are almost exclusively used in global CO2 flux estimates.  311 

 312 

In this zonally invariant MBL-RS product, the XCO2a is expressed with time and latitude. To 313 

match the fCO2w resolution, the XCO2a data is re-gridded on a monthly 1˚ by 1˚ grid and used to 314 

calculate fCO2a by:  315 

 316 

fCO2a = Gf(T,S) (P - pH2O) XCO2a        (4) 317 

 318 

where P is the barometric pressure at sealevel, Gf(T,S) is the fugacity correction (≈ 0.996 to 319 

0.997 from 0 to 30 ˚C) and pH2O is the saturation water vapor pressure at P and SST as 320 

summarized in Pierrot et al. (2009). 321 

 322 

The default MBL-RS product is compared with XCO2a over the ocean surface derived from 323 

CarbonTracker CT2019B (Jacobson et al., 2020). CT2019B provides a spatially and temporally-324 

varying representation of XCO2a throughout the atmosphere created by assimilating a wide 325 

variety of atmospheric CO2 data in a 3-D atmospheric chemistry-transport model, TM5 (Krol et 326 

al., 2005). This CT-PBL product provides XCO2a globally at 3-hourly intervals and at 3˚ 327 

longitude by 2˚ latitude spanning 2000-2020. The PBL height in TM5 is estimated from the 328 

ERA5 driving meteorology and a bulk Richardson number formulation (Jacobson and Munro, 329 

pers. com.) where the XCO2a for each of the layers within the PBL is averaged. Then the 3˚ 330 

longitude by 2˚ latitude bins are regridded to a 1˚ by 1 and averaged monthly to determine the 331 

fCO2a (Eqn. 4) and the flux (Eqn. 1). This output is referred to as the CT-PBL product. 332 

 333 

The effect of different wind speed products and parameterizations have been detailed in 334 

Roobaert et al. (2018), including discussion of the rationale for normalizing the wind products 335 

and gas transfer-wind speed dependencies. Two different parameterizations are compared here 336 

that differ in their assumptions of environmental forcing as detailed in Wanninkhof et al. (2009). 337 

A quadratic with zero intercept,  338 

 339 

k660 = 0.251 <u10
2
>         (5) 340 

 341 

and a third-order polynomial dependency with wind with non-zero intercept, or hybrid 342 

parameterization,  343 

 344 

k660 = 3 + 0.1 <u10> + 0.083 <u10
2
>

 
+ 0.011

 
<u10

3
>      (6)  345 

 346 

https://gml.noaa.gov/ccgg/about/global_means.html
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are compared. The coefficient for the 2
nd

 moment of the wind has been adjusted in Eqn. 6 from 347 

0.064 in the original equation of Wanninkhof et al. (2009) to 0.083 to account for the different 348 

wind fields used between the original work and here. The parameterizations are shown versus 349 

wind speed in Figure 2.  350 

3 Discussion 351 

The variability in sea-air CO2 fluxes is largely driven by surface water fCO2w but other drivers 352 

can have an impact on the fluxes, particularly on regional scales. The salient features of the 353 

fluxes based on the fCO2w obtained with the AOML_ET method, as one of the eleven pCO2 354 

based approaches used in RECCAP2 (DeVries et al., 2023), are compared with Tak-2010. We 355 

describe the sensitivity of the global sea-air CO2 flux to different predictor variables and using 356 

subsets of data. Comparisons of various ML approaches have been shown in other works (e.g. 357 

Rödenbeck et al., 2015; Gregor et al., 2019; and Stammel et al., 2020) and will not be a focus 358 

within.  359 

 360 

3.1 Global and regional trends in fluxes using the AOML_ET method 361 

 362 

A high level summary of results of the AOML_ET method are shown in Figure 3. The annual 363 

global fluxes from 1998-2020 are shown in Figure 3a along with permutations of the method 364 

described below. Figure 3b presents a Taylor diagram of observed and predicted values. For 365 

AOML_ET a coefficient of correlation, r
2
 of 0.83 was obtained, and a RMSE of 17 µatm in line 366 

with other ML and regression estimates (Gregor et al., 2019). The standard deviation, indicating 367 

the variability, is 34 µatm compared to 43 µatm for the observations. 368 

 369 

Representative flux maps for the AOML_ET method for January and July 2010 provide a visual 370 

depiction of spatial and seasonal differences in flux density (Figure 4) with well-described 371 

features (e.g. Takahashi et al., 2009). The overall patterns and magnitude of AOML_ET fluxes 372 

are in agreement with other data-based ML, regression approaches and climatologies used in 373 

RECCAP2. There is outgassing in the tropical oceans and upwelling regions, and uptake in 374 

subtropical and subarctic areas. Seasonal progressions are seen in the subtropics that change 375 

from strong sinks in wintertime to a source in summer, primarily driven by changes in SST. A 376 

strong source in the Bering Sea is prevalent in the wintertime, contrary to other Northern high 377 

latitude regions that are wintertime sinks. This is attributed to deepening of the mixed layer in 378 

winter entraining water with high CO2. Overall, the winter season shows greater uptake than 379 

summertime in the respective hemispheres. Globally, greatest uptake is in the December-380 

February timeframe.  381 

 382 

The annual global fluxes from the AOML_ET approach falls within the range of other ML 383 

methods albeit with a more negative global trend of -0.9 Pg C dec
-1

 than many of the approaches 384 

(Figure 1, Table 1). This is, in part, attributed to the low fluxes at the beginning of the time 385 

series, which combined with anthropogenic CO2 emissions causing increasing fCO2a leads a 386 

larger sea-air CO2 disequilibrium. That is, the ∆fCO2 becomes more negative, and thereby 387 

increases the CO2 flux into the ocean and leads to a larger negative trend. Indeed, an inverse 388 

relationship between the flux in 1998 versus trend is observed when comparing the different ML 389 

methods (Figure 5) showing the negative feedback of low fluxes at the beginning of the record 390 

for most approaches used in RECCAP2 leading to higher trends.  391 
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  392 

Differing trends in regional fluxes are apparent in the AOML_ET fluxes over the 1998-2020 393 

time period. Significant areas show the expected negative trends (Figure 6a) with statistical 394 

significance (Figure 6b). That is, the rising atmospheric CO2 levels will cause greater uptake/less 395 

outgassing, and thus a negative trend in fluxes. This negative trend is prevalent in the seasonally 396 

stratified high latitude regions. Neutral and positive trends, that indicate less uptake or more 397 

outgassing over time, are apparent in mid- and low-latitude regions and can be attributed to the 398 

rise in SST and possible decrease in biological productivity (Landschützer et al., 2018). In broad 399 

brush, the trends are in agreement with observation-based regional analyses of Fay and 400 

McKinley (2013) that provide trends of fCO2w instead of sea-air CO2 fluxes shown here, 401 

recognizing that positive trends in fCO2w leads to smaller negative trends in flux. Their analysis 402 

indicates that regions with a stronger trend in fCO2w than expected from atmospheric increases 403 

correspond to areas with increasing SST. They also show that regions with prevailing deep 404 

