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Abstract

The emission potential, which represents the total leachable mass in landfill waste body, is hard to measure directly. Therefore

we propose to quantify it by assimilating available measurements. The leachate production rate is influenced by the total water

storage in the waste body, while both total chloride mass and total water storage in the waste body influence the chloride

concentration in the leachate. Thus assimilating leachate volume and chloride concentration simultaneously will help quantify

the uncertainties in emission potential. This study investigated the feasibility of using particle filter in a concentration-volume

coupled travel time distribution model to estimate the emission potential. Leachate production rates and chloride concentrations

were assimilated simultaneously by a weakly coupled data assimilation(WCDA) method. The time lag issue in the travel time

distribution model was solved by adding a daily model error to cover layer states. The proposed method was tested in synthetic

experiments firstly to investigate the performance. The results show that the uncertainties in chloride mass and waste body

total water storage were quantified and reduced. The predictions of chloride concentrations were also improved.
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Key Points:6

• A new weakly coupled particle filtering method on a travel time distribution model7

is used for landfill emission potential estimation.8

• Analysis clearly demonstrates added value derived from assimilating both leachate9

production rate and concentration measurements.10

• The effectiveness of data assimilation is maximized when the measurable state exhibits11

a strong sensitivity to the pertinent hidden state.12

Corresponding author: Liang Wang, l.wang-10@tudelft.nl

–1–



manuscript submitted to Water Resources Research

Abstract13

The emission potential, which represents the total leachable mass in landfill waste body,14

is hard to measure directly. Therefore we propose to quantify it by assimilating available15

measurements. The leachate production rate is influenced by the total water storage in16

the waste body, while both total chloride mass and total water storage in the waste body17

influence the chloride concentration in the leachate. Thus assimilating leachate volume18

and chloride concentration simultaneously will help quantify the uncertainties in emission19

potential. This study investigated the feasibility of using particle filter in a concentration-20

volume coupled travel time distribution model to estimate the emission potential. Leachate21

production rates and chloride concentrations were assimilated simultaneously by a weakly22

coupled data assimilation(WCDA) method. The time lag issue in the travel time distribution23

model was solved by adding a daily model error to cover layer states. The proposed method24

was tested in synthetic experiments firstly to investigate the performance. The results show25

that the uncertainties in chloride mass and waste body total water storage were quantified26

and reduced. The predictions of chloride concentrations were also improved.27

Plain Language Summary28

This study presents a method for estimating the amount of harmful chloride in land-29

fill waste and predicting leachate emissions. By combining measurements of water flow30

(leachate production rate) and chloride concentration, we improved our understanding of31

total water storage and chloride mass in the waste. Our approach performed best when32

both measurements were assimilated, and the leachate production rate was sensitive to the33

variations in water storage within the waste body. The method showed promise in estimat-34

ing both water storage and chloride mass with correct model parameters, paving the way35

for future research on understanding uncertainties caused by model parameters.36

1 Introduction37

Municipal solid waste(MSW) landfill leachate is a primary source of pollution to the38

surrounding environment because it is a source of contamination for soil and groundwater39

(Brand, 2014; Gworek et al., 2016; Fatoba et al., 2021). The environmental risk of leachate40

is determined by its composition and the amount released to the environment. The leachate41

flux from old landfills is mainly controlled by the water balance of the landfill which depends42

on precipitation and evapotranspiration. Leachate composition is influenced by the water43

storage and pollutant mass present in the waste body (Yang et al., 2015; Grugnaletti et44

al., 2016; Laner et al., 2011). Also, reliable predictions of leachate emissions in the long45

term require a quantitative assessment of total pollutant mass and water storage in the46

waste body. As such, this quantitative assessment is an important criterion to determine47

the aftercare strategy (Kattenberg & Heimovaara, 2011).48

Direct measurement of pollutant mass and water storage is virtually impossible due to49

the size and heterogeneity of waste bodies. Instead, an alternative approach can be used,50

based on using a forward model predicting leachate flux and composition and simulating the51

evolution of pollutant mass and water storage in the waste body. A series of deterministic52

models have been developed to predict leachate production in landfills. Pantini et al. (2014)53

developed a process-based landfill water balance model where biodegradation and waste54

compression processes are included. The initial water storage in the model is obtained by55

a preliminary optimization process. Grugnaletti et al. (2016) got more accurate leachate56

production predictions by carrying out a step-by-step parameter calibration. It is generally57

known that the contaminants are leached out from waste through preferential flow (Fellner58

& Brunner, 2010). J. Zhang et al. (2021) proposed a pollutant concentration, leakage rate,59

and a solute transport coupled model that allows prediction of concentrations. Quantifying60

initial values for total water storage in the waste body is required for prediction of leachate61

production rates, and in addition initial total mass is required when the concentration also62

–2–
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needs to be predicted. Generally, the initial values are often approximated by waste charac-63

teristics (São Mateus et al., 2012; Yang et al., 2015). However, these estimations could be64

biased because of the significant spatial variation in initial states and the lack of information65

on waste composition. Furthermore, some parameters in these deterministic models can be66

quantified through lab experiments. Nevertheless, similar small-scale laboratory investiga-67

tions of waste characteristics usually result in wrong estimations of the actual behaviour of68

full-scale landfills (Fellner et al., 2009).69

In recent years, Bayesian inference has been widely applied to hydrology models. It70

allows for estimating the probability distribution of model parameters by comparing model71

results with available measurements. We have recently developed a travel time distribu-72

tion(TTD) model to predict leachate production rate (LPR) and chloride concentration73

from landfill waste bodies. Parameters in this model are obtained by optimization using74

the DREAMzs algorithm (Vrugt, 2016), a Markov chain Monte Carlo (MCMC) method for75

