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Abstract

The emission potential, which represents the total leachable mass in landfill waste body, is hard to measure directly. Therefore
we propose to quantify it by assimilating available measurements. The leachate production rate is influenced by the total water
storage in the waste body, while both total chloride mass and total water storage in the waste body influence the chloride
concentration in the leachate. Thus assimilating leachate volume and chloride concentration simultaneously will help quantify
the uncertainties in emission potential. This study investigated the feasibility of using particle filter in a concentration-volume
coupled travel time distribution model to estimate the emission potential. Leachate production rates and chloride concentrations
were assimilated simultaneously by a weakly coupled data assimilation(WCDA) method. The time lag issue in the travel time
distribution model was solved by adding a daily model error to cover layer states. The proposed method was tested in synthetic
experiments firstly to investigate the performance. The results show that the uncertainties in chloride mass and waste body

total water storage were quantified and reduced. The predictions of chloride concentrations were also improved.
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Quantifying landfill emission potential using a weakly
coupled particle filter

L. Wang!, T.J. Heimovaara'

1Department of Geoscience and Engineering, Faculty of Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands

Key Points:

« A new weakly coupled particle filtering method on a travel time distribution model
is used for landfill emission potential estimation.

« Analysis clearly demonstrates added value derived from assimilating both leachate
production rate and concentration measurements.

+ The effectiveness of data assimilation is maximized when the measurable state exhibits
a strong sensitivity to the pertinent hidden state.

Corresponding author: Liang Wang, 1.wang-100tudelft.nl
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Abstract

The emission potential, which represents the total leachable mass in landfill waste body,
is hard to measure directly. Therefore we propose to quantify it by assimilating available
measurements. The leachate production rate is influenced by the total water storage in
the waste body, while both total chloride mass and total water storage in the waste body
influence the chloride concentration in the leachate. Thus assimilating leachate volume
and chloride concentration simultaneously will help quantify the uncertainties in emission
potential. This study investigated the feasibility of using particle filter in a concentration-
volume coupled travel time distribution model to estimate the emission potential. Leachate
production rates and chloride concentrations were assimilated simultaneously by a weakly
coupled data assimilation(WCDA) method. The time lag issue in the travel time distribution
model was solved by adding a daily model error to cover layer states. The proposed method
was tested in synthetic experiments firstly to investigate the performance. The results show
that the uncertainties in chloride mass and waste body total water storage were quantified
and reduced. The predictions of chloride concentrations were also improved.

Plain Language Summary

This study presents a method for estimating the amount of harmful chloride in land-
fill waste and predicting leachate emissions. By combining measurements of water flow
(leachate production rate) and chloride concentration, we improved our understanding of
total water storage and chloride mass in the waste. Our approach performed best when
both measurements were assimilated, and the leachate production rate was sensitive to the
variations in water storage within the waste body. The method showed promise in estimat-
ing both water storage and chloride mass with correct model parameters, paving the way
for future research on understanding uncertainties caused by model parameters.

1 Introduction

Municipal solid waste(MSW) landfill leachate is a primary source of pollution to the
surrounding environment because it is a source of contamination for soil and groundwater
(Brand, 2014; Gworek et al., 2016; Fatoba et al., 2021). The environmental risk of leachate
is determined by its composition and the amount released to the environment. The leachate
flux from old landfills is mainly controlled by the water balance of the landfill which depends
on precipitation and evapotranspiration. Leachate composition is influenced by the water
storage and pollutant mass present in the waste body (Yang et al., 2015; Grugnaletti et
al., 2016; Laner et al., 2011). Also, reliable predictions of leachate emissions in the long
term require a quantitative assessment of total pollutant mass and water storage in the
waste body. As such, this quantitative assessment is an important criterion to determine
the aftercare strategy (Kattenberg & Heimovaara, 2011).

Direct measurement of pollutant mass and water storage is virtually impossible due to
the size and heterogeneity of waste bodies. Instead, an alternative approach can be used,
based on using a forward model predicting leachate flux and composition and simulating the
evolution of pollutant mass and water storage in the waste body. A series of deterministic
models have been developed to predict leachate production in landfills. Pantini et al. (2014)
developed a process-based landfill water balance model where biodegradation and waste
compression processes are included. The initial water storage in the model is obtained by
a preliminary optimization process. Grugnaletti et al. (2016) got more accurate leachate
production predictions by carrying out a step-by-step parameter calibration. It is generally
known that the contaminants are leached out from waste through preferential flow (Fellner
& Brunner, 2010). J. Zhang et al. (2021) proposed a pollutant concentration, leakage rate,
and a solute transport coupled model that allows prediction of concentrations. Quantifying
initial values for total water storage in the waste body is required for prediction of leachate
production rates, and in addition initial total mass is required when the concentration also
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needs to be predicted. Generally, the initial values are often approximated by waste charac-
teristics (Sao Mateus et al., 2012; Yang et al., 2015). However, these estimations could be
biased because of the significant spatial variation in initial states and the lack of information
on waste composition. Furthermore, some parameters in these deterministic models can be
quantified through lab experiments. Nevertheless, similar small-scale laboratory investiga-
tions of waste characteristics usually result in wrong estimations of the actual behaviour of
full-scale landfills (Fellner et al., 2009).

In recent years, Bayesian inference has been widely applied to hydrology models. It
allows for estimating the probability distribution of model parameters by comparing model
results with available measurements. We have recently developed a travel time distribu-
tion(TTD) model to predict leachate production rate (LPR) and chloride concentration
from landfill waste bodies. Parameters in this model are obtained by optimization using
the DREAM,, s algorithm (Vrugt, 2016), a Markov chain Monte Carlo (MCMC) method for
Bayesian inference. The detailed model results analysis will be published soon, and the audi-
ence can refer to the supporting information for model equations. Although good pridiction
results are obtained in the model, obtaining parameters by fitting or ’history-matching’ to
data is generally a batch processing method that defines the best fit in an average way. This
implies that we get the best fit of the measured data over the whole time range rather than
the best estimation of model states. Hence, it cannot recursively benefit from new informa-
tion from new measurement data to infer model states (Liu & Gupta, 2007). Also, it usually
ignores the uncertainty in model structure and input data. Thus, the total water storage
and pollutant mass simulation in the waste body could be biased. Significant uncertainty in
model states remains, leading to considerable uncertainty in the long-term future prediction
of landfill emissions.