(winter) mixed layers show smaller increases in fCO2w, which are the regions of increasing 405 

negative flux trends in our analysis.  406 

 407 

3.2 Comparison of AOML_ET with the Takahashi 2010 (Tak-2010)  408 

 409 

For this comparison the fluxes derived from AOML_ET in 2010 are compared to the climatology 410 

of Takahashi centered on 2010. The fluxes determined in AOML_ET in 2010 and the Tak-2010 411 

climatology are very similar in magnitude and pattern. For the global comparison of the 412 

AOML_ET and Tak-2010, the surface areas are normalized. That is, the global fluxes in Tak-413 

2010 are scaled by 1.15 to account for the smaller ocean area covered. The global average sea-air 414 

CO2 flux and monthly variability expressed as the standard deviation of the monthly values in 415 

2010 are -2.03 ± 0.46 and -1.86 ± 0.52 Pg C for the AOML_ET and Tak-2010, respectively.  416 

 417 

The fluxes in both products show a seasonality with greatest uptake of about 0.2 Pg C mo
-1

 from 418 

November through March and smallest uptake of about 0.1 Pg C mo
-1

 in August (Figures 7a,b). 419 

Overall, the differences in global monthly uptake between products is small at less than 0.05 to 420 

0.1 Pg C mo
-1

, with largest differences in February-March (Figure 7c). The tropical regions 421 

(14˚S-14˚N) are areas with persistent outgassing throughout the year in both products with Tak-422 

2010 showing greater outgassing during the boreal spring and summer compared to AOML_ET 423 

(Figure 7). This is attributed, in part, to the fact that by nature Tak-2010 does not capture modes 424 

of interannual variability such as caused by the El Niño Southern Oscillation (ENSO). The lower 425 

outgassing within the 14˚N to 14˚S band in the boreal spring year of 2010 when El Niño 426 

conditions persisted, as shown in AOML-ET in 2010, would not be reflected in Tak-2010. The 427 

latter part of the year 2010 which experienced La Niña conditions shows very similar magnitudes 428 

of fluxes in the tropics between products (Figures 7a,b). Similarities in products include that the 429 

regions from 50˚N to 14˚N, and 50˚S to 14˚S are sinks, with wintertime for the respective 430 

hemispheres showing greater uptake for both products. The exception is that 50˚N to 14˚N has 431 

effluxes from July through September. The high latitudes (> 50˚N/S) are areas with persistent 432 

sinks with summertime showing the largest negative fluxes in line with increased biological 433 

productivity drawing down the surface water fCO2w (Takahashi et al., 2009). In the seasonal ice 434 

zone (> 62 ˚S) wintertime uptake is negligible, largely because of ice cover.  435 

 436 
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Figure 7c provides a bar chart of the differences between AOML_ET in 2010 and Tak-2010 per 437 

zonal region where small differences in monthly fluxes between products are attributed to 438 

differences in the extrapolation/gap filling method applied to the fCO2w values as gas transfer 439 

velocities and fCO2a are the same. Of note is that the differences are zonally compensating with 440 

adjacent regions of both positive and negative differences in each month and bands partially 441 

offsetting each other. Aside from differences in the tropical region described above, there are 442 

also small differences between the AOML_ET and Tak-2010 products in the 14˚N -50˚N and 443 

14˚S -50˚S regions. In the 14˚N-50˚N zonal band the AOML_ET product shows less uptake for 444 

much of the year except from July through September when the region outgasses for both 445 

products but with greater outgassing in Tak-2010 (Figure 7b,c). The differences between 15˚S 446 

and 50˚S largely counteract the differences to the north except from October through December 447 

when AOML_ET shows less uptake compared to Tak-2010. 448 

 449 

The subpolar divergence zone and marginal ice zones in the Southern Hemisphere represented 450 

by the bands from 50˚S-62˚S and >62˚S are postulated to represent a CO2 source based on 451 

calculated values of fCO2w from pH sensors on profiling floats (Gray et al., 2018; Bushinsky et 452 

al., 2019). Few data exist in this region within the SOCAT database, particularly in wintertime 453 

such that the flux values reported for these regions will largely be dependent on gap filling. Both 454 

products show uptake in the summer months (November-March) and less uptake in the winter. 455 

The subpolar divergence zone in the Tak-2010 climatology shows weak outgassing while the 456 

AOML_ET shows a weak sink. Physically, a source is expected in this area due to upwelling of 457 

deep water with high CO2 values, thus, the results here suggest that the training data for 458 

AOML_ET is insufficient to train the algorithm for this region, and that the climatology 459 

interpolation with an advection scheme provides a slightly better representation. Overall, the two 460 

very different approaches of data utilization and gap filling show reasonable agreement 461 

suggesting that different interpolation/gap filling approaches do not have a determining effect on 462 

zonal fluxes even in data sparse regions.  463 

 464 

3.3 Sensitivity of fCO2w to predictor variables and change of target variable  465 

 466 

The different interpolation methods, and differences in the resulting fCO2w and flux maps have 467 

been discussed by others (Fay et al., 2021; Gregor et al., 2019; Stamell et al., 2020 and 468 

references therein) and we limit our discussion to the AOML_ET output only. Quantitatively 469 

assessing the sensitivity of fCO2w to predictor variables in the ET method is challenging due to 470 

inherent cross correlations between variables. Thus we use feature importance to assess the 471 

influence of predictor variables to construct fCO2w fields (Figure 8). Location, expressed as the 472 

sum of Latitude ( LAT); and vector longitudes, sine (SLON) and cosine (CLON), with a score of 473 

0.35, has the greatest importance, in part because no bagging or clustering is performed on the 474 

fCO2w data, other than the initial binning in the creation of the monthly 1˚ by 1˚ SOCAT product. 475 

This is followed by SST with a score of 0.22. This strong dependence of fCO2w with SST is 476 

similar to most other gap filling techniques (Bennington et al., 2022), due to the strong physical 477 

and chemical dependency of fCO2w with temperature with ∂fCO2w ∂T
-1

 = 0.042 (Wanninkhof et 478 

al., 2022). Time (Julian day, JDN) is the main driver of trends due to the increasing atmospheric 479 

CO2 levels over time. While several gap filling approaches, notably MLR interpolations, have 480 

shown weak correlation with Chl-a, Chl-a is important in construction of the AOML_ET with a 481 

score of 0.1. The other predictor variables, MLD, and SSS,  each have similar scores of ≈0.1.  482 
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 483 

The impact of omitting predictor variables on global CO2 fluxes is summarized in Figure 3a 484 

which shows AOML_ET output created without MLD and separately without Chl-a. These 485 

predictor values were selected for omission as their quality and resolution are of lower fidelity 486 

than the other predictors, particularly at the start of the record. MLD are model derived and Chl-a 487 

is a satellite ocean color product interpolated for regions and times with cloud cover. Overall, 488 

with these predictor variables omitted, no large impacts are seen in the global annual averages 489 

with all runs showing approximately the same magnitude, variability and trends, within their 490 

monthly variability of 0.3 Pg C y
-1 

(Figure 3a). Omitting Chl-a increases the annual global uptake 491 

by about 0.2 Pg C y
-1

 up to 2018 after which the global uptake decreases by 0.3 Pg C y
-1 

between 492 

2018 and 2020 compared to the default AOML_ET configuration. Omitting MLD has a much 493 

smaller global effect with differences < 0.1 Pg C y
-1

 for the record up to 2018 after which the 494 

uptake follows the same pattern as omitting Chl-a. Adding the second moment of the wind <u
2
> 495 

as a predictor variable does not show any differences with the default AOML_ET, except from 496 

