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Abstract

Satellite microwave radiance observations are strongly sensitive to sea ice, but physical descriptions of the radiative transfer of

sea ice and snow are incomplete. Further, the radiative transfer is controlled by poorly-known microstructural properties that

vary strongly in time and space. A consequence is that surface-sensitive microwave observations are not assimilated over sea

ice areas, and sea ice retrievals use heuristic rather than physical methods. An empirical model for sea ice radiative transfer

would be helpful but it cannot be trained using standard machine learning techniques because the inputs are mostly unknown.

The solution is to simultaneously train the empirical model and a set of empirical inputs: an “empirical state” method, which

draws on both generative machine learning and physical data assimilation methodology. A hybrid physical-empirical network

describes the known and unknown physics of sea ice and atmospheric radiative transfer. The network is then trained to fit a

year of radiance observations from Advanced Microwave Scanning Radiometer 2 (AMSR2), using the atmospheric profiles, skin

temperature and ocean water emissivity taken from a weather forecasting system. This process estimates maps of the daily sea

ice concentration while also learning an empirical model for the sea ice emissivity. The model learns to define its own empirical

input space along with daily maps of these empirical inputs. These maps represent the otherwise unknown microstructural

properties of the sea ice and snow that affect the radiative transfer. This “empirical state” approach could be used to solve

many other problems of earth system data assimilation.
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Key Points:6

• A new hybrid of machine learning and data assimilation can infer an unknown state7

and an unknown model simultaneously.8

• This empirical state method could help other chicken and egg earth system prob-9

lems that are not suitable for supervised machine learning.10

• This work finds a new sea ice surface emissivity model and makes global all-season11

maps of sea ice concentration using inverse methods.12
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Abstract13

Satellite microwave radiance observations are strongly sensitive to sea ice, but physical14

descriptions of the radiative transfer of sea ice and snow are incomplete. Further, the15

radiative transfer is controlled by poorly-known microstructural properties that vary strongly16

in time and space. A consequence is that surface-sensitive microwave observations are17

not assimilated over sea ice areas, and sea ice retrievals use heuristic rather than phys-18

ical methods. An empirical model for sea ice radiative transfer would be helpful but it19

cannot be trained using standard machine learning techniques because the inputs are mostly20

unknown. The solution is to simultaneously train the empirical model and a set of em-21

pirical inputs: an “empirical state” method, which draws on both generative machine22

learning and physical data assimilation methodology. A hybrid physical-empirical net-23

work describes the known and unknown physics of sea ice and atmospheric radiative trans-24

fer. The network is then trained to fit a year of radiance observations from Advanced25

Microwave Scanning Radiometer 2 (AMSR2), using the atmospheric profiles, skin tem-26

perature and ocean water emissivity taken from a weather forecasting system. This pro-27

cess estimates maps of the daily sea ice concentration while also learning an empirical28

model for the sea ice emissivity. The model learns to define its own empirical input space29

along with daily maps of these empirical inputs. These maps represent the otherwise un-30

known microstructural properties of the sea ice and snow that affect the radiative trans-31

fer. This “empirical state” approach could be used to solve many other problems of earth32

system data assimilation.33

Plain Language Summary34

One way to learn about the earth system would be through machine learning, but35

typical ‘supervised learning’ already requires good knowledge of the geophysical variables36

of interest. Quite often this ‘geophysical state’ is not well known and the main obser-37

vations are from satellites, which measure earth-emitted radiation. In many cases the38

links between this observed radiation and the geophysical state are poorly known. This39

work illustrates a new method which allows both the geophysical state and its links to40

the satellite observations to be learnt at the same time. The specific application is find-41

ing the sea ice concentration, which is a difficult problem because there is poor knowl-42

edge of the properties of sea ice, such as the air bubbles within it, which can strongly43

affect the radiation measured by satellites, and poor knowledge of exactly how this af-44

fects the satellite observations. The new approach solves this double problem by mak-45

ing daily maps of the sea ice and its properties, along with learning a new model to sim-46

ulate the satellite measured radiation from the sea ice properties. Similar approaches could47

improve knowledge of both models and geophysical state in other areas of earth system48

science.49

1 Introduction50

Huge progress has been made in earth system observation and prediction using physically-51

based methods (Bauer et al., 2015). Underpinning this is data assimilation, which com-52

bines a physical model, which propagates the geophysical state forwards in time, with53

observations, which are used to synchronize the evolving geophysical state with reality.54

For global observational coverage, we rely on direct assimilation of satellite radiance ob-55

servations (e.g. Eyre et al., 2020) which require an ‘observation model’ to make the link56

between the radiances and the geophysical state (e.g. Gettelman et al., 2022). In the early57

development of radiance assimilation, the focus was on temperature-sounding radiances58

in clear sky conditions, where physical models for state and observations were most ac-59

curate. More recently, physical models have become good enough to allow significant im-60

pact on the quality of forecasts through the assimilation of radiances sensitive to humid-61

ity, cloud and precipitation (e.g. Peubey & McNally, 2009; Geer et al., 2017, 2018). To62

further improve atmospheric predictability and to give a better representation of surface63
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parameters, a new focus is to improve the use of models and observations of the ocean,64

land surface and cryosphere (de Rosnay et al., 2022). However, particularly when it comes65

to the land surface and cryosphere, neither the modelling of the state, nor the use of satel-66

lite observations, is accurate enough to be able to assimilate satellite radiances using en-67

tirely physical approaches.68

The aim of this work is to build tools and techniques for direct assimilation of satel-69

lite microwave radiances for the cryosphere and in particular, the sea ice. This work is70

ultimately intended for use in an operational weather forecasting system, to allow the71

assimilation of microwave radiances over sea ice surfaces and to contribute to analyses72

of the sea ice concentration. Microwave radiances have a strong sensitivity to sea ice, par-73

ticularly its fractional coverage but also ice age, snow depth and snow microstructure.74

Operational methods to retrieve the sea ice concentration use largely heuristic (‘tie point’)75

approaches (e.g. Comiso et al., 2003; Spreen et al., 2008; Sandven et al., 2023) and an76

experimental method using optimal estimation used a simplified forward model (e.g. Scar-77

lat et al., 2020). This is because physical modelling of snow and ice radiative transfer78

at microwave frequencies is difficult, with better results below 20GHz than above (e.g.79

Hirahara et al., 2020). A fundamental issue is the importance of centimetre to micron80

scale details of the snow and ice, including air inclusions in ice or grain shapes and their81

layout in snow, that are relevant to the radiative transfer. Physical models of snow ra-82

diative transfer (e.g. Picard et al., 2018) are starting to provide convincing results up83

to around 250GHz over land, for example linking measurements from snow pit profiles84

to aircraft radiance measurements with reasonable accuracy in late winter in the Cana-85

dian Arctic (Sandells et al., 2023). Physical models for sea ice have also shown poten-86

tial (Kang et al., 2023), though with the necessity of empirically adjusting the snow and87

sea ice optical properties to fit each location. For global assimilation of snow and ice sur-88

faces, observation models will need to be reliable across all seasons and hemispheres, and89

will need to handle many different types of ice and snow, including wet and refrozen snow90

in the warmer seasons. There is also the problem of defining the input state, since it is91

impossible to provide snow pits and ice cores globally.92

An alternative path to improving our modelling frameworks is to use the vast amount93

of existing observational data to improve models in an empirical way (e.g. Schneider et94

al., 2017; Geer, 2021; Gettelman et al., 2022). The idea of training models from obser-95

vations has become more feasible in recent years following the advent of easy-to-use ma-96

chine learning tools such as Keras (Chollet et al., 2015) and rapid progress has been made97

in machine learning alternatives to weather forecasting models (e.g. Lam et al., 2022).98

A partly empirical approach is taken in the current work, with the aim to train a new99

observation model for sea ice using global data through the whole year, in order to han-100

dle all seasons, hemispheres and snow and ice types. However, empirical geophysical mod-101

els are normally built using ‘supervised learning’ strategies that require the inputs and102

outputs of the empirical model to be known and available in large quantities. For ex-103

ample, in the case of ML-based weather forecasting models, this relies on existing atmo-104

spheric re-analysis datasets (e.g. Hersbach et al., 2020). But to train an empirical ob-105

servation model to link the geophysical state to the satellite radiances for the land sur-106

face or the cryosphere, the inputs, in other words the state of the soil, snow and ice, are107

not well enough known on a global scale. In fact, we will likely only know the state pa-108

rameters well enough on a global scale once an observation model is available to help de-109

rive them from satellite observations, so training an empirical model for surface radia-110

tive transfer can be seen as a chicken and egg problem.111

If supervised learning strategies are not possible, alternative ‘unsupervised learn-112

ing’ strategies are known in the wider field of machine learning. An example is gener-113

ative adversarial networks, which in the geophysical world have been used to generate114

plausible snowflake shapes (Leinonen et al., 2021). The forward model in a generative115

adversarial network defines its own ‘latent space’ of empirical input variables which de-116
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scribe underlying statistical properties of, for example, the output snowflake shapes. A117

similar principle is used in the current work, which allows the empirical observation model118

to define its own latent space as its input, in order to represent the mostly unknown mi-119

crophysical structures of sea ice and snow that are needed to simulate microwave radi-120

ances. This will be referred to as an ‘empirical state’, which will be trained simultane-121

ously with the empirical model to go from the state to the observations. The meaning122

of the empirical state variables is learnt along with the empirical model.123

However, a purely empirical framework is of no use if we want to infer geophysi-124

cal properties, not empirical variables. To solve this, we can impose known physical re-125

lationships, such as the radiative transfer of the atmosphere. Reichstein et al. (2019) de-126

scribed how empirical models could be used and trained in networks with physical mod-127

els. These networks can be represented in a Bayesian way that is mathematically equiv-128

alent to data assimilation (Geer, 2021). The Bayesian viewpoint brings the insight that129

physical models represent parts of the network where there is good prior physical knowl-130

edge, whereas machine learning models can represent areas where there is little or no prior131

knowledge. In the current work, the empirical modelling is limited to the surface emis-132

sivity of the sea ice, whereas physical modelling is used for the surface emissivity of the133

ocean and for the radiative transfer of the atmosphere. In particular, it is the inclusion134

of physical equations that allows the sea ice concentration to be derived within the sys-135

tem, but the equations would have been incomplete without the empirical contribution.136

The entire network can be referred to as a hybrid empirical-physical model.137

A number of other aspects of geophysical modelling and observation are more well-138

developed in data assimilation frameworks than in typical machine learning methods (Geer,139

2021). One of these is mapping between geophysical fields on a regular time and space140

grid to the irregular arrangement of satellite observations in time and space, which is han-141

dled by an interpolation operator. Also used is background error modelling (to control142

the weight of prior physical knowledge against the new knowledge from observations) and143

observation errors (to account for the varying difficulty of forward modelling at differ-144

ent frequencies measured by the satellite). All these techniques are also employed in the145

current work, making a mix of data assimilation and machine learning, following much146

work merging the two fields (e.g. Hsieh & Tang, 1998; Bocquet et al., 2020; Brajard et147

al., 2020).148

The framework created to solve these problems is introduced in the methods sec-149

tion (Sec. 2), which starts with an overview of the framework, followed up by subsections150

on the different scientific and technical aspects. The results (Sec. 3) are presented for151

a version of this framework which learns daily sea ice maps for the Arctic and Antarc-152

tic for an entire year at 40 km spatial resolution, along with the new hybrid surface emis-153

sivity model and daily maps of the empirical properties of the sea ice and snow. Since154

the framework was created through a rapid prototyping approach, its design decisions155

are explored after the fact using sensitivity tests which are described in the appendices.156

Both the training dataset and the Python-based framework are also available to com-157

plete the documentation of this work.158

2 Method159

2.1 Overview160

Figure 1 shows a simplified overview of the hybrid physical-empirical network that161

describes radiative transfer over sea ice and polar ocean at microwave frequencies. The162

aim of this work is to find daily maps of the sea ice concentration Cice and its physical163

state, Xice simultaneously with a new empirical model for the sea ice surface emissiv-164

ity (neural network weights w), in order to generate simulated observations y to best165

fit real AMSR2 observations. The trainable variables are given dotted outlines on the166
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  y

 e

 TS

 Cice

 zA

 y = fatmos(e, TS, zA)

 eice

 ewat

 e = Ciceeice + (1 − Cice)ewat

 xice

 eice = fempirical(w, xice, zB)

 zB zG

 Xice

 Cice

 w xice = h(Xice, zG)

 Cice = h(Cice, zG)

Figure 1. Simplified overview of the hybrid empirical-physical training network, for a single

day and a single multi-channel observation. Circles represent variables that are trainable (dot-

ted), dependent (thin solid), or fixed (thick solid). Arrows indicate dependencies and equations

give the functional form of these dependencies. The meaning of the variables is explained in the

text. Colour maps illustrate, for the Arctic, the observations (top); sea ice concentration (middle)

and empirical sea ice properties (bottom) for 7th November 2020; full size extended versions,

along with full explanatory details, can be found later in Figs. 2, 9 and 6 respectively.

figure. The design and purpose of the network, and the meanings of other variables in167

the figure, will be overviewed in the current section, with further detail provided in the168

relevant subsections that follow.169

The network is implemented in Keras (Chollet et al., 2015), part of Tensorflow (Abadi170

et al., 2015), using Python. The inputs to the network are fixed parameters shown with171

bold outlines on Fig. 1, such as the observation locations zG and estimated state of the172

atmosphere from the European Centre for Medium-range Weather Forecasts (ECMWF)173

model zA. The physical and empirical relations between parameters are described by equa-174

tions with dependent output variables, indicated by thin solid outlines on the figure. These175

equations are encoded in custom network layers, so that parameters of the network can176

be defined as weights (akin to neural network weights) within these custom layers, which177

may be trainable or fixed.178

Training the network can be seen as either a data assimilation process, or roughly179

equivalently, the training of a generative machine learning framework, that aims to best180

fit the observations by learning the geophysical state at each location and day over an181

entire year. The network is not intended to directly predict the observations for another182

year because the sea ice locations and surface properties will be different. Those parts183

of the network would have to be re-trained to fit another year. This means there is no184

possibility using separate training and test datasets, as is typical in standard supervised185

machine learning practice. Instead, the performance of the network is judged by how well186

it fits the observations, and how well it estimates the geophysical state (e.g. the sea ice187

concentration). Out of training set performance has been demonstrated through the use188
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of the trained hybrid surface emissivity model to fit another year’s observations in a weather189

forecasting context (Geer, 2023c).190

The hybrid network is trained by minimising a loss function. The aim is to be able191

to replicate as closely as possible a year of Advanced Microwave Sounding Radiometer-192

2 (AMSR2) observations over ocean and sea ice areas poleward of 45◦ latitude. The sim-193

ulated observation y (Fig. 1) represents an observation at one location comprising mea-194

surements at different frequencies and polarisations, known as channels. The notation195

here is that variables in lower-case bold represent vectors. The measured quantity is ra-196

diance and this is given in terms of equivalent black body brightness temperature (TB).197

Further detail on the microwave observations is in Sec. 22.3. The observed AMSR2 ob-198

servations are yobs and the discrepancy with the simulations is measured by a mean squared199

error loss function Jobs, which weights observations by an observation error r following200

standard DA practice:201

Jobs =
1

n

n∑
i=1

m∑
j=1

(yobs,ij − yij)
2

r2j
(1)

Here, i is the index over all observations, with n ≃ 600 million of them covering the full202

year. For simplicity the observation index has not been shown in Fig. 1. The elements203

of vectors yi and r are scalars yij and rj with the channel index j. Note that the divi-204

sion by n is not typically done in DA (e.g. Geer, 2021) and instead reflects the way batch-205

based loss terms in Keras are accumulated as a per-observation average. As in data as-206

similation, this is not the only loss function used to constrain the results of the network,207

but a number of other losses are used for constraining the estimated parameters (sim-208

ilar to background error constraints in data assimilation) and are described in Sec. 2.2.209

The physical details of the network are now briefly described by following it back210

from its outputs. The observed AMSR2 radiances are affected by the atmospheric ab-211

sorption and scattering from gases and clouds, as well as the emission, scattering and212

reflection of the surface. Hence a physical description of the atmospheric radiative trans-213

fer is encapsulated in y = fatmos(e, TS , zA), where the surface inputs are surface tem-214

perature TS and emissivity vector e (one element for each channel) and the atmospheric215

state is represented in the vector zA. The atmosphere and skin temperature are treated216

as known and fixed and are extracted from the ECMWF 12h background forecast. Fur-217

ther details of the atmospheric radiative transfer are in Sec. 2.4. One detail omitted from218

Fig. 1 is the use of a trainable bias correction for the observations, which needs 20 train-219

able weights; however in practice this is mostly constrained to prior knowledge and is220

not a major aspect of the problem (Sec. 2.3).221

The mixed surface emissivity e must be estimated within the network to provide222

the surface boundary conditions to the atmospheric radiative transfer model. The emis-223

sivity is described as a linear combination of the sea ice and ocean water surface emis-224

sivities eice and ewat, weighted by the sea ice concentration in the satellite’s field of view,225

Cice. The contrast in the surface emissivity between ocean and ice is strongest and eas-226

iest to detect at microwave wavelengths, and is fundamentally what allows the inference227

of the sea ice concentration from from satellite observations. This equation also defines228

the meaning of sea ice concentration in this work, which is the fraction of the ocean sur-229

face covered with ice or snow, which excludes melt ponds but can include ice bergs and230

ice shelves. The ocean surface emissivity is described physically and is treated as a known231

quantity. Not included in the simplified diagram is a windspeed error correction that is232

applied to the ocean surface emissivity, which uses 10 trainable weights. This correction233

is not a major aspect of the problem and is further described in Sec. 2.5.234

The sea ice concentration and its emissivity are the key unknowns in this work. To235

describe the latter, the network includes a time-evolving geographical map of sea ice con-236

centration Cice. Here the capitalised bold notation denotes a geographical map, possi-237

bly with multiple layers, although for the sea ice concentration there is just one. The in-238
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terpolation operator which goes from the map to the observation location is represented239

here as h(Cice, zG). The position of the observation on the earth’s surface and the time240

it was taken, in other words its geolocation, is represented by zG. The geographical map241

of sea ice is treated as an unknown and is hence one of the trainable variables, shown242

on Fig. 1 with a dotted outline.243

The sea ice emissivity eice is described by an empirical function fempirical(w,xice, zB)244

where w are the unknown parameters of the function (e.g. trainable neural network weights),245

and xice are unknown empirical inputs describing the unknown micro and macro-physical246

properties of the sea ice and any snow lying on top of it. Finally, zB represents any known247

inputs for the surface emissivity model. In the current work this just contains a func-248

tion of the skin temperature, but in future it could be extended to include the relevant249

outputs of a sea ice and snow physical model, as these become more accurate. In the cur-250

rent work it has proven sufficient to represent fempirical() using a single dense linear neu-251

ral network layer with 50 trainable weights. Multilayer and nonlinear (’deep’) neural net-252

works have also been tried out, but their complexity is unnecessary here and also they253

increase the possibilities for over-fitting (Appendix A1). The weights w of the empir-254

ical model are constant globally and through the year, with the intention of creating a255

compact and universally valid model for the sea ice emissivity. Further details of the sur-256

face emissivity modelling are in Sec. 2.5.257

The unknown empirical state inputs to the sea ice emissivity model (xice) are in-258

terpolated from a geographical map Xice in a similar way to the sea ice concentration.259

This map represents the empirical micro and macro physical properties of the sea ice and260

is another set of trainable parameters. The number of layers in this map, and hence the261

number of empirical inputs to the model, is a hyperparameter chosen to be 3 (sensitiv-262

ity tests on this are in Appendix A1). Further details on the empirical state parameters263

are in Sec. 2.6.264

As is well-recognised (e.g. Hsieh & Tang, 1998; Bocquet et al., 2020; Geer, 2021),265

machine learning and data assimilation are ultimately Bayesian inverse methods. Hence,266

Fig. 1 also represents the problem as a Bayesian network (e.g. Ghahramani, 2015), in267

particular mapping onto the graphical representation of data assimilation and ML used268

by Geer (2021). The physical content of the network could be seen as a sophisticated way269

of applying physical constraints to training of an empirical model, in the line of physics-270

informed neural network techniques (e.g. Raissi et al., 2017). Alternatively, the inclu-271

sion of a trainable empirical model within a physical data assimilation framework could272

be seen as an extended form of parameter estimation for data assimilation (e.g. Bocquet273

et al., 2019). But ultimately, all these views can be united in the Bayesian framework.274

2.2 Technical summary275

Figure 1 represents the network for one single observation, but the training is done276

on approximately 0.6 billion observed radiances across one year and with approximately277

4.9 billion pieces of supporting information extracted from ECMWF short-range fore-278

casts relating to the atmospheric radiative transfer terms and the surface temperature.279

Table 1 summarises the technical details of the network and its training.280

The loss function J used in training includes the basic observational loss function281

Jobs (Eq. 1) alongside additional regularisation terms:282

J = Jobs + Jseaice bounds + Jseaice tsfc + Jemis + Jbias. (2)

The sea ice concentration is constrained by two loss functions representing physical con-283

straints. The first sea ice loss function, Jseaice bounds, imposes the limits zero and 1 and284

the second, Jseaice tsfc, imposes the climatological probability of sea ice as a function of285

surface temperature (Sec. 2.7). The bias correction requires a loss function Jbias (Sec. 2.3)286

and finally there is a loss function for applying physical constraints to the sea ice emis-287
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Table 1. Overview of the hybrid network and its training details.