Bayesian inference. The detailed model results analysis will be published soon, and the audi-76

ence can refer to the supporting information for model equations. Although good pridiction77

results are obtained in the model, obtaining parameters by fitting or ’history-matching’ to78

data is generally a batch processing method that defines the best fit in an average way. This79

implies that we get the best fit of the measured data over the whole time range rather than80

the best estimation of model states. Hence, it cannot recursively benefit from new informa-81

tion from new measurement data to infer model states (Liu & Gupta, 2007). Also, it usually82

ignores the uncertainty in model structure and input data. Thus, the total water storage83

and pollutant mass simulation in the waste body could be biased. Significant uncertainty in84

model states remains, leading to considerable uncertainty in the long-term future prediction85

of landfill emissions.86

Data assimilation (DA) is another Bayesian inference method. It is widely used because87

of its power to recursively assimilate new measurements to improve understanding of im-88

measurable or hidden states (Liu et al., 2012; Carrassi et al., 2018). Most DA experiments89

consist of a forecast step and an analysis step. Model states are propagated with time using90

a forward model to get predictions, and then measurements are used to filter the predictions91

in analysis steps. Because of its sequential updating characteristic, it is possible to integrate92

model, input, and measurement errors.93

Among the main data assimilation methods such as Kalman filter (Kalman, 1960) and94

ensemble Kalman filter (Evensen, 2003), particle filter (PF) (Djurić et al., 2003) is designed95

to deal with fully nonlinear systems. It has been widely used in hydrology (Plaza Guingla96

et al., 2013; Vrugt et al., 2013; H. Zhang et al., 2017; Abbaszadeh et al., 2019). Many of the97

models used with PF, like Hymod (Moore, 1985), are too simple to represent the water and98

mass transport in landfills. Also, most models used so far only estimate water storage states.99

We developed the coupled TTD model to predict the leachate production rates and chloride100

concentrations (see supporting information). Since the concentration states are coupled to101

the water balance model, we can also estimate the total mass.102

The application of DA in the proposed TTD model is a coupled data assimilation103

(CDA) problem, as the coupled model directly updates both pollutant concentration and104

water volume states. The CDA is popular because of its ability to make each model com-105

ponent receive information from measurements in other domains (S. G. Penny & Hamill,106

2017; S. Penny et al., 2019; Laloyaux et al., 2016; Smith et al., 2015; Tardif et al., 2015).107

Weakly CDA concepts are developed, where the individual model domains are predicted108

simultaneously by forward models but updated separately by measurements (S. G. Penny &109

Hamill, 2017). In strongly CDA, states are updated simultaneously by cross-assimilation of110

measurements in all domains (Ng et al., 2009), but the required interaction physics between111

components remains challenging (S. Zhang et al., 2020). Most CDA systems in practical112

applications are weakly CDA (S. Zhang et al., 2020).113
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In a synthetic experiment, comparative research was performed by El Gharamti et al.114

(2013), where an ensemble Kalman filter was used in a 2D subsurface flow-transport coupled115

model. The hydraulic head and contaminant concentration observations in multiple wells116

are assimilated to estimate the evolution of these two states. However, hydraulic head can117

barely represent the water storage in landfill due to the high spatial heterogeneity of water118

distribution. Also, the risk of losing mass balance in the model exists in ensemble Kalman119

filter as the model states are adjusted by measurements directly. Particle filtering approaches120

can preserve the mass balance because the measurements are used to weigh particles instead121

of adjusting particles.122

This study investigates the feasibility of using a particle filtering approach in a landfill123

TTD model for estimating the emission potential. The emission potential is determined by124

the waste body’s pollutant mass states and water storage states. Based on our knowledge, no125

research has used particle filtering approaches to estimate both volume quantities and solute126

concentrations in hydrochemical coupled models. We also believe this is the first time data127

assimilation has been used to estimate landfill emission potential. Moreover, mass state128

estimation remains a problem in many data assimilation applications in hydrology. Six129

synthetic assimilation scenarios were tested to verify the proposed method and optimize the130

assimilation strategy. Several implementation steps of the algorithm were adjusted to make131

it suitable for the TTD model. The uncertainties of these hidden states were quantified, and132

improvement in prediction was evaluated. The chloride mass in the landfill was selected as133

the representative emission potential in this research.134

2 Methods135

This data assimilation framework uses a coupled TTD model as the forward model.136

The weakly coupled particle filter was used as a data assimilation algorithm. The first137

part of this section describes the theory of weakly coupled particle filter. The second part138

introduces the forward model and its specific characteristics, which must be addressed in139

the DA application. The last part concerns synthetic experiment design, implementation140

procedure, and performance estimation matrices.141

2.1 Weakly coupled particle filter142

2.1.1 Sequential importance sampling143

The weakly coupled PF is based on the sequential importance sampling (SIS) PF.144

Model and measurement equations are required during the state estimation process as given145

by Arulampalam et al. (2002). We take xt to represent a state vector that contains all the146

model states at the current time step t. Firstly, the state vector is propagated from the147

former time step to the current step with the model equation148

xt = Mt(xt−1) + εmodel (1)149

where Mt(·) denotes the forward model, and εmodel represents the model error vector caused150

by different sources of uncertainty. The state vector will then be linked to measurements151

through the measurement equation152

yt = Ht(xt) + εmea (2)153

in which Ht(·) denotes the measurement operator that connects model states to measured154

states, and εmea represents the measurement error vector.155

The main task of state estimation is to estimate the probability density function (pdf)156

of immeasurable states based on measurement series. We use the subscript 1 : t to represent157

the time range from the initial step to step t. Hence, y1:t are the available measurements till158

current step t and p(x | y1:t) represents the pdf of current state vector x given y1:t. Bayes’159
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theorem is used to calculate p(x | y1:t), the so-called posterior pdf, by combining prior pdf160

p(x | y1:t−1) from last time step with likelihood pdf p (yt | xt) as161

p (xt | y1:t) =
p (yt | xt) p

(
xt | y1:t−1

)
p
(
yt | y1:t−1

) (3)162

If the posterior pdf p(xt−1 | y1:t−1) at the previous assimilation step is known, the prior163

pdf p(xt | y1:t−1) could be calculated as p (yt | xt) as164

p(xt | y1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1 (4)165

Then we obtain the aim posterior pdf p(x | y1:t) as166

p(xt | y1:t) =
p (yt | xt)

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

p
(
yt | y1:t−1

) (5)167

The core idea of sequential importance sampling is to approximate the required pdf168

through N independent particles with weight wi respectively. More specifically, sampling169

from p(xt−1 | y1:t−1) means several particles are obtained from the previous time step.170

p(xt | xt−1) indicates propagating these particles with forward model (equation 1). p(yt |171

y1:t−1) is a normalization factor in making sure the sum of pdf is 1. Therefore the posterior172

pdf p (xt | y1:t) can be calculated as173

p(xt | y1:t) ≈
N∑
i=1

wi
tδ(xt − xi

t) (6)174

In which δ represents the Dirac delta function. N is the number of particles. The wi
t is175

calculated recursively as176

wi
t =

wi
t−1p(yt | xi

t)∑N
i=1(w

i
t−1p(yt | xi

t))
(7)177

The conditional probability p(yt | xt) is often computed as178

p(yt | xt) = exp
{
−0.5[yt −Ht(x

i
t)]