2018 onward when uptake using <u
2
> is about 0.1 Pg C y

-1
 greater than the default.  497 

 498 

In contrast, a large difference in the magnitude of global fluxes was observed when training with 499 

∆fCO2 as a target variable instead of fCO2w. Resulting net sea-air CO2 fluxes are -3 Pg C in 1998 500 

and -4 Pg C in 2020 or approximately 2 to 1.5 Pg C y
-1

 greater uptake than the default 501 

AOML_ET version. (Figure 3a). The trend in the flux with time is less as well compared to the 502 

default configuration. The trend for the ∆fCO2 target run from 1998-2020 is -0.55 Pg C y
-

503 
1
decade

-1
 compared to -0.9 Pg C y

-1 
decade

-1 
for the default AOML_ET product. The trend using 504 

∆fCO2 is more in line with other ML approaches that show an average trend of -0.7 Pg C y
-1

 505 

decade
-1

 since 1998 (Table 1). The cause for the poor agreement in magnitude of the global flux 506 

combined with the lower trend using ∆fCO2 instead of fCO2w is unclear. Changes ∆fCO2 over 507 

time are expected to be relatively small with time as on decadal timescales the fCO2w closely 508 

tracks fCO2a due to the relatively rapid equilibration time of surface waters with the marine 509 

boundary layer of 3-6 months. This could explain the lower trend but as noted the large flux 510 

should lead to decreasing the ∆fCO2
 
over time

 
and cause a

 
strong feedback that would not 511 

maintain such a flux. 512 

 513 

As shown in the Taylor diagram (Fig 3b) the different permutations do not appreciably impact 514 

the RMSE, variability (as expressed as a standard deviation of all data over the 23-year 515 

timespan) or correlation coefficient, r
2
 of fCO2w with all simulations showing a RMSE between 516 

18 and 22 µatm; a r
2
 between 0.83 and 0.88 and a standard deviation between 33 and 37 µatm 517 

compared to the standard deviation of data on 42 µatm (Figure 3b). The run where ∆fCO2 is used 518 

instead of fCO2w as the target variable instead of fCO2w shows the best statistics with a RSME of 519 

18 µtm, a standard deviation of 37 µatm, and r
2
 of 0.88. However, as noted above the magnitude 520 

and trend of the fluxes determined in this configuration is very different from the default 521 

configuration with magnitudes not consistent with other available products (DeVries et al., 522 

2023).  523 

 524 

3.4 Sensitivity to data quality and quantity 525 

 526 

The product using the AOML_ET procedure with the gridded data comprised of datasets flagged 527 

A and B with accuracy better than 2 µatm shows small differences with the default product with 528 
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slightly smaller uptake (≈ 0.2 Pg C y
-1

) over the first part of the record and from 2013 onward 529 

(Figure 3a). Using only higher quality data lead to less gridded data points and slightly degrades 530 

statistics (Figure 3b) with an r
2
 of 0.82 and RMSE of 22 µatm. Th default AOML_ET product 531 

has a r
2
 of 0.87 and a RSME of 20. The A,B product also shows less variability at 33 µatm 532 

compared to 35 µatm of the default AOML_ET product for the 1998-2020 time period. The 533 

slightly reduced variability can, in part, be explained by the fact that the higher quality data is 534 

generally from the open ocean that exhibits less variability than the coastal seas. As suggested in 535 

Hauck et al. (2023), the SOCAT database contains more near-shore data in the latter part of the 536 

record with lower fCO2w values and larger variability. This leads to a possible artifact in 537 

estimating trends and variability using the full SOCAT dataset. A more thorough analysis is 538 

required to separate the impacts of a using a subset of higher quality data versus the resulting 539 

reduced number of observations. In particular data denial approaches are a powerful means of 540 

investigation. 541 

 542 

3.5 Sensitivity to fCO2a  543 

 544 

Sea-air CO2 fluxes are very sensitive to the magnitude of the ∆fCO2 (=fCO2w-fCO2a). A bias in 545 

∆fCO2 of 1 µatm globally will change the global annual sea-air CO2 flux by ≈ 0.2 Pg C. The 546 

fCO2a are often measured in conjunction with fCO2w, but fluxes are commonly derived using an 547 

independent XCO2a that is zonally averaged, like the MBL-RS. However, the zonal homogeneity 548 

in XCO2a is not reflected in fCO2a (Eqn. 4) with systematic regional differences in barometric 549 

pressure (P) and saturation water vapor pressure (pH2O). These can cause zonal differences up to 550 

≈16 µatm in fCO2a even with constant XCO2a (Figure 9). The P and pH2O will both affect the 551 

fCO2w and fCO2a in a similar fashion such that errors in P and pH2O will not have a large impact 552 

on ∆fCO2 as long as the same P and SST products are used to calculate both fCO2w and fCO2a. 553 

Variability in fCO2w in the open ocean is up to 10 times larger than fCO2a. However, systematic 554 

differences in fCO2a can be of importance due to the small global sea-air disequilibrium of ≈ -6 555 

µatm (Figure 10) driving the fluxes. 556 

 557 

During fall and winter months, air flowing off continents generally has higher CO2 due to fossil 558 

fuel burning and net ecosystem respiration on land. This leads to higher XCO2a over many 559 

coastal seas and larger influxes/lower effluxes, particularly along the heavily industrialized 560 

eastern continental boundaries in the Northern Hemisphere due to the prevailing westerly winds 561 

at those latitudes. During spring and summer, however, carbon uptake on land due to terrestrial 562 

photosynthesis can lead to negative zonal anomalies in XCO2a which causes decreased ocean 563 

uptake, especially in coastal regions. Northcott et al. (2019) showed from extrapolating 564 

nearshore observations that the higher PBL XCO2 could enhance global ocean CO2 uptake by 1 565 

%. 566 

 567 

The impact of higher XCO2a in coastal regions can be discerned by using the spatially resolved 568 

CT-PBL product compared to the zonally averaged MBL-RS product. Of note is that this effect 569 

will be quantitatively similar for fluxes derived for all the different ML and interpolation 570 

approaches. The difference in CT-PBL product versus the MBL-RS product on global scales is 571 

small because the global averages of XCO2a between the MBL-RS and CT-PBL products are 572 

similar. The global monthly ocean sink differences using the CT-PBL compared to the MBL-RS 573 

XCO2 from 2000-2020 are -0.02 ± 0.05 Pg C with the CT-PBL product showing slightly greater 574 
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fluxes into the ocean on average. No appreciable year-to-year differences are observed. The 575 

regional differences can be large with this change, particularly in the winter months. The largest 576 

differences are off the East Coasts of North America and Asia. Figure 11 shows the differences 577 

in the 30-35˚N latitude band for 2010 between fluxes derived from the MBL-RS and CT-PBL as 578 

a representative example. The entire latitude band shows the characteristic seasonal pattern for 579 

the subtropics with a strong sink in winter and weak source in summer with an annual average 580 

for 2010 of -0.61 mol m
-2

 y
-1

 for the MBL-RS product and -0.66 mol m
-2

 y
-1

 for the CT-PBL 581 

product. The Mid Atlantic Bight (MAB) off the coast of the USA (30-35˚N, 75-70˚W) and 582 