Aspect Parameter Value

Training data Time period start 1st July 2020
time period end 30th June 2021
Number of observations 64,184,021
Channels per observation 10
TOTAL (observations by channels) 641,840,210

Geographical Resolution 40 km
grid Number of spatial points 62,499

Number of time points (see Sec. 2.6 and 22.7) 365 or 366

Trainable Sea ice map Cice (366 days, see Sec. 2.7) 22,874,634
parameters Empirical micro- and macro-physical properties

Xice (3 variables, 365 days)
68,436,408

Empirical sea ice emissivity model weights w 50
Observation bias correction coefficients bice, bwat 20
Ocean surface emissivity windspeed correction coef-
ficients bemis

10

TOTAL 91,311,120

Fixed Atmospheric radiative transfer zA 61 per observation
parameters Surface (skin temperature (TS , zB), surface wind-

speed, ocean emissivity ewat)
13 per observation

Geolocation zG (grid point, day, observation num-
ber)

3 per observation

TOTAL (multiplied by number of observations) 4,942,169,617

Loss Observation fit Jobs, Eq. 1
functions Observational bias Jbias, Eq. 4

Ice emissivity Jemis, Eq. 9
Sea ice physical bounds Jseaice bounds, Eq. 11
Sea ice probability Jseaice tsfc, Eq. 12

sivity Jemis (Sec. 2.5). All these additional loss terms are important to impose physical288

behaviour and to prevent the problem being under constrained. In practice the bias and289

ice emissivity terms Jbias and Jemis were set so tightly that almost no change from the290

prior was allowed, but these terms provide a way of carrying out sensitivity tests on the291

number of parameters that can be constrained within the framework (see Appendix). Note292

also that the maps of empirical state parameters are not constrained at all. In Bayesian293

terms this means we impose no prior knowledge on what these values should be (this is294

often termed ‘equal priors’) following normal practice in ML.295

The geographical maps of sea ice Cice and empirical properties Xice are estimated296

on an irregular spatial grid with a consistent resolution of about 40 km, containing 62499297

points, and with a time resolution of 1 day. Precisely, the grid is derived from an N256298

reduced Gaussian grid (Hortal & Simmons, 1991) from which all land points and lati-299

tudes less than 45◦ have been removed. A typical single map layer therefore contains 62499300

locations × 365 days = 23 million parameters to be estimated.301

Training of the hybrid model and geographical maps was done on the ECMWF su-302

percomputer with a single process allowing 64 CPU threads, 128 GB of memory, and a303
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Table 2. AMSR2 channels in this work: (top) details from Okuyama and Imaoka (2015);

(bottom) usage details.

Original channel number 5 6 7 8 9 10 11 12 13 14
Polarisation v h v h v h v h v h
Frequency [GHz] 10.65 18.7 23.8 36.5 89
Footprint [km] 24 × 42 14 × 22 15 × 26 7 × 12 3 × 5
Noise [K] 0.55 0.47 0.56 0.54 0.51 0.41 0.89 1.01 1.18 0.91

Local channel number j 1 2 3 4 5 6 7 8 9 10
Short name 10v 10h 19v 19h 24v 24h 37v 37h 89v 89h
Observation error [K] 2.5 4.0 2.5 4.5 2.5 5.0 4.0 7.0 4.5 10.0

RMS error initial [K] 19.31 20.61 8.41 41.25 18.02 20.80 24.74 23.60 23.85 34.94
RMS error analysis [K] 2.69 4.32 2.58 4.92 2.66 5.22 3.88 7.63 4.71 9.93

maximum 48h of wallclock time (no GPUs were available). This allowed up to 8 train-304

ing epochs, which was sufficient in the current work. To train the model, the loss func-305

tion (Eq. 2) was minimised using the Adam variant of the mini-batch stochastic gradi-306

ent descent approach (Kingma & Ba, 2014) at its default settings, including its learn-307

ing rate set to 0.001, with the exception of the use of a batch size of 1024 (Appendix A1).308

From the point of view of Keras training, the fixed parameters were treated as input val-309

ues (features), the observations were treated as output values (labels). Further techni-310

cal aspects of the training and hyperparameters are explored in Appendix A1.311

2.3 Observations312

Observations are provided by AMSR2 (Okuyama & Imaoka, 2015), a conical scan-313

ning microwave radiometer on the polar-orbiting GCOM-W2 satellite observing at fre-314

quencies from 6.7GHz to 89GHz, each separately measuring vertically (v) and horizon-315

tally (h) polarised radiances (Tab. 2). The original radiance observations were obtained316

from the Japan Aerospace Exploitation Agency (JAXA, https://gportal.jaxa.com) and317

averaged onto a 40 km reduced Gaussian grid (Hortal & Simmons, 1991). This averag-318

ing standardises the measurement footprint, which varies with frequency (the footprint319

varies both in size, Table 2, but also in central location by up to around 4 km). The spa-320

tial locations of the resulting ‘superobservations’ or superobs are taken as those of the321

centres of the Gaussian grid points. The times of the superobs are the mean of the times322

of the original observations, which span only a few seconds, so the superob remains an323

almost instantaneous observation of the earth. AMSR2 also has channels at 6 – 7GHz324

with excellent sea ice sensitivity but these have been left out due to their footprint be-325

ing larger than the 40 km grid. Superobs are based on an average of 20 raw observations;326

those based on less than 6 raw observations are discarded. Following current practice327

in atmospheric data assimilation (e.g. Kazumori et al., 2016; Geer et al., 2018), the ob-328

servations are used in all-sky conditions, i.e. clear, cloudy and precipitating.329

Figure 2 illustrates these observations over the Arctic ocean. At 10GHz, v-polarised,330

(10v) the sea ice areas are relatively easily distinguished from ocean by the large con-331

trast in brightness temperature, with sea ice showing a fairly uniform value around 250K.332

But at higher frequencies (19v – 89v) and in the horizontally-polarised channels (10h –333

89h) the sea ice areas show more strongly variable brightness temperature, driven by the334

micro and macrophysical characteristics of the sea ice and snow cover. The influence of335

the atmosphere (e.g. clouds and water vapour) is also important, particularly at 89 GHz.336

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. Observed AMSR2 brightness temperatures on the 40 km grid over the Arctic on 7th

November 2020, showing only pure ocean scenes, and allowing observations from multiple orbits

to overlay each other. Channels 24v and 24h are also used in this work, but are omitted from the

figure to save space.

The ocean surface generally has much lower brightness temperatures than the sea ice and337

is more strongly polarised, so that h-polarisation measurements have much lower bright-338

ness temperatures than v-polarisation measurements, down to around 85K at 10h. Ex-339

isting heuristic sea ice algorithms use higher frequencies to obtain better spatial reso-340

lution, and are based on empirically observed characteristics of the polarisation and fre-341

quency dependence of ocean and sea ice surfaces. These include methods using 19v, 37v,342

19h and 37h (e.g. Comiso et al., 2003; OSI-SAF, 2016) and those using 89v and 89h (e.g.343

Spreen et al., 2008) but in general no existing algorithm uses a physical description of344

the problem like the hybrid network used here (Fig. 1). This is mainly due to the lack345

of knowledge of the sea ice emissivity and its variations with underlying micro- and macro-346

physical ice and snow characteristics. The heuristic approaches can be vulnerable to at-347

mospheric effects such as cloud and water vapour along with variations in sea ice and348

ocean surface characteristics, which could incorrectly be interpreted as variations in sea349

ice concentration.350

Because of its orbit, AMSR2 crosses the polar regions every 100 minutes or so, tak-351

ing measurements across a sub-satellite swath of 1450 km. Each overpass produces sep-352

arate superobs, so up to around 8 of these are available on the 40 km grid in a 24 h pe-353

riod, and Fig. 2 has allowed multiple observations to overlay each other. Figure 3 shows354

the average number of superobs per day, counted on the daily 40 km grid on which the355

sea ice concentration and empirical properties (Cice, Xice) are estimated. The interpo-356

lation operator from Fig. 1, h(·, zG) is responsible for mapping between the sea ice daily357

grid and the location of the observations, whose availability changes from day to day,358

primarily due to orbital precession. The mapping is made easy because the superobs and359
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Figure 3. Number of AMSR2 pure ocean superobs available on the 40 km grid over the Arctic

on 7th November 2020, in the 24 h period from 2100 UTC on 6th November to 2100 UTC on 7th

November. Dashed lines indicate latitude every 10◦ and longitude every 45◦.

the sea ice grid are on the same standardised locations. The result is that the daily es-360

timates of sea ice concentration, and its the empirical properties, typically have to fit be-361

tween 4 and 8 AMSR2 superobs and represent, in rough terms, a daily average.362

AMSR2 has measurement biases which vary as a function of scene brightness tem-363

perature and can reach 5K (Berg et al., 2016). It is routine and necessary to remove these364

biases when the data are assimilated. Hence in practice (and omitted from Fig. 1 for sim-365

plicity) a bias-corrected brightness temperature ycorr is used in the training (precisely,366

in the observation loss function Eq. 1) in place of the uncorrected y:367

ycorr = y + Cice ∗ bice + (1− Cice) ∗ bwat (3)

The bias corrections are a function of the sea ice concentration, and are per channel, so368

there is a vector of 10 bias corrections for for sea ice, bice, and similarly for ocean wa-369

ter, bwat. These are also trainable parameters, though in practice they are not allowed370

to vary much. The bias correction is initialised with the background values bice,bg and371

bwat,bg, respectively set to 2.5K and 5.0K (in all channels) using prior estimates of AMSR2372

biases over ocean and land surfaces (Geer et al., 2022) and assuming that sea ice sur-373

faces will have similar biases to those seen over land surfaces. Given that the bias cor-374

rections are trainable values, they are constrained by a loss term375

Jbias =
1

n

m∑
j=1

(bice,j − bice,bg)
2 + (bwat,j − bwat,bg)

2

b2bgerr
. (4)

Here, the per-channel bias corrections are bice,j and bwat,j with a background error of bbgerr =376

0.001K, and the division by n, the number of training observations, standardises the loss377

function to the Keras approach (Eq. 1). Given the very small chosen background error,378

in practice the bias is forced to stay extremely close to prior values, rather than being379

allowed to evolve to fit the observations. Hence the bias loss term exists mainly to ex-380

plore the possibility of relaxing this constraint and evolving the bias correction in the381

sensitivity tests described in A2. These show that if biases are allowed to evolve away382
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from the prior values, it makes the problem under-constrained, so in practice it is nec-383

essary to estimate any instrument biases in advance.384

A final aspect of using observations in DA is the observation error r, which comes385

into the observation loss term (Eq. 1). The uncertainty in the observations themselves386

is indicated by the instrument noise, which is around 0.5 to 1.0K (Table 2). However,387

in a DA system that does not otherwise account for forward modelling error, this must388

be represented in the observation error, and hence the total observation error is often389

much larger than the instrument noise (e.g. Geer & Bauer, 2011). In the current work,390

there is substantial forward modelling error not represented within the hybrid network391

(Fig. 1). This is because the network is not a perfect description of the physical processes392

and also the fixed parameters (e.g. zatmos) are not perfectly known. The assigned ob-393

servation errors are given in Table 2 and have been inspired by the size of the residu-394

als after training earlier prototype versions; estimating these errors is recognised as an395

iterative problem (Desroziers et al., 2005). The assigned errors range from around 2.5K396

in channels 10v, 19v and 24v, up to 10.0K in channel 89h. The larger observation er-397

rors reflect the increased difficulty in modelling the complex brightness temperature pat-398

terns over sea ice at higher frequencies and in h-polarised channels, as well as any errors399

in the fixed parameters for cloud and water vapour that mainly affect higher frequen-400

cies (see also Fig. 2).401

2.4 Atmospheric radiative transfer402

Atmospheric radiative transfer terms zatmos have been computed prior to training,403

using the background 12 hour forecast from the ECMWF data assimilation system, which404

assimilates AMSR2 observations for their atmospheric information content in all-sky con-405

ditions (Kazumori et al., 2016) as well as many other satellites and observation types406

(e.g. Geer et al., 2017). Atmospheric radiative transfer is simulated by the physical scat-407

tering radiative transfer model RTTOV-SCATT (Radiative transfer for TOVS Scatter-408

ing module, Bauer et al., 2006). This uses two independent sub-columns, one clear and409

one cloudy. The clear sub-column simulates the surface interaction and absorption by410

gases, primarily water vapour. The cloudy sub-column also includes the effect of cloud411

and precipitation using a delta-Eddington scattering solver. In each sub-column kϵ[clear, cloudy],412

and for one channel j, the top-of-atmosphere brightness temperature is described by:413

yjk = ejTSΓjk + (1− ej)T
⇓
jkΓjk + T⇑

jk. (5)

Here, T⇓
jk is the downwelling radiation (TB) at the surface, T⇑

jk is the component of up-414

welling radiation at the top of the atmosphere coming from the atmosphere itself, and415

Γjk is the atmospheric transmittance. The surface is represented using the approxima-416

tion of specular reflection, where the surface emits radiation according to the surface tem-417

perature TS multiplied by the surface emissivity ej , and reflects downwelling radiation418

modulated by a reflectivity 1−ej . This is not a perfect assumption, because microwave419

radiation can penetrate centimetres to metres into snow and ice surfaces, and future work420

will use a more physical representation of the radiative transfer within the sea ice and421

snow (e.g. Picard et al., 2018). The final ‘all-sky’ brightness temperature is obtained by422

weighting the two sub-columns according to the effective cloud fraction Ceff (Geer et al.,423

2009):424

yj = (1− Ceff)yj,clear + Ceffyj,cloudy (6)

Given that there are 10 channels, two subcolumns, and Eq. 5 requires three atmospheric425

variables to be prescribed, this means that zatmos is composed of 60 radiative transfer426

terms plus the cloud fraction Ceff . These are required at the locations of every obser-427

vation in the training set (Table 1). The most important atmosphere-related approxi-428

mation is that zatmos is based on an ECMWF 12h forecast but is treated as a fixed truth;429

the impact of this is explored later.430
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These equations are already used in a different way in a dynamic surface emissiv-431

ity retrieval at ECMWF (Baordo & Geer, 2015, 2016). This traditional technique for es-432

timating the surface emissivity of land, snow and ice surfaces attempts to directly in-433

vert Eqs. 5 and 6 to obtain ej , given fixed estimates of all other parameters. This can434

fail in many circumstances including when the surface becomes invisible due to heavy435

cloud or high water vapour amounts (Γjk → 0) though this is mainly a problem of higher436

frequency channels (Baordo & Geer, 2016). An advantage of the Bayesian inversion of437

the physical forward modelling framework used here (Fig. 1) is that it naturally handles438

this situation, and does not attempt to extract information from observations where there439

is none to be had.440

2.5 Surface emisivity model441

The mixed-surface emissivity e (which is a vector over the 10 frequencies and po-442

larisations of AMSR2 being used here) depends on the fractional cover of sea ice within443

the scene Cice and on the emissivities of sea ice and open ocean eice and ewat:444

e = Ciceeice + (1− Cice)ewat. (7)

If the sea ice and water emissivity were both known then it would be possible to retrieve445

the sea ice concentation from the total surface emissivity using this equation. Even if446

the ocean emissivity is treated as fully known, the problem of estimating the unknown447

sea ice concentration and ice emissivity from this equation is ill-posed (e.g. Rodgers, 2000).448

There are 11 unknowns but only 10 simultaneous equations. One way to make it well-449

posed would be to constrain the frequency variation of ice emissivity eice. Hence, one450

aim of the current work is to generate a sea ice emissivity model with significantly fewer451

input parameters than the number of frequencies in eice, in order to facilitate sea ice con-452

centration retrievals.453

The ice surface emissivity model being trained in this work is:454

eice = fempirical(w,xice, zB) = wb +w0zB +

p∑
l=1

wlxice,l. (8)

Here, wb and w0 to wp are each a vector across the 10 microwave channels and they455

are extracted from the 50-element weights vector w (Table 1). With p = 3 empirical456

variables to represent the micro- and macrophysical properties of the sea ice and snow,457

there are l = 1, p components of xice, written xice,l as inputs to the emissivity model,458

plus a scalar zB . This model is implemented as shown in the equation as a single neu-459

ral network layer with a linear activation function, although more complex and nonlin-460

ear neural networks have also been tried (Appendix A1). The appendix also justifies the461

choice of p = 3 empirical variables.462

The trained values of wb and w0 to w3 are illustrated in Fig. 4 as well as being tab-463

ulated in Appendix B. Here, wb broadly represents a mean ice surface emissivity and464

other vectors describe variability around this as a function of the input values. Of these465

inputs, zB is the only physical one: it is a scalar transformation of the surface temper-466

ature zB = max(273.0 − TS , 0.0)/30.0. The factor 30.0 in the denominator is for nor-467

malisation and is chosen so that maximum values do not much exceed 1, as is common468

practice in machine learning. As mentioned in Sec. 2.4, the representation of the surface469

using an emissivity and a skin temperature is a big approximation. Quite often the ra-470

diation may be coming from within the sea ice or snow layer, where it is warmer, and471

the effective radiating temperature of the snow and sea ice (in Eq. 5) should be higher472

than the given skin temperature from the ECMWF model. To partly compensate this,473

the model is designed to allow an increase in the surface emissivity as the skin temper-474

ature gets colder. Figure 4a shows the modelled surface emissivity at TS = 273.0K (zB =475

0) and TS = 261.0K (zB = 0.4), assuming all other inputs are zero. Going to the lower476
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Figure 4. Illustrating the trained sea ice emissivity model. The ice emissivity with all inputs

zero is wb which is shown in all panels (solid line). If just one input parameter is perturbed to

+0.4 (long dash) or -0.4 (dot dash) then the emissivity changes according to weights w0 to w3.

temperature increases the modelled surface emissivity by up to 0.07. The trained model477

describes this effect in a physically plausible way, being strongest at lower frequencies,478

where radiation typically penetrates deeper into the snow and ice, and weakest at 89GHz,479

where the radiation is unlikely to be penetrating more than a few centimetres into the480

surface.481

Figure 4b – d show the response of the trained emissivity model to changes in the482

empirical inputs, those variables whose meaning is defined by the model itself. Positive483

values of the first empirical value, xice,1, are able to make the surface emissivity decrease484

more strongly with frequency (panel b) although negative values can generate unphys-485

ical emissivity values outside the range 0 to 1. The second empirical value (xice,2, panel486

c) seems primarily to control the polarisation (the sawtooth shape on these plots) mak-487

ing it smaller when positive and larger when negative. Positive values of the third em-488

pirical value (xice,3, panel d) reduce polarisation and reduce emissivity mainly at 89GHz.489

This represents a compact model of the polarisation and frequency dependence of the490

surface emissivity of ice and snow.491

At the start of training, the sea ice emissivity model weights were initialised with492

the default initialiser (Glorot uniform; Glorot & Bengio, 2010) except for wb which was493

initialised to a background value of wb,bg = 0.93. With the aim to make the problem494

well-posed, the emissivity model was constrained, but only for the first element of the495
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Figure 5. Emissivity as a function of channel at illustrative locations in the Arctic on 7th

November (a) in the multi year ice and (b) in newly formed sea ice. The mixed emissivity

(dashed) is generated from the sea ice concentration and the ice and water emissivities (solid

and dot-dash) according to Eq. 7.

vector wb, which gives the baseline surface emissivity for channel 10v:496

Jemis =
1

n

(wb,1 − wb,bg)
2

w2
bgerr

. (9)

In practice, the size of the background error here, wbgerr = 0.00001, was chosen to keep497

wb,1 extremely close to its background value. An emissivity of 0.93 is within the typi-498

cal values for channel 10v, and further, the emissivity in this channel is thought to be499

relatively invariant between first year and multi year ice (Lee et al., 2017, their Table500

4). The posterior sensitivity tests in Appendix A2 show that this constraint on 10v emis-501

sivity could in practice have been relaxed or removed. In early testing before the addi-502

tion of sea ice concentration loss terms, the emissivity loss term was necessary to avoid503

completely non-physical sea ice concentrations being retrieved. However, it appears that504

the sea ice concentration loss terms are more effective and targeted, and would be suf-505

ficient on their own in future versions of this work. In any case, despite the constraint,506

the final trained model still has freedom to adjust the output emissivity at 10v down to507

at least 0.9 and up to at least 0.98 depending on the input parameters (Fig. 4).508

Figure 5 illustrates sea ice surface emissivities generated by the empirical model509

(Eq. 8) at two locations in the Arctic, alongside ocean water emissivities (Eq. 10, to be510

described shortly) and the mixed-surface emissivity that is determined by the sea ice con-511

centration (Eq. 7). The location with new ice (panel a) generates relatively strong po-512

larisation but has little frequency dependence. The frequency dependence is in qualita-513

tive agreement with aircraft observations of new ice (e.g. Hewison & English, 1999). In514

contrast, a location in the multi-year ice is mostly unpolarised but its emissivity drops515

with frequency, as is generally observed (e.g. Baordo & Geer, 2015). Both sea ice emis-516

sivity spectra contrast strongly with the ocean water emissivity which is even more po-517

larised and increases with frequency. These are locations where the sea ice concentra-518

tion is close to 1, so the mixed-surface emissivity is relatively close to the ice emissiv-519

ity.520

To complete the description of surface emissivity modelling, ocean water emissiv-521

ity is described as a function of skin temperature TS , surface wind speed u, salinity and522

frequency by the FASTEM-6 model (Fast Emissivity, Kazumori & English, 2015). The523
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Figure 6. Estimated values of the three empirical sea ice properties in the Arctic on 7th

November 2020. Values are only shown where the estimated sea ice concentration is greater than

0.2.