TR−1[yt −Ht(x
i
t)]

}
(8)179

where Ht(·) is the measurement operator, R is the error covariance of the measurements180

(Van Leeuwen, 2009). Common statistics can be easily acquired with the posterior pdf or181

weighted particles. For instance, the mean of state vector x is calculated as182

xt =

N∑
i=1

wi
tx

i (9)183

2.1.2 Systematic resampling184

Particle degeneracy is one main limitation of sequence importance sampling, which oc-185

curs after several assimilation steps when the weights of all but one particle can be neglected.186

The effective ensemble size is used to evaluate the degeneracy problem. It is computed as187

Neff
t =

1∑N
i=1(w

i
t)

2
(10)188

When the effective ensemble size is smaller than N/2, resampling should be performed. The189

idea of resampling is duplicating particles with high weights and discarding those with low190

weights. After that, all weights will be set as 1/N . The general resampling algorithms in-191

clude multinomial, stratified, systematic, and residual resampling methods. In this research,192

systematic resampling is used as it has good resampling quality. A more detailed description193

of resampling algorithms is given in Hol et al. (2006).194
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2.1.3 Weakly coupled data assimilation (WCDA)195

Coupled data assimilation is used when there is more than one measurement type.196

Also, a coupled model should be available. In WCDA, a coupled model is used to predict197

all the model states at the current time step, while the weighting and updating steps are198

performed within each component domain. Then the updated states are propagated to the199

next step by the coupled model. Although the measurements in one model domain are used200

to update the states in the same domain, the coupled model propagates the information to201

the other domain(S. Zhang et al., 2020). The details about the implementation of WCDA202

are introduced in section 2.7.203

2.2 Coupled travel time distribution model204

The coupled travel time distribution (TTD) model predicts leachate production rates205

and chloride concentrations. For a detailed description of the coupled TTD model, we refer206

the readers to the supporting information where we present the governing equations and207

selected model parameters. Here we briefly introduce the model to help understand the208

approach.

Figure 1. A schematic overview of model structure.

209

As shown in Figure 1, the model consists of two layers representing a cover layer and210

waste body in a landfill. The forcing data at the top boundary are rainfall (R) and potential211

evapotranspiration (Pev), which will enter or leave the landfill from the cover layer. The212

water storage in the cover layer determines the amount of water (qinf ) infiltrating to waste213

body. The waste body is conceptually divided into a single bulk storage and P cells to214

represent different travel times of water parcels before they flow out. The time difference215

between neighbouring cells is one day. So, the leachate in the last cell takes P days to go216

out. The base flow from the bulk will be distributed to P cells by a baseflow travel time217

distribution function. Similarly, the qinf from the cover layer is distributed to the waste218

body with another constant travel time distribution function.219

Similar to the transport model from El Gharamti et al. (2013), the chloride concen-220

tration is one-way coupled in the water balance model. The concentration states in P221
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cells are determined by time propagation, as well as distributed leachate from baseflow and222

infiltration from the cover layer. The parameters and initial states were optimized using223

DREAM(ZS) (Vrugt, 2016; Shockley, 2020). The state vector is given by224

xt = [Vclt ,Mclt , Cclt , vbulkt ,mbulkt , cbulkt , vcellit ,mcellit
, ccellit ]

T (11)225

where i represents i th cell state. The concentration defined as c = m/v applies to all226

elements in the conceptual model. Also, Vwbt = vbulkt
+

∑P−1
i=0 vcellit and Mwbt = mbulkt

+227 ∑P−1
i=0 mcellit

are used in the following parts to represent the entire storage states in the waste228

body. Cwb indicates the average concentration in the waste body.We use capital letters to229

represent the overall state variables of each layer, and we use lowercase letters to represent230

all internal variables. A detailed explanation of the variables in the model is presented in231

the nomenclature list.232

2.3 Specific model characteristics233

2.3.1 One way coupled model234

The TTD model we use is based on a one-way coupling between water volume and235

chloride concentration. The leachate production rates only contain information on water236

volume states, while the concentration states depend both on water volume and solute mass.237

However, it is unknown how much information concentration measurements contain about238

water volume states. Is it possible to only assimilate concentration measurements or do239

we need both the leachate outflow and concentration measurements? El Gharamti et al.240

(2013) always use the concentration measurements to update the water head states, while241

the research does not investigate the benefits of assimilating both measurements compared242

to assimilating only one. For example, it could be that when assimilating both measurement243

types, we may get poorer estimation results for volume states when the concentration mea-244

surements contain significant measurement errors. In order to explore this issue, we have245

designed different scenarios to investigate the optimal assimilation strategy.246

2.3.2 Time lags in TTD model247

In particle filtering approaches, we can estimate hidden states in the model using mea-248

surements of observable states because the measurements contain some information about249

hidden states. Assuming the model is not entirely correct, the model errors will be added to250

model states during the state propagation process. If the errors are only added to observable251

states in the state vector, the diversity of hidden states may disappear with resampling. In252

other words, adding model errors to hidden states gives us the possibility to explore the253

hidden state space. The hidden states with model error will be assessed in the following254

time steps because they influence the measurable states. However, if this influence is weak255

or does not exist, the hidden states will be updated randomly, and the estimation will be256

poor (Plaza Guingla et al., 2013).257

In the forward TTD model we use, we have explicit time lags between many model258

states and measurements because the travel time distribution considers the time informa-259

tion explicitly. For instance, the oldest cell states will only influence the measurements260

after P − 1 days. This time lag complicates the estimation of multiple hidden states using261

current measurements. Several studies are trying to solve these challenges with time-lagged262

measurements in data assimilation (Noh et al., 2013; Li et al., 2013; McMillan et al., 2013;263

Noh et al., 2014). McMillan et al. (2013) used the current measurements to update states264

at previous time steps within the time lag. Noh et al. (2013, 2014) used the measurements265

after an extended time to estimate current model states to consider the time lag effect.266

These methods use the forward models as measurement operators to link the model states267

to corresponding lagged measurements. In these approaches, the assumption is that the for-268

ward models are accurate for this extended prediction; otherwise, the representation error269