Yellow Sea (30-35˚N, 120-125˚W) show wintertime enhancement of uptake by 6 and 21 %, 583 

respectively in agreement with a similar exercise performed by Palter et al. (2023, accepted 584 

GRL). The differences in spring and summer are smaller with the MAB showing a slightly 585 

decreased influx during May for the CT-PBL attributed to XCO2a drawdown on land due to the 586 

springtime increase in terrestrial biological productivity.  587 

 588 

3.6 Sensitivity to the gas transfer velocity  589 

 590 

Different gas transfer velocity formulations and wind speed products can impact the global flux 591 

estimates with past studies indicating that this is a primary source of uncertainty in global flux 592 

estimates (Woolf et al., 2019). The impact of time averaging and the effect of different wind 593 

fields has been investigated (Wanninkhof et al., 2002; Roobaert et al., 2018; and Gregor et al., 594 

2019) but conical quadratic wind speed relationships to parameterize gas transfer are used in 595 

most flux estimates, including those in RECCAP2 (DeVries et al., 2023) and the GCB 596 

(Friedlingstein et al., 2022). A common procedure is to normalized the coefficient in the 597 

relationship (Eqn. 5) to a global average wind and gas transfer velocity value (Fay et al., 2021). 598 

Less emphasis has been placed on different functionalities of parameterizations (Wanninkhof et 599 

al., 2009). The different functionalities are of increasing importance with improved high 600 

resolution wind speeds and ∆fCO2 mapped products such that the variability of ∆fCO2 and <u
2
> 601 

are better represented. Two gas exchange wind parameterizations are compared which are both 602 

in accord with the global ocean bomb 
14

C inventories. The default parametrization is depicted in 603 

Eqn. 5, and the polynomial expression is shown in Eqn. 6 that is sometimes listed as a hybrid 604 

dependency. The rationale of the two parameterizations based on the controls of gas transfer at 605 

the interface is described in Wanninkhof et al. (2009).  606 

 607 

The results show negligible global flux differences of 0.003± 0.011 Pg C between a quadratic 608 

dependency with wind, (Eq. 5) and hybrid expression (Eqn. 6). The uncertainly is captured in the 609 

standard deviation of annual differences from 1998-2020. While the results are the same on 610 

global scale, the different gas transfer parameterizations show significant differences in regional 611 

patterns of fluxes. Figure 12 shows maps of differences in fluxes between the quadratic and 612 

hybrid relationships for January and July 2010. The hybrid expression shows larger fluxes in 613 

select tropical and other low wind, doldrum, regions with winds persistently less than 5 m s
-1

. 614 

These are areas with mostly effluxes of CO2. The effect of lower winds in the Northern 615 

Hemisphere tropical and subtropical regions during July is apparent compared to the windier 616 

times in the boreal winter (Figure 12b). Only few regions show larger fluxes at high winds (≈> 617 

13 m s
-1

)
 
with the hybrid expression. Notably, parts of the Bering Sea in January 2010 show 618 

higher fluxes with the hybrid parameterization and since the region has positive ∆fCO2, the 619 

hybrid parameterization leads to higher effluxes. Mid-latitude regions with prevailing winds 620 
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between 5 and 13 m s
-1

 will have lower k660 with a hybrid parameterization and correspondingly 621 

show lower fluxes. 622 

4 Conclusions 623 

The AOML_ET method described here is one of the observation-based fCO2 approaches used in 624 

RECCAP2 to interpolate fCO2w observations into uniform fields, and determine global sea-air 625 

CO2 fluxes on monthly 1˚ by 1˚ resolution. The ET approach may suffer from spurious results in 626 

under sampled regions compared to other ML mapping approaches. However its merits include 627 

transparency and computational efficiency. The average flux of the AOML_ET method falls in 628 

line with other approaches but with a greater long term trend from 1998-2000 and slightly less 629 

interannual variability than other ML methods. The results for the year 2010 compare favorably 630 

in terms of both the magnitude of the flux and seasonal and regional variability with the 631 

Takahashi climatology centered on 2010. The analysis of using a different subset of the SOCAT 632 

database based on quality criteria shows broad similarities but less variability with the higher 633 

quality observation subset, likely because the high quality-only dataset is distributed more 634 

heavily in the open ocean. Therefore, the impact of higher quality data cannot be clearly 635 

discerned in this exercise as use of only higher quality data corresponds to lower data density 636 

which also may lead to lower variability in general. The changes in RMSE and r
2
 for the 637 

different permutations of predictor and target values summarized in Figure 3b show no 638 

appreciable differences in flux estimates on global scales, but differences show up in regional 639 

patterns. The regional differences often are compensation leading to the good correspondence on 640 

global scales. This agrees with other analyses (e.g. Gregor et al., 2019) who show that that the 641 

different ML approaches yield similar global estimates. While agreement is encouraging, a 642 

caveat is that the same gridded fCO2w dataset is used such that the true  uncertainty in fluxes is 643 

likely underestimated.   Similar predictors are used in all ML approaches and uncertainty and 644 

biases in predictor values are often not incorporated into the uncertainty estimates. Largest 645 

differences in ML approaches are apparent in the trends and are correlated with the magnitude of 646 

fluxes at the beginning of the record, which in this analysis is 1998.  647 
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https://doi.org/10.5281/zenodo.7990823, Zenodo. The fluxes of the AOML_ET approach with 664 

different input variables are stored at NCEI. [links provided at acceptance]   665 

  666 

References 667 

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., et al. (2016). A 668 

multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas 669 

(SOCAT). Earth Syst. Sci. Data 8, 383-413. http://www.earth-syst-sci-data.net/8/383/2016/ 670 

 671 

Bennington, V., Galjanic, T., & McKinley, G. A. (2022). Explicit Physical Knowledge in 672 

Machine Learning for Ocean Carbon Flux Reconstruction: The pCO2-Residual Method. Journal 673 

of Advances in Modeling Earth Systems, 14(10), https://doi.org/10.1029/2021MS002960. 674 

 675 

Bryan, K., & Lewis, L. J. (1979). A water mass model of the World Ocean. Journal of 676 

Geophysical Research: Oceans, 84(C5), 2503-2517. https://doi.org/10.1029/JC084iC05p02503.  677 

 678 

Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R., Baker, D., Mazloff, M. R., et al. 679 

(2019). Reassessing Southern Ocean air-sea CO2 flux estimates with the addition of 680 

biogeochemical float observations. Global Biogeochemical Cycles, 33(11), 1370-1388. 681 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GB006176 682 

Chau, T. T. T., Gehlen, M., & Chevallier, F. (2022). A seamless ensemble-based reconstruction 683 

of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans. 684 

Biogeosciences, 19(4), 1087-1109. https://bg.copernicus.org/articles/19/1087/2022/ 685 

 686 

DeVries, T., Yamamoto, K., Wanninkhof, R., Gruber, N., Hauck, J., Müller, J. D., et al. (2023). 687 

Magnitude, trends, and variability of the global ocean carbon sink from 1985-2018. Global 688 