Data assimilation (DA) is another Bayesian inference method. It is widely used because
of its power to recursively assimilate new measurements to improve understanding of im-
measurable or hidden states (Liu et al., 2012; Carrassi et al., 2018). Most DA experiments
consist of a forecast step and an analysis step. Model states are propagated with time using
a forward model to get predictions, and then measurements are used to filter the predictions
in analysis steps. Because of its sequential updating characteristic, it is possible to integrate
model, input, and measurement errors.

Among the main data assimilation methods such as Kalman filter (Kalman, 1960) and
ensemble Kalman filter (Evensen, 2003), particle filter (PF) (Djuri¢ et al., 2003) is designed
to deal with fully nonlinear systems. It has been widely used in hydrology (Plaza Guingla
et al., 2013; Vrugt et al., 2013; H. Zhang et al., 2017; Abbaszadeh et al., 2019). Many of the
models used with PF, like Hymod (Moore, 1985), are too simple to represent the water and
mass transport in landfills. Also, most models used so far only estimate water storage states.
We developed the coupled TTD model to predict the leachate production rates and chloride
concentrations (see supporting information). Since the concentration states are coupled to
the water balance model, we can also estimate the total mass.

The application of DA in the proposed TTD model is a coupled data assimilation
(CDA) problem, as the coupled model directly updates both pollutant concentration and
water volume states. The CDA is popular because of its ability to make each model com-
ponent receive information from measurements in other domains (S. G. Penny & Hamill,
2017; S. Penny et al., 2019; Laloyaux et al., 2016; Smith et al., 2015; Tardif et al., 2015).
Weakly CDA concepts are developed, where the individual model domains are predicted
simultaneously by forward models but updated separately by measurements (S. G. Penny &
Hamill, 2017). In strongly CDA, states are updated simultaneously by cross-assimilation of
measurements in all domains (Ng et al., 2009), but the required interaction physics between
components remains challenging (S. Zhang et al., 2020). Most CDA systems in practical
applications are weakly CDA (S. Zhang et al., 2020).
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In a synthetic experiment, comparative research was performed by El Gharamti et al.
(2013), where an ensemble Kalman filter was used in a 2D subsurface flow-transport coupled
model. The hydraulic head and contaminant concentration observations in multiple wells
are assimilated to estimate the evolution of these two states. However, hydraulic head can
barely represent the water storage in landfill due to the high spatial heterogeneity of water
distribution. Also, the risk of losing mass balance in the model exists in ensemble Kalman
filter as the model states are adjusted by measurements directly. Particle filtering approaches
can preserve the mass balance because the measurements are used to weigh particles instead
of adjusting particles.

This study investigates the feasibility of using a particle filtering approach in a landfill
TTD model for estimating the emission potential. The emission potential is determined by
the waste body’s pollutant mass states and water storage states. Based on our knowledge, no
research has used particle filtering approaches to estimate both volume quantities and solute
concentrations in hydrochemical coupled models. We also believe this is the first time data
assimilation has been used to estimate landfill emission potential. Moreover, mass state
estimation remains a problem in many data assimilation applications in hydrology. Six
synthetic assimilation scenarios were tested to verify the proposed method and optimize the
assimilation strategy. Several implementation steps of the algorithm were adjusted to make
it suitable for the TTD model. The uncertainties of these hidden states were quantified, and
improvement in prediction was evaluated. The chloride mass in the landfill was selected as
the representative emission potential in this research.

2 Methods

This data assimilation framework uses a coupled TTD model as the forward model.
The weakly coupled particle filter was used as a data assimilation algorithm. The first
part of this section describes the theory of weakly coupled particle filter. The second part
introduces the forward model and its specific characteristics, which must be addressed in
the DA application. The last part concerns synthetic experiment design, implementation
procedure, and performance estimation matrices.

2.1 Weakly coupled particle filter
2.1.1 Sequential importance sampling

The weakly coupled PF is based on the sequential importance sampling (SIS) PF.
Model and measurement equations are required during the state estimation process as given
by Arulampalam et al. (2002). We take x; to represent a state vector that contains all the
model states at the current time step t. Firstly, the state vector is propagated from the
former time step to the current step with the model equation

Ty = Mt(wtfl) + €model (1)

where M;(-) denotes the forward model, and &,,,4¢; represents the model error vector caused
by different sources of uncertainty. The state vector will then be linked to measurements
through the measurement equation

Y, = Hi(xt) + Emea (2)

in which Hy(-) denotes the measurement operator that connects model states to measured
states, and €,,¢, represents the measurement error vector.

The main task of state estimation is to estimate the probability density function (pdf)
of immeasurable states based on measurement series. We use the subscript 1 : ¢ to represent
the time range from the initial step to step t. Hence, y,.; are the available measurements till
current step ¢ and p(x | y,.,) represents the pdf of current state vector x given y,.,. Bayes’
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theorem is used to calculate p(x | y,.;), the so-called posterior pdf, by combining prior pdf
p(x | Yy1.4_1) from last time step with likelihood pdf p (y, | =:) as

Py | @) p (ze | Y141)
p (yt | yl:t—l)

(3)

P | Y14) =

If the posterior pdf p(z:—1 | y;.,_1) at the previous assimilation step is known, the prior
pdf p(x: | yq.,_1) could be calculated as p (y, | z:) as

e i) = [ e | @enp@is |y dw @
Then we obtain the aim posterior pdf p(x | y,.,) as

p(y, | i) fp(wt | i 1)p(®i—1 | Y1.4—1)dTi1
P (Y | Y141)

()

p(@: | Y14) =

The core idea of sequential importance sampling is to approximate the required pdf
through N independent particles with weight w; respectively. More specifically, sampling
from p(ai—1 | Y,4_1) means several particles are obtained from the previous time step.
p(x; | ®;—1) indicates propagating these particles with forward model (equation 1). p(y, |
Y1.4—1) is a normalization factor in making sure the sum of pdf is 1. Therefore the posterior
pdf p (x: | y1.,) can be calculated as