ECMWF 12h forecast is used to provide surface temperature and wind speed at the ob-524

servation time and location, and the salinity is fixed (35 in terms of practical salinity units).525

The ocean water cannot cool below around 271.35K without freezing, but many sea ice526

locations have skin temperatures much lower than this. In these cases, the surface emis-527

sivity is set to an average of surface emissivities generated for surface temperatures be-528

tween 271.0 and 273.0K in nearby areas. FASTEM-6 also has biases as a function of wind-529

speed u, coming from an imperfect representation of the sea state in high wind situa-530

tions. Hence another alteration to the idealised network in Fig. 1 is to train a windspeed531

and channel-dependent bias correction bfastem within the network:532

ewat = efastem + ubfastem. (10)

Here, efastem is the ocean water surface emissivity coming from FASTEM-6. This wind-533

speed bias correction requires 10 bias correction coefficients to be trained (one per chan-534

nel, Table 1). The trained windspeed bias corrections appear to be well constrained, phys-535

ically realistic, and they make only small adjustments to the simulated ocean emissiv-536

ity (e.g. at u = 20ms−1 at most +0.03 in emissivity in the 37h channel, and generally537

smaller). Hence, no loss function is used, and for brevity the corrections are not discussed538

further.539

2.6 Empirical state representing micro- and macro-physical properties540

of sea ice541

The initial value of the empirical parameters is zero before training, and as men-542

tioned earlier, there is no attempt to constrain these values during training. Figure 6 il-543

lustrates the empirical sea ice properties after training. Positive values of properties 1544

and 2 are found towards the W side of the Arctic sea ice and appear to correspond to545

multi-year ice, including a small tail of similar properties that has been advected around546

the Beaufort Gyre (near Alaska). The other parts of the Arctic sea ice have frozen dur-547

ing the autumn and have more variability, but properties 1 and 2 are typically zero or548

below, and property 3 is often zero or positive. Figure 5 has already illustrated typical549

corresponding sea ice emissivity spectra in Arctic multi-year and new ice. During the550

cold season, the empirical properties are often largely unchanged from one day to the551

next, but they can change rapidly, for example when new snow falls on the sea ice (not552
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shown). In the warm season, the empirical properties vary widely from day to day, likely553

depending on whether the snow cover is melting or frozen on the day in question (not554

shown).555

2.7 Sea ice556

In order to speed up the training, the sea ice maps Cice were initialised with a monthly557

mean sea ice concentration computed from the existing ECMWF sea ice concentration558

analysis at the AMSR2 locations. However, apart from the physical constraints described559

below, the sea ice concentration can be freely adjusted to best fit the observations, and560

is not constrained in any way to the ECMWF sea ice concentration. The existing ECMWF561

sea ice analysis is based on a combination of an ocean model, a sea ice model (LIM2, Tim-562

mermann et al., 2005) and the assimilation of highly processed observations, using the563

ocean data assimilation framework (OCEAN5, Zuo et al., 2019; de Rosnay et al., 2022)564

and will be referred to by this name subsequently. The observations are the OSTIA sea565

ice dataset (Good et al., 2020) which is ultimately based on sea ice retrievals (OSI-SAF,566

2016) obtained from a microwave sensor similar to AMSR2 using a traditional heuris-567

tic approach (e.g. Comiso et al., 2003). It is important that the new emissivity model568

should not try to fit these heuristic assumptions in any way. Further, due to the com-569

plex processing chain, the OCEAN5 sea ice can be at least 48 h behind reality once it570

has been mapped to observation locations (e.g. Baordo & Geer, 2015; Browne et al., 2019;571

de Rosnay et al., 2022, this work). As encountered when prototyping the current approach,572

if there is an incorrect sea ice concentration in Eq. 7, the sea ice emissivity model can573

take on characteristics of the ocean water surface emissivity, which would make the model574

essentially useless. For all these reasons, it was important not to allow the new sea ice575

analysis to be constrained by the OCEAN5 sea ice analysis in any way.576

A more standard DA approach would have been to use the OCEAN5 sea ice as the577

background and to impose a loss term based on the misfit between this and the solution.578

This was tried in prototypes but it proved very difficult for the solution to move away579

from the OCEAN5 sea ice field and its known issues. Hence this was abandoned, but pro-580

totyping also showed that if the sea ice were not constrained at all, it could drift to un-581

physical values outside the range 0 to 1 (see also Appendix A2). Hence an alternative582

approach to constrain the sea ice was to impose physical bounds and climatological in-583

formation on the likelihood of sea ice. The first of two sea ice loss functions impose a584

quadratically increasing penalty on sea ice concentrations that go outside the bounds 0585

and 1:586

Jseaice bounds =
1

n

∑
ab

max(Cab − 1.0, 0.0)2

c2bgerr
+

1

n

∑
ab

min(Cab, 0.0)
2

c2bgerr
(11)

Here, Cab indicates one sea ice concentration on the grid, and a and b represent the time587

and space grid indices. The loss is computed over the entire grid of 22 million locations588

(Table 1). In the mini-batch minimisation technique, losses need to be computed once589

per batch, and summing repeatedly over the entire sea ice grid is a performance limi-590

tation that should ideally be avoided in future (see Appendix A1). The background er-591

ror is set to cbgerr = 0.02, with sensitivity experiments on this in Appendix A2.592

The second sea ice loss penalises the presence of sea ice in warm locations and is593

primarily designed to prevent the aliasing of observed but not modelled cloud into trace594

sea ice features. This loss was made a function of the climatological probability of ob-595

serving sea ice greater than 0.01 as a function of skin temperature, P (Cice > 0.01|TS),596

estimated from the OCEAN5 data. Since in variational data assimilation the background597

loss term is -2 times the natural logarithm of the prior probability (see e.g. Geer, 2021)598

the relevant penalty function and its approximate piecewise linear fit to the OCEAN5599

data were −2ln (P (Cice > 0.01|TS)) ≃ 4.0×max(TS − 273.2, 0.0). To apply this to all600
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Figure 7. Loss terms during the training of the hybrid network (see Table 1) The total loss

term is dominated by the observation fit, so it is mostly hidden behind the observation fit losses;

the total loss at epoch zero is 340 and is off scale. The order of lines in the key follows the top-

to-bottom order on the figure at Epoch 2.

sea ice values, the full loss term was:601

Jseaice tsfc =
1

n

∑
d

4.0×max(TS,d − 273.2, 0.0) (12)

Here TS,d is the skin temperature at the subset of grid locations d with sea ice concen-602

trations greater than 0.01, Cab > 0.01. This subsetting means that the penalty applies603

only where the sea ice concentration is greater than 0.01.604

A final constraint on the sea ice concentration is to impose a time smoothing, so605

that the interpolation operator h(Cice, zG) (Fig. 1) takes a configurable weighted aver-606

age of the sea ice at the location zG from the current and previous day (this is why the607

sea ice grid covers 366 rather than 365 days). In this work the weights were 0.6 and 0.4608

respectively, giving most weight to the current day’s ice concentration. This is intended609

as a rough equivalent to using a persistence (i.e. constant) sea ice forecast model to con-610

strain the evolution of the geophysical state from one day to the next. The model con-611

straint is a particularly important part of data assimilation, and although a physical sea612

ice model would have been better here, the persistence approximation has been effec-613

tive in sea ice data assimilation (e.g. Buehner et al., 2013). Sea ice persistence is use-614

ful for reducing the amount of spurious sea ice features generated by cloud over open ocean;615

broadly the assumption is that sea ice is longer-lived than cloud features.616

3 Results617

3.1 Training and fit to observations618

Figure 7 shows the total loss J and its constituents (Table 1) as a function of the619

training epoch. Losses before any training (referred to as epoch 0) have been estimated620

using the initial conditions of the hybrid model, described further below. The model is621

mostly converged to the observations after 4 epochs. However, allowing the training to622

run to 8 epochs helps reduce the size of the sea ice emissivity loss term, keeping the 10v623

emissivity closer to the prescribed value of 0.93, and the sea ice bounds term, reducing624
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the occurrence of non-physical sea ice concentrations. The loss terms have a very wide625

range of magnitudes and hence all but the observation term have required re-scaling to626

be visible on this figure. Despite this, the results show that most of these additional smaller627

loss terms are effective (see appendix). The hybrid model appears mainly converged af-628

ter 8 epochs, but Appendix A1 (using just a month of training data) investigates the use629

of larger numbers of epochs, and shows that the model can continue to evolve, but at630

the cost of some overfitting. Training on the yearly dataset is resource-limited to 8 epochs,631

but a beneficial, though involuntary, side effect has been that it is using ‘early stopping’632

to avoid over-fitting.633

Figure 8 illustrates the brightness temperatures generated by the network before634

(‘initial’) and after training (‘analysis’), compared to observations. The initial simulated635

brightness temperatures are what would be obtained from the network before training,636

with all trainable parameters set to their initial values, with the exception that the emis-637

sivity weights w0 (the term sensitive to the skin temperature) have been set to zero. This638

is because the model weights are otherwise semi-randomly set by the Glorot initializer,639

making the true initial fit to observations much worse, and not particularly informative.640

With w0 = 0, the initial values of sea ice emissivity are all set to 0.93 and it is easy to641

see the brightness temperature errors caused by the monthly mean initial sea ice fields642

(panel a compared to c). Compared to the initial simulated brightness temperatures, the643

analysis replicates the observations very closely.644

The RMS of the initial and final (or analysis) departures (yobs,ij−yij) are given645

in Table 2. Initial RMS departures are of order 10K to 40K. Panel g illustrates these646

departures in channel 37v, with large discrepancies coming both from the incorrect sur-647

face emissivity and the incorrect sea ice initial field. By contrast, the analysis departures648

(e.g. panel h) are mostly within ±3K and rarely larger than 10K. The largest remain-649

ing departures are mainly found over open ocean and not sea ice, and come from errors650

in the location of cloud and precipitation in the ECMWF background fields, which can-651

not be adjusted in the current network. The RMS of the analysis departures ranges from652

2.7K in channel 10v to 9.9K in 89h (Table 2). These values are close to the prescribed653

observation errors, as intended.654

In Fig. 8a-c, at 10v, there is evidence of large adjustments in the sea ice field all655

around the sea ice edge, and particularly in the top right (Siberian) sector of the Arc-656

tic ocean, where the observations show some large holes in the sea ice (panel c), which657

are absent from the initial model (panel a) but which the analysis fits closely (panel b).658

Brightness temperatures over the sea ice are also increased by around 10K in the 10v659

channel analysis, mainly due to the tuning of the skin temperature term (w0) of the ice660

emissivity model, in order to boost the surface emissivity in colder areas as intended (not661

shown).662

At higher frequencies, the improvements between the initial model and the anal-663

ysis (Fig. 8 d and e) are driven not just by the improved sea ice concentration, but also664

by the development of the empirical terms of the surface emissivity model, and the em-665

pirical state inputs. Empirical properties 1 and 2 (Fig. 6) are the main driver in the anal-666

ysed brightness temperature at 37v, helping generate brightness temperatures down to667

210K over the multi-year ice (empirical property 1 values of up to 0.4) and up to 260K668

over the first year ice (empirical property 1 down to -0.4). Hence the hybrid model ap-669

pears to make a physically plausible set of adjustments in order to fit the observations.670

3.2 Sea ice concentration671

Figure 9 compares the Arctic sea ice obtained from the physical-empirical network672

to the OCEAN5 sea ice during a rapid freezing event. The new analysis (panel b) has673

identified a mostly complete sea ice cover over a region of the eastern Arctic ocean ap-674

proximately 1000 by 3000 km where it scarcely exists in the existing ECMWF sea ice anal-675
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Figure 8. Comparison of simulated and observed brightness temperatures in channels 10v

and 37v, over the Arctic on 7th November 2020: (a,d) initial guess; (b,e) after training, in other

words the analysis; (c,f) observations; (g) the initial guess minus observation departure; (h) the

analysis minus observation departure. Departures smaller than 3K are not shown. The figure

overlays mutiple orbits of AMSR2 observations and allows later observations to cover earlier os-

bervations.

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

a

0.0

0.2

0.4

0.6

0.8

1.0

 

Initial b

0.0

0.2

0.4

0.6

0.8

1.0

 

Analysed

d

0.0

0.2

0.4

0.6

0.8

1.0

 

OCEAN5c

−0.6

−0.4

−0.2

−0.0

0.2

0.4

0.6

 

Analysed − OCEAN5

Figure 9. Comparison of sea ice concentration on 7th November 2020: (a) Initial monthly

mean sea ice; (b) Analysed in this work; (c) Difference between analysed and OCEAN5; (d)

OCEAN5 sea ice. Differences smaller than 0.05 are not shown. Latitude and longitude grid spac-

ings are 10◦ and 45◦ respectively.

ysis (OCEAN5, panel d). There are also disagreements in the location of the ice edge676

by up to around 100 km in the region of Svalbard. The fundamental issue is the roughly677

48 h time delay in producing the OCEAN5 analysis; eventually the OCEAN5 sea ice catches678

up and provides a similar picture (not shown). Table 3 shows that the new analysed sea679

ice agrees best with OCEAN5 if it is artificially delayed by 2 or 3 days, consistent with680

previous expectations (Baordo & Geer, 2015; Browne et al., 2019; de Rosnay et al., 2022).681

There is also some low concentration (< 0.2) sea ice incorrectly identified in the cur-682

rent analysis, for example off the N coast of Scandinavia, visible mainly in the difference683

plot (panel c). This spurious sea ice is generated when clouds are present in the obser-684

vations but not in the ECMWF 12h atmospheric forecast (zA here). The network (Fig. 1)685

cannot adjust the atmosphere to add cloud and instead can only create sea ice to bet-686

ter fit the observations (an opposite effect would tend to create negative sea ice concen-687

trations where the ECMWF forecasts have too much cloud, but this is suppressed by the688

sea ice bounds loss function).689
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Table 3. Standard deviation of differences between analysed and OCEAN5 sea ice concen-

tration, aggregated across the Arctic and Antarctic for the full 365 day training period, with a

variable lag applied to the analysed sea ice.

Lag [Days] Std. dev.

0 0.0736
1 0.0692
2 0.0663
3 0.0666
4 0.0697
5 0.0738

Figure 10 shows a similar comparison for the Antarctic. Here, the interior sea ice690

amounts are close to 1 and agree well with OCEAN5. The main differences are along the691

ice edge, where the analysed sea ice has a much sharper boundary than the OCEAN5692

sea ice, and also a significantly more detailed structure. The analyses also have a slightly693

greater extent, broadly consistent with the 2-3 day time delay in the OCEAN5 data and694

noting that the sea ice extent is typically growing at this time of year. An interesting695

detail on this day is in the top right of the plot (around 20 - 35◦ E) where the new anal-696

yses show a distinct series of waves along the sea ice edge in a location where the OCEAN5697

analyses show only a shallow gradient. These waves have wavelengths of around 300 km698

and are seen developing over many days (not shown). They might be produced by a se-699

ries of ocean surface eddies along the ice edge.700

Figure 11 compares the sea ice probability density function (PDF) between the anal-701

yses and the existing ECMWF sea ice, OCEAN5. The OCEAN5 fields show clear bounds702

at 0 and 1 and a smooth variation in between. For the sea ice analysed in this work, the703

sea ice bounds loss function (Eq. 11) has mainly done its job of keeping the sea ice con-704

centration within bounds, but tails do exist outside the physical range. There are also705

spikes in the analysed PDF, indicating some quantisation in the analysis. Based on the706

sensitivity tests in Appendix A1, this quantisation would likely have disappeared if re-707

source constraints had not prevented the use of more epochs for training. A final issue708

with the current work is the excessively high probability of observing sea ice concentra-709

tions below 0.25, which comes from the cloud-aliasing issue discussed above. However,710

the retrieved sea ice can easily be cleaned up by capping the concentration at 1 and by711

setting any sea ice concentrations below 0.25 to zero. More study into loss functions for712

sea ice would be useful, or alternatively a physical sea ice model could be introduced into713

the network to better constrain the sea ice PDF, following typical practice in data as-714

similation.715

Figure 12 shows the annual cycle of ice area, using ‘cleaned up’ sea ice concentra-716

tions as described in the previous paragraph. Compared to OCEAN5, this work gives717

slightly higher ice area in the Antarctic winter, and slightly lower ice area in the Arc-718

tic winter. The better timeliness of the new sea ice analysis is also clear. In early Novem-719

ber in the Arctic, the current work identifies a rapid freezing event that is smoothed out720

and delayed in the OCEAN5 sea ice analysis, as also illustrated in Fig. 9. A similar pic-721

ture is seen in the Antarctic, from late February to mid-May. Apart from these issues,722

there is good agreement between the annual cycles in the two ice products.723

Figure 13 shows maps of the annual mean sea ice concentration (again using cleaned724

up values) and the difference between these and OCEAN5. In the Arctic (panel c) there725

is an underestimation of sea ice concentration compared to OCEAN5, mainly in the multi-726
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Figure 10. As Fig. 9 on 7th November 2020, but for the Antarctic. The Greenwich meridian

is to the top.

year ice region (western Arctic ocean) and mostly by less than 0.1. This underestima-727

tion is visible even in the daily maps (e.g. Fig. 9). Assuming that the sea ice concentra-728

tion in the multi-year ice zone should be close to 1, like in OCEAN5, this appears to be729

a defect in the current approach and likely relates to the constraint of 10v ice surface730

emissivity close to 0.93; Fig. 2a shows slightly lower TBs in this region even at 10v, com-731

pared to the eastern Arctic, which suggest that the modelled surface emissivity in multi-732

year ice should have been allowed to decrease more at 10v. In the Antarctic (panel b)733

there is typically a small overestimation (around 0.02) compared to OCEAN5, and much734

larger positive differences in patches close to the Antarctic coast. These can be traced735

to the Antarctic coastline in the summer, January and February, where the new anal-736

yses show considerably more ice extent (much of it fractional ice, e.g. concentrations around737

0.5) along the coast than the OCEAN5 analyses. Given the careful treatment of the satel-738

lite field of view and land contamination in this work (Sec. 2.3) and the all-sky validity739

of the data this suggests there is a real defect in the OCEAN5 sea ice. There are small740

underestimations of the sea ice compared to OCEAN5 in the Weddel Sea which might741

also be due to the multi-year ice issue, since this is one of the few areas of the Antarc-742

tic where ice can persist from one year to the next. But apart from the areas of disagree-743
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Figure 11. Probability density function for sea ice concentration for the new analysis and the

existing OCEAN5, over the year and both hemispheres, using a log y-axis to better compare the

full probability range.

ment already discussed, the annual mean ice concentrations agree very well across most744

of the Arctic and Antarctic, generally well within the bounds +0.05 and -0.05.745