Biogeochemical Cycles, e2023GB007780. https://doi.org/10.1029/2023GB007780 689 

 690 

Dlugokencky, E.J., Thoning, K.W., Lan, X. & Tans, P.P.  (2021). NOAA Greenhouse Gas 691 

Reference from Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML 692 

Carbon Cycle Cooperative Global Air Sampling Network. 693 

Data Path: https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/. 694 

 695 

Doney, S. C., Busch, D. S., Cooley, S. R., & Kroeker, K. J. (2020). The impacts of ocean 696 

acidification on marine ecosystems and reliant human communities. Annual Review of 697 

Environment and Resources, 45(1), 83-112. https://doi.org/10.1146/annurev-environ-012320-698 

083019 699 

 700 

Fay, A. R., & McKinley, G. A. (2013). Global trends in surface ocean pCO2 from in situ data. 701 

Global Biogeochemical Cycles, 27(2), 541-557. https://doi.org/10.1002/gbc.20051 702 

 703 

Fay, A. R., & McKinley, G. A. (2014). Global open-ocean biomes: mean and temporal 704 

variability. Earth Syst. Sci. Data, 6(2), 273-284. http://www.earth-syst-sci-data.net/6/273/2014/ 705 

 706 

https://gml.noaa.gov/aftp/data/trace_gases/co2/flask/surface/


manuscript submitted to Global Biogeochemcial Cycles 

 

Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M., et al. (2021). 707 

SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a 708 

standardized approach. Earth Syst. Sci. Data, 13(10), 4693-4710. 709 

https://essd.copernicus.org/articles/13/4693/2021/ 710 

 711 

Fay, A. R., Munro, D. R., McKinley, G., Pierrot, D., Sutherland, S., Sweeney, C., & 712 

Wanninkhof, R. (2023). Updated climatological mean delta fCO2 and net sea–air CO2 flux over 713 

the global open ocean regions. Earth System Science Data, submitted.  714 

 715 

Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., et 716 

al. (2022). Global Carbon Budget 2021. Earth System Science. Data, 14(4), 1917-2005. 717 

https://essd.copernicus.org/articles/14/1917/2022/ 718 

 719 

Gregor, L., Lebehot, A. D., Kok, S., & Scheel Monteiro, P. M. (2019). A comparative 720 

assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning 721 

ensemble (CSIR-ML6 version 2019a) – have we hit the wall? Geosci. Model Dev., 12(12), 5113-722 

5136. https://gmd.copernicus.org/articles/12/5113/2019/ 723 

 724 

Gregor, L., & Gruber, N. (2021). OceanSODA-ETHZ: a global gridded data set of the surface 725 

ocean carbonate system for seasonal to decadal studies of ocean acidification. Earth Syst. Sci. 726 

Data, 13(2), 777-808. https://essd.copernicus.org/articles/13/777/2021/ 727 

 728 

 729 

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 730 

63(1), 3-42. https://doi.org/10.1007/s10994-006-6226-1 731 

 732 

Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Talley, L. D., et al. 733 

(2018). Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the 734 

high-latitude Southern Ocean. Geophys. Res. Let. http://dx.doi.org/10.1029/2018GL078013 735 

 736 

Hauck, J., C. Nissen, P. Landschützer, C. Rödenbeck, S. Bushinsky, and A. Olsen (2023), Sparse 737 

observations induce large biases in estimates of the global ocean CO2 sink: an ocean model 738 

subsampling experiment, Philosophical Transactions of the Royal Society A: Mathematical, 739 

Physical and Engineering Sciences, 381(2249), 20220063, doi:10.1098/rsta.2022.0063. 740 

 741 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). 742 

The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 743 

1999-2049. https://doi.org/10.1002/qj.3803.  744 

 745 

IPCC, 2018: Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An IPCC 746 

Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and 747 

related global greenhouse gas emission pathways, in the context of strengthening the global 748 

response to the threat of climate change, sustainable development, and efforts to eradicate 749 

poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. 750 

Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. 751 

Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge 752 

https://gmd.copernicus.org/articles/12/5113/2019/


manuscript submitted to Global Biogeochemcial Cycles 

 

University Press, Cambridge, UK and New York, NY, USA, pp. 541-562, 753 

https://doi.org/10.1017/9781009157940.008. 754 

 755 

Jacobson, A. R., et al. (2020), CarbonTracker CT2019B, edited, NOAA Global Monitoring 756 

Laboratory, https://doi.org/10.25925/20201008. 757 

 758 

Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., et al. 759 

(2005). The two-way nested global chemistry-transport zoom model TM5: algorithm and 760 

applications. Atmos. Chem. Phys., 5(2), 417-432. https://acp.copernicus.org/articles/5/417/2005/. 761 

 762 

Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., et al. 763 

(2013). A neural network-based estimate of the seasonal to inter-annual variability of the 764 

Atlantic Ocean carbon sink. Biogeosciences, 10(11), 7793-7815. 765 

http://www.biogeosciences.net/10/7793/2013/ 766 

 767 

Landschützer, P., Gruber, N., & Bakker, D. C. E. (2016). Decadal variations and trends of the 768 

global ocean carbon sink. Global Biogeochemical Cycles, 30(10), 1396-1417. 769 

https://doi.org/10.1002/2015GB005359. 770 

 771 

Landschützer, P., Gruber, N., Bakker, D. C. E., Stemmler, I., & Six, K. D. (2018). Strengthening 772 

seasonal marine CO2 variations due to increasing atmospheric CO2. Nature Climate Change. 773 

https://doi.org/10.1038/s41558-017-0057-x 774 

 775 

Li, Z., Adamec, D., Takahashi, T., & Sutherland, S. C. (2005). Global autocorrelation scales of 776 

the partial pressure of oceanic CO2. Journal of Geophysical Research: Oceans, 110(C8). 777 

https://doi.org/10.1029/2004JC002723. 778 

 779 

Lida, Y., Takatani, Y., Kojima, A., & Ishii, M. (2021). Global trends of ocean CO2 sink and 780 

ocean acidification: an observation-based reconstruction of surface ocean inorganic carbon 781 

variables. J. Oceanogr., 77, 323-358.  782 

 783 

Magnan, A. K., Colombier, M., Bille, R., Joos, F., Hoegh-Guldberg, O., Portner, H.-O., et al. 784 

(2016). Implications of the Paris agreement for the ocean. Nature Clim. Change, advance online 785 

publication. Commentary. http://dx.doi.org/10.1038/nclimate3038 786 

 787 

McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., & Lovenduski, N. S. (2020). External 788 

forcing explains recent decadal variability of the ocean carbon sink. AGU Advances, 1(2), 789 

e2019AV000149. https://doi.org/10.1029/2019AV000149.  790 

 791 

Müller, J. D. (2023). RECCAP2-ocean data collection [Version V1]. 792 

https://doi.org/10.5281/zenodo.7990823, Zenodo 793 

 794 

Northcott, D., Sevadjian, J., Sancho-Gallegos, D. A., Wahl, C., Friederich, J., & Chavez, F. P. 795 

(2019). Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in 796 

nearshore waters. PLoS ONE, 14(3), e0214403. https://doi.org/10.1371/journal.pone.0214403 797 