N
(e | Y1) = ) wid(@: — ) (6)

i=1

In which § represents the Dirac delta function. N is the number of particles. The w} is
calculated recursively as _ 4
i wiap(y | z})
S i
> iz (wi_yp(y, | )
The conditional probability p(y, | ;) is often computed as

p(y, | T:) = exp {—0.5]y, — Hy(x})|" Ry, — He(x})]} (8)

where Hi() is the measurement operator, R is the error covariance of the measurements
(Van Leeuwen, 2009). Common statistics can be easily acquired with the posterior pdf or
weighted particles. For instance, the mean of state vector x is calculated as

(7)

N
T = szw’ (9)
i=1

2.1.2 Systematic resampling

Particle degeneracy is one main limitation of sequence importance sampling, which oc-
curs after several assimilation steps when the weights of all but one particle can be neglected.
The effective ensemble size is used to evaluate the degeneracy problem. It is computed as

L 10

B AN IR o
When the effective ensemble size is smaller than N /2, resampling should be performed. The
idea of resampling is duplicating particles with high weights and discarding those with low
weights. After that, all weights will be set as 1/N. The general resampling algorithms in-
clude multinomial, stratified, systematic, and residual resampling methods. In this research,
systematic resampling is used as it has good resampling quality. A more detailed description
of resampling algorithms is given in Hol et al. (2006).
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2.1.3 Weakly coupled data assimilation (WCDA)

Coupled data assimilation is used when there is more than one measurement type.
Also, a coupled model should be available. In WCDA, a coupled model is used to predict
all the model states at the current time step, while the weighting and updating steps are
performed within each component domain. Then the updated states are propagated to the
next step by the coupled model. Although the measurements in one model domain are used
to update the states in the same domain, the coupled model propagates the information to
the other domain(S. Zhang et al., 2020). The details about the implementation of WCDA
are introduced in section 2.7.

2.2 Coupled travel time distribution model

The coupled travel time distribution (TTD) model predicts leachate production rates
and chloride concentrations. For a detailed description of the coupled TTD model, we refer
the readers to the supporting information where we present the governing equations and
selected model parameters. Here we briefly introduce the model to help understand the
approach.

Forcing data:

l ++ Rainfall,

4 Evapotranspiration
Infiltration -~
TD .~

Baseflow
TTD

e

| ~ Drainage system

Waste body

Observations:
Leachate production rate
Chloride concentration

Figure 1. A schematic overview of model structure.

As shown in Figure 1, the model consists of two layers representing a cover layer and
waste body in a landfill. The forcing data at the top boundary are rainfall (R) and potential
evapotranspiration (Pev), which will enter or leave the landfill from the cover layer. The
water storage in the cover layer determines the amount of water (¢;nf) infiltrating to waste
body. The waste body is conceptually divided into a single bulk storage and P cells to
represent different travel times of water parcels before they flow out. The time difference
between neighbouring cells is one day. So, the leachate in the last cell takes P days to go
out. The base flow from the bulk will be distributed to P cells by a baseflow travel time
distribution function. Similarly, the g,y from the cover layer is distributed to the waste
body with another constant travel time distribution function.

Similar to the transport model from El Gharamti et al. (2013), the chloride concen-
tration is one-way coupled in the water balance model. The concentration states in P
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cells are determined by time propagation, as well as distributed leachate from baseflow and
infiltration from the cover layer. The parameters and initial states were optimized using
DREAM(ZS) (Vrugt, 2016; Shockley, 2020). The state vector is given by

T
@t = [Ver,, Mer,, Cety s Vbutks, s Mbulky s Coutky s Veelti » Meells s Ceeli] (11)

where i represents i th cell state. The concentration defined as ¢ = m/v applies to all
elements in the conceptual model. Also, Vb, = vpuik, + Zf:ol Vel and Myp, = Mpuik, +

25;—01 Moy are used in the following parts to represent the entire storage states in the waste
body. C, indicates the average concentration in the waste body.We use capital letters to
represent the overall state variables of each layer, and we use lowercase letters to represent
all internal variables. A detailed explanation of the variables in the model is presented in
the nomenclature list.

2.3 Specific model characteristics
2.3.1 Omne way coupled model

The TTD model we use is based on a one-way coupling between water volume and
chloride concentration. The leachate production rates only contain information on water
volume states, while the concentration states depend both on water volume and solute mass.
However, it is unknown how much information concentration measurements contain about
water volume states. Is it possible to only assimilate concentration measurements or do
we need both the leachate outflow and concentration measurements? El Gharamti et al.
(2013) always use the concentration measurements to update the water head states, while
the research does not investigate the benefits of assimilating both measurements compared
to assimilating only one. For example, it could be that when assimilating both measurement
types, we may get poorer estimation results for volume states when the concentration mea-
surements contain significant measurement errors. In order to explore this issue, we have
designed different scenarios to investigate the optimal assimilation strategy.

2.3.2 Time lags in TTD model

In particle filtering approaches, we can estimate hidden states in the model using mea-
surements of observable states because the measurements contain some information about
hidden states. Assuming the model is not entirely correct, the model errors will be added to
model states during the state propagation process. If the errors are only added to observable
states in the state vector, the diversity of hidden states may disappear with resampling. In
other words, adding model errors to hidden states gives us the possibility to explore the
hidden state space. The hidden states with model error will be assessed in the following
time steps because they influence the measurable states. However, if this influence is weak
or does not exist, the hidden states will be updated randomly, and the estimation will be
poor (Plaza Guingla et al., 2013).