4 Conclusion746

This work has trained a hybrid empirical-physical model to fit observed AMSR2747

microwave radiances at 10 channels between 10 GHz and 89 GHz, over ocean and sea748

ice, based on a year-long training dataset. The atmospheric radiative transfer and the749

skin temperature are prescribed using 12-hour forecasts from the ECMWF atmospheric750

data assimilation system. The ocean surface emissivity is prescribed from a physically-751

based model. The primary unknowns have been the evolving sea ice concentration, the752

physical properties of the sea ice and its snow cover, and a model to determine the sea753

ice surface emissivity from those properties. These have been estimated simultaneously754

using a hybrid of machine learning and data assimilation. The AMSR2 observations have755

been fitted after training to within an RMS error of 2.6K to 9.9K, depending on chan-756

nel. Most of the remaining error is over open oceans and is attributed to errors in the757

specification of clouds in the ECMWF 12-hour forecast. The analysis fits are much bet-758

ter than the initial RMS errors obtained using a flat sea ice surface emissivity model and759

monthly mean sea ice concentration, which are from 8.4K to 35.0K.760

There is no perfect truth against which to evaluate the resulting global daily maps761

of sea ice, since existing global satellite retrievals of sea ice are based on heuristic meth-762

ods which this work aims to replace, and in-situ measurements are very limited in cov-763

erage. The high quality of fit to observations suggests that the sea ice results are good,764

but comparisons are also made to the existing ECMWF sea ice analyses, generated by765

the OCEAN5 assimilation system. The new maps are 48 h to 72 h more timely than the766

sea ice concentration analysed in OCEAN5. The new maps have generally sharper res-767

olution including plausible mesoscale features like some apparently eddy-generated 300768

km wave features in the Antarctic sea ice edge. The new data also suggest there is a sub-769

stantial underestimate of sea ice cover in the OCEAN5 analyses in the Antarctic sum-770

mer. There are some limitations in the new data too, mainly an apparent underestimate771
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Figure 12. Estimated hemispheric sea ice area from the current work (solid) and OCEAN5

(dotted) from 1st July 2020 to 30th June 2021. The Antarctic ice extent is largest in September

and the Arctic in March.

of the sea ice concentration in the Arctic winter multi-year ice, where it seems to be about772

0.1 too low, in compensation for remaining inaccuracies in the sea ice emissivity model.773

The hybrid model has also created daily maps of three empirical parameters that774

describe the sea ice and snow microphysical and macrophysical properties that affect mi-775

crowave radiative transfer, along with an empirical model to convert these properties into776

the sea ice surface emissivity. The empirical parameters are linked to known properties777

of the sea ice such as differences between new ice and multi-year ice in the Arctic. These778

parameters are then used by the surface emissivity model to describe the surface emis-779

sivity as a function of frequency and polarisation. Examples show multi-year ice with780

a relatively flat but polarised surface emissivity spectrum, and the new ice with a less781

polarised spectrum that drops off towards higher frequencies. As shown by the globally782

and seasonally good fit to observations, the model is also able to handle all other con-783

ditions across the seasons and both hemispheres, such as thawing surfaces.784

The broader goal of this work has been to demonstrate the feasibility of assimilat-785

ing microwave radiances over sea ice areas in order to derive the sea ice concentration,786

as well as to provide an empirical surface emissivity model for use in those activities. In787

subsequent work, the trained sea ice surface emissivity model has been incorporated into788

the observation operator for all-sky microwave radiances in the ECMWF atmospheric789

data assmilation system (Geer, 2023c). The data assimilation system has been adapted790

so that it can estimate the sea ice concentration and the three empirical surface param-791

eters at each observation location. This retrieves a good quality sea ice concentration792

as well as improving atmospheric forecasts through the ability to assimilate of observa-793

tions in the vicinity of sea ice. Testing is done on different years to the training period794

used in this work, demonstrating the ability of the sea ice emissivity model to generalise795

outside the training data. As a result of this work, the assimilation of AMSR2 and GMI796

(GPM microwave imager) observations over sea ice will be activated in the next upgrade797

of the ECMWF operational weather forecasting system in 2024 (cycle 49r1).798

In the future it is hoped to roll out similar hybrid empirical-physical methods for799

the assimilation of satellite radiances over the land surface, with the aim of inferring snow800

parameters, soil moisture and vegetation. There is also plenty that can be done to im-801
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Figure 13. Annual mean sea ice concentration analysed in this work (a,b) and difference in

annual mean between the current work and OCEAN5 (c,d). Differences smaller than 0.01 are not

plotted.

prove this initial modelling of the sea ice radiative transfer. One aim is to extend the mod-802

elling to higher microwave and sub-mm frequencies using additional sensors. Another803

is to move beyond the initially crude description of the surface by an emissivity and a804

skin temperature, and instead to use a model which describes the known physics of ra-805

diative transfer within the snow and sea ice. In this approach, empirical state variables806

would still be required to describe the microphysical properties of the sea ice and snow,807

but the empirical model would have the more targeted responsibility of generating the808

optical properties that are required as input to such a model. Further, since many of the809

remaining errors in the network appear to come from cloud errors in the ECMWF fore-810

cast, it could be desirable to make clouds in some way a trainable parameter of the sys-811

tem.812
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On the more technical side, there are clearly many ways to improve the speed and813

quality of the network training. The training benefitted from early stopping to avoid over-814

fitting, indicating that further physical constraints should ideally be added; alternatively815

a larger training dataset might help. The most likely routes for applying even stronger816

physical constraints are through adding more physics to the model (for example by in-817

cluding a prognostic model for sea ice), by adding observations with complementary sen-818

sitivities, and by improving the description of prior errors, particularly in the sea ice fields.819

There were also intriguing results (Appendix A1) that suggest big speedups could come820

from the use of much larger batch sizes in the training, though at the risk of overfitting.821

Improved access to hardware (e.g. GPUs) and the use of multi-process parallel training822

techniques could also help alleviate the resource problems that limited the current work.823

The training of the hybrid physical-empirical model has demonstrated a number824

of innovations that have been facilitated by the availability of modern machine learn-825

ing and differential programming tools such as Keras and TensorFlow (Abadi et al., 2015).826

Considering the network in Fig. 1, if the sea ice emissivity was a known parameter, the827

lowermost empirical part of the network (devoted to the empirical state parameters and828

the empirical surface emissivity model) would be unnecessary, and this work would have829

been a standard data assimilation problem of estimating the sea ice concentration maps830

from the satellite observations. However, there would still be the novelty that it was im-831

plemented in a machine learning framework. If the sea ice concentration, and the micro-832

and macro-physical parameters of the sea ice and snow cover, were known globally through833

modelling or observations, those parameters could have been treated as known input vari-834

ables and the empirical sea ice emissivity model would be an ML component model trained835

inside an otherwise physical data assimilation network (e.g. Reichstein et al., 2019; Geer,836

2021) but not achieved practically as yet, to this author’s knowledge. But since the in-837

put variables are also unknown (the chicken and egg problem) the most novel aspect of838

this network is that it simultaneously trains an empirical model and works out what its839

inputs should be (the maps of sea ice parameters).840

It is proposed to describe the simultaneous training of state and model as an ‘em-841

pirical state’ method, with the essential components being:842

1. a spatially and temporally varying geophysical state that is represented statisti-843

cally, using empirical parameters, here representing the macro- and micro-scale844

details of sea ice and its snow cover845

2. an empirical model that generates a physical quantity from the empirical state,846

here sea ice surface emissivity at observation locations. The inputs to the empir-847

ical model define the meaning of the empirical state.848

A similar approach could be extended to snow surfaces over land, soil moisture and veg-849

etation analyses from microwave sensors, and possibly to many other ‘chicken and egg’850

problems in the wider developments towards earth system assimilation. The approach851

can also be extended to a ‘hybrid state’, as in this work, where some of the inputs are852

physical and some empirical. By taking this mix of empirical and physical inputs, em-853

pirical methods can become progressively more physical, as models become able to sup-854

ply more and higher quality input parameters. For example, snow grain size, depth and855

temperature may eventually be available within the ECMWF model, and these could856

be included as inputs to the empirical surface emissivity model, and the number of em-857

pirical parameters representing unknown aspects of the snow and sea ice state could hope-858

fully be reduced. This means that empirical methods can be a quick way of getting started859

with a new assimilation domain, such as sea ice, but they can subsequently evolve to-860

wards more physical approaches as physical models become more capable within that861

domain.862
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Table A1. Sensitivity tests

Aspect Tests Standard
setting

Number of epochs Up to 300 20
Batch size 16384, 4096, 1024, 256 or 32 1024
Number of empirical variables 1 to 5, 7, 10 3
Nonlinear and deep neural networks Nonlinear NN with 20 neurons

and sigmoid activation, using 1,
2, 5 or 10 layers

1 linear layer

Sea ice fraction background error 20.0, 2.0, 0.2, 0.02, 0.002, 0.0002 0.02
Sea ice emissivity background error 1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7 1e-5
TB bias background error 10.0, 1.0, 0.1, 0.01, 0.001, 0.0001,

0.00001
0.001 K

A last word goes to the Bayesian viewpoint encapsulated in the network diagram863

Fig. 1. All geophysical inference and forecasting problems could be represented in this864

way, allowing an optimal description of how observations can be used to improve our phys-865

ical knowledge generally, as well as to direct that knowledge towards our goal of improved866

earth system forecasts. Current data assimilation generally assumes that all model com-867

ponents are perfectly known and only the geophysical state is unknown. There is great868

scope for relaxing that assumption by including empirical components, as done here, and869

by correctly describing the uncertainties in all the assumptions required by any phys-870

ical model. On the other hand, pure machine learning techniques tend to throw away871

most prior knowledge and at most add back a few physical constraints. A more complete872

and formal description of both the known and unknown physics can come from using the873

Bayesian approach with mixed physical and empirical components illustrated here. In-874

deed Bayes’ theorem suggests that the most accurate geophysical states and forecasts875

(the lowest posterior uncertainties) are only achievable by including as much prior knowl-876

edge as is available. This helps direct the informational power of the observations to the877

parts of the earth system that really need it, both the geophysical state, especially in less878

well-observed or chaotic parts of the system, and the model, in areas where physical mod-879

els are not yet fully developed.880

Appendix A Sensitivities - overview881

The sensitivity tests listed in Tab. A1 were carried out to explore the robustness882

of the results. Since the full year’s training dataset requires significant time and resources,883

the sensitivity tests were carried out using just the month of August 2020 for training.884

Settings were exactly the same as the yearly training except that 20 epochs were used885

by default, compared to 8 in the yearly training. The additional epochs may compen-886

sate for a training database that is roughly 12 times smaller, though on the other hand887

training is likely to be easier because a smaller range of geophysical conditions need to888

be fitted.889

A1 Sensitivities - epochs, batch size, network complexity890

Extending the number of epochs to 300 explores whether the training is fully con-891

verged and whether the constraints that have been imposed (such as regularisation) are892

complete enough. Figure A1a shows that only minor reductions in the loss term are avail-893
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Figure A1. (a) Total loss and individual loss terms (scaled as noted in key) using an ex-

tended number of training epochs; (b) Standard deviation of the difference between analysed sea

ice fraction with a 48 h delay and OCEAN5 sea ice fraction. Note the logarithmic x axis and,

in panel a, also y axis, and that the total loss is hidden underneath the observation fit, which

dominates.

able beyond 10 epochs. However, the sea ice probability loss term continues to increase.894

Further, Fig. A1b shows that the analysed sea ice fraction also continues to move away895

from the OCEAN5 sea ice fraction, even with a 48 h lag offset as indicated by Table 3.896

As shown in Sec. 3.1, some departure from the OCEAN5 results is necessary to get closer897

to the truth, but standard deviations heading beyond 0.1 are too large. This is easily898

seen in maps of sea ice fraction (not shown), and comes from a problematic increase in899

sea ice in areas where it is physically unlikely, as well as increasingly noisy and unreal-900

istic looking sea ice over the Arctic and Antarctic. The problem is that if the training901

is left to continue too long, the network increasingly overfits cloud-related errors in the902

ECMWF background atmospheric state by making unphysical adjustments to the sea903

ice fraction. This shows that despite using two sea ice loss terms, the hybrid network is904

not fully constrained against creating unphysical sea ice. One fix could be to increase905

the weight of the sea ice probability term, in order to prevent formation of spurious sea906

ice over warmer seas, but a more general solution would be to allow the atmospheric terms907

to adjust to fit cloud errors in the ECMWF atmospheric background forecast. However,908

in the main results of this work, terminating the year-long training after 8 epochs has909

helped avoid such problems.910

The impact of the number of empirical variables used to represent the sea ice and911

snow microphysical state is explored in Fig. A2. Adding more empirical variables always912

reduces the loss, with particularly significant reductions for up to 3. It is important not913
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Figure A2. Total loss as a function of the number of empirical variables.
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Figure A3. Total loss and sea ice fit to OCEAN5 with a 48 h offset, as a function of the num-

ber of neural network layers, based on 50 epochs of training and 20 neurons per layer. The data

point for ”0” layers is used to represent a single linear layer.

to allow too many variables, since by the time this reaches 10, the same as the number914

of satellite channels, the emissivity model becomes useless for sea ice retrievals (Sec. 2.5)915

and the empirical state could completely determine the surface emissivity required to916

fit each channel. Hence 3 appears to be a reasonable choice.917

The chosen model for sea ice emissivity is linear, but the framework is perfectly ca-918

pable of training a nonlinear model, including deep networks. Sensitivity tests were per-919

formed using a sigmoid activation function and between 1 and 10 fully connected lay-920

ers using 20 neurons each. In these tests the number of epochs was set to 50 to ensure921

the deeper networks were converged. Fig. A3 shows the results in terms of the loss func-922

tion at 50 epochs and the fit of the sea ice field to ECMWF sea ice (with the 2 day off-923

set for best fit). The point marked 0 layers corresponds to the normal linear single layer924

model, but trained for 50 epochs. Going to a nonlinear activation function and adding925

up to 2 layers is capable of fitting the observations better, as indicated by the reductions926

in the loss function. However, this comes at the price of generating a poorer-quality sea927

ice field, as indicated by the increasing standard deviation of the difference with ECMWF928

/ OCEAN5 sea ice becoming larger than 0.1. For 3 layers and greater, the picture re-929

verses, but this is likely because 50 epochs is insufficient to fully train the deeper net-930

works. In broad terms, adding multiple layers and nonlinearity to the surface emissiv-931

ity model seems to give greater possibilities for over-fitting the data, similar to increas-932

ing the number of epochs.933

A batch size of 1024 was used in this work because this was the smallest feasible934

batch size. Training was unfeasibly slow using any smaller batch size. Figure A4 illus-935

trates the effect of using batch sizes from 32 (the Keras default) to 16384, noting that936
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Figure A4. Total loss as a function of wallclock time for five different batch sizes, as indi-

cated in the key. Crosses indicate the wallclock time and the corresponding loss after each of 20

epochs.

the Adam learning rate remained constant at the default 0.001 throughout. The result-937

ing wall clock times range between 1.5 minutes and 11 hours to complete 20 epochs of938

training on the single-month dataset. The particularly poor performance for small batch939

sizes must in part be due to the need to evaluate the sea ice losses once per batch, each940

of which involves computations across the full month of sea ice data. Furthermore, the941

larger the batch size gets, the smaller the loss, and hence the better the fit to observa-942

tions. The larger batch sizes also show surprisingly good fit to the OCEAN5/ECMWF943

sea ice, albeit with some signs of overfitting, such as some apparent inaccuracies in the944

PDF of sea ice fraction (no figures shown). For batch sizes between 32 and 1024, the em-945

pirical sea ice emissivity model has a broadly similar form to what is shown in Figure 4946

but by the 16384 batch size it evolves to something quite different, with stronger cor-947

relations between the empirical state variables (not shown). There has not been time in948

the current work to fully explore the results with the larger batch sizes. In the wider ma-949

chine learning community, larger (and variable) batch sizes have been advocated for speed-950

ing up the time to convergence, but with the danger that models can become less good951

at generalisation (e.g. Smith et al., 2017; Golmant et al., 2018). Smaller batch sizes lead952

to greater random variations in the solution, which may partly explain the way smaller953

batch sizes give larger loss values (Fig. A4) and which may act as a useful form of reg-954

ularization. However, given the possible benefits in terms of time to solution and bet-955

ter fit to observations, an exploration of larger batch sizes could be worthwhile in future956

evolutions of this work. Further, adjustments to the learning rate would also be worth957

exploring.958

A2 Sensitivities - prior knowledge loss terms959

The background error setting for the sea ice PDF (cbgerr in Eq. 11) controls the fre-960

quency of non-physical sea ice fraction values, as illustrated in Fig. A5. The fit to ob-961

servations can be improved (and the loss function made smaller) by allowing a greater962

frequency of non-physical sea ice fractions (not shown) but clearly this is undesirable.963

In these tests based on a month of training data, it is possible to almost eliminate non-964
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Figure A5. Probability density function of sea ice fraction for three settings of the sea ice

background error, as given in the key.
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Figure A6. Sea ice surface emissivity baseline term wb, as a function of AMSR2 channel

identifier, for values of the surface emissivity background error (wbgerr in Eq. 9) as indicated in

the key.

physical sea ice fractions by going to cbgerr = 0.0002 and there are no spikes in the PDF,965

unlike in the year-long training (Fig. 11). A more relaxed setting of cbgerr = 0.02 was966

needed in the year-long training because it created fewer problems with spikes in the PDF.967

If it had been possible to run more epochs of training, likely the spikes could have been968

eliminated and a tighter constraint on non-physical sea ice fractions could have been ap-969

plied.970

Figure A6 illustrates the effects of the sea ice emissivity background error wbgerr971

in Eq. 9. The setting wbgerr = 0.00001 keeps the 10v emissivity very close to 0.93 as972

intended, but it can be relaxed with little effect on the fit to observations (not shown).973

The figure also shows the results for wbgerr = 0.1, which allows a drop of the baseline974

emissivity in most channels, to around 0.9 for 10v, and a small increase of the baseline975

emissivity for high frequency channels (89v and 89h). This suggests that the initial value976

of 0.93 for the 10v sea ice surface emissivity may have been slightly high. But these vari-977

ations are within the range of available estimates (Lee et al., 2017). In the bigger pic-978

ture, the results are surprisingly robust to relaxing the sea ice emissivity constraint, and979

future work could possibly even remove it.980

Relaxing the bias background error bbgerr in Eq. 4 to values larger than the cho-981

sen bbgerr = 0.001K improves the fit to observations, and reduces the total loss from982

around 10.5 down to around 9.8 (no figure shown). However, this leads the network to983

generate unreasonably large bias corrections of up to -7K over ocean and -16K over sea984

ice (no figure shown). This likely shows that the problem is ill-posed when both TB bias985

and surface emissivity are allowed to vary. Hence the bias correction term is a very im-986

portant constraint, and if prior estimates for the bias had not been available, it would987
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Table B1. Trained parameters of the sea ice surface emissivity model.