 798 

https://doi.org/10.1017/9781009157940.008
https://doi.org/10.5281/zenodo.7990823


manuscript submitted to Global Biogeochemcial Cycles 

 

Palter, J. B., Nickford, S., & Mu, L. (2023). Ocean carbon dioxide uptake in the tailpipe of 799 

industrialized continents. Geophysical Research Letters, accepted.  800 

 801 

Pierrot, D., Neil, C., Sullivan, K., Castle, R., Wanninkhof, R., Lueger, H., et al. (2009). 802 

Recommendations for autonomous underway pCO2 measuring systems and data reduction 803 

routines. Deep -Sea Res II, 56, 512-522.  804 

 805 

Rödenbeck, C., D. C. E. Bakker, N. Gruber, Y. Iida, A. R. Jacobson, S. Jones, et al. (2015). 806 

Data-based estimates of the ocean carbon sink variability –first results of the Surface Ocean 807 

pCO2 Mapping intercomparison (SOCOM). Biogeosciences, 12, 7251-7278.  808 

 809 

Rödenbeck, C., DeVries, T., Hauck, J., Le Quéré, C., & Keeling, R. F. (2022). Data-based 810 

estimates of interannual sea–air CO2 flux variations 1957–2020 and their relation to 811 

environmental drivers. Biogeosciences, 19(10), 2627-2652. 812 

https://bg.copernicus.org/articles/19/2627/2022/ 813 

 814 

Roobaert, A., Laruelle, G. G., Landschützer, P., & Regnier, P. (2018). Uncertainty in the global 815 

oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis. 816 

Biogeosciences, 15(6), 1701-1720. https://www.biogeosciences.net/15/1701/2018/ 817 

 818 

Stamell, J., Rustagi, R. R., Gloege, L., & McKinley, G. A. (2020). Strengths and weaknesses of 819 

three Machine Learning methods for pCO2 interpolation. Geosci. Model Dev. Discuss., 2020, 1-820 

25. https://gmd.copernicus.org/preprints/gmd-2020-311/ 821 

 822 

Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L., & 823 

Wanninkhof, R. (2007). Constraining global air-sea gas exchange for CO2 with recent bomb C-824 

14 measurements. Global Biogeochem. Cycles, 21(2), GB2015.  825 

 826 

Takahashi, T., Feely, R. A., Weiss, R., Wanninkhof, R., Chipman, D. W., Sutherland, S. C., & 827 

Takahashi, T. T. (1997). Global air-sea flux of CO2: An estimate based on measurements of sea-828 

air pCO2 difference. Proc. Natl. Acad. Sci. USA, 94, 8292-8299.  829 

 830 

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., et 831 

al. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 832 

flux over the global oceans. Deep -Sea Res II, 2009, 554-577.  833 

 834 

Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin, C., Bakker, D. C. E., et al. 835 

(2009). Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing 836 

neural network. Biogeosciences, 6, 1405-1421.  837 

 838 

Wanninkhof, R., Doney, S. C., Takahashi, T., & McGillis, W. R. (2002). The effect of using 839 

time-averaged winds on regional air-sea CO2 fluxes. In M. Donelan, W. Drennan, E. Saltzman, 840 

& R. Wanninkhof (Eds.), Gas Transfer at Water Surfaces .Geophysical Monograph 127, pp. 841 

351-357. Washington, DC: AGU, Geophysical Monograph 127. 842 

 843 



manuscript submitted to Global Biogeochemcial Cycles 

 

Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. S., & McGillis, W. R. (2009). Advances 844 

in quantifying air-sea gas exchange and environmental forcing. Annual Reviews Mar. Science, 1, 845 

213-244,.  846 

 847 

Wanninkhof, R., Park, G.-H., Chelton, D., & Resien, C. (2011). Impact of small-scale variability 848 

on air-sea CO2 fluxes. In S. Komori, W. McGillis, & R. Kurose (Eds.), Gas transfer at water 849 

surfaces 2010 (pp. 431-444). Kyoto: Kyoto University Press. 850 

 851 

Wanninkhof, R., Bakker, D., Bates, N., Olsen, A., & Steinhoff, T. (2013). Incorporation of 852 

alternative sensors in the SOCAT database and adjustments to dataset quality control flags. 853 

Retrieved from Oak Ridge, Tennessee: https://doi.org/10.3334/CDIAC/OTG.SOCAT_ADQCF 854 

 855 

Wanninkhof, R. (2014), Relationship between wind speed and gas exchange over the ocean 856 

revisited, Limnol and Oceanogr: Methods, 12, 351-362, 857 

https://doi.org/10.4319/lom.2014.12.351. 858 

 859 

Wanninkhof, R., Pickers, P. A., Omar, A. M., Sutton, A., Murata, A., Olsen, A., et al. (2019). A 860 

Surface Ocean CO2 Reference Network, SOCONET and Associated Marine Boundary Layer 861 

CO2 Measurements. Frontiers in Marine Science, 6, 400. 10.3389/fmars.2019.00400. 862 

https://www.frontiersin.org/article/10.3389/fmars.2019.00400 863 

 864 

Wanninkhof, R., Pierrot, D., Sullivan, K., Mears, P., & Barbero, L. (2022). Comparison of 865 

discrete and underway CO2 measurements: Inferences on the temperature dependence of the 866 

fugacity of CO2 in seawater. Marine Chemistry, 247, 104178. 867 

https://www.sciencedirect.com/science/article/pii/S0304420322000950 868 

 869 

Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., Landschützer, P., et al. 870 

(2020). Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon 871 

inventory. Nature Communications, 11(1), 4422. https://doi.org/10.1038/s41467-020-18203-3 872 

 873 

 874 

Weiss, R. F., & Price, B. A. (1980). Nitrous oxide solubility in water and seawater. Mar. Chem., 875 

8, 347-359. ,https://doi.org/10.1016/0304-4203(80)90024-9. 876 

 877 

Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., & Nakaoka, S. (2014). A Global Surface 878 

Ocean fCO2 Climatology Based on a Feed-Forward Neural Network. Journal of Atmospheric 879 

and Oceanic Technology, 31, 1838-1849. doi:https://doi.org/10.1175/JTECH-D-13-00137.1. 880 

 881 

Appendix: 882 

 883 

The default configurations of the ET sea-air CO2 flux product, AOML_EXTRAT, submitted to 884 

RECCAP2 , was produced to meet the RECCAP2 requirements and nomenclature. The output 885 

provided for RECCAP2 are pCO2 values on a 1˚ by 1˚ monthly grid. The details of the predictor 886 

and target variables, units, and nomenclature as prescribed by RECCAP2, and those used 887 

AOML_EXTRAT_1998-2020 are provided in  Table A1. If the AOML_ET parameters are 888 

different than specified in RECCAP2 they are added in italics. 889 
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Appendix Table A1  891 