(Janjić et al., 2018) in the measurement operator should be considered. The maximum time270
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lag in the landfill TTD model we use is around five years. This is much longer than those271

previously used in distributed catchment models. Consequently, model error accumulation272

is expected to be severe during the extended prediction process(Noh et al., 2013, 2014), so273

it is unreasonable to assume a correct model for such a long prediction period. Additionally,274

the TTD model has thousands of states which are lagged in time, whereas the published275

applications usually have time lag issues for only one hidden state. To overcome these issues276

we have developed a specific strategy for the TTD model.277

In the TTD landfill model, the cell states are propagated with time. After P (the278

number of cells) days, there will be a connection among all cells and bulk states. We call279

this implicit relationship ’history’. We can estimate hidden states by current measurements280

if this’ history’ is maintained. Hence, the initialization of particles and the model errors281

should guarantee this ’history’. The implementation strategy is further explained in section282

2.7.283

2.4 Site and data description284

The model parameter calibration is based on actual measurements from the Braamber-285

gen landfill in the Netherlands (Duurzaam stortbeheer, 2023). Daily meteorological forcing286

data (same as model resolution) are obtained from the nearest weather station affiliated with287

Royal Dutch Meteorological Institute (KNMI) (2023). The leachate is pumped out from the288

drainage system, and the daily production volume is acquired. The chloride concentration289

is measured by sampling from the drainage layer generally with a bi-weekly frequency(with290

some larger intervals up to 28 days). In practical cases, there are many irregular values291

in daily production rate measurements because of the management of the leachate pump292

system by the landfill operator. When the pump system is broken, the outflow remains in293

the drainage layer, resulting in an observed leachate production volume of zero. Afterward,294

the water is pumped out, a large leachate volume is measured. In order to limit the ef-295

fect of these operational irregularities, seven days’ average leachate production rates were296

calculated from the cumulative leachate measurements and used as measurements. The297

measurement equations for leachate production rate and chloride concentration are:298

LPRt =

∑t
i=t−6 vcell0i

7
+ εLPRmea (12)299

Ct = ccell0t + εCmea
(13)300

2.5 Synthetic truth generation301

Synthetic experiments are often designed to evaluate the performance of data assimi-302

lation techniques. Artificial truth states are generated by running a known forward model.303

If the DA algorithm is effective, estimated states or parameters are expected to converge to304

the synthetic truth by assimilating the simulated measurements obtained from the forward305

model. The method of creating artificial truth is highly dependent on the aim of the applied306

DA technique and the assumption of existing underlying uncertainties. The primary sources307

of uncertainty for a deterministic model are errors in forcing data, initial states, model pa-308

rameters, and model concepts. The most simple scenario assumes that the model is correct309

and only adds white noise to simulated measurements as measurement error. Weerts and310

El Serafy (2006) perturbed forcing data to consider the forcing data uncertainties in a state311

estimation problem. Plaza Guingla et al. (2013) further added Gaussian noise to model312

parameters, although only model states are updated in that research. Li et al. (2013) chose313

to perturb the state variables in a probability-distributed hydrological model. All the uncer-314

tainties above are considered to be included in state variables. Gelsinari et al. (2020) used315

the ’truth’ generated from the unperturbed model, while the model used in assimilation is316

with a perturbed parameter set. Since we aim to assess the feasibility of estimating emis-317

sion potential in the TTD model by coupled particle filter, we assume the forward model318
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parameters to be correct in order to simplify the problem. The initial states and input data319

were perturbed in order to simulate a scenario where we have a poor understanding of initial320

states, and the input measurements are inaccurate.321

The initial states in 2003 were obtained from model calibration in order to generate322

a synthetic truth. Zero mean Gaussian error with a standard deviation of 10% × cini and323

10%× vini were added to perturb the initial states. Zero-mean Gaussian errors were added324

to daily rainfall and potential evapotranspiration during the simulation period from 2003 to325

2021. The uncertainty range of rainfall is often chosen as (0−15%)×Rt (Weerts & El Serafy,326

2006). Here the standard deviation of random rainfall error was set as 15% × Rt. The327

perturbation of evapotranspiration followed Plaza Guingla et al. (2013) where a 30%×Pevt328

standard deviation was used.329

Although this study primarily focuses on synthetic experiments, we aim to adapt the330

framework to accommodate the assimilation of real-world data for further research. Hence,331

the data assimilation frequency was set to be identical to the frequency of the real concen-332

tration measurements.333

Once the simulation results are obtained as synthetic truth, the measurement errors334

should be added to observable states to simulate measurements as shown in equation 12 and335

equation 13 . The standard deviations of Gaussian measurement error are selected as 10%336

of LPRt and Ct, respectively.337

All the errors are presented in Table 1. It is worth emphasizing that although we try338

to simulate the actual case in the synthetic experiment, the artificial truth is only trying to339

approach the natural world in the context of a proof-of-concept study (Matgen et al., 2010).340

Table 1. Standard deviation of Gaussian random errors for truth generation

Variables R Pev vini cini

Standard deviation 0.15×Rt 0.3× Pevt 0.1× vini 0.1× cini

vini and cini represent all the initial volume and concentration states
in the model.

2.6 Ensemble generation performance control341

The performance of DA relies on the appropriate representation of uncertainties in the342

prediction. More specifically, the model error in equation 1 should make the spread of gen-343

erated ensembles realistic compared to real measurements. Following the method proposed344

by De Lannoy et al. (2006), the ensemble spread(enspt), the mean square error(mset), and345

the ensemble skill(enskt) are calculated as:346

enspt =
1

N

N∑
i=1

(yit − yt)
2 (14)347

mset =
1

N

N∑
i=1

(yit − ymeat
)2 (15)348

enskt = (yt − ymeat)
2 (16)349

N , i, t, y, ymea represent ensemble size, ith ensemble number, assimilation time step, simu-350

lated observable states, and assimilated measurements, respectively. According to De Lan-351
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noy et al. (2006), to ensure the generated ensembles’ statistical accuracy, the following352

requirements should be considered:353

< ensk >

< ensp >
≈ 1 (17)354

<> means the average over the simulation time range. More specifically, a value larger than355