Channel 10v 10h 19v 19h 24v 24h 37v 37h 89v 89h

wb 0.9275 0.8006 0.9186 0.7958 0.9090 0.7966 0.8806 0.7816 0.8197 0.7448
w0 0.1286 0.1904 0.1163 0.1786 0.1097 0.1701 0.0841 0.1399 -0.0084 0.0384
w1 0.0598 -0.0035 -0.0105 -0.1060 -0.0660 -0.1628 -0.2223 -0.3022 -0.5666 -0.5981
w2 -0.0149 0.0871 -0.0752 0.0382 -0.1121 0.0038 -0.1617 -0.0461 0.0228 0.1025
w3 0.0569 0.2618 0.0311 0.2257 0.0062 0.1780 -0.0616 0.0756 -0.3111 -0.2304

not have been possible to estimate them simultaneously with the sea ice emissivity model.988

This underlines the importance of well-calibrated satellite observations and illustrates989

that empirical techniques still have mathematical limits that prevent them being able990

to infer all parameters of a system without the use of prior constraints.991

A3 Sensitivities - reproducibility992

The sensitivity tests described above were fully reproducible for reruns using the993

exact configuration of libraries and hardware described in Appendix C, by defining a fixed994

seed for random computations in Keras. The yearly results on which the main paper is995

based were not reproducible for rerun because the seed was mistakenly fixed too late,996

after the model creation (see the code, Geer, 2023a). However, if the seed is fixed in the997

right place, the yearly results can be made reproducible too. When re-run with a dif-998

ferent seed, the output results are extremely similar in most respects (e.g. sea ice maps,999

output brightness temperatures) but the empirical sea ice emissivity model can change.1000

This is mainly superficial, since similar sea ice emissivity structures are created but in1001

a different order to what is seen in Fig. 4. But this highlights the fact that the mean-1002

ings of the empirical variables are not entirely fixed and are naturally affected by ran-1003

dom processes during the training.1004

Appendix B Surface emissivity model parameters1005

The trained sea ice surface emissivity model parameters are given in Tab. B1.1006

Appendix C Open Research1007

The data (Geer, 2023b) are available on Zenodo through the ECMWF open data1008

license https://apps.ecmwf.int/datasets/licences/general/ noting the conditions1009

for the underlying AMSR2 data described below. Data is copyright 2023 ECMWF and1010

is published under a Creative Commons Attribution 4.0 International (CC BY 4.0, https://1011

creativecommons.org/licenses/by/4.0/). In applying this license, ECMWF does not1012

accept any liability whatsoever for any error or omission in the data, their availability,1013

or for any loss or damage arising from their use.1014

The code (Geer, 2023a) is on GitHub and is copyright 2023 ECMWF and is licensed1015

under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE1016

-2.0). In applying this licence, ECMWF does not waive the privileges and immunities1017

granted to it by virtue of its status as an intergovernmental organisation nor does it sub-1018

mit to any jurisdiction.1019
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Original AMSR2 data for this value added data product was provided by Japan1020

Aerospace Exploration Agency (JAXA, 2023) via the G-Portal. The user is entitled to1021

use JAXA G-Portal AMSR2 data free of charge without any restrictions (including com-1022

mercial use) except for the condition about acknowledgement of data credit as stipulated1023

in Article 7.(2) of the terms and conditions at https://gportal.jaxa.jp/gpr/index/1024

eula?lang=en1025

The Python code was run on Python 3.8.8-01 (Python Software Foundation, 2021)1026

including Tensorflow and Keras 2.8.0 (Abadi et al., 2015; TensorFlow, 2021) on the ECMWF1027

ATOS supercomputer CPU nodes.1028
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Key Points:6

• A new hybrid of machine learning and data assimilation can infer an unknown state7

and an unknown model simultaneously.8

• This empirical state method could help other chicken and egg earth system prob-9

lems that are not suitable for supervised machine learning.10
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maps of sea ice concentration using inverse methods.12
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Abstract13

Satellite microwave radiance observations are strongly sensitive to sea ice, but physical14

descriptions of the radiative transfer of sea ice and snow are incomplete. Further, the15

radiative transfer is controlled by poorly-known microstructural properties that vary strongly16

in time and space. A consequence is that surface-sensitive microwave observations are17

not assimilated over sea ice areas, and sea ice retrievals use heuristic rather than phys-18

ical methods. An empirical model for sea ice radiative transfer would be helpful but it19

cannot be trained using standard machine learning techniques because the inputs are mostly20

unknown. The solution is to simultaneously train the empirical model and a set of em-21

pirical inputs: an “empirical state” method, which draws on both generative machine22

learning and physical data assimilation methodology. A hybrid physical-empirical net-23

work describes the known and unknown physics of sea ice and atmospheric radiative trans-24

fer. The network is then trained to fit a year of radiance observations from Advanced25

Microwave Scanning Radiometer 2 (AMSR2), using the atmospheric profiles, skin tem-26

perature and ocean water emissivity taken from a weather forecasting system. This pro-27

cess estimates maps of the daily sea ice concentration while also learning an empirical28

model for the sea ice emissivity. The model learns to define its own empirical input space29

along with daily maps of these empirical inputs. These maps represent the otherwise un-30

known microstructural properties of the sea ice and snow that affect the radiative trans-31

fer. This “empirical state” approach could be used to solve many other problems of earth32

system data assimilation.33

Plain Language Summary34

One way to learn about the earth system would be through machine learning, but35

typical ‘supervised learning’ already requires good knowledge of the geophysical variables36

of interest. Quite often this ‘geophysical state’ is not well known and the main obser-37

vations are from satellites, which measure earth-emitted radiation. In many cases the38

links between this observed radiation and the geophysical state are poorly known. This39

work illustrates a new method which allows both the geophysical state and its links to40

the satellite observations to be learnt at the same time. The specific application is find-41

ing the sea ice concentration, which is a difficult problem because there is poor knowl-42

edge of the properties of sea ice, such as the air bubbles within it, which can strongly43

affect the radiation measured by satellites, and poor knowledge of exactly how this af-44

fects the satellite observations. The new approach solves this double problem by mak-45

ing daily maps of the sea ice and its properties, along with learning a new model to sim-46

ulate the satellite measured radiation from the sea ice properties. Similar approaches could47

improve knowledge of both models and geophysical state in other areas of earth system48

science.49

1 Introduction50

Huge progress has been made in earth system observation and prediction using physically-51

based methods (Bauer et al., 2015). Underpinning this is data assimilation, which com-52

bines a physical model, which propagates the geophysical state forwards in time, with53

observations, which are used to synchronize the evolving geophysical state with reality.54

For global observational coverage, we rely on direct assimilation of satellite radiance ob-55

servations (e.g. Eyre et al., 2020) which require an ‘observation model’ to make the link56

between the radiances and the geophysical state (e.g. Gettelman et al., 2022). In the early57

development of radiance assimilation, the focus was on temperature-sounding radiances58

in clear sky conditions, where physical models for state and observations were most ac-59

curate. More recently, physical models have become good enough to allow significant im-60

pact on the quality of forecasts through the assimilation of radiances sensitive to humid-61

ity, cloud and precipitation (e.g. Peubey & McNally, 2009; Geer et al., 2017, 2018). To62

further improve atmospheric predictability and to give a better representation of surface63
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parameters, a new focus is to improve the use of models and observations of the ocean,64

land surface and cryosphere (de Rosnay et al., 2022). However, particularly when it comes65

to the land surface and cryosphere, neither the modelling of the state, nor the use of satel-66

lite observations, is accurate enough to be able to assimilate satellite radiances using en-67

tirely physical approaches.68

The aim of this work is to build tools and techniques for direct assimilation of satel-69

lite microwave radiances for the cryosphere and in particular, the sea ice. This work is70

ultimately intended for use in an operational weather forecasting system, to allow the71

assimilation of microwave radiances over sea ice surfaces and to contribute to analyses72

of the sea ice concentration. Microwave radiances have a strong sensitivity to sea ice, par-73

ticularly its fractional coverage but also ice age, snow depth and snow microstructure.74

Operational methods to retrieve the sea ice concentration use largely heuristic (‘tie point’)75

approaches (e.g. Comiso et al., 2003; Spreen et al., 2008; Sandven et al., 2023) and an76

experimental method using optimal estimation used a simplified forward model (e.g. Scar-77

lat et al., 2020). This is because physical modelling of snow and ice radiative transfer78

at microwave frequencies is difficult, with better results below 20GHz than above (e.g.79

Hirahara et al., 2020). A fundamental issue is the importance of centimetre to micron80

scale details of the snow and ice, including air inclusions in ice or grain shapes and their81

layout in snow, that are relevant to the radiative transfer. Physical models of snow ra-82

diative transfer (e.g. Picard et al., 2018) are starting to provide convincing results up83

to around 250GHz over land, for example linking measurements from snow pit profiles84

to aircraft radiance measurements with reasonable accuracy in late winter in the Cana-85

dian Arctic (Sandells et al., 2023). Physical models for sea ice have also shown poten-86

tial (Kang et al., 2023), though with the necessity of empirically adjusting the snow and87

sea ice optical properties to fit each location. For global assimilation of snow and ice sur-88

faces, observation models will need to be reliable across all seasons and hemispheres, and89

will need to handle many different types of ice and snow, including wet and refrozen snow90

in the warmer seasons. There is also the problem of defining the input state, since it is91

impossible to provide snow pits and ice cores globally.92

An alternative path to improving our modelling frameworks is to use the vast amount93

of existing observational data to improve models in an empirical way (e.g. Schneider et94

al., 2017; Geer, 2021; Gettelman et al., 2022). The idea of training models from obser-95

vations has become more feasible in recent years following the advent of easy-to-use ma-96

chine learning tools such as Keras (Chollet et al., 2015) and rapid progress has been made97

in machine learning alternatives to weather forecasting models (e.g. Lam et al., 2022).98

A partly empirical approach is taken in the current work, with the aim to train a new99

observation model for sea ice using global data through the whole year, in order to han-100

dle all seasons, hemispheres and snow and ice types. However, empirical geophysical mod-101

els are normally built using ‘supervised learning’ strategies that require the inputs and102

outputs of the empirical model to be known and available in large quantities. For ex-103

ample, in the case of ML-based weather forecasting models, this relies on existing atmo-104

spheric re-analysis datasets (e.g. Hersbach et al., 2020). But to train an empirical ob-105

servation model to link the geophysical state to the satellite radiances for the land sur-106

face or the cryosphere, the inputs, in other words the state of the soil, snow and ice, are107

not well enough known on a global scale. In fact, we will likely only know the state pa-108

rameters well enough on a global scale once an observation model is available to help de-109

rive them from satellite observations, so training an empirical model for surface radia-110

tive transfer can be seen as a chicken and egg problem.111

If supervised learning strategies are not possible, alternative ‘unsupervised learn-112

ing’ strategies are known in the wider field of machine learning. An example is gener-113

ative adversarial networks, which in the geophysical world have been used to generate114

plausible snowflake shapes (Leinonen et al., 2021). The forward model in a generative115

adversarial network defines its own ‘latent space’ of empirical input variables which de-116
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scribe underlying statistical properties of, for example, the output snowflake shapes. A117

similar principle is used in the current work, which allows the empirical observation model118

to define its own latent space as its input, in order to represent the mostly unknown mi-119

crophysical structures of sea ice and snow that are needed to simulate microwave radi-120

ances. This will be referred to as an ‘empirical state’, which will be trained simultane-121

ously with the empirical model to go from the state to the observations. The meaning122

of the empirical state variables is learnt along with the empirical model.123

However, a purely empirical framework is of no use if we want to infer geophysi-124

cal properties, not empirical variables. To solve this, we can impose known physical re-125

lationships, such as the radiative transfer of the atmosphere. Reichstein et al. (2019) de-126

scribed how empirical models could be used and trained in networks with physical mod-127

els. These networks can be represented in a Bayesian way that is mathematically equiv-128

alent to data assimilation (Geer, 2021). The Bayesian viewpoint brings the insight that129

physical models represent parts of the network where there is good prior physical knowl-130

edge, whereas machine learning models can represent areas where there is little or no prior131

knowledge. In the current work, the empirical modelling is limited to the surface emis-132

sivity of the sea ice, whereas physical modelling is used for the surface emissivity of the133

ocean and for the radiative transfer of the atmosphere. In particular, it is the inclusion134

of physical equations that allows the sea ice concentration to be derived within the sys-135

tem, but the equations would have been incomplete without the empirical contribution.136

The entire network can be referred to as a hybrid empirical-physical model.137

A number of other aspects of geophysical modelling and observation are more well-138

developed in data assimilation frameworks than in typical machine learning methods (Geer,139

2021). One of these is mapping between geophysical fields on a regular time and space140

grid to the irregular arrangement of satellite observations in time and space, which is han-141

dled by an interpolation operator. Also used is background error modelling (to control142

the weight of prior physical knowledge against the new knowledge from observations) and143

observation errors (to account for the varying difficulty of forward modelling at differ-144

ent frequencies measured by the satellite). All these techniques are also employed in the145

current work, making a mix of data assimilation and machine learning, following much146

work merging the two fields (e.g. Hsieh & Tang, 1998; Bocquet et al., 2020; Brajard et147

al., 2020).148

The framework created to solve these problems is introduced in the methods sec-149

tion (Sec. 2), which starts with an overview of the framework, followed up by subsections150

on the different scientific and technical aspects. The results (Sec. 3) are presented for151

a version of this framework which learns daily sea ice maps for the Arctic and Antarc-152

tic for an entire year at 40 km spatial resolution, along with the new hybrid surface emis-153

sivity model and daily maps of the empirical properties of the sea ice and snow. Since154

the framework was created through a rapid prototyping approach, its design decisions155

are explored after the fact using sensitivity tests which are described in the appendices.156

Both the training dataset and the Python-based framework are also available to com-157

plete the documentation of this work.158

2 Method159

2.1 Overview160

Figure 1 shows a simplified overview of the hybrid physical-empirical network that161

describes radiative transfer over sea ice and polar ocean at microwave frequencies. The162

aim of this work is to find daily maps of the sea ice concentration Cice and its physical163

state, Xice simultaneously with a new empirical model for the sea ice surface emissiv-164

ity (neural network weights w), in order to generate simulated observations y to best165

fit real AMSR2 observations. The trainable variables are given dotted outlines on the166
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  y

 e

 TS

 Cice

 zA

 y = fatmos(e, TS, zA)

 eice

 ewat

 e = Ciceeice + (1 − Cice)ewat

 xice

 eice = fempirical(w, xice, zB)

 zB zG

 Xice

 Cice

 w xice = h(Xice, zG)

 Cice = h(Cice, zG)

Figure 1. Simplified overview of the hybrid empirical-physical training network, for a single

day and a single multi-channel observation. Circles represent variables that are trainable (dot-

ted), dependent (thin solid), or fixed (thick solid). Arrows indicate dependencies and equations

give the functional form of these dependencies. The meaning of the variables is explained in the

text. Colour maps illustrate, for the Arctic, the observations (top); sea ice concentration (middle)

and empirical sea ice properties (bottom) for 7th November 2020; full size extended versions,

along with full explanatory details, can be found later in Figs. 2, 9 and 6 respectively.

figure. The design and purpose of the network, and the meanings of other variables in167

the figure, will be overviewed in the current section, with further detail provided in the168

relevant subsections that follow.169

The network is implemented in Keras (Chollet et al., 2015), part of Tensorflow (Abadi170

et al., 2015), using Python. The inputs to the network are fixed parameters shown with171

bold outlines on Fig. 1, such as the observation locations zG and estimated state of the172

atmosphere from the European Centre for Medium-range Weather Forecasts (ECMWF)173

model zA. The physical and empirical relations between parameters are described by equa-174

tions with dependent output variables, indicated by thin solid outlines on the figure. These175

equations are encoded in custom network layers, so that parameters of the network can176

be defined as weights (akin to neural network weights) within these custom layers, which177

may be trainable or fixed.178

Training the network can be seen as either a data assimilation process, or roughly179

equivalently, the training of a generative machine learning framework, that aims to best180

fit the observations by learning the geophysical state at each location and day over an181

entire year. The network is not intended to directly predict the observations for another182

year because the sea ice locations and surface properties will be different. Those parts183

of the network would have to be re-trained to fit another year. This means there is no184

possibility using separate training and test datasets, as is typical in standard supervised185

machine learning practice. Instead, the performance of the network is judged by how well186

it fits the observations, and how well it estimates the geophysical state (e.g. the sea ice187

concentration). Out of training set performance has been demonstrated through the use188
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of the trained hybrid surface emissivity model to fit another year’s observations in a weather189

forecasting context (Geer, 2023c).190

The hybrid network is trained by minimising a loss function. The aim is to be able191

to replicate as closely as possible a year of Advanced Microwave Sounding Radiometer-192

2 (AMSR2) observations over ocean and sea ice areas poleward of 45◦ latitude. The sim-193

ulated observation y (Fig. 1) represents an observation at one location comprising mea-194

surements at different frequencies and polarisations, known as channels. The notation195

here is that variables in lower-case bold represent vectors. The measured quantity is ra-196

diance and this is given in terms of equivalent black body brightness temperature (TB).197

Further detail on the microwave observations is in Sec. 22.3. The observed AMSR2 ob-198

servations are yobs and the discrepancy with the simulations is measured by a mean squared199

error loss function Jobs, which weights observations by an observation error r following200

standard DA practice:201

Jobs =
1

n

n∑
i=1

m∑
j=1

(yobs,ij − yij)
2

r2j
(1)

Here, i is the index over all observations, with n ≃ 600 million of them covering the full202

year. For simplicity the observation index has not been shown in Fig. 1. The elements203

of vectors yi and r are scalars yij and rj with the channel index j. Note that the divi-204

sion by n is not typically done in DA (e.g. Geer, 2021) and instead reflects the way batch-205

based loss terms in Keras are accumulated as a per-observation average. As in data as-206

similation, this is not the only loss function used to constrain the results of the network,207

but a number of other losses are used for constraining the estimated parameters (sim-208

ilar to background error constraints in data assimilation) and are described in Sec. 2.2.209

The physical details of the network are now briefly described by following it back210

from its outputs. The observed AMSR2 radiances are affected by the atmospheric ab-211

sorption and scattering from gases and clouds, as well as the emission, scattering and212

reflection of the surface. Hence a physical description of the atmospheric radiative trans-213

fer is encapsulated in y = fatmos(e, TS , zA), where the surface inputs are surface tem-214

perature TS and emissivity vector e (one element for each channel) and the atmospheric215

state is represented in the vector zA. The atmosphere and skin temperature are treated216

as known and fixed and are extracted from the ECMWF 12h background forecast. Fur-217

ther details of the atmospheric radiative transfer are in Sec. 2.4. One detail omitted from218

Fig. 1 is the use of a trainable bias correction for the observations, which needs 20 train-219

able weights; however in practice this is mostly constrained to prior knowledge and is220

not a major aspect of the problem (Sec. 2.3).221

The mixed surface emissivity e must be estimated within the network to provide222

the surface boundary conditions to the atmospheric radiative transfer model. The emis-223

sivity is described as a linear combination of the sea ice and ocean water surface emis-224

sivities eice and ewat, weighted by the sea ice concentration in the satellite’s field of view,225

Cice. The contrast in the surface emissivity between ocean and ice is strongest and eas-226

iest to detect at microwave wavelengths, and is fundamentally what allows the inference227

of the sea ice concentration from from satellite observations. This equation also defines228

the meaning of sea ice concentration in this work, which is the fraction of the ocean sur-229

face covered with ice or snow, which excludes melt ponds but can include ice bergs and230

ice shelves. The ocean surface emissivity is described physically and is treated as a known231

quantity. Not included in the simplified diagram is a windspeed error correction that is232

applied to the ocean surface emissivity, which uses 10 trainable weights. This correction233

is not a major aspect of the problem and is further described in Sec. 2.5.234

The sea ice concentration and its emissivity are the key unknowns in this work. To235

describe the latter, the network includes a time-evolving geographical map of sea ice con-236

centration Cice. Here the capitalised bold notation denotes a geographical map, possi-237

bly with multiple layers, although for the sea ice concentration there is just one. The in-238
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terpolation operator which goes from the map to the observation location is represented239

here as h(Cice, zG). The position of the observation on the earth’s surface and the time240

it was taken, in other words its geolocation, is represented by zG. The geographical map241

of sea ice is treated as an unknown and is hence one of the trainable variables, shown242

on Fig. 1 with a dotted outline.243

The sea ice emissivity eice is described by an empirical function fempirical(w,xice, zB)244

where w are the unknown parameters of the function (e.g. trainable neural network weights),245

and xice are unknown empirical inputs describing the unknown micro and macro-physical246

properties of the sea ice and any snow lying on top of it. Finally, zB represents any known247

inputs for the surface emissivity model. In the current work this just contains a func-248

tion of the skin temperature, but in future it could be extended to include the relevant249

outputs of a sea ice and snow physical model, as these become more accurate. In the cur-250

rent work it has proven sufficient to represent fempirical() using a single dense linear neu-251

ral network layer with 50 trainable weights. Multilayer and nonlinear (’deep’) neural net-252

works have also been tried out, but their complexity is unnecessary here and also they253

increase the possibilities for over-fitting (Appendix A1). The weights w of the empir-254

ical model are constant globally and through the year, with the intention of creating a255

compact and universally valid model for the sea ice emissivity. Further details of the sur-256

face emissivity modelling are in Sec. 2.5.257

The unknown empirical state inputs to the sea ice emissivity model (xice) are in-258

terpolated from a geographical map Xice in a similar way to the sea ice concentration.259

This map represents the empirical micro and macro physical properties of the sea ice and260

is another set of trainable parameters. The number of layers in this map, and hence the261

number of empirical inputs to the model, is a hyperparameter chosen to be 3 (sensitiv-262

ity tests on this are in Appendix A1). Further details on the empirical state parameters263

are in Sec. 2.6.264

As is well-recognised (e.g. Hsieh & Tang, 1998; Bocquet et al., 2020; Geer, 2021),265

machine learning and data assimilation are ultimately Bayesian inverse methods. Hence,266

Fig. 1 also represents the problem as a Bayesian network (e.g. Ghahramani, 2015), in267

particular mapping onto the graphical representation of data assimilation and ML used268

by Geer (2021). The physical content of the network could be seen as a sophisticated way269

of applying physical constraints to training of an empirical model, in the line of physics-270

informed neural network techniques (e.g. Raissi et al., 2017). Alternatively, the inclu-271

sion of a trainable empirical model within a physical data assimilation framework could272

be seen as an extended form of parameter estimation for data assimilation (e.g. Bocquet273

et al., 2019). But ultimately, all these views can be united in the Bayesian framework.274

2.2 Technical summary275

Figure 1 represents the network for one single observation, but the training is done276

on approximately 0.6 billion observed radiances across one year and with approximately277

4.9 billion pieces of supporting information extracted from ECMWF short-range fore-278

casts relating to the atmospheric radiative transfer terms and the surface temperature.279

Table 1 summarises the technical details of the network and its training.280

The loss function J used in training includes the basic observational loss function281

Jobs (Eq. 1) alongside additional regularisation terms:282

J = Jobs + Jseaice bounds + Jseaice tsfc + Jemis + Jbias. (2)

The sea ice concentration is constrained by two loss functions representing physical con-283

straints. The first sea ice loss function, Jseaice bounds, imposes the limits zero and 1 and284

the second, Jseaice tsfc, imposes the climatological probability of sea ice as a function of285

surface temperature (Sec. 2.7). The bias correction requires a loss function Jbias (Sec. 2.3)286

and finally there is a loss function for applying physical constraints to the sea ice emis-287
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Table 1. Overview of the hybrid network and its training details.