In the forward TTD model we use, we have explicit time lags between many model
states and measurements because the travel time distribution considers the time informa-
tion explicitly. For instance, the oldest cell states will only influence the measurements
after P — 1 days. This time lag complicates the estimation of multiple hidden states using
current measurements. Several studies are trying to solve these challenges with time-lagged
measurements in data assimilation (Noh et al., 2013; Li et al., 2013; McMillan et al., 2013;
Noh et al., 2014). McMillan et al. (2013) used the current measurements to update states
at previous time steps within the time lag. Noh et al. (2013, 2014) used the measurements
after an extended time to estimate current model states to consider the time lag effect.
These methods use the forward models as measurement operators to link the model states
to corresponding lagged measurements. In these approaches, the assumption is that the for-
ward models are accurate for this extended prediction; otherwise, the representation error
(Janjié¢ et al., 2018) in the measurement operator should be considered. The maximum time
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lag in the landfill TTD model we use is around five years. This is much longer than those
previously used in distributed catchment models. Consequently, model error accumulation
is expected to be severe during the extended prediction process(Noh et al., 2013, 2014), so
it is unreasonable to assume a correct model for such a long prediction period. Additionally,
the TTD model has thousands of states which are lagged in time, whereas the published
applications usually have time lag issues for only one hidden state. To overcome these issues
we have developed a specific strategy for the TTD model.

In the TTD landfill model, the cell states are propagated with time. After P (the
number of cells) days, there will be a connection among all cells and bulk states. We call
this implicit relationship ’history’. We can estimate hidden states by current measurements
if this’ history’ is maintained. Hence, the initialization of particles and the model errors

should guarantee this ’history’. The implementation strategy is further explained in section
2.7.

2.4 Site and data description

The model parameter calibration is based on actual measurements from the Braamber-
gen landfill in the Netherlands (Duurzaam stortbeheer, 2023). Daily meteorological forcing
data (same as model resolution) are obtained from the nearest weather station affiliated with
Royal Dutch Meteorological Institute (KNMI) (2023). The leachate is pumped out from the
drainage system, and the daily production volume is acquired. The chloride concentration
is measured by sampling from the drainage layer generally with a bi-weekly frequency(with
some larger intervals up to 28 days). In practical cases, there are many irregular values
in daily production rate measurements because of the management of the leachate pump
system by the landfill operator. When the pump system is broken, the outflow remains in
the drainage layer, resulting in an observed leachate production volume of zero. Afterward,
the water is pumped out, a large leachate volume is measured. In order to limit the ef-
fect of these operational irregularities, seven days’ average leachate production rates were
calculated from the cumulative leachate measurements and used as measurements. The
measurement equations for leachate production rate and chloride concentration are:

t
Zi:t76 Ucello,

LPR; = 7 + ELPR,c, (12)

Ct = Ccellgt +ec

mea

2.5 Synthetic truth generation

Synthetic experiments are often designed to evaluate the performance of data assimi-
lation techniques. Artificial truth states are generated by running a known forward model.
If the DA algorithm is effective, estimated states or parameters are expected to converge to
the synthetic truth by assimilating the simulated measurements obtained from the forward
model. The method of creating artificial truth is highly dependent on the aim of the applied
DA technique and the assumption of existing underlying uncertainties. The primary sources
of uncertainty for a deterministic model are errors in forcing data, initial states, model pa-
rameters, and model concepts. The most simple scenario assumes that the model is correct
and only adds white noise to simulated measurements as measurement error. Weerts and
El Serafy (2006) perturbed forcing data to consider the forcing data uncertainties in a state
estimation problem. Plaza Guingla et al. (2013) further added Gaussian noise to model
parameters, although only model states are updated in that research. Li et al. (2013) chose
to perturb the state variables in a probability-distributed hydrological model. All the uncer-
tainties above are considered to be included in state variables. Gelsinari et al. (2020) used
the truth’ generated from the unperturbed model, while the model used in assimilation is
with a perturbed parameter set. Since we aim to assess the feasibility of estimating emis-
sion potential in the TTD model by coupled particle filter, we assume the forward model
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parameters to be correct in order to simplify the problem. The initial states and input data
were perturbed in order to simulate a scenario where we have a poor understanding of initial
states, and the input measurements are inaccurate.

The initial states in 2003 were obtained from model calibration in order to generate
a synthetic truth. Zero mean Gaussian error with a standard deviation of 10% X c¢;,; and
10% x v;y,; were added to perturb the initial states. Zero-mean Gaussian errors were added
to daily rainfall and potential evapotranspiration during the simulation period from 2003 to
2021. The uncertainty range of rainfall is often chosen as (0—15%) x R; (Weerts & El Serafy,
2006). Here the standard deviation of random rainfall error was set as 15% x R;. The
perturbation of evapotranspiration followed Plaza Guingla et al. (2013) where a 30% x Pev,
standard deviation was used.

Although this study primarily focuses on synthetic experiments, we aim to adapt the
framework to accommodate the assimilation of real-world data for further research. Hence,
the data assimilation frequency was set to be identical to the frequency of the real concen-
tration measurements.

Once the simulation results are obtained as synthetic truth, the measurement errors
should be added to observable states to simulate measurements as shown in equation 12 and
equation 13 . The standard deviations of Gaussian measurement error are selected as 10%
of LPR; and C}, respectively.

All the errors are presented in Table 1. It is worth emphasizing that although we try
to simulate the actual case in the synthetic experiment, the artificial truth is only trying to
approach the natural world in the context of a proof-of-concept study (Matgen et al., 2010).

Table 1. Standard deviation of Gaussian random errors for truth generation

Variables R Pev Vini Cini

Standard deviation 0.15 x Ry 0.3 X Pev; 0.1 X ;05 0.1 X Cips

Vini and c;p; represent all the initial volume and concentration states
in the model.

2.6 Ensemble generation performance control

The performance of DA relies on the appropriate representation of uncertainties in the
prediction. More specifically, the model error in equation 1 should make the spread of gen-
erated ensembles realistic compared to real measurements. Following the method proposed
by De Lannoy et al. (2006), the ensemble spread(ensp;), the mean square error(mse;), and
the ensemble skill(ensk;) are calculated as:

N
1 P
enspy = N ;(yt - yt)2 (14)
1L,
mse; = i z_;(yg — ymeat)z (15)
ensky = (y7t - ymeat)z (16)

N, i, t, Y, Ymea represent ensemble size, ith ensemble number, assimilation time step, simu-
lated observable states, and assimilated measurements, respectively. According to De Lan-
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noy et al. (2006), to ensure the generated ensembles’ statistical accuracy, the following
requirements should be considered:

<ensk > 1

<ensp>
<> means the average over the simulation time range. More specifically, a value larger than
1 indicates insufficient ensemble spread, while a value smaller than 1 indicates excessive
spread. If the truth is indistinguishable from a member of the ensemble, the following
equation should be true(De Lannoy et al., 2006):

<\/ensk>N /N +1 (18)
< \/mse > - 2N

When both leachate production rate and concentration measurements are assimilated,
we need a sufficiently large ensemble spread in the simulated output. This is achieved by
manually optimizing the standard deviations of model error. Firstly we obtained the model
error for the cover layer water storage using an interval search to get an appropriate spread in
leachate production rate simulations. If the spread for concentration states is not sufficient
or excessive with the chosen model error, we adjust the initial uncertainty range for the
concentration states. Using this approach allows us to obtain a good ensemble spread for
concentration states while not making the spread in leachage production excessive.