1 indicates insufficient ensemble spread, while a value smaller than 1 indicates excessive356

spread. If the truth is indistinguishable from a member of the ensemble, the following357

equation should be true(De Lannoy et al., 2006):358

<
√
ensk >

<
√
mse >

≈
√

N + 1

2N
(18)359

360

When both leachate production rate and concentration measurements are assimilated,361

we need a sufficiently large ensemble spread in the simulated output. This is achieved by362

manually optimizing the standard deviations of model error. Firstly we obtained the model363

error for the cover layer water storage using an interval search to get an appropriate spread in364

leachate production rate simulations. If the spread for concentration states is not sufficient365

or excessive with the chosen model error, we adjust the initial uncertainty range for the366

concentration states. Using this approach allows us to obtain a good ensemble spread for367

concentration states while not making the spread in leachage production excessive.368

2.7 Implementation procedure369

Based on the theory and model characteristics, the implementation of sequential im-370

portance resampling in this coupled TTD model is as follows:371

1. Initialization: from the model calibration results, we take one parameter set and initial372

states in 2003. The initial samples are sampled from Gaussian distributions where373

the means are the optimized initial values. Initially, the corresponding percentiles of374

standard deviations in Gaussian distributions are set to be the same as the ones used375

in the generation of synthetic initial states (see table 1). Subsequently, the standard376

deviations undergo adjustment to meet the ensemble spread criteria, as is discussed in377

section 3.1. With a warm-up simulation, the samples are propagated to the starting378

date of data assimilation on the 19th June 2012, a time step 7 days earlier than the379

first measurement date. The reason to perform this warm-up propagation is that we380

need to build connections among waste body states. Otherwise, the time lag between381

bulk states and measurements will make the estimation unreliable.382

2. Update step: all the particles are propagated to the next assimilation step with383

eqation 1, where M(·) indicates the coupled TTD model. The choice of model error is384

crucial for representing uncertainties and ensuring a good data assimilation technique385

performance. Most studies applying particle filter or ensemble Kalman filter choose to386

add a Gaussian random error to perturb forcing data, model states, and/or parameters387

(Weerts & El Serafy, 2006; Mattern et al., 2013; Vrugt et al., 2013; Tran et al.,388

2020). Considering the time lag issue, if we add independent model error to each389

state directly, the accumulation of errors of states like vbulk will be huge after several390

years’ lag. Therefore, we choose to add daily error to Vcl. The daily errors will be391

propagated to waste body states with time, which means we are adding correlated392

model errors to waste body states. Since the influence of error in Vcl on fast flow393

cells can be estimated by measurements very quickly, we can avoid adding too much394

unreasonable errors to old states like vbulk. Additionally, this error choice maintains395

the total mass balance in all waste body volume states.396

No model error is introduced to the concentration states directly. Once the initial397

concentration values are determined, the concentration variation is assumed to be398

determined by volume states only.399
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3. Analysis step: the weights for particles are calculated by equation 7. Based on differ-400

ent assimilation strategies, we weigh the states differently. In a coupled assimilation401

scenario, the weights for volume wv and concentration states wc are calculated sep-402

arately using their corresponding measurements. Both concentration and leachate403

volume are used to calculate wm: wm = wc ∗ wv. Then wm is normalized before404

estimating the mass states. If only concentration measurements are assimilated, all405

the model states are weighted based on the concentration measurements. When only406

LPR measurements are assimilated, the weights are used to estimate all states except407

concentration states.408

4. Resampling step: this step is the same as the weights calculation, effective ensemble409

size Neff
v , Neff

c is computed according to equation 10. Then the corresponding410

particles will be resampled when Neff
t is smaller than N/2. The mass states are411

recalculated from the resampled volume and concentration states, and the weights412

wm are also updated with new wv and wc.413

5. Iteration: all former steps after initialization are repeated until the last assimilation414

step.415

2.8 Performance estimation416

Besides the evolution of hidden states, the accuracy of state estimation results is eval-417

uated with the temporal mean root-mean-square error, which is described in equation 19.418

The L indicates the number of assimilation time steps.419

MRMSE =

∑L
t=1

√∑N
i=1 w

i
t(x

i
t − xtruth

t )2

L
(19)420

The prediction accuracy is also evaluated using a logarithmic form(η) proposed by421

(Ercolani & Castelli, 2017):422

η = − ln(1−NSE) (20)423

where NSE is the Nash-Sutcliffe efficiency calculated as:424

NSE = 1−
∑T

t=1(yt − ymeat
)2∑T

t=1(ymeat − ymea)2
(21)425

where ymeat
are the measurements at time step t, yt represents the model prediction,426

and the over bar means the average over time. The logarithmic scale allows dealing with427

high NSE values(close to 1). It tends to plus infinity when the observations and predictions428

achieve a perfect match. The reliability of ensemble prediction is not considered here because429

the model error is optimized to get reliable predictions.430

2.9 Synthetic scenarios431

Different synthetic scenarios are designed to test the application’s feasibility. As shown432

in table 2, in total six scenarios are used to test the assimilation performance and get433

optimal assimilation strategy. Scenarios A,D follow the proposed coupled assimilation pro-434

cedure described above. In other scenarios, only LPR or concentration measurements are435

assimilated. Scenarios D to F are similar to A to C but with the difference that we initialize436

the simulation with much smaller initial bulk volume values. These scenarios are used to437

test the influence of the baseflow function, which will be discussed in the following part.438

Two open-loop simulations are also performed to get reference results for scenarios A − C439

and D−E. The open loop simulations have the same initial sample distributions and model440

errors as corresponding scenarios, but no measurements are assimilated to update model441

states. The related state estimation and prediction results of scenarios B − C,E − F are442

provided in the supporting information.443
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Table 2. Synthetic scenarios

Scenario Assimilate LPR Assimilate C Small initial Vbulk

A Yes Yes No
B Yes No No
C No Yes No
D Yes Yes Yes
E Yes No Yes
F No Yes Yes
OLA-C No No No
OLD-F No No Yes

3 Results and discussion444

3.1 Ensemble generation445

The appropriateness of ensemble generation and the generated initial particles on the446

starting date of data assimilation, which is the 19th of June, is verified using equations 17 and447

18. Based on the results of a preliminary sensitivity analysis of ensemble size, all experiments448

use 10240 particles to ensure stable performance. The final choice of initialization, model449

errors and the corresponding ensemble generation skills are presented in table 3.