Aspect Parameter Value

Training data Time period start 1st July 2020
time period end 30th June 2021
Number of observations 64,184,021
Channels per observation 10
TOTAL (observations by channels) 641,840,210

Geographical Resolution 40 km
grid Number of spatial points 62,499

Number of time points (see Sec. 2.6 and 22.7) 365 or 366

Trainable Sea ice map Cice (366 days, see Sec. 2.7) 22,874,634
parameters Empirical micro- and macro-physical properties

Xice (3 variables, 365 days)
68,436,408

Empirical sea ice emissivity model weights w 50
Observation bias correction coefficients bice, bwat 20
Ocean surface emissivity windspeed correction coef-
ficients bemis

10

TOTAL 91,311,120

Fixed Atmospheric radiative transfer zA 61 per observation
parameters Surface (skin temperature (TS , zB), surface wind-

speed, ocean emissivity ewat)
13 per observation

Geolocation zG (grid point, day, observation num-
ber)

3 per observation

TOTAL (multiplied by number of observations) 4,942,169,617

Loss Observation fit Jobs, Eq. 1
functions Observational bias Jbias, Eq. 4

Ice emissivity Jemis, Eq. 9
Sea ice physical bounds Jseaice bounds, Eq. 11
Sea ice probability Jseaice tsfc, Eq. 12

sivity Jemis (Sec. 2.5). All these additional loss terms are important to impose physical288

behaviour and to prevent the problem being under constrained. In practice the bias and289

ice emissivity terms Jbias and Jemis were set so tightly that almost no change from the290

prior was allowed, but these terms provide a way of carrying out sensitivity tests on the291

number of parameters that can be constrained within the framework (see Appendix). Note292

also that the maps of empirical state parameters are not constrained at all. In Bayesian293

terms this means we impose no prior knowledge on what these values should be (this is294

often termed ‘equal priors’) following normal practice in ML.295

The geographical maps of sea ice Cice and empirical properties Xice are estimated296

on an irregular spatial grid with a consistent resolution of about 40 km, containing 62499297

points, and with a time resolution of 1 day. Precisely, the grid is derived from an N256298

reduced Gaussian grid (Hortal & Simmons, 1991) from which all land points and lati-299

tudes less than 45◦ have been removed. A typical single map layer therefore contains 62499300

locations × 365 days = 23 million parameters to be estimated.301

Training of the hybrid model and geographical maps was done on the ECMWF su-302

percomputer with a single process allowing 64 CPU threads, 128 GB of memory, and a303

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Table 2. AMSR2 channels in this work: (top) details from Okuyama and Imaoka (2015);

(bottom) usage details.

Original channel number 5 6 7 8 9 10 11 12 13 14
Polarisation v h v h v h v h v h
Frequency [GHz] 10.65 18.7 23.8 36.5 89
Footprint [km] 24 × 42 14 × 22 15 × 26 7 × 12 3 × 5
Noise [K] 0.55 0.47 0.56 0.54 0.51 0.41 0.89 1.01 1.18 0.91

Local channel number j 1 2 3 4 5 6 7 8 9 10
Short name 10v 10h 19v 19h 24v 24h 37v 37h 89v 89h
Observation error [K] 2.5 4.0 2.5 4.5 2.5 5.0 4.0 7.0 4.5 10.0

RMS error initial [K] 19.31 20.61 8.41 41.25 18.02 20.80 24.74 23.60 23.85 34.94
RMS error analysis [K] 2.69 4.32 2.58 4.92 2.66 5.22 3.88 7.63 4.71 9.93

maximum 48h of wallclock time (no GPUs were available). This allowed up to 8 train-304

ing epochs, which was sufficient in the current work. To train the model, the loss func-305

tion (Eq. 2) was minimised using the Adam variant of the mini-batch stochastic gradi-306

ent descent approach (Kingma & Ba, 2014) at its default settings, including its learn-307

ing rate set to 0.001, with the exception of the use of a batch size of 1024 (Appendix A1).308

From the point of view of Keras training, the fixed parameters were treated as input val-309

ues (features), the observations were treated as output values (labels). Further techni-310

cal aspects of the training and hyperparameters are explored in Appendix A1.311

2.3 Observations312

Observations are provided by AMSR2 (Okuyama & Imaoka, 2015), a conical scan-313

ning microwave radiometer on the polar-orbiting GCOM-W2 satellite observing at fre-314

quencies from 6.7GHz to 89GHz, each separately measuring vertically (v) and horizon-315

tally (h) polarised radiances (Tab. 2). The original radiance observations were obtained316

from the Japan Aerospace Exploitation Agency (JAXA, https://gportal.jaxa.com) and317

averaged onto a 40 km reduced Gaussian grid (Hortal & Simmons, 1991). This averag-318

ing standardises the measurement footprint, which varies with frequency (the footprint319

varies both in size, Table 2, but also in central location by up to around 4 km). The spa-320

tial locations of the resulting ‘superobservations’ or superobs are taken as those of the321

centres of the Gaussian grid points. The times of the superobs are the mean of the times322

of the original observations, which span only a few seconds, so the superob remains an323

almost instantaneous observation of the earth. AMSR2 also has channels at 6 – 7GHz324

with excellent sea ice sensitivity but these have been left out due to their footprint be-325

ing larger than the 40 km grid. Superobs are based on an average of 20 raw observations;326

those based on less than 6 raw observations are discarded. Following current practice327

in atmospheric data assimilation (e.g. Kazumori et al., 2016; Geer et al., 2018), the ob-328

servations are used in all-sky conditions, i.e. clear, cloudy and precipitating.329

Figure 2 illustrates these observations over the Arctic ocean. At 10GHz, v-polarised,330

(10v) the sea ice areas are relatively easily distinguished from ocean by the large con-331

trast in brightness temperature, with sea ice showing a fairly uniform value around 250K.332

But at higher frequencies (19v – 89v) and in the horizontally-polarised channels (10h –333

89h) the sea ice areas show more strongly variable brightness temperature, driven by the334

micro and macrophysical characteristics of the sea ice and snow cover. The influence of335

the atmosphere (e.g. clouds and water vapour) is also important, particularly at 89 GHz.336
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Figure 2. Observed AMSR2 brightness temperatures on the 40 km grid over the Arctic on 7th

November 2020, showing only pure ocean scenes, and allowing observations from multiple orbits

to overlay each other. Channels 24v and 24h are also used in this work, but are omitted from the

figure to save space.

The ocean surface generally has much lower brightness temperatures than the sea ice and337

is more strongly polarised, so that h-polarisation measurements have much lower bright-338

ness temperatures than v-polarisation measurements, down to around 85K at 10h. Ex-339

isting heuristic sea ice algorithms use higher frequencies to obtain better spatial reso-340

lution, and are based on empirically observed characteristics of the polarisation and fre-341

quency dependence of ocean and sea ice surfaces. These include methods using 19v, 37v,342

19h and 37h (e.g. Comiso et al., 2003; OSI-SAF, 2016) and those using 89v and 89h (e.g.343

Spreen et al., 2008) but in general no existing algorithm uses a physical description of344

the problem like the hybrid network used here (Fig. 1). This is mainly due to the lack345

of knowledge of the sea ice emissivity and its variations with underlying micro- and macro-346

physical ice and snow characteristics. The heuristic approaches can be vulnerable to at-347

mospheric effects such as cloud and water vapour along with variations in sea ice and348

ocean surface characteristics, which could incorrectly be interpreted as variations in sea349

ice concentration.350

Because of its orbit, AMSR2 crosses the polar regions every 100 minutes or so, tak-351

ing measurements across a sub-satellite swath of 1450 km. Each overpass produces sep-352

arate superobs, so up to around 8 of these are available on the 40 km grid in a 24 h pe-353

riod, and Fig. 2 has allowed multiple observations to overlay each other. Figure 3 shows354

the average number of superobs per day, counted on the daily 40 km grid on which the355

sea ice concentration and empirical properties (Cice, Xice) are estimated. The interpo-356

lation operator from Fig. 1, h(·, zG) is responsible for mapping between the sea ice daily357

grid and the location of the observations, whose availability changes from day to day,358

primarily due to orbital precession. The mapping is made easy because the superobs and359
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Figure 3. Number of AMSR2 pure ocean superobs available on the 40 km grid over the Arctic

on 7th November 2020, in the 24 h period from 2100 UTC on 6th November to 2100 UTC on 7th

November. Dashed lines indicate latitude every 10◦ and longitude every 45◦.

the sea ice grid are on the same standardised locations. The result is that the daily es-360

timates of sea ice concentration, and its the empirical properties, typically have to fit be-361

tween 4 and 8 AMSR2 superobs and represent, in rough terms, a daily average.362

AMSR2 has measurement biases which vary as a function of scene brightness tem-363

perature and can reach 5K (Berg et al., 2016). It is routine and necessary to remove these364

biases when the data are assimilated. Hence in practice (and omitted from Fig. 1 for sim-365

plicity) a bias-corrected brightness temperature ycorr is used in the training (precisely,366

in the observation loss function Eq. 1) in place of the uncorrected y:367

ycorr = y + Cice ∗ bice + (1− Cice) ∗ bwat (3)

The bias corrections are a function of the sea ice concentration, and are per channel, so368

there is a vector of 10 bias corrections for for sea ice, bice, and similarly for ocean wa-369

ter, bwat. These are also trainable parameters, though in practice they are not allowed370

to vary much. The bias correction is initialised with the background values bice,bg and371

bwat,bg, respectively set to 2.5K and 5.0K (in all channels) using prior estimates of AMSR2372

biases over ocean and land surfaces (Geer et al., 2022) and assuming that sea ice sur-373

faces will have similar biases to those seen over land surfaces. Given that the bias cor-374

rections are trainable values, they are constrained by a loss term375

Jbias =
1

n

m∑
j=1

(bice,j − bice,bg)
2 + (bwat,j − bwat,bg)

2

b2bgerr
. (4)

Here, the per-channel bias corrections are bice,j and bwat,j with a background error of bbgerr =376

0.001K, and the division by n, the number of training observations, standardises the loss377

function to the Keras approach (Eq. 1). Given the very small chosen background error,378

in practice the bias is forced to stay extremely close to prior values, rather than being379

allowed to evolve to fit the observations. Hence the bias loss term exists mainly to ex-380

plore the possibility of relaxing this constraint and evolving the bias correction in the381

sensitivity tests described in A2. These show that if biases are allowed to evolve away382
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from the prior values, it makes the problem under-constrained, so in practice it is nec-383

essary to estimate any instrument biases in advance.384

A final aspect of using observations in DA is the observation error r, which comes385

into the observation loss term (Eq. 1). The uncertainty in the observations themselves386

is indicated by the instrument noise, which is around 0.5 to 1.0K (Table 2). However,387

in a DA system that does not otherwise account for forward modelling error, this must388

be represented in the observation error, and hence the total observation error is often389

much larger than the instrument noise (e.g. Geer & Bauer, 2011). In the current work,390

there is substantial forward modelling error not represented within the hybrid network391

(Fig. 1). This is because the network is not a perfect description of the physical processes392

and also the fixed parameters (e.g. zatmos) are not perfectly known. The assigned ob-393

servation errors are given in Table 2 and have been inspired by the size of the residu-394

als after training earlier prototype versions; estimating these errors is recognised as an395

iterative problem (Desroziers et al., 2005). The assigned errors range from around 2.5K396

in channels 10v, 19v and 24v, up to 10.0K in channel 89h. The larger observation er-397

rors reflect the increased difficulty in modelling the complex brightness temperature pat-398

terns over sea ice at higher frequencies and in h-polarised channels, as well as any errors399

in the fixed parameters for cloud and water vapour that mainly affect higher frequen-400

cies (see also Fig. 2).401

2.4 Atmospheric radiative transfer402

Atmospheric radiative transfer terms zatmos have been computed prior to training,403

using the background 12 hour forecast from the ECMWF data assimilation system, which404

assimilates AMSR2 observations for their atmospheric information content in all-sky con-405

ditions (Kazumori et al., 2016) as well as many other satellites and observation types406

(e.g. Geer et al., 2017). Atmospheric radiative transfer is simulated by the physical scat-407

tering radiative transfer model RTTOV-SCATT (Radiative transfer for TOVS Scatter-408

ing module, Bauer et al., 2006). This uses two independent sub-columns, one clear and409

one cloudy. The clear sub-column simulates the surface interaction and absorption by410

gases, primarily water vapour. The cloudy sub-column also includes the effect of cloud411

and precipitation using a delta-Eddington scattering solver. In each sub-column kϵ[clear, cloudy],412

and for one channel j, the top-of-atmosphere brightness temperature is described by:413

yjk = ejTSΓjk + (1− ej)T
⇓
jkΓjk + T⇑

jk. (5)

Here, T⇓
jk is the downwelling radiation (TB) at the surface, T⇑

jk is the component of up-414

welling radiation at the top of the atmosphere coming from the atmosphere itself, and415

Γjk is the atmospheric transmittance. The surface is represented using the approxima-416

tion of specular reflection, where the surface emits radiation according to the surface tem-417

perature TS multiplied by the surface emissivity ej , and reflects downwelling radiation418

modulated by a reflectivity 1−ej . This is not a perfect assumption, because microwave419

radiation can penetrate centimetres to metres into snow and ice surfaces, and future work420

will use a more physical representation of the radiative transfer within the sea ice and421

snow (e.g. Picard et al., 2018). The final ‘all-sky’ brightness temperature is obtained by422

weighting the two sub-columns according to the effective cloud fraction Ceff (Geer et al.,423

2009):424

yj = (1− Ceff)yj,clear + Ceffyj,cloudy (6)

Given that there are 10 channels, two subcolumns, and Eq. 5 requires three atmospheric425

variables to be prescribed, this means that zatmos is composed of 60 radiative transfer426

terms plus the cloud fraction Ceff . These are required at the locations of every obser-427

vation in the training set (Table 1). The most important atmosphere-related approxi-428

mation is that zatmos is based on an ECMWF 12h forecast but is treated as a fixed truth;429

the impact of this is explored later.430
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These equations are already used in a different way in a dynamic surface emissiv-431

ity retrieval at ECMWF (Baordo & Geer, 2015, 2016). This traditional technique for es-432

timating the surface emissivity of land, snow and ice surfaces attempts to directly in-433

vert Eqs. 5 and 6 to obtain ej , given fixed estimates of all other parameters. This can434

fail in many circumstances including when the surface becomes invisible due to heavy435

cloud or high water vapour amounts (Γjk → 0) though this is mainly a problem of higher436

frequency channels (Baordo & Geer, 2016). An advantage of the Bayesian inversion of437

the physical forward modelling framework used here (Fig. 1) is that it naturally handles438

this situation, and does not attempt to extract information from observations where there439

is none to be had.440

2.5 Surface emisivity model441

The mixed-surface emissivity e (which is a vector over the 10 frequencies and po-442

larisations of AMSR2 being used here) depends on the fractional cover of sea ice within443

the scene Cice and on the emissivities of sea ice and open ocean eice and ewat:444

e = Ciceeice + (1− Cice)ewat. (7)

If the sea ice and water emissivity were both known then it would be possible to retrieve445

the sea ice concentation from the total surface emissivity using this equation. Even if446

the ocean emissivity is treated as fully known, the problem of estimating the unknown447

sea ice concentration and ice emissivity from this equation is ill-posed (e.g. Rodgers, 2000).448

There are 11 unknowns but only 10 simultaneous equations. One way to make it well-449

posed would be to constrain the frequency variation of ice emissivity eice. Hence, one450

aim of the current work is to generate a sea ice emissivity model with significantly fewer451

input parameters than the number of frequencies in eice, in order to facilitate sea ice con-452

centration retrievals.453

The ice surface emissivity model being trained in this work is:454

eice = fempirical(w,xice, zB) = wb +w0zB +

p∑
l=1

wlxice,l. (8)

Here, wb and w0 to wp are each a vector across the 10 microwave channels and they455

are extracted from the 50-element weights vector w (Table 1). With p = 3 empirical456

variables to represent the micro- and macrophysical properties of the sea ice and snow,457

there are l = 1, p components of xice, written xice,l as inputs to the emissivity model,458

plus a scalar zB . This model is implemented as shown in the equation as a single neu-459

ral network layer with a linear activation function, although more complex and nonlin-460

ear neural networks have also been tried (Appendix A1). The appendix also justifies the461

choice of p = 3 empirical variables.462

The trained values of wb and w0 to w3 are illustrated in Fig. 4 as well as being tab-463

ulated in Appendix B. Here, wb broadly represents a mean ice surface emissivity and464

other vectors describe variability around this as a function of the input values. Of these465

inputs, zB is the only physical one: it is a scalar transformation of the surface temper-466

ature zB = max(273.0 − TS , 0.0)/30.0. The factor 30.0 in the denominator is for nor-467

malisation and is chosen so that maximum values do not much exceed 1, as is common468

practice in machine learning. As mentioned in Sec. 2.4, the representation of the surface469

using an emissivity and a skin temperature is a big approximation. Quite often the ra-470

diation may be coming from within the sea ice or snow layer, where it is warmer, and471

the effective radiating temperature of the snow and sea ice (in Eq. 5) should be higher472

than the given skin temperature from the ECMWF model. To partly compensate this,473

the model is designed to allow an increase in the surface emissivity as the skin temper-474

ature gets colder. Figure 4a shows the modelled surface emissivity at TS = 273.0K (zB =475

0) and TS = 261.0K (zB = 0.4), assuming all other inputs are zero. Going to the lower476
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Figure 4. Illustrating the trained sea ice emissivity model. The ice emissivity with all inputs

zero is wb which is shown in all panels (solid line). If just one input parameter is perturbed to

+0.4 (long dash) or -0.4 (dot dash) then the emissivity changes according to weights w0 to w3.

temperature increases the modelled surface emissivity by up to 0.07. The trained model477

describes this effect in a physically plausible way, being strongest at lower frequencies,478

where radiation typically penetrates deeper into the snow and ice, and weakest at 89GHz,479

where the radiation is unlikely to be penetrating more than a few centimetres into the480

surface.481

Figure 4b – d show the response of the trained emissivity model to changes in the482

empirical inputs, those variables whose meaning is defined by the model itself. Positive483

values of the first empirical value, xice,1, are able to make the surface emissivity decrease484

more strongly with frequency (panel b) although negative values can generate unphys-485

ical emissivity values outside the range 0 to 1. The second empirical value (xice,2, panel486

c) seems primarily to control the polarisation (the sawtooth shape on these plots) mak-487

ing it smaller when positive and larger when negative. Positive values of the third em-488

pirical value (xice,3, panel d) reduce polarisation and reduce emissivity mainly at 89GHz.489

This represents a compact model of the polarisation and frequency dependence of the490

surface emissivity of ice and snow.491

At the start of training, the sea ice emissivity model weights were initialised with492

the default initialiser (Glorot uniform; Glorot & Bengio, 2010) except for wb which was493

initialised to a background value of wb,bg = 0.93. With the aim to make the problem494

well-posed, the emissivity model was constrained, but only for the first element of the495
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Figure 5. Emissivity as a function of channel at illustrative locations in the Arctic on 7th

November (a) in the multi year ice and (b) in newly formed sea ice. The mixed emissivity

(dashed) is generated from the sea ice concentration and the ice and water emissivities (solid

and dot-dash) according to Eq. 7.

vector wb, which gives the baseline surface emissivity for channel 10v:496

Jemis =
1

n

(wb,1 − wb,bg)
2

w2
bgerr

. (9)

In practice, the size of the background error here, wbgerr = 0.00001, was chosen to keep497

wb,1 extremely close to its background value. An emissivity of 0.93 is within the typi-498

cal values for channel 10v, and further, the emissivity in this channel is thought to be499

relatively invariant between first year and multi year ice (Lee et al., 2017, their Table500

4). The posterior sensitivity tests in Appendix A2 show that this constraint on 10v emis-501

sivity could in practice have been relaxed or removed. In early testing before the addi-502

tion of sea ice concentration loss terms, the emissivity loss term was necessary to avoid503

completely non-physical sea ice concentrations being retrieved. However, it appears that504

the sea ice concentration loss terms are more effective and targeted, and would be suf-505

ficient on their own in future versions of this work. In any case, despite the constraint,506

the final trained model still has freedom to adjust the output emissivity at 10v down to507

at least 0.9 and up to at least 0.98 depending on the input parameters (Fig. 4).508

Figure 5 illustrates sea ice surface emissivities generated by the empirical model509

(Eq. 8) at two locations in the Arctic, alongside ocean water emissivities (Eq. 10, to be510

described shortly) and the mixed-surface emissivity that is determined by the sea ice con-511

centration (Eq. 7). The location with new ice (panel a) generates relatively strong po-512

larisation but has little frequency dependence. The frequency dependence is in qualita-513

tive agreement with aircraft observations of new ice (e.g. Hewison & English, 1999). In514

contrast, a location in the multi-year ice is mostly unpolarised but its emissivity drops515

with frequency, as is generally observed (e.g. Baordo & Geer, 2015). Both sea ice emis-516

sivity spectra contrast strongly with the ocean water emissivity which is even more po-517

larised and increases with frequency. These are locations where the sea ice concentra-518

tion is close to 1, so the mixed-surface emissivity is relatively close to the ice emissiv-519

ity.520

To complete the description of surface emissivity modelling, ocean water emissiv-521

ity is described as a function of skin temperature TS , surface wind speed u, salinity and522

frequency by the FASTEM-6 model (Fast Emissivity, Kazumori & English, 2015). The523
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Figure 6. Estimated values of the three empirical sea ice properties in the Arctic on 7th

November 2020. Values are only shown where the estimated sea ice concentration is greater than

0.2.