Creation of pCO2 maps 892 

Variables
1
    abbrev.  unit  Source/notes  893 

Training set 894 

Partial pressure of CO2  spCO2  µatm  monthly gridded data SOCATv2020
2 

895 

Fugacity of CO2  fCO2w  µatm  SOCAT v2020
3                           

. 896 

Sea surface temperature SST  ˚C  gridded data SOCAT v2020 897 

Sea surface salinity  SSS    gridded data SOCAT v2020 898 

Mixed layer depth  MLD    HYCOM model
4
   899 

Julian day   JDN  mo  month since Oct. 1997 900 

Latitude   LAT  degree 901 

Longitude   SLON  degree  vector longitude (SIN) 902 

Longitude    CLON  degree  vector longitude (COS) 903 

 Chlorophyll-a   Chl-a  log (mg/l)        oceancolor.gsfc.nasa.gov 904 

 905 

Dependent variable/ Target 906 

Partial pressure of CO2 spCO2  µatm  for surface water 907 

Fugacity of CO2  fCO2w  µatm  for surface water 908 

 909 

Predictor/Interpolation variable 910 

Sea surface temperature  STT  ˚C  NOAA OISST 911 

Sea surface salinity  SSS    HYCOM 912 

Mixed layer depth  MLD  m       HYCOM 913 

Chlorophyll-a   Chl-a  log (mg/l)        oceancolor.gsfc.nasa.gov
5
 914 

Julian day   JDN  mo  month since Oct. 1997 915 

Latitude   Lat 916 

Longitude   SLON    vector longitude (SIN) 917 

Longitude    CLON    vector longitude (COS) 918 

 919 

Determination of flux maps 920 

Dependent variable  921 

Sea-air CO2 flux density Fsa  mol m
-2

 s
-1

 Fsa = k K0 (1-fice) (pCO2atm-spCO2) 922 

Sea-air CO2 flux density  Fsa  mol m
-2

 y
-1

 Fsa = k K0 (1-fice) (fCO2w-fCO2a) 923 

Sea-air piston velocity Kw  m s
-1

  Wanninkhof (1992, 2014) 924 

Gas transfer velocity   k  cm hr
-1

  Wanninkhof (2014)                     . 925 

Schmidt number  Sc    Wanninkhof (2014) 926 

Second moment wind  <u
2
>  m

2
s

-2  
ERA5 wind

6
 927 

Solubility   alpha  mol kg
-1

atm
-1

  Weiss and Price (1980) 928 

Solubility   K0  mol l
-1

atm
-1

 Weiss and Price (1980) 929 

Ice cover   fice  fraction             NOAA OISST
7
 930 

Water partial pressure  spCO2
  

µatm  SOCAT  931 

Water fugacity of CO2  fCO2
  

µatm  SOCATV2020  932 

Air partial pressure  pCO2atm
8

 µatm    zonal mo. average xCO2 MBL-RS 933 

Air fugacity of CO2  fCO2a
9

  µatm  zonal mo. average xCO2 MBL-RS  934 

Partial pres. difference ∆pCO2  µatm  pCO2atm- spCO2 935 

Air-water fugacity difference ∆fCO2  µatm  fCO2w-fCO2a
 

936 
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Global Flux   fgco2_glob Pg C y
-1

 Efflux negative in RECCAP2 937 

Flux    F  Pg C y
-1 

Efflux positive 938 

 939 

1. Extra Trees (ET) regressors used to estimate the spCO2/fCO2w values are: date, location, sea 940 

surface temperature, sea surface salinity, mixed-layer depth, and chlorophyll concentration. 941 

2. SOCAT data are converted from fCO2 to pCO2 to meet the RECCAP2 submission criteria. 942 

These are gridded products based on the monthly 1˚ by 1˚ gridded SOCATv2020 data 943 

holdings using datasets with QC flags of A through D, and SOCAT data points flagged with 944 

WOCE flag values of 2. See, 945 

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0210711/ 946 

SOCATv2020_Gridded_Dat/ SOCATv2020_tracks_gridded_monthly.nc. The submission to 947 

RECCAP2 for the time period October 1997- December 2018 uses data from SOCATv2020 948 

while the analysis in this paper uses SOCATv2021 and covers the time period October 1997- 949 

December 2020. 950 

3. Two Different SOCATv2020 products are used in our analyses, the first is the default (see 951 

footnote 2) and a product using only datasets labeled A and B with accuracies better than 2 952 

µatm (compared to 5 µatm in the full dataset). 953 

4. Mixed layer depth is based on a criteria of 0.03 change in density and provided in 954 

http://orca.science.oregonstate.edu/2160.by.4320.monthly.hdf.mld030.hycom.php  955 

5. Chl-a are from the NASA Ocean color Monthly Fields from SeaWiFS, and AQUA/TERRA-956 

MODIS from: https://oceancolor.gsfc.nasa.gov/. 957 

6. From https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 where the 6-hourly 958 

winds are aggregated on the monthly 1˚ by 1˚ grid to produce the second and third moments 959 

of the wind, <u
2
>, and <u

3
>. 960 

7. From ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2/icec.mnmean.nc following the approach of 961 

Takahashi et al, (2005) where k is scaled by (1-f) where f is the fraction of sea-ice covering 962 

the monthly 1˚ x 1˚ grid.  963 

8. pCO2atm = P (1-pH2O) XCO2a where XCO2a is the interpolated MBL-RS product from 964 

NOAA/GML: https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html#ghg_product. 965 

9. fCO2a = Gf(T,S) (P -pH2O) XCO2a where, Gf(T,S) is the fugacity correction and pH2O is the 966 

water vapor correction as summarized in Pierrot et al. (2009). P is the barometric pressure. 967 

 968 

 Figures 969 
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 970 
 971 

Figure 1. Global net air-sea CO2 fluxes from 1998-2020 determined with a variety of ML and 972 

regression approaches. Data are from https://globalcarbonbudgetdata.org/latest-973 

data.html [Global_Carbon_Budget_2022v1.0.xlsx] [0.65 Pg C is subtracted to get the 974 

net air-sea CO2 flux]. For references of the methods see caption Table 1.  975 

 976 

https://globalcarbonbudgetdata.org/latest-data.html
https://globalcarbonbudgetdata.org/latest-data.html


manuscript submitted to Global Biogeochemcial Cycles 

 

 977 
Figure 2. The canonical dependence of gas transfer with the square of square the windspeed, 978 

k660= 0.251 <u
2
> (blue line) and a hybrid dependence k660= 3 + 0.1 <u>

 
+ 0.083 <u

2
> + 979 

0.011 <u
3
> meeting the same global uptake of bomb 

14
C constraint. For wind between 5 980 

and 13 m s
-1 

the wind speed squared relationship will yield larger gas transfer 981 

velocities, outside this range the hybrid dependence yields greater fluxes.  982 

  983 
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 984 

 985 
 986 

Figure 3. (a) Global net air-sea CO2 fluxes from 1998-2020 using different predictor and target 987 

variables for the AOML_ET method. Black line: default AOML_ET; blue line: 988 

SOCAT data flagged A or B < 2µatm only; green dashed line: omitting Chl-a as 989 

predictor; red dashed line: omitting MLD as predictor; yellow dashed line: including 990 

<u
2
> as predictor; and pink dashed line: using ∆fCO2 instead of fCO2w as target. The 991 

thin gray line shows the monthly variation in flux for AOML_ET (b) a Taylor diagram 992 

of the AOML_ET values for the permutations listed in a.  993 
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 996 