Table 3. Ensemble generation performance

Scenario Mvbulk
σvbulk

σcbulk
ϵVcl

<ensk>
<ensp>LPR

<
√
ensk>

<
√
mse> LPR

<ensk>
<ensp>C

<
√
ensk>

<
√
mse> C

A-C 4.067 0.100 0.130 0.0145 1.002 0.651 1.082 0.587
D-E 2.000 0.100 0.100 0.0135 0.998 0.624 1.013 0.583

Note. All the initial states in 2003 are sampled from Gaussian distributions N(M,σ ×M).
The distribution parameters are the same as truth generation if not explicitly defined in
the table. Mvbulk

represents the initial mean of bulk water storage. σvbulk
and σcbulk

refer
to the standard deviation percentile of bulk water storage and chloride concentration,
respectively. ϵVcl

shows the standard deviation percentile for model error added to cover
layer water storage.

450

3.2 Assimilation performance451

The assimilation performance of the method is evaluated using the proposed perfor-452

mance matrices (equation 19 - 21). The estimation and prediction results in different sce-453

narios are compared to investigate the performance under different conditions in Table 4.454

3.2.1 Estimation of hidden states455

The estimated values for total water storage in the cover layer, chloride mass, water456

storage in the waste body are presented in Table 4. In addition, the results of average chloride457

concentration are presented to understand the state update process better. Although there458

is a small amount of chloride in the cover layer, it can be ignored compared with the amount459

in the waste body.460
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Table 4. MRMSE of estimated model states

State OLA-C A B C OLD-F D E F

Vcl[m] 7.92e-3 7.06e-3 7.36e-3 7.02e-3 6.12e-3 5.22e-3 5.41e-3 5.43e-3

Vwb[m] 0.636 0.577 0.590 0.609 0.296 0.187 0.198 0.226

Cwb[g/m
3] 258.422 83.996 264.225 87.850 197.498 52.667 183.845 58.087

Mwb[g/m
2] 1327.724 1273.604 1161.753 1388.788 640.975 310.564 482.107 388.053

3.2.1.1 Total water storage in cover layer461

As shown in Table 4, the four MRMSE values for the storage in the cover layer (Vcl) in A-C462

and OLA−C scenarios are similar. This observation is supported by the standard deviations463

of MRMSE, which are within a magnitude of 4 × 10−3m. Similar estimation performance464

is observed in scenarios D-F and OLD−F , where the standard deviations of MRMSE are465

within a magnitude of 3×10−3m. The values of the standard deviations of RMSE are in the466

uploaded output file. All the scenarios, including open loop realizations in Figure 2, Figure467

3 and Figure S1 - S4 (see the supporting information), show good consistency with actual468

states. This is caused by the buffering effect of the unsaturated soil model used to simulate469

Vcl. When saturation is high, infiltration to the waste body will be high as well. If no model470

error or forcing data errors were added, the Vcl starting with different values would converge471

to a same value after a period of time. The random model error added during DA is the472

main source for the uncertainty in Vcl. Figure 2 and Figure 3 show that the uncertainty473

ranges in scenarios A and D vary with time but within a limited bandwidth because no474

decreasing trend exists. Similar results are observed in Figure S1 - S4 in the supporting475

information when only leachate production rate or chloride concentration measurements are476

assimilated. The estimates during wet periods are better than those during dry periods.477

This is most likely caused by the limited information content of Vcl in the outflow when478

there is only little infiltration from cover layer, and the outflow is mainly dominated by479

baseflow from the waste body.480

3.2.1.2 Total water storage in waste body481

Scenarios A - C are initialized with high values for initial bulk water storage. Scenario B482

has similar waste body water storage (Vwb) estimation results as scenario A because of the483

same assimilation procedure for volume states (see Figure 4, Figure S5 in the supporting484

information). As shown in Figure 4, S5 and S6 (see supporting information), the mean485

estimation shows no noticeable improvement for the whole period in scenarios A, B and486

C. When the model is initialized with a lower value for the initial bulk water storage in487

scenarios D, E and F, the behaviour is quite different. As shown in Figure 5, S7 and S8 (see488

supporting information), the biases in the total water storage are corrected by assimilation489

of new measurements compared with the large bulk water storage scenarios. In scenarios D490

and E, the particles finally converge to true values, and the uncertainties are much smaller491

compared with the open-loop results. The MRMSE values in Table 4 also show greater492

improvement compared with large storage scenarios.493

The difference in assimilation performance of two different initial values in water storage494

is caused by the baseflow function. As discussed in the time lag issue, we can only esti-495

mate hidden states if the measurements are sensitive to their variations. Figure 6 shows the496

baseflow function, which links the bulk water storage to generated baseflow volume. Bulk497

water storage takes up a large part of the total water storage in the waste body. Hence, the498

estimation of bulk water storage is crucial for Vwb estimation. As we can see, baseflow is499

only sensitive to bulk water storage variation when bulk water storage falls between 0 and 2500

meters. In addition, Figure 7 shows the travel time distribution of baseflow. Almost all the501

generated baseflow is distributed to the oldest cell. It means the information of any change502

–13–



manuscript submitted to Water Resources Research

Figure 2. Water storage in the cover layer (scenario A). The red line represents the mean estima-
tion of the particle filter. The green and yellow lines represent the open loop results and synthetic
truth, respectively. The individual particles are shown as grey points. The two black arrows point
to the wet and dry period during the assimilation process, with corresponding probabilities plotted.
The black vertical lines in the probability histograms are the truth at specific time steps.