(17)

2.7 Implementation procedure

Based on the theory and model characteristics, the implementation of sequential im-
portance resampling in this coupled TTD model is as follows:

1. Initialization: from the model calibration results, we take one parameter set and initial
states in 2003. The initial samples are sampled from Gaussian distributions where
the means are the optimized initial values. Initially, the corresponding percentiles of
standard deviations in Gaussian distributions are set to be the same as the ones used
in the generation of synthetic initial states (see table 1). Subsequently, the standard
deviations undergo adjustment to meet the ensemble spread criteria, as is discussed in
section 3.1. With a warm-up simulation, the samples are propagated to the starting
date of data assimilation on the 19th June 2012, a time step 7 days earlier than the
first measurement date. The reason to perform this warm-up propagation is that we
need to build connections among waste body states. Otherwise, the time lag between
bulk states and measurements will make the estimation unreliable.

2. Update step: all the particles are propagated to the next assimilation step with
eqation 1, where M (+) indicates the coupled TTD model. The choice of model error is
crucial for representing uncertainties and ensuring a good data assimilation technique
performance. Most studies applying particle filter or ensemble Kalman filter choose to
add a Gaussian random error to perturb forcing data, model states, and/or parameters
(Weerts & El Serafy, 2006; Mattern et al., 2013; Vrugt et al., 2013; Tran et al.,
2020). Considering the time lag issue, if we add independent model error to each
state directly, the accumulation of errors of states like vy, will be huge after several
years’ lag. Therefore, we choose to add daily error to V,;. The daily errors will be
propagated to waste body states with time, which means we are adding correlated
model errors to waste body states. Since the influence of error in V,; on fast flow
cells can be estimated by measurements very quickly, we can avoid adding too much
unreasonable errors to old states like vy, . Additionally, this error choice maintains
the total mass balance in all waste body volume states.

No model error is introduced to the concentration states directly. Once the initial
concentration values are determined, the concentration variation is assumed to be
determined by volume states only.

—10-
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3. Analysis step: the weights for particles are calculated by equation 7. Based on differ-
ent assimilation strategies, we weigh the states differently. In a coupled assimilation
scenario, the weights for volume w, and concentration states w, are calculated sep-
arately using their corresponding measurements. Both concentration and leachate
volume are used to calculate w,,: w,, = w. * w,. Then w,, is normalized before
estimating the mass states. If only concentration measurements are assimilated, all
the model states are weighted based on the concentration measurements. When only
LPR measurements are assimilated, the weights are used to estimate all states except
concentration states.

4. Resampling step: this step is the same as the weights calculation, effective ensemble
size N¢If, Nceff is computed according to equation 10. Then the corresponding
particles will be resampled when fo 7is smaller than N /2. The mass states are
recalculated from the resampled volume and concentration states, and the weights
w,, are also updated with new w, and w..

5. Iteration: all former steps after initialization are repeated until the last assimilation
step.

2.8 Performance estimation

Besides the evolution of hidden states, the accuracy of state estimation results is eval-
uated with the temporal mean root-mean-square error, which is described in equation 19.
The L indicates the number of assimilation time steps.

SE SN i) — a2
L

MRMSE = (19)

The prediction accuracy is also evaluated using a logarithmic form(n) proposed by
(Ercolani & Castelli, 2017):
n=—In(l - NSE) (20)

where NSE is the Nash-Sutcliffe efficiency calculated as:

T _ 2
NSE =1— Zthl(yt ymeat) (21)

t:l(ymeat - ymea)2

where ¥cq, are the measurements at time step ¢, y; represents the model prediction,
and the over bar means the average over time. The logarithmic scale allows dealing with
high NSE values(close to 1). It tends to plus infinity when the observations and predictions
achieve a perfect match. The reliability of ensemble prediction is not considered here because
the model error is optimized to get reliable predictions.

2.9 Synthetic scenarios

Different synthetic scenarios are designed to test the application’s feasibility. As shown
in table 2, in total six scenarios are used to test the assimilation performance and get
optimal assimilation strategy. Scenarios A, D follow the proposed coupled assimilation pro-
cedure described above. In other scenarios, only LPR or concentration measurements are
assimilated. Scenarios D to F are similar to A to C' but with the difference that we initialize
the simulation with much smaller initial bulk volume values. These scenarios are used to
test the influence of the baseflow function, which will be discussed in the following part.
Two open-loop simulations are also performed to get reference results for scenarios A — C
and D — E. The open loop simulations have the same initial sample distributions and model
errors as corresponding scenarios, but no measurements are assimilated to update model
states. The related state estimation and prediction results of scenarios B — C, E — F are
provided in the supporting information.

—11-



Table 2. Synthetic scenarios

Scenario  Assimilate LPR  Assimilate C  Small initial Vj,u1

A Yes Yes No

B Yes No No

C No Yes No

D Yes Yes Yes

E Yes No Yes

F No Yes Yes

OLA.¢ No No No

OLp.r No No Yes
444 3 Results and discussion
a5 3.1 Ensemble generation
a6 The appropriateness of ensemble generation and the generated initial particles on the
447 starting date of data assimilation, which is the 19th of June, is verified using equations 17 and
a8 18. Based on the results of a preliminary sensitivity analysis of ensemble size, all experiments
440 use 10240 particles to ensure stable performance. The final choice of initialization, model

errors and the corresponding ensemble generation skills are presented in table 3.