 997 

 998 
 999 

 1000 

 1001 

Figure 4. Flux maps for January (a) and July (b) 2010 using AOML_ET providing a visual 1002 

depiction of spatial and seasonal changes for 2010. Color bar units [mol m
-2

 y
-1

]. 1003 
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 1005 
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 1008 

 1009 

 1010 

 1011 

 1012 

 1013 
Figure 5. Relationship between global ocean CO2 uptake in 1998 and trend from 1998 to 2020 1014 

for different ML methods. The linear relationship plotted (Trend [Pg C y
-1

]) = 0.11 - 1015 

0.03 Flux(1998) R
2
 =0.84) does not include the ML approaches of NIESS-NN and 1016 

UoEx. For references of the methods see caption in Table 1.   1017 
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 1020 

 1021 
 1022 

 1023 
 1024 

Figure 6. (a) Map of differing trends in sea-air CO2 fluxes from 1998-2020 in mol m
-2

 y
-2

 and (b) 1025 

P-values for trend for AOML_ET. The large trends both positive and negative have P 1026 

values of less than 0.01 that are statistically significant.  1027 
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 1037 
 1038 

 1039 
 1040 

Figure 7. Regional monthly zonal fluxes based on the (a) AOML_ET effort; that of (b) Tak-1041 

2010, scaled to the same surface area (x1.15); and (c) the difference. The different 1042 

zones following Takahashi et al. (2009) are listed in the legend. The lines with blue 1043 

circles are the net monthly fluxes for 2010. Fluxes are expressed in [Pg C per month]. 1044 

 1045 

 1046 
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 1047 
 1048 

 1049 

Figure 8. Importance of the different predictor variables in the AOML_ET analysis. Location 1050 

(latitude (Lat), and longitude (SLON and CLON) has the greater importance for 1051 

predictability followed by SST. The other products, Julian day (JDN), Mixed layer 1052 

depth (MLD-Hycom _0.03), sea surface salinity (SSS) , and Chlorophyll-a (Chl-a) have 1053 

similar impact.  1054 
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 1056 
Figure 9. Zonal average XCO2a (red line with circles); fCO2a at fixed temperature of 16.1˚C and 1057 

pressure of 1 atm (dashed green line with diamonds); and fCO2a at measured 1058 

temperature and pressure (dashed blue line with squares) for June 2010.  1059 
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 1061 

 1062 
 1063 

 1064 

 1065 

Figure 10. Global net flux for the default AOML_ET approach using  data sets flagged A-D (red 1066 

line), and datasets A,B (blue line) versus global average ∆fCO2. The regression between 1067 

net flux and ∆fCO2 is 0.214 Pg C/µatm, (r
2
 =0.99) for all data, and 0.227 Pg C/µatm , (r

2
 1068 

=0.99) for A, B data only, omitting the datapoint for 2020. 1069 
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 1071 

 1072 

 1073 
Figure 11. Monthly averaged air-sea CO2 fluxes in the 30˚-35˚N latitude band using different 1074 

XCO2a products and the AOML_ET for fCO2w values. The MBL XCO2a product (solid 1075 

line; solid circles) and PBL XCO2a product (dashed lines; open circles) are shown 1076 

versus month for 2010. The blue lines are zonally averaged fluxes for 30˚-35˚N ; the 1077 

green lines are fluxes over the Yellow Sea (30˚-35˚N); the red lines are the fluxes over 1078 

the Mid-Atlantic Bight (30˚-35˚N). The horizontal solid and dashed blue lines are the 1079 

annual average fluxes using the MBL and PBL products, respectively in the 30˚-35˚N 1080 

latitude band.  1081 

  1082 



manuscript submitted to Global Biogeochemcial Cycles 

 

 1083 
 1084 

 1085 

Figure 12. Maps of differences in air-sea CO2 fluxes between the square wind speed and hybrid 1086 

relationships for gas transfer for January (a) and July (b) 2010 using AOML_ET. The 1087 

flux densities for January and July using AOML_ET and the default wind speed 1088 

squared relationship are shown in Figure 4. Color bar has units of [mol m
-2

 y
-1

]. 1089 

  1090 



manuscript submitted to Global Biogeochemcial Cycles 

 

Table 1.  Summary of magnitude variability and trends of global air-sea CO2 fluxes from 1091 

different Machine Learning Approaches. Annual data from  1092 

 1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 1116 

 1117 

 1118 

 1119 

 1120 

a. All data, except AOML-ET are from https://globalcarbonbudget.org/carbonbudget/. AOML 1121 

ET: AOML Extra Trees (this work); MPI-SOMFFN  (Landschützer et al., 2016); Jena-MLS 1122 

(Rödenbeck et al., 2022); CMEMS (Chau et al., 2022 ): GRaCER (Gregor & Gruber, 2021);  1123 

NIES_NN  (Zeng  et al., 2014); JMA-MLR (Lida et al., 2021); CSIR(Gregor et al., 2019) 1124 

UoEx (Watson et al., 2020)  1125 

b. Twenty-three year average (1998-2020) of the annual global values for each approach in Pg 1126 

C 1127 

c. Trend based on a linear regression  of the twenty three years of annual global air-sea CO2 1128 

fluxes in Pg C decade
-1

 1129 

d. Coefficient of determination  1130 

e. Standard error from the linear trend 1131 

f. Global air-sea CO2 flux  in 1998 for each of the methods 1132 

g. Global air-sea CO2 flux  in 2020 for each of the methods 1133 

h.  Average, minimum, and maximum of the methods (listed in bold) excluding the 1134 

permutations of AOML_ET (in italics). 1135 

 1136 

 1137 

Studya Average 

1998-

2020b 

 

Trendc r2,d StErrore Flux 

1998f 

Flux 

2020g 

     Pg C 

 Pg C 

decade-1  Pg C Pg C 

 

Pg C 

AOML_ET -1.70 -0.89 0.92 0.19 -0.72 -2.54 

AOML_ET_ABonly -1.60 -0.97 0.88 0.25 -0.49 -2.42 

AOML_ET-Chla -1.82 -0.87 0.86 0.24 -0.71 -2.33 

AOML_ET_MLD -1.72 -0.87 0.88 0.23 -0.80 -2.28 

AOML_ET+<U2> -1.72 -0.94 0.93 0.17 -0.71 -2.72 

AOML_ET_∆fCO2 -3.60 -0.55 0.91 0.12 -3.22 -3.99 

MPI-SOMFFN -1.91 -0.79 0.93 0.15 -1.17 

 

-2.56 

Jena-MLS -1.99 -0.51 0.63 0.26 -1.83 -2.60 

CMEMS -1.94 -0.63 0.92 0.13 -1.54 -2.88 

GRaCER -2.12 -0.57 0.95 0.09 -1.74 -2.66 

JMA-MLR -2.36 -0.50 0.77 0.19 -2.18 -3.25 

NIES_NN -2.01 -0.98 0.93 0.18 -1.24 -3.42 

CSIR -2.08 -0.79 0.96 0.11 -1.53 -3.02 

UoEx -2.43 -0.83 0.92 0.17 -1.90 -2.89 

Averageh -2.06 -0.7 0.88 0.16 -1.53 -2.87 

Min.h -1.70 -0.5 0.63 0.09 -0.70 -2.54 

Max.h -2.43 -0.98 0.96 0.26 -2.18 -3.42 