Figure 3. Water storage in the cover layer (scenario D). Colors of lines as in Figure 2.
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in bulk storage takes five years before it is observed in simulated leachate production rates.503

According to the synthetic truth, the bulk water storage five years before the last measure-504

ment in scenarios A-C is around 2.18m. Obviously, the information in the measurements505

to quantify bulk water storage is limited. Lower values of the bulk water storage allow the506

baseflow to reduce during the simulation time span. As a consequence, measured leachate507

production rates contain information on this reduced water storage because of lower base-508

flow values. This improves the estimate of bulk water storage and Vwb, leading to lower509

uncertainty.510

Figure S8 (see supporting information) also shows that when the information content511

of the measurements is high, the concentration measurements can be used to estimate Vwb.512

Another influencing factor of the uncertainty quantification capacity is the measurement513

error. While the measurement errors are small, it can detect smaller baseflow changes. For514

example, the bulk water content will still influence the baseflow when it varies between 2 and515

3 meters. When the measurement error is relatively large compared to the corresponding516

baseflow variation, most of the particle sets in this range will have close wights as they all517

give similar baseflow output. As shown in Figure 4, only large and small particle sets are518

discarded with assimilation. Also, the MRMSE values in Table 4 show slight improvement519

compared with open-loop results. To further quantify the uncertainty and correct the bias520

in mean estimation, the time series of measured leachate production rates should be long521

enough to capture the effect of reducing bulk water storage values in the sensitive range.522

Compared with scenario D, the mean estimation in scenario F takes more time to523

correct the bias. And the final uncertainty estimation is not as good as scenario D. It is524

because the weights in scenario F are calculated using concentration measurements, which525

are also influenced by mass states. The particles with the wrong volume and mass values but526

correct concentration values are also considered with high probability. This is also reflected527

in Table 4, where the MRMSE of scenario F is larger than D and E.528

In scenarios A, B and C, the posterior distributions in wet periods are close to the529

ones obtained during dry periods. This means that the estimation results of Vwb are stable530

during the last wet-dry cycle. However, in scenarios D and E, the posterior distributions in531

dry periods still change compared with wet periods. This indicates that the measurements532

in the last cycle still contain new information content which are being assimilated to reduce533

the uncertainty.534

3.2.1.3 Average chloride concentration in waste body535

Estimation of the average chloride concentration in the waste body is another case where the536

’history’ is required. All available measurements are linked to the first cell only. Neverthe-537

less, the estimation of the average concentration becomes possible because of the ’history’538

connection between cells and bulk. As shown in Figures 8, Figure 9, S10 and S12 (see sup-539

porting information), the uncertainties in average concentration are reduced compared with540

the open-loop results. Irrespective of the sensitivity of the baseflow to bulk water storage541

variation, the chloride in waste body bulk is the source of chloride in the mobile cells, which542

enables us to use concentration measurements to estimate the average concentration.543

As shown in Figures S9 and S11 (see supporting information), the estimations of aver-544

age concentration are poor when only Leachage Production Rate (LPR) measurements are545

assimilated. More specifically, the posterior distributions and mean estimations are very546

close to open-loop results. Although the volume states can be quantified in scenario D,547

it doesn’t help reduce the uncertainty range in average concentration. It is worth noting548

that when only concentration states are assimilated in scenarios F, Figure S12 shows larger549

uncertainty but slightly better mean estimation results compared with corresponding sce-550

nario D, where both measurements are assimilated. Although assimilation using only LPR551

measurements does not really influence the estimation of the concentration state, all the552

volume and mass state combinations with correct concentration values but wrong volume553

values will be discarded in scenarios D. The impact on the estimation step is minimal while554
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Figure 4. Water storage in the waste body in scenario A. Colors of lines as in Figure 2.

Figure 5. Water storage in the waste body in scenario D. Colors of lines as in Figure 2.
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Figure 6. Baseflow change with bulk water storage variation

Figure 7. Baseflow travel time distribution
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the diversity in predicted concentration samples is reduced because the prediction is based555

on both concentration and water storage states. Overall, the assimilation of concentration556

states helps quantify the uncertainty in concentration states.557

Figure 8. Average concentration in the waste body in scenario A. Colors of lines as in Figure 2.

3.2.1.4 Total chloride mass in waste body558

The total chloride mass in the waste body is calculated from the estimated water volume559

and concentration states. The uncertainty reduction in either volume states or concentra-560

tion states reduces the uncertainty of mass states. On the other hand, bias in estimation561

of volume or concentration states can result in bias in mass estimation even if the other562

estimation is perfect.563

As shown in Table 4, when initial bulk water storage is small, all the synthetic exper-564

iments have better MRMSE results than open-loop simulations. Assimilating both mea-565

surements achieves the best estimation results. In contrast, when the initial bulk storage is566

high, the MRMSE remains relatively high after assimilation. Starting with different initial567

bulk water content, scenario B performs best among scenarios A-C while scenario E is the568

worst among scenarios D-F. The MRMSE result for scenario B is unusually small because it569

yields a higher estimation of volume and a lower estimation of average concentration states.570

This, in turn, results in a better mean estimation of mass states.571

Figures 10 and 11 show the evolution of Mwb estimation when both measurements572

are assimilated. Scenario A shows slightly reduced posterior uncertainty, which indicates573

insufficient information in flow measurements. As a comparison, scenario D gains much more574

improvement in posterior distributions, which is because of the good estimations of both575

volume and concentration states. As discussed in section 3.2.1.2, the difference is because576

of the different sensitivities of baseflow to bulk storage volume. Similarly, the improvement577

from the wet period to the dry period in scenario D is caused by the information content in578

LPR measurements.579

When only LPR measurements are assimilated, there is little improvement in mass580

estimation if the baseflow is not sensitive to bulk storage change, as shown in Figure 13581

(see supporting information). In scenario E, as shown in Figure S15 (see supporting in-582

formation), the uncertainty range of Mwb is reduced, and the mean estimation accuracy is583

better than open-loop results. However, we cannot make a conclusion that LPR measure-584
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Figure 9. Average concentration in the waste body in scenario D. Colors of lines as in Figure 2.

ment assimilation is sufficient to quantify the uncertainty in total chloride mass. Because585

the estimation of Mwb is also controlled by the initialization of concentration states. If the586

generated initial concentration states are biased, there is always a risk of biased estimation587

of Mwb.588

In scenario C (see S14 in the supporting information), reduced uncertainty is observed,589

but the mean estimations are not better than open-loop results. However, scenario F shows590

much better mean estimation convergence compared with open-loop results. The difference591

between scenarios C and F is also mainly because of the different estimation performance592

of Vwb.593

Following the conclusion from volume and concentration estimations, solely assimilating594

LPR measurements is not sufficient for emission potential estimation. When the sensitivity595

of baseflow to bulk storage is high, we can use concentration measurements solely to estimate596

the Mwb. Assimilating both measurements achieves the best performance in the sense of597

both mean estimation and uncertainty reduction.598

3.2.2 Prediction performance599

Table 5. Prediction performance

Scenario OLA-C A B C OLD-F D E F

LPR
MRMSE[m3] 3.332 2.360 2.444 2.555 3.116 2.178 2.248 2.465

NSE 0.940 0.944 0.944 0.944 0.948 0.950 0.950 0.954
η 2.805 2.892 2.893 2.884 2.955 2.989 2.988 3.071

C
MRMSE[g/m3] 186.728 66.377 178.000 68.791 138.320 47.741 122.924 50.743

NSE 0.798 0.878 0.808 0.874 0.866 0.918 0.881 0.914
η 1.600 2.101 1.653 2.074 2.009 2.497 2.126 2.458
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Figure 10. Chloride mass in the waste body in scenario A. Colors of lines as in Figure 2.