Table 3. Ensemble generation performance

: <ensk> <Vensk> <ensk> <Vensk>
Scenario My, Ovpun Tcpuin Ve <ensp> PR <Vmse> [ pr  <ensp>(C <ymse> ¢
A-C 4.067 0.100 0.130 0.0145 1.002 0.651 1.082 0.587
D-E 2.000  0.100 0.100 0.0135 0.998 0.624 1.013 0.583

Note. All the initial states in 2003 are sampled from Gaussian distributions N(M,o x M).
The distribution parameters are the same as truth generation if not explicitly defined in
the table. M,, . represents the initial mean of bulk water storage. o,,,, and o,,,, refer
to the standard deviation percentile of bulk water storage and chloride concentration,
respectively. ey, shows the standard deviation percentile for model error added to cover

layer water storage.

51 3.2 Assimilation performance

452 The assimilation performance of the method is evaluated using the proposed perfor-
453 mance matrices (equation 19 - 21). The estimation and prediction results in different sce-
54 narios are compared to investigate the performance under different conditions in Table 4.
455 3.2.1 Estimation of hidden states

456 The estimated values for total water storage in the cover layer, chloride mass, water
as7 storage in the waste body are presented in Table 4. In addition, the results of average chloride
458 concentration are presented to understand the state update process better. Although there
aso is a small amount of chloride in the cover layer, it can be ignored compared with the amount
460 in the waste body.

—12—



Table 4. MRMSE of estimated model states

State OLA_C A B C OLD_F D E F
Ve [m] 7.92e-3 7.06e-3 7.36e-3 7.02e-3  6.12e-3  5.22e-3  5.4le-3  5.43e-3
Vs [m] 0.636 0.577 0.590 0.609 0.296 0.187 0.198 0.226

Cuwblg/m3) 258.422 83.996 264.225 87.850  197.498 52.667 183.845  58.087
Myplg/m?)  1327.724 1273.604 1161.753 1388.788 640.975 310.564 482.107 388.053

3.2.1.1 Total water storage in cover layer

As shown in Table 4, the four MRMSE values for the storage in the cover layer (V) in A-C
and OL 4_¢ scenarios are similar. This observation is supported by the standard deviations
of MRMSE, which are within a magnitude of 4 x 10~3m. Similar estimation performance
is observed in scenarios D-F and OLp_p, where the standard deviations of MRMSE are
within a magnitude of 3 x 1073m. The values of the standard deviations of RMSE are in the
uploaded output file. All the scenarios, including open loop realizations in Figure 2, Figure
3 and Figure S1 - S4 (see the supporting information), show good consistency with actual
states. This is caused by the buffering effect of the unsaturated soil model used to simulate
V.. When saturation is high, infiltration to the waste body will be high as well. If no model
error or forcing data errors were added, the V,; starting with different values would converge
to a same value after a period of time. The random model error added during DA is the
main source for the uncertainty in V,;. Figure 2 and Figure 3 show that the uncertainty
ranges in scenarios A and D vary with time but within a limited bandwidth because no
decreasing trend exists. Similar results are observed in Figure S1 - S4 in the supporting
information when only leachate production rate or chloride concentration measurements are
assimilated. The estimates during wet periods are better than those during dry periods.
This is most likely caused by the limited information content of V,; in the outflow when
there is only little infiltration from cover layer, and the outflow is mainly dominated by
baseflow from the waste body.

3.2.1.2 Total water storage in waste body

Scenarios A - C are initialized with high values for initial bulk water storage. Scenario B
has similar waste body water storage (V,,;) estimation results as scenario A because of the
same assimilation procedure for volume states (see Figure 4, Figure S5 in the supporting
information). As shown in Figure 4, S5 and S6 (see supporting information), the mean
estimation shows no noticeable improvement for the whole period in scenarios A, B and
C. When the model is initialized with a lower value for the initial bulk water storage in
scenarios D, E and F, the behaviour is quite different. As shown in Figure 5, S7 and S8 (see
supporting information), the biases in the total water storage are corrected by assimilation
of new measurements compared with the large bulk water storage scenarios. In scenarios D
and E, the particles finally converge to true values, and the uncertainties are much smaller
compared with the open-loop results. The MRMSE values in Table 4 also show greater
improvement compared with large storage scenarios.

The difference in assimilation performance of two different initial values in water storage
is caused by the baseflow function. As discussed in the time lag issue, we can only esti-
mate hidden states if the measurements are sensitive to their variations. Figure 6 shows the
baseflow function, which links the bulk water storage to generated baseflow volume. Bulk
water storage takes up a large part of the total water storage in the waste body. Hence, the
estimation of bulk water storage is crucial for V,;, estimation. As we can see, baseflow is
only sensitive to bulk water storage variation when bulk water storage falls between 0 and 2
meters. In addition, Figure 7 shows the travel time distribution of baseflow. Almost all the
generated baseflow is distributed to the oldest cell. It means the information of any change
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in bulk storage takes five years before it is observed in simulated leachate production rates.
According to the synthetic truth, the bulk water storage five years before the last measure-
ment in scenarios A-C is around 2.18m. Obviously, the information in the measurements
to quantify bulk water storage is limited. Lower values of the bulk water storage allow the
baseflow to reduce during the simulation time span. As a consequence, measured leachate
production rates contain information on this reduced water storage because of lower base-
flow values. This improves the estimate of bulk water storage and V,,;, leading to lower
uncertainty.

Figure S8 (see supporting information) also shows that when the information content
of the measurements is high, the concentration measurements can be used to estimate V.
Another influencing factor of the uncertainty quantification capacity is the measurement
error. While the measurement errors are small, it can detect smaller baseflow changes. For
example, the bulk water content will still influence the baseflow when it varies between 2 and
3 meters. When the measurement error is relatively large compared to the corresponding
baseflow variation, most of the particle sets in this range will have close wights as they all
give similar baseflow output. As shown in Figure 4, only large and small particle sets are
discarded with assimilation. Also, the MRMSE values in Table 4 show slight improvement
compared with open-loop results. To further quantify the uncertainty and correct the bias
in mean estimation, the time series of measured leachate production rates should be long
enough to capture the effect of reducing bulk water storage values in the sensitive range.