ECMWF 12h forecast is used to provide surface temperature and wind speed at the ob-524

servation time and location, and the salinity is fixed (35 in terms of practical salinity units).525

The ocean water cannot cool below around 271.35K without freezing, but many sea ice526

locations have skin temperatures much lower than this. In these cases, the surface emis-527

sivity is set to an average of surface emissivities generated for surface temperatures be-528

tween 271.0 and 273.0K in nearby areas. FASTEM-6 also has biases as a function of wind-529

speed u, coming from an imperfect representation of the sea state in high wind situa-530

tions. Hence another alteration to the idealised network in Fig. 1 is to train a windspeed531

and channel-dependent bias correction bfastem within the network:532

ewat = efastem + ubfastem. (10)

Here, efastem is the ocean water surface emissivity coming from FASTEM-6. This wind-533

speed bias correction requires 10 bias correction coefficients to be trained (one per chan-534

nel, Table 1). The trained windspeed bias corrections appear to be well constrained, phys-535

ically realistic, and they make only small adjustments to the simulated ocean emissiv-536

ity (e.g. at u = 20ms−1 at most +0.03 in emissivity in the 37h channel, and generally537

smaller). Hence, no loss function is used, and for brevity the corrections are not discussed538

further.539

2.6 Empirical state representing micro- and macro-physical properties540

of sea ice541

The initial value of the empirical parameters is zero before training, and as men-542

tioned earlier, there is no attempt to constrain these values during training. Figure 6 il-543

lustrates the empirical sea ice properties after training. Positive values of properties 1544

and 2 are found towards the W side of the Arctic sea ice and appear to correspond to545

multi-year ice, including a small tail of similar properties that has been advected around546

the Beaufort Gyre (near Alaska). The other parts of the Arctic sea ice have frozen dur-547

ing the autumn and have more variability, but properties 1 and 2 are typically zero or548

below, and property 3 is often zero or positive. Figure 5 has already illustrated typical549

corresponding sea ice emissivity spectra in Arctic multi-year and new ice. During the550

cold season, the empirical properties are often largely unchanged from one day to the551

next, but they can change rapidly, for example when new snow falls on the sea ice (not552
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shown). In the warm season, the empirical properties vary widely from day to day, likely553

depending on whether the snow cover is melting or frozen on the day in question (not554

shown).555

2.7 Sea ice556

In order to speed up the training, the sea ice maps Cice were initialised with a monthly557

mean sea ice concentration computed from the existing ECMWF sea ice concentration558

analysis at the AMSR2 locations. However, apart from the physical constraints described559

below, the sea ice concentration can be freely adjusted to best fit the observations, and560

is not constrained in any way to the ECMWF sea ice concentration. The existing ECMWF561

sea ice analysis is based on a combination of an ocean model, a sea ice model (LIM2, Tim-562

mermann et al., 2005) and the assimilation of highly processed observations, using the563

ocean data assimilation framework (OCEAN5, Zuo et al., 2019; de Rosnay et al., 2022)564

and will be referred to by this name subsequently. The observations are the OSTIA sea565

ice dataset (Good et al., 2020) which is ultimately based on sea ice retrievals (OSI-SAF,566

2016) obtained from a microwave sensor similar to AMSR2 using a traditional heuris-567

tic approach (e.g. Comiso et al., 2003). It is important that the new emissivity model568

should not try to fit these heuristic assumptions in any way. Further, due to the com-569

plex processing chain, the OCEAN5 sea ice can be at least 48 h behind reality once it570

has been mapped to observation locations (e.g. Baordo & Geer, 2015; Browne et al., 2019;571

de Rosnay et al., 2022, this work). As encountered when prototyping the current approach,572

if there is an incorrect sea ice concentration in Eq. 7, the sea ice emissivity model can573

take on characteristics of the ocean water surface emissivity, which would make the model574

essentially useless. For all these reasons, it was important not to allow the new sea ice575

analysis to be constrained by the OCEAN5 sea ice analysis in any way.576

A more standard DA approach would have been to use the OCEAN5 sea ice as the577

background and to impose a loss term based on the misfit between this and the solution.578

This was tried in prototypes but it proved very difficult for the solution to move away579

from the OCEAN5 sea ice field and its known issues. Hence this was abandoned, but pro-580

totyping also showed that if the sea ice were not constrained at all, it could drift to un-581

physical values outside the range 0 to 1 (see also Appendix A2). Hence an alternative582

approach to constrain the sea ice was to impose physical bounds and climatological in-583

formation on the likelihood of sea ice. The first of two sea ice loss functions impose a584

quadratically increasing penalty on sea ice concentrations that go outside the bounds 0585

and 1:586

Jseaice bounds =
1

n

∑
ab

max(Cab − 1.0, 0.0)2

c2bgerr
+

1

n

∑
ab

min(Cab, 0.0)
2

c2bgerr
(11)

Here, Cab indicates one sea ice concentration on the grid, and a and b represent the time587

and space grid indices. The loss is computed over the entire grid of 22 million locations588

(Table 1). In the mini-batch minimisation technique, losses need to be computed once589

per batch, and summing repeatedly over the entire sea ice grid is a performance limi-590

tation that should ideally be avoided in future (see Appendix A1). The background er-591

ror is set to cbgerr = 0.02, with sensitivity experiments on this in Appendix A2.592

The second sea ice loss penalises the presence of sea ice in warm locations and is593

primarily designed to prevent the aliasing of observed but not modelled cloud into trace594

sea ice features. This loss was made a function of the climatological probability of ob-595

serving sea ice greater than 0.01 as a function of skin temperature, P (Cice > 0.01|TS),596

estimated from the OCEAN5 data. Since in variational data assimilation the background597

loss term is -2 times the natural logarithm of the prior probability (see e.g. Geer, 2021)598

the relevant penalty function and its approximate piecewise linear fit to the OCEAN5599

data were −2ln (P (Cice > 0.01|TS)) ≃ 4.0×max(TS − 273.2, 0.0). To apply this to all600
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Figure 7. Loss terms during the training of the hybrid network (see Table 1) The total loss

term is dominated by the observation fit, so it is mostly hidden behind the observation fit losses;

the total loss at epoch zero is 340 and is off scale. The order of lines in the key follows the top-

to-bottom order on the figure at Epoch 2.

sea ice values, the full loss term was:601

Jseaice tsfc =
1

n

∑
d

4.0×max(TS,d − 273.2, 0.0) (12)

Here TS,d is the skin temperature at the subset of grid locations d with sea ice concen-602

trations greater than 0.01, Cab > 0.01. This subsetting means that the penalty applies603

only where the sea ice concentration is greater than 0.01.604

A final constraint on the sea ice concentration is to impose a time smoothing, so605

that the interpolation operator h(Cice, zG) (Fig. 1) takes a configurable weighted aver-606

age of the sea ice at the location zG from the current and previous day (this is why the607

sea ice grid covers 366 rather than 365 days). In this work the weights were 0.6 and 0.4608

respectively, giving most weight to the current day’s ice concentration. This is intended609

as a rough equivalent to using a persistence (i.e. constant) sea ice forecast model to con-610

strain the evolution of the geophysical state from one day to the next. The model con-611

straint is a particularly important part of data assimilation, and although a physical sea612

ice model would have been better here, the persistence approximation has been effec-613

tive in sea ice data assimilation (e.g. Buehner et al., 2013). Sea ice persistence is use-614

ful for reducing the amount of spurious sea ice features generated by cloud over open ocean;615

broadly the assumption is that sea ice is longer-lived than cloud features.616

3 Results617

3.1 Training and fit to observations618

Figure 7 shows the total loss J and its constituents (Table 1) as a function of the619

training epoch. Losses before any training (referred to as epoch 0) have been estimated620

using the initial conditions of the hybrid model, described further below. The model is621

mostly converged to the observations after 4 epochs. However, allowing the training to622

run to 8 epochs helps reduce the size of the sea ice emissivity loss term, keeping the 10v623

emissivity closer to the prescribed value of 0.93, and the sea ice bounds term, reducing624

–18–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the occurrence of non-physical sea ice concentrations. The loss terms have a very wide625

range of magnitudes and hence all but the observation term have required re-scaling to626

be visible on this figure. Despite this, the results show that most of these additional smaller627

loss terms are effective (see appendix). The hybrid model appears mainly converged af-628

ter 8 epochs, but Appendix A1 (using just a month of training data) investigates the use629

of larger numbers of epochs, and shows that the model can continue to evolve, but at630

the cost of some overfitting. Training on the yearly dataset is resource-limited to 8 epochs,631

but a beneficial, though involuntary, side effect has been that it is using ‘early stopping’632

to avoid over-fitting.633

Figure 8 illustrates the brightness temperatures generated by the network before634

(‘initial’) and after training (‘analysis’), compared to observations. The initial simulated635

brightness temperatures are what would be obtained from the network before training,636

with all trainable parameters set to their initial values, with the exception that the emis-637

sivity weights w0 (the term sensitive to the skin temperature) have been set to zero. This638

is because the model weights are otherwise semi-randomly set by the Glorot initializer,639

making the true initial fit to observations much worse, and not particularly informative.640

With w0 = 0, the initial values of sea ice emissivity are all set to 0.93 and it is easy to641

see the brightness temperature errors caused by the monthly mean initial sea ice fields642

(panel a compared to c). Compared to the initial simulated brightness temperatures, the643

analysis replicates the observations very closely.644

The RMS of the initial and final (or analysis) departures (yobs,ij−yij) are given645

in Table 2. Initial RMS departures are of order 10K to 40K. Panel g illustrates these646

departures in channel 37v, with large discrepancies coming both from the incorrect sur-647

face emissivity and the incorrect sea ice initial field. By contrast, the analysis departures648

(e.g. panel h) are mostly within ±3K and rarely larger than 10K. The largest remain-649

ing departures are mainly found over open ocean and not sea ice, and come from errors650

in the location of cloud and precipitation in the ECMWF background fields, which can-651

not be adjusted in the current network. The RMS of the analysis departures ranges from652

2.7K in channel 10v to 9.9K in 89h (Table 2). These values are close to the prescribed653

observation errors, as intended.654

In Fig. 8a-c, at 10v, there is evidence of large adjustments in the sea ice field all655

around the sea ice edge, and particularly in the top right (Siberian) sector of the Arc-656

tic ocean, where the observations show some large holes in the sea ice (panel c), which657

are absent from the initial model (panel a) but which the analysis fits closely (panel b).658

Brightness temperatures over the sea ice are also increased by around 10K in the 10v659

channel analysis, mainly due to the tuning of the skin temperature term (w0) of the ice660

emissivity model, in order to boost the surface emissivity in colder areas as intended (not661

shown).662

At higher frequencies, the improvements between the initial model and the anal-663

ysis (Fig. 8 d and e) are driven not just by the improved sea ice concentration, but also664

by the development of the empirical terms of the surface emissivity model, and the em-665

pirical state inputs. Empirical properties 1 and 2 (Fig. 6) are the main driver in the anal-666

ysed brightness temperature at 37v, helping generate brightness temperatures down to667

210K over the multi-year ice (empirical property 1 values of up to 0.4) and up to 260K668

over the first year ice (empirical property 1 down to -0.4). Hence the hybrid model ap-669

pears to make a physically plausible set of adjustments in order to fit the observations.670

3.2 Sea ice concentration671

Figure 9 compares the Arctic sea ice obtained from the physical-empirical network672

to the OCEAN5 sea ice during a rapid freezing event. The new analysis (panel b) has673

identified a mostly complete sea ice cover over a region of the eastern Arctic ocean ap-674

proximately 1000 by 3000 km where it scarcely exists in the existing ECMWF sea ice anal-675
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Figure 8. Comparison of simulated and observed brightness temperatures in channels 10v

and 37v, over the Arctic on 7th November 2020: (a,d) initial guess; (b,e) after training, in other

words the analysis; (c,f) observations; (g) the initial guess minus observation departure; (h) the

analysis minus observation departure. Departures smaller than 3K are not shown. The figure

overlays mutiple orbits of AMSR2 observations and allows later observations to cover earlier os-

bervations.
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Figure 9. Comparison of sea ice concentration on 7th November 2020: (a) Initial monthly

mean sea ice; (b) Analysed in this work; (c) Difference between analysed and OCEAN5; (d)

OCEAN5 sea ice. Differences smaller than 0.05 are not shown. Latitude and longitude grid spac-

ings are 10◦ and 45◦ respectively.

ysis (OCEAN5, panel d). There are also disagreements in the location of the ice edge676

by up to around 100 km in the region of Svalbard. The fundamental issue is the roughly677

48 h time delay in producing the OCEAN5 analysis; eventually the OCEAN5 sea ice catches678

up and provides a similar picture (not shown). Table 3 shows that the new analysed sea679

ice agrees best with OCEAN5 if it is artificially delayed by 2 or 3 days, consistent with680

previous expectations (Baordo & Geer, 2015; Browne et al., 2019; de Rosnay et al., 2022).681

There is also some low concentration (< 0.2) sea ice incorrectly identified in the cur-682

rent analysis, for example off the N coast of Scandinavia, visible mainly in the difference683

plot (panel c). This spurious sea ice is generated when clouds are present in the obser-684

vations but not in the ECMWF 12h atmospheric forecast (zA here). The network (Fig. 1)685

cannot adjust the atmosphere to add cloud and instead can only create sea ice to bet-686

ter fit the observations (an opposite effect would tend to create negative sea ice concen-687

trations where the ECMWF forecasts have too much cloud, but this is suppressed by the688

sea ice bounds loss function).689
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Table 3. Standard deviation of differences between analysed and OCEAN5 sea ice concen-

tration, aggregated across the Arctic and Antarctic for the full 365 day training period, with a

variable lag applied to the analysed sea ice.

Lag [Days] Std. dev.

0 0.0736
1 0.0692
2 0.0663
3 0.0666
4 0.0697
5 0.0738

Figure 10 shows a similar comparison for the Antarctic. Here, the interior sea ice690

amounts are close to 1 and agree well with OCEAN5. The main differences are along the691

ice edge, where the analysed sea ice has a much sharper boundary than the OCEAN5692

sea ice, and also a significantly more detailed structure. The analyses also have a slightly693

greater extent, broadly consistent with the 2-3 day time delay in the OCEAN5 data and694

noting that the sea ice extent is typically growing at this time of year. An interesting695

detail on this day is in the top right of the plot (around 20 - 35◦ E) where the new anal-696

yses show a distinct series of waves along the sea ice edge in a location where the OCEAN5697

analyses show only a shallow gradient. These waves have wavelengths of around 300 km698

and are seen developing over many days (not shown). They might be produced by a se-699

ries of ocean surface eddies along the ice edge.700

Figure 11 compares the sea ice probability density function (PDF) between the anal-701

yses and the existing ECMWF sea ice, OCEAN5. The OCEAN5 fields show clear bounds702

at 0 and 1 and a smooth variation in between. For the sea ice analysed in this work, the703

sea ice bounds loss function (Eq. 11) has mainly done its job of keeping the sea ice con-704

centration within bounds, but tails do exist outside the physical range. There are also705

spikes in the analysed PDF, indicating some quantisation in the analysis. Based on the706

sensitivity tests in Appendix A1, this quantisation would likely have disappeared if re-707

source constraints had not prevented the use of more epochs for training. A final issue708

with the current work is the excessively high probability of observing sea ice concentra-709

tions below 0.25, which comes from the cloud-aliasing issue discussed above. However,710

the retrieved sea ice can easily be cleaned up by capping the concentration at 1 and by711

setting any sea ice concentrations below 0.25 to zero. More study into loss functions for712

sea ice would be useful, or alternatively a physical sea ice model could be introduced into713

the network to better constrain the sea ice PDF, following typical practice in data as-714

similation.715

Figure 12 shows the annual cycle of ice area, using ‘cleaned up’ sea ice concentra-716

tions as described in the previous paragraph. Compared to OCEAN5, this work gives717

slightly higher ice area in the Antarctic winter, and slightly lower ice area in the Arc-718

tic winter. The better timeliness of the new sea ice analysis is also clear. In early Novem-719

ber in the Arctic, the current work identifies a rapid freezing event that is smoothed out720

and delayed in the OCEAN5 sea ice analysis, as also illustrated in Fig. 9. A similar pic-721

ture is seen in the Antarctic, from late February to mid-May. Apart from these issues,722

there is good agreement between the annual cycles in the two ice products.723

Figure 13 shows maps of the annual mean sea ice concentration (again using cleaned724

up values) and the difference between these and OCEAN5. In the Arctic (panel c) there725

is an underestimation of sea ice concentration compared to OCEAN5, mainly in the multi-726
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Figure 10. As Fig. 9 on 7th November 2020, but for the Antarctic. The Greenwich meridian

is to the top.

year ice region (western Arctic ocean) and mostly by less than 0.1. This underestima-727

tion is visible even in the daily maps (e.g. Fig. 9). Assuming that the sea ice concentra-728

tion in the multi-year ice zone should be close to 1, like in OCEAN5, this appears to be729

a defect in the current approach and likely relates to the constraint of 10v ice surface730

emissivity close to 0.93; Fig. 2a shows slightly lower TBs in this region even at 10v, com-731

pared to the eastern Arctic, which suggest that the modelled surface emissivity in multi-732

year ice should have been allowed to decrease more at 10v. In the Antarctic (panel b)733

there is typically a small overestimation (around 0.02) compared to OCEAN5, and much734

larger positive differences in patches close to the Antarctic coast. These can be traced735

to the Antarctic coastline in the summer, January and February, where the new anal-736

yses show considerably more ice extent (much of it fractional ice, e.g. concentrations around737

0.5) along the coast than the OCEAN5 analyses. Given the careful treatment of the satel-738

lite field of view and land contamination in this work (Sec. 2.3) and the all-sky validity739

of the data this suggests there is a real defect in the OCEAN5 sea ice. There are small740

underestimations of the sea ice compared to OCEAN5 in the Weddel Sea which might741

also be due to the multi-year ice issue, since this is one of the few areas of the Antarc-742

tic where ice can persist from one year to the next. But apart from the areas of disagree-743
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Figure 11. Probability density function for sea ice concentration for the new analysis and the

existing OCEAN5, over the year and both hemispheres, using a log y-axis to better compare the

full probability range.