Figure 11. Chloride mass in the waste body in scenario D. Colors of lines as in Figure 2.
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3.2.2.1 Leachate production rates600

Table 5 shows the metrics we use to quantify the quality of the predicted states. All six sce-601

narios have smaller MRMSE values and greater η values compared with the corresponding602

open-loop simulations. This indicates reduced prediction uncertainty and improved accu-603

racy. However, the η values of three scenarios with the same initial bulk storage are very604

close, and the difference between similar scenarios is small. This is also observed in Figures605

12, 13 and S17-S20 in the supporting information, where the open-loop simulations also606

have good LPR prediction performance.607

As discussed in section 3.2.1.1, the estimation of cover layer water storage has a rela-608

tively good consistency with the truth in all scenarios which guarantees the accuracy of LPR609

prediction, especially in wet periods where infiltration from the cover layer takes up most610

of the outflow. Additionally, when the bulk storage in the waste body, vbulk, reduces below611

1 m (see Figure 6), the baseflow magnitude will reduce significantly. Under such conditions612

baseflow will show a large sensitivity to infiltration from the cover layer reaching the bulk613

storage.614

Although scenario D, as shown in Figure 5, has a better waste body water storage615

estimation than scenario F (see Figure S8 in supporting information), scenario F has a higher616

η value compared with scenario D. This is because more particles smaller than one meter617

remain in the posterior distribution of scenario F, which is important to catch the effect of618

change in bulk storage on the base flow. Also, η is calculated using synthetic measurements619

which contain measurement error. There are some values smaller than truth in the dry620

period which cannot be covered by true vbulk values. This can also be observed by comparing621

Figure 13 and S20 (see supporting information), where more low LPR measurements are622

covered in scenario F.

Figure 12. LPR prediction in scenario A. The blue crosses indicate the behaviour of synthetic
measurements. Colors of lines as in Figure 2.

623
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Figure 13. LPR prediction in scenario D. Colors of lines and crosses as in Figure 12.

3.2.2.2 Chloride concentrations624

As shown in Table 5, when concentration measurements are assimilated in scenarios A, C,625

D and F, the values of prediction accuracy η improve significantly compared with open-loop626

realizations. As shown in Figure 14, Figure 15, S22 and S24 (see supporting information), the627

red lines follow the yellow truth quite well. When only LPR measurements are assimilated,628

we also observe the reduction of MRMSE and improvement of η. However, compared with629

the scenarios assimilating concentrations, the improvement is very small. The uncertainty630

in concentrations is only controlled by the assigned uncertainty when calculating the initial631

concentration states. Filtering the water storage states does not introduce new information632

to the concentration states. If there are infinite random particles, we expect to see an633

identical prediction as in the open-loop simulations.634

4 Summary and Conclusions635

This work presents a weakly coupled particle filter framework to assimilate leachate pro-636

duction rates and chloride concentrations with the aim to estimate the emission potential of637

landfill waste bodies. The emission potential in this paper is defined as the mass of leachable638

chloride present in the waste body. A concentration-coupled travel time distribution model639

was used as a forward model for data assimilation. Synthetic experiments were performed640

to investigate the feasibility of state estimation and improving prediction. Six scenarios641

were developed to investigate the best assimilation strategy. Two synthetic measurement642

data sets were generated with the same forward model using different initial bulk water643

content values under identical meteorological forcing conditions. On each synthetic data644

set, three types of Data Assimilation were carried out: DA using both Leachate Produc-645

tion Rate (LPR) and concentration measurements and DA using only LPR or concentration646

measurements.647
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Figure 14. Concentration predication in scenario A. Colors of lines and crosses as in Figure 12.

Figure 15. Concentration predication in scenario D. Colors of lines and crosses as in Figure 12.
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The results from the different scenarios show that sensitivity of baseflow to bulk water648

storage volume plays a vital role in controlling the assimilation performance. When the649

bulk water storage is within the range where its change has limited influence on baseflow,650

assimilating measurements cannot reduce the uncertainties in waste body water storage.651

The results also indicate that the improvement in the estimation of cover layer water652

storage is limited as the open-loop realizations already have good consistency with synthetic653

truth. Assimilating concentration measurements improves the estimation of average con-654

centration states in the waste body. It also benefits the estimation of water storage states655

as the concentration states are coupled to the water balance model. However, assimilation656

with concentration measurements alone reduces the convergence of water storage estimation657

in comparison with assimilating both LPR and concentration measurements. In contrast,658

assimilating LPR helps quantify the uncertainty in water storage states in the waste body,659

while it doesn’t reduce the uncertainties in concentration states. The proposed coupled as-660

similation method leads to good estimation results in both water storage and concentration661

states.662

The estimation of emission potential heavily relies on accurate estimation of the total663

water storage and concentration states within the waste body. Reducing uncertainties in664

volume or concentration states leads to a reduction in uncertainties associated with the665

emission potential. Therefore, improving the estimation of volume and concentration states666

directly contributes to minimizing uncertainties in emission potential. The results show the667

uncertainty is reduced in all the tested scenarios where the baseflow is sensitive to bulk668

storage change.669

The LPR prediction improvement after assimilation is not significant, as the open-loop670

realizations also have good predictions. In contrast, the concentration predictions improved671

considerably when the chloride concentration measurements were assimilated.672

Overall, the results of this study indicate that the proposed coupled assimilation pro-673

cedure can be used to estimate total water storage and chloride mass in the waste body. As674

such, Data Assimilation is demonstrated to be a viable approach to quantify the emission675

potential of landfill waste bodies. The assimilation of LPR rates helped improve the accu-676

racy of the estimation of total water storage, Vwb, compared to assimilating concentrations677

alone. The gap between volume states and mass states is filled by concentration assimila-678

tion. Future studies will focus on quantifying the uncertainty caused by model parameters,679

which, for example, determine the sensitivity of baseflow to bulk water storage volume.680
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