Compared with scenario D, the mean estimation in scenario F takes more time to
correct the bias. And the final uncertainty estimation is not as good as scenario D. It is
because the weights in scenario F are calculated using concentration measurements, which
are also influenced by mass states. The particles with the wrong volume and mass values but
correct concentration values are also considered with high probability. This is also reflected
in Table 4, where the MRMSE of scenario F is larger than D and E.

In scenarios A, B and C, the posterior distributions in wet periods are close to the
ones obtained during dry periods. This means that the estimation results of V,,; are stable
during the last wet-dry cycle. However, in scenarios D and E, the posterior distributions in
dry periods still change compared with wet periods. This indicates that the measurements
in the last cycle still contain new information content which are being assimilated to reduce
the uncertainty.

3.2.1.8 Awverage chloride concentration in waste body

Estimation of the average chloride concentration in the waste body is another case where the
"history’ is required. All available measurements are linked to the first cell only. Neverthe-
less, the estimation of the average concentration becomes possible because of the "history’
connection between cells and bulk. As shown in Figures 8, Figure 9, S10 and S12 (see sup-
porting information), the uncertainties in average concentration are reduced compared with
the open-loop results. Irrespective of the sensitivity of the baseflow to bulk water storage
variation, the chloride in waste body bulk is the source of chloride in the mobile cells, which
enables us to use concentration measurements to estimate the average concentration.

As shown in Figures S9 and S11 (see supporting information), the estimations of aver-
age concentration are poor when only Leachage Production Rate (LPR) measurements are
assimilated. More specifically, the posterior distributions and mean estimations are very
close to open-loop results. Although the volume states can be quantified in scenario D,
it doesn’t help reduce the uncertainty range in average concentration. It is worth noting
that when only concentration states are assimilated in scenarios F, Figure S12 shows larger
uncertainty but slightly better mean estimation results compared with corresponding sce-
nario D, where both measurements are assimilated. Although assimilation using only LPR
measurements does not really influence the estimation of the concentration state, all the
volume and mass state combinations with correct concentration values but wrong volume
values will be discarded in scenarios D. The impact on the estimation step is minimal while
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the diversity in predicted concentration samples is reduced because the prediction is based
on both concentration and water storage states. Overall, the assimilation of concentration
states helps quantify the uncertainty in concentration states.
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Figure 8. Average concentration in the waste body in scenario A. Colors of lines as in Figure 2.

3.2.1.4 Total chloride mass in waste body
The total chloride mass in the waste body is calculated from the estimated water volume
and concentration states. The uncertainty reduction in either volume states or concentra-
tion states reduces the uncertainty of mass states. On the other hand, bias in estimation
of volume or concentration states can result in bias in mass estimation even if the other
estimation is perfect.

As shown in Table 4, when initial bulk water storage is small, all the synthetic exper-
iments have better MRMSE results than open-loop simulations. Assimilating both mea-
surements achieves the best estimation results. In contrast, when the initial bulk storage is
high, the MRMSE remains relatively high after assimilation. Starting with different initial
bulk water content, scenario B performs best among scenarios A-C while scenario E is the
worst among scenarios D-F. The MRMSE result for scenario B is unusually small because it
yields a higher estimation of volume and a lower estimation of average concentration states.
This, in turn, results in a better mean estimation of mass states.

Figures 10 and 11 show the evolution of M, estimation when both measurements
are assimilated. Scenario A shows slightly reduced posterior uncertainty, which indicates
insufficient information in flow measurements. As a comparison, scenario D gains much more
improvement in posterior distributions, which is because of the good estimations of both
volume and concentration states. As discussed in section 3.2.1.2, the difference is because
of the different sensitivities of baseflow to bulk storage volume. Similarly, the improvement
from the wet period to the dry period in scenario D is caused by the information content in
LPR measurements.

When only LPR measurements are assimilated, there is little improvement in mass
estimation if the baseflow is not sensitive to bulk storage change, as shown in Figure 13
(see supporting information). In scenario E, as shown in Figure S15 (see supporting in-
formation), the uncertainty range of M, is reduced, and the mean estimation accuracy is
better than open-loop results. However, we cannot make a conclusion that LPR measure-
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Figure 9. Average concentration in the waste body in scenario D. Colors of lines as in Figure 2.

ment assimilation is sufficient to quantify the uncertainty in total chloride mass. Because
the estimation of M, is also controlled by the initialization of concentration states. If the

generated initial concentration states are biased, there is always a risk of biased estimation
of Mwbo

In scenario C (see S14 in the supporting information), reduced uncertainty is observed,
but the mean estimations are not better than open-loop results. However, scenario F shows
much better mean estimation convergence compared with open-loop results. The difference
between scenarios C and F is also mainly because of the different estimation performance
of Vwb-

Following the conclusion from volume and concentration estimations, solely assimilating
LPR measurements is not sufficient for emission potential estimation. When the sensitivity
of baseflow to bulk storage is high, we can use concentration measurements solely to estimate
the M. Assimilating both measurements achieves the best performance in the sense of
both mean estimation and uncertainty reduction.

3.2.2 Prediction performance

Table 5. Prediction performance

Scenario OLA_¢ A B C OLp.r D E F
MRMSE[m? 3332 2360 2444 2555 3116 2178 2248  2.465
LPR NSE 0.940  0.944 0.944 0944 0948  0.950  0.950  0.954
n 2.805  2.892  2.893  2.884 2955 2980 2983  3.071
MRMSE[g/m3] 186.728 66.377 178.000 68.791 138.320 47.741 122.924 50.743
c NSE 0.798  0.878  0.808 0.874 0.866  0.918 0.881  0.914
n 1.600 2101  1.653  2.074  2.009  2.497  2.126  2.458

—19—



manuscript submitted to Water Resources Research

— — PF — Truth
£ ~ == Truth oL
S 12000 oL o
3
s
~ 10000
(%]
(%]
©
1S
S 8000
S
£ 5000 10000
> 6000
g 0.10
Q —_
It z
“ Q
@ 4000 9005
= a
0.00
A2 B B RO I S s B A 2500 5000 7500
S & 8§ & & & & & & & & Chloride mass (Myy) distribution [g/m?]
Time (t)

Figure 10. Chloride mass in the waste body in scenario A. Colors of lines as in Figure 2.

- R — PF — Truth
£ 5000 ~—- Truth == OL
2 —-- oL e PF
3
s
= 4000 0.10
& g
g 50.05
S &
°
5 300 0.00
< 1000 2000
(]
g 0.10
3 2000 o
% 005
g o
= : &

1000 0.00

O RN A R R A 1000 2000
SO 5 £ 5 § & & & & Chloride mass (Myp) distribution [g/m?]
Time (t)

Figure 11. Chloride mass in the waste body in scenario D. Colors of lines as in Figure 2.

—20—



3.2.2.1 Leachate production rates
Table 5 shows the metrics we use to quantify the quality of the predicted states. All six sce-
narios have smaller MRMSE values and greater 1 values compared with the corresponding
open-loop simulations. This indicates reduced prediction uncertainty and improved accu-
racy. However, the n values of three scenarios with the same initial bulk storage are very
close, and the difference between similar scenarios is small. This is also observed in Figures
12, 13 and S17-S20 in the supporting information, where the open-loop simulations also
have good LPR prediction performance.

As discussed in section 3.2.1.1, the estimation of cover layer water storage has a rela-
tively good consistency with the truth in all scenarios which guarantees the accuracy of LPR
prediction, especially in wet periods where infiltration from the cover layer takes up most
of the outflow. Additionally, when the bulk storage in the waste body, vy, reduces below
1 m (see Figure 6), the baseflow magnitude will reduce significantly. Under such conditions
baseflow will show a large sensitivity to infiltration from the cover layer reaching the bulk
storage.

Although scenario D, as shown in Figure 5, has a better waste body water storage
estimation than scenario F (see Figure S8 in supporting information), scenario F has a higher
7 value compared with scenario D. This is because more particles smaller than one meter
remain in the posterior distribution of scenario F, which is important to catch the effect of
change in bulk storage on the base flow. Also, 7 is calculated using synthetic measurements
which contain measurement error. There are some values smaller than truth in the dry
period which cannot be covered by true vy, values. This can also be observed by comparing
Figure 13 and S20 (see supporting information), where more low LPR measurements are
covered in scenario F.
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Figure 12. LPR prediction in scenario A. The blue crosses indicate the behaviour of synthetic

measurements. Colors of lines as in Figure 2.
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Figure 13. LPR prediction in scenario D. Colors of lines and crosses as in Figure 12.

3.2.2.2 Chloride concentrations

As shown in Table 5, when concentration measurements are assimilated in scenarios A, C,
D and F, the values of prediction accuracy n improve significantly compared with open-loop
realizations. Asshown in Figure 14, Figure 15, S22 and S24 (see supporting information), the
red lines follow the yellow truth quite well. When only LPR measurements are assimilated,
we also observe the reduction of MRMSE and improvement of . However, compared with
the scenarios assimilating concentrations, the improvement is very small. The uncertainty
in concentrations is only controlled by the assigned uncertainty when calculating the initial
concentration states. Filtering the water storage states does not introduce new information
to the concentration states. If there are infinite random particles, we expect to see an
identical prediction as in the open-loop simulations.

4 Summary and Conclusions

This work presents a weakly coupled particle filter framework to assimilate leachate pro-
duction rates and chloride concentrations with the aim to estimate the emission potential of
landfill waste bodies. The emission potential in this paper is defined as the mass of leachable
chloride present in the waste body. A concentration-coupled travel time distribution model
was used as a forward model for data assimilation. Synthetic experiments were performed
to investigate the feasibility of state estimation and improving prediction. Six scenarios
were developed to investigate the best assimilation strategy. Two synthetic measurement
data sets were generated with the same forward model using different initial bulk water
content values under identical meteorological forcing conditions. On each synthetic data
set, three types of Data Assimilation were carried out: DA using both Leachate Produc-
tion Rate (LPR) and concentration measurements and DA using only LPR or concentration
measurements.
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The results from the different scenarios show that sensitivity of baseflow to bulk water
storage volume plays a vital role in controlling the assimilation performance. When the
bulk water storage is within the range where its change has limited influence on baseflow,
assimilating measurements cannot reduce the uncertainties in waste body water storage.

The results also indicate that the improvement in the estimation of cover layer water
storage is limited as the open-loop realizations already have good consistency with synthetic
truth. Assimilating concentration measurements improves the estimation of average con-
centration states in the waste body. It also benefits the estimation of water storage states
as the concentration states are coupled to the water balance model. However, assimilation
with concentration measurements alone reduces the convergence of water storage estimation
in comparison with assimilating both LPR and concentration measurements. In contrast,
assimilating LPR helps quantify the uncertainty in water storage states in the waste body,
while it doesn’t reduce the uncertainties in concentration states. The proposed coupled as-
similation method leads to good estimation results in both water storage and concentration
states.

The estimation of emission potential heavily relies on accurate estimation of the total
water storage and concentration states within the waste body. Reducing uncertainties in
volume or concentration states leads to a reduction in uncertainties associated with the
emission potential. Therefore, improving the estimation of volume and concentration states
directly contributes to minimizing uncertainties in emission potential. The results show the
uncertainty is reduced in all the tested scenarios where the baseflow is sensitive to bulk
storage change.

The LPR prediction improvement after assimilation is not significant, as the open-loop
realizations also have good predictions. In contrast, the concentration predictions improved
considerably when the chloride concentration measurements were assimilated.

Overall, the results of this study indicate that the proposed coupled assimilation pro-
cedure can be used to estimate total water storage and chloride mass in the waste body. As
such, Data Assimilation is demonstrated to be a viable approach to quantify the emission
potential of landfill waste bodies. The assimilation of LPR rates helped improve the accu-
racy of the estimation of total water storage, Vi, compared to assimilating concentrations
alone. The gap between volume states and mass states is filled by concentration assimila-
tion. Future studies will focus on quantifying the uncertainty caused by model parameters,
which, for example, determine the sensitivity of baseflow to bulk water storage volume.

5 Data Availability Statement

The data and codes used in this paper are available at link: https://data.4tu.nl/
private_datasets/DdrykoWpulL5rI7SIOYpr9LF1lyOMiLtcXbMEeMmvIDXk.
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