ment already discussed, the annual mean ice concentrations agree very well across most744

of the Arctic and Antarctic, generally well within the bounds +0.05 and -0.05.745

4 Conclusion746

This work has trained a hybrid empirical-physical model to fit observed AMSR2747

microwave radiances at 10 channels between 10 GHz and 89 GHz, over ocean and sea748

ice, based on a year-long training dataset. The atmospheric radiative transfer and the749

skin temperature are prescribed using 12-hour forecasts from the ECMWF atmospheric750

data assimilation system. The ocean surface emissivity is prescribed from a physically-751

based model. The primary unknowns have been the evolving sea ice concentration, the752

physical properties of the sea ice and its snow cover, and a model to determine the sea753

ice surface emissivity from those properties. These have been estimated simultaneously754

using a hybrid of machine learning and data assimilation. The AMSR2 observations have755

been fitted after training to within an RMS error of 2.6K to 9.9K, depending on chan-756

nel. Most of the remaining error is over open oceans and is attributed to errors in the757

specification of clouds in the ECMWF 12-hour forecast. The analysis fits are much bet-758

ter than the initial RMS errors obtained using a flat sea ice surface emissivity model and759

monthly mean sea ice concentration, which are from 8.4K to 35.0K.760

There is no perfect truth against which to evaluate the resulting global daily maps761

of sea ice, since existing global satellite retrievals of sea ice are based on heuristic meth-762

ods which this work aims to replace, and in-situ measurements are very limited in cov-763

erage. The high quality of fit to observations suggests that the sea ice results are good,764

but comparisons are also made to the existing ECMWF sea ice analyses, generated by765

the OCEAN5 assimilation system. The new maps are 48 h to 72 h more timely than the766

sea ice concentration analysed in OCEAN5. The new maps have generally sharper res-767

olution including plausible mesoscale features like some apparently eddy-generated 300768

km wave features in the Antarctic sea ice edge. The new data also suggest there is a sub-769

stantial underestimate of sea ice cover in the OCEAN5 analyses in the Antarctic sum-770

mer. There are some limitations in the new data too, mainly an apparent underestimate771
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Figure 12. Estimated hemispheric sea ice area from the current work (solid) and OCEAN5

(dotted) from 1st July 2020 to 30th June 2021. The Antarctic ice extent is largest in September

and the Arctic in March.

of the sea ice concentration in the Arctic winter multi-year ice, where it seems to be about772

0.1 too low, in compensation for remaining inaccuracies in the sea ice emissivity model.773

The hybrid model has also created daily maps of three empirical parameters that774

describe the sea ice and snow microphysical and macrophysical properties that affect mi-775

crowave radiative transfer, along with an empirical model to convert these properties into776

the sea ice surface emissivity. The empirical parameters are linked to known properties777

of the sea ice such as differences between new ice and multi-year ice in the Arctic. These778

parameters are then used by the surface emissivity model to describe the surface emis-779

sivity as a function of frequency and polarisation. Examples show multi-year ice with780

a relatively flat but polarised surface emissivity spectrum, and the new ice with a less781

polarised spectrum that drops off towards higher frequencies. As shown by the globally782

and seasonally good fit to observations, the model is also able to handle all other con-783

ditions across the seasons and both hemispheres, such as thawing surfaces.784

The broader goal of this work has been to demonstrate the feasibility of assimilat-785

ing microwave radiances over sea ice areas in order to derive the sea ice concentration,786

as well as to provide an empirical surface emissivity model for use in those activities. In787

subsequent work, the trained sea ice surface emissivity model has been incorporated into788

the observation operator for all-sky microwave radiances in the ECMWF atmospheric789

data assmilation system (Geer, 2023c). The data assimilation system has been adapted790

so that it can estimate the sea ice concentration and the three empirical surface param-791

eters at each observation location. This retrieves a good quality sea ice concentration792

as well as improving atmospheric forecasts through the ability to assimilate of observa-793

tions in the vicinity of sea ice. Testing is done on different years to the training period794

used in this work, demonstrating the ability of the sea ice emissivity model to generalise795

outside the training data. As a result of this work, the assimilation of AMSR2 and GMI796

(GPM microwave imager) observations over sea ice will be activated in the next upgrade797

of the ECMWF operational weather forecasting system in 2024 (cycle 49r1).798

In the future it is hoped to roll out similar hybrid empirical-physical methods for799

the assimilation of satellite radiances over the land surface, with the aim of inferring snow800

parameters, soil moisture and vegetation. There is also plenty that can be done to im-801
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Figure 13. Annual mean sea ice concentration analysed in this work (a,b) and difference in

annual mean between the current work and OCEAN5 (c,d). Differences smaller than 0.01 are not

plotted.

prove this initial modelling of the sea ice radiative transfer. One aim is to extend the mod-802

elling to higher microwave and sub-mm frequencies using additional sensors. Another803

is to move beyond the initially crude description of the surface by an emissivity and a804

skin temperature, and instead to use a model which describes the known physics of ra-805

diative transfer within the snow and sea ice. In this approach, empirical state variables806

would still be required to describe the microphysical properties of the sea ice and snow,807

but the empirical model would have the more targeted responsibility of generating the808

optical properties that are required as input to such a model. Further, since many of the809

remaining errors in the network appear to come from cloud errors in the ECMWF fore-810

cast, it could be desirable to make clouds in some way a trainable parameter of the sys-811

tem.812
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On the more technical side, there are clearly many ways to improve the speed and813

quality of the network training. The training benefitted from early stopping to avoid over-814

fitting, indicating that further physical constraints should ideally be added; alternatively815

a larger training dataset might help. The most likely routes for applying even stronger816

physical constraints are through adding more physics to the model (for example by in-817

cluding a prognostic model for sea ice), by adding observations with complementary sen-818

sitivities, and by improving the description of prior errors, particularly in the sea ice fields.819

There were also intriguing results (Appendix A1) that suggest big speedups could come820

from the use of much larger batch sizes in the training, though at the risk of overfitting.821

Improved access to hardware (e.g. GPUs) and the use of multi-process parallel training822

techniques could also help alleviate the resource problems that limited the current work.823

The training of the hybrid physical-empirical model has demonstrated a number824

of innovations that have been facilitated by the availability of modern machine learn-825

ing and differential programming tools such as Keras and TensorFlow (Abadi et al., 2015).826

Considering the network in Fig. 1, if the sea ice emissivity was a known parameter, the827

lowermost empirical part of the network (devoted to the empirical state parameters and828

the empirical surface emissivity model) would be unnecessary, and this work would have829

been a standard data assimilation problem of estimating the sea ice concentration maps830

from the satellite observations. However, there would still be the novelty that it was im-831

plemented in a machine learning framework. If the sea ice concentration, and the micro-832

and macro-physical parameters of the sea ice and snow cover, were known globally through833

modelling or observations, those parameters could have been treated as known input vari-834

ables and the empirical sea ice emissivity model would be an ML component model trained835

inside an otherwise physical data assimilation network (e.g. Reichstein et al., 2019; Geer,836

2021) but not achieved practically as yet, to this author’s knowledge. But since the in-837

put variables are also unknown (the chicken and egg problem) the most novel aspect of838

this network is that it simultaneously trains an empirical model and works out what its839

inputs should be (the maps of sea ice parameters).840

It is proposed to describe the simultaneous training of state and model as an ‘em-841

pirical state’ method, with the essential components being:842

1. a spatially and temporally varying geophysical state that is represented statisti-843

cally, using empirical parameters, here representing the macro- and micro-scale844

details of sea ice and its snow cover845

2. an empirical model that generates a physical quantity from the empirical state,846

here sea ice surface emissivity at observation locations. The inputs to the empir-847

ical model define the meaning of the empirical state.848

A similar approach could be extended to snow surfaces over land, soil moisture and veg-849

etation analyses from microwave sensors, and possibly to many other ‘chicken and egg’850

problems in the wider developments towards earth system assimilation. The approach851

can also be extended to a ‘hybrid state’, as in this work, where some of the inputs are852

physical and some empirical. By taking this mix of empirical and physical inputs, em-853

pirical methods can become progressively more physical, as models become able to sup-854

ply more and higher quality input parameters. For example, snow grain size, depth and855

temperature may eventually be available within the ECMWF model, and these could856

be included as inputs to the empirical surface emissivity model, and the number of em-857

pirical parameters representing unknown aspects of the snow and sea ice state could hope-858

fully be reduced. This means that empirical methods can be a quick way of getting started859

with a new assimilation domain, such as sea ice, but they can subsequently evolve to-860

wards more physical approaches as physical models become more capable within that861

domain.862
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Table A1. Sensitivity tests

Aspect Tests Standard
setting

Number of epochs Up to 300 20
Batch size 16384, 4096, 1024, 256 or 32 1024
Number of empirical variables 1 to 5, 7, 10 3
Nonlinear and deep neural networks Nonlinear NN with 20 neurons

and sigmoid activation, using 1,
2, 5 or 10 layers

1 linear layer

Sea ice fraction background error 20.0, 2.0, 0.2, 0.02, 0.002, 0.0002 0.02
Sea ice emissivity background error 1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7 1e-5
TB bias background error 10.0, 1.0, 0.1, 0.01, 0.001, 0.0001,

0.00001
0.001 K

A last word goes to the Bayesian viewpoint encapsulated in the network diagram863

Fig. 1. All geophysical inference and forecasting problems could be represented in this864

way, allowing an optimal description of how observations can be used to improve our phys-865

ical knowledge generally, as well as to direct that knowledge towards our goal of improved866

earth system forecasts. Current data assimilation generally assumes that all model com-867

ponents are perfectly known and only the geophysical state is unknown. There is great868

scope for relaxing that assumption by including empirical components, as done here, and869

by correctly describing the uncertainties in all the assumptions required by any phys-870

ical model. On the other hand, pure machine learning techniques tend to throw away871

most prior knowledge and at most add back a few physical constraints. A more complete872

and formal description of both the known and unknown physics can come from using the873

Bayesian approach with mixed physical and empirical components illustrated here. In-874

deed Bayes’ theorem suggests that the most accurate geophysical states and forecasts875

(the lowest posterior uncertainties) are only achievable by including as much prior knowl-876

edge as is available. This helps direct the informational power of the observations to the877

parts of the earth system that really need it, both the geophysical state, especially in less878

well-observed or chaotic parts of the system, and the model, in areas where physical mod-879

els are not yet fully developed.880

Appendix A Sensitivities - overview881

The sensitivity tests listed in Tab. A1 were carried out to explore the robustness882

of the results. Since the full year’s training dataset requires significant time and resources,883

the sensitivity tests were carried out using just the month of August 2020 for training.884

Settings were exactly the same as the yearly training except that 20 epochs were used885

by default, compared to 8 in the yearly training. The additional epochs may compen-886

sate for a training database that is roughly 12 times smaller, though on the other hand887

training is likely to be easier because a smaller range of geophysical conditions need to888

be fitted.889

A1 Sensitivities - epochs, batch size, network complexity890

Extending the number of epochs to 300 explores whether the training is fully con-891

verged and whether the constraints that have been imposed (such as regularisation) are892

complete enough. Figure A1a shows that only minor reductions in the loss term are avail-893
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Figure A1. (a) Total loss and individual loss terms (scaled as noted in key) using an ex-

tended number of training epochs; (b) Standard deviation of the difference between analysed sea

ice fraction with a 48 h delay and OCEAN5 sea ice fraction. Note the logarithmic x axis and,

in panel a, also y axis, and that the total loss is hidden underneath the observation fit, which

dominates.

able beyond 10 epochs. However, the sea ice probability loss term continues to increase.894

Further, Fig. A1b shows that the analysed sea ice fraction also continues to move away895

from the OCEAN5 sea ice fraction, even with a 48 h lag offset as indicated by Table 3.896

As shown in Sec. 3.1, some departure from the OCEAN5 results is necessary to get closer897

to the truth, but standard deviations heading beyond 0.1 are too large. This is easily898

seen in maps of sea ice fraction (not shown), and comes from a problematic increase in899

sea ice in areas where it is physically unlikely, as well as increasingly noisy and unreal-900

istic looking sea ice over the Arctic and Antarctic. The problem is that if the training901

is left to continue too long, the network increasingly overfits cloud-related errors in the902

ECMWF background atmospheric state by making unphysical adjustments to the sea903

ice fraction. This shows that despite using two sea ice loss terms, the hybrid network is904

not fully constrained against creating unphysical sea ice. One fix could be to increase905

the weight of the sea ice probability term, in order to prevent formation of spurious sea906

ice over warmer seas, but a more general solution would be to allow the atmospheric terms907

to adjust to fit cloud errors in the ECMWF atmospheric background forecast. However,908

in the main results of this work, terminating the year-long training after 8 epochs has909

helped avoid such problems.910

The impact of the number of empirical variables used to represent the sea ice and911

snow microphysical state is explored in Fig. A2. Adding more empirical variables always912

reduces the loss, with particularly significant reductions for up to 3. It is important not913
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Figure A2. Total loss as a function of the number of empirical variables.
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Figure A3. Total loss and sea ice fit to OCEAN5 with a 48 h offset, as a function of the num-

ber of neural network layers, based on 50 epochs of training and 20 neurons per layer. The data

point for ”0” layers is used to represent a single linear layer.

to allow too many variables, since by the time this reaches 10, the same as the number914

of satellite channels, the emissivity model becomes useless for sea ice retrievals (Sec. 2.5)915

and the empirical state could completely determine the surface emissivity required to916

fit each channel. Hence 3 appears to be a reasonable choice.917

The chosen model for sea ice emissivity is linear, but the framework is perfectly ca-918

pable of training a nonlinear model, including deep networks. Sensitivity tests were per-919

formed using a sigmoid activation function and between 1 and 10 fully connected lay-920

ers using 20 neurons each. In these tests the number of epochs was set to 50 to ensure921

the deeper networks were converged. Fig. A3 shows the results in terms of the loss func-922

tion at 50 epochs and the fit of the sea ice field to ECMWF sea ice (with the 2 day off-923

set for best fit). The point marked 0 layers corresponds to the normal linear single layer924

model, but trained for 50 epochs. Going to a nonlinear activation function and adding925

up to 2 layers is capable of fitting the observations better, as indicated by the reductions926

in the loss function. However, this comes at the price of generating a poorer-quality sea927

ice field, as indicated by the increasing standard deviation of the difference with ECMWF928

/ OCEAN5 sea ice becoming larger than 0.1. For 3 layers and greater, the picture re-929

verses, but this is likely because 50 epochs is insufficient to fully train the deeper net-930

works. In broad terms, adding multiple layers and nonlinearity to the surface emissiv-931

ity model seems to give greater possibilities for over-fitting the data, similar to increas-932

ing the number of epochs.933

A batch size of 1024 was used in this work because this was the smallest feasible934

batch size. Training was unfeasibly slow using any smaller batch size. Figure A4 illus-935

trates the effect of using batch sizes from 32 (the Keras default) to 16384, noting that936
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Figure A4. Total loss as a function of wallclock time for five different batch sizes, as indi-

cated in the key. Crosses indicate the wallclock time and the corresponding loss after each of 20

epochs.

the Adam learning rate remained constant at the default 0.001 throughout. The result-937

ing wall clock times range between 1.5 minutes and 11 hours to complete 20 epochs of938

training on the single-month dataset. The particularly poor performance for small batch939

sizes must in part be due to the need to evaluate the sea ice losses once per batch, each940

of which involves computations across the full month of sea ice data. Furthermore, the941

larger the batch size gets, the smaller the loss, and hence the better the fit to observa-942

tions. The larger batch sizes also show surprisingly good fit to the OCEAN5/ECMWF943

sea ice, albeit with some signs of overfitting, such as some apparent inaccuracies in the944

PDF of sea ice fraction (no figures shown). For batch sizes between 32 and 1024, the em-945

pirical sea ice emissivity model has a broadly similar form to what is shown in Figure 4946

but by the 16384 batch size it evolves to something quite different, with stronger cor-947

relations between the empirical state variables (not shown). There has not been time in948

the current work to fully explore the results with the larger batch sizes. In the wider ma-949

chine learning community, larger (and variable) batch sizes have been advocated for speed-950

ing up the time to convergence, but with the danger that models can become less good951

at generalisation (e.g. Smith et al., 2017; Golmant et al., 2018). Smaller batch sizes lead952

to greater random variations in the solution, which may partly explain the way smaller953

batch sizes give larger loss values (Fig. A4) and which may act as a useful form of reg-954

ularization. However, given the possible benefits in terms of time to solution and bet-955

ter fit to observations, an exploration of larger batch sizes could be worthwhile in future956

evolutions of this work. Further, adjustments to the learning rate would also be worth957

exploring.958

A2 Sensitivities - prior knowledge loss terms959

The background error setting for the sea ice PDF (cbgerr in Eq. 11) controls the fre-960

quency of non-physical sea ice fraction values, as illustrated in Fig. A5. The fit to ob-961

servations can be improved (and the loss function made smaller) by allowing a greater962

frequency of non-physical sea ice fractions (not shown) but clearly this is undesirable.963

In these tests based on a month of training data, it is possible to almost eliminate non-964
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Figure A5. Probability density function of sea ice fraction for three settings of the sea ice

background error, as given in the key.
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Figure A6. Sea ice surface emissivity baseline term wb, as a function of AMSR2 channel

identifier, for values of the surface emissivity background error (wbgerr in Eq. 9) as indicated in

the key.

physical sea ice fractions by going to cbgerr = 0.0002 and there are no spikes in the PDF,965

unlike in the year-long training (Fig. 11). A more relaxed setting of cbgerr = 0.02 was966

needed in the year-long training because it created fewer problems with spikes in the PDF.967

If it had been possible to run more epochs of training, likely the spikes could have been968

eliminated and a tighter constraint on non-physical sea ice fractions could have been ap-969

plied.970

Figure A6 illustrates the effects of the sea ice emissivity background error wbgerr971

in Eq. 9. The setting wbgerr = 0.00001 keeps the 10v emissivity very close to 0.93 as972

intended, but it can be relaxed with little effect on the fit to observations (not shown).973

The figure also shows the results for wbgerr = 0.1, which allows a drop of the baseline974

emissivity in most channels, to around 0.9 for 10v, and a small increase of the baseline975

emissivity for high frequency channels (89v and 89h). This suggests that the initial value976

of 0.93 for the 10v sea ice surface emissivity may have been slightly high. But these vari-977

ations are within the range of available estimates (Lee et al., 2017). In the bigger pic-978

ture, the results are surprisingly robust to relaxing the sea ice emissivity constraint, and979

future work could possibly even remove it.980

Relaxing the bias background error bbgerr in Eq. 4 to values larger than the cho-981

sen bbgerr = 0.001K improves the fit to observations, and reduces the total loss from982

around 10.5 down to around 9.8 (no figure shown). However, this leads the network to983

generate unreasonably large bias corrections of up to -7K over ocean and -16K over sea984

ice (no figure shown). This likely shows that the problem is ill-posed when both TB bias985

and surface emissivity are allowed to vary. Hence the bias correction term is a very im-986

portant constraint, and if prior estimates for the bias had not been available, it would987
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Table B1. Trained parameters of the sea ice surface emissivity model.

Channel 10v 10h 19v 19h 24v 24h 37v 37h 89v 89h

wb 0.9275 0.8006 0.9186 0.7958 0.9090 0.7966 0.8806 0.7816 0.8197 0.7448
w0 0.1286 0.1904 0.1163 0.1786 0.1097 0.1701 0.0841 0.1399 -0.0084 0.0384
w1 0.0598 -0.0035 -0.0105 -0.1060 -0.0660 -0.1628 -0.2223 -0.3022 -0.5666 -0.5981
w2 -0.0149 0.0871 -0.0752 0.0382 -0.1121 0.0038 -0.1617 -0.0461 0.0228 0.1025
w3 0.0569 0.2618 0.0311 0.2257 0.0062 0.1780 -0.0616 0.0756 -0.3111 -0.2304

not have been possible to estimate them simultaneously with the sea ice emissivity model.988

This underlines the importance of well-calibrated satellite observations and illustrates989

that empirical techniques still have mathematical limits that prevent them being able990

to infer all parameters of a system without the use of prior constraints.991

A3 Sensitivities - reproducibility992

The sensitivity tests described above were fully reproducible for reruns using the993

exact configuration of libraries and hardware described in Appendix C, by defining a fixed994

seed for random computations in Keras. The yearly results on which the main paper is995

based were not reproducible for rerun because the seed was mistakenly fixed too late,996

after the model creation (see the code, Geer, 2023a). However, if the seed is fixed in the997

right place, the yearly results can be made reproducible too. When re-run with a dif-998

ferent seed, the output results are extremely similar in most respects (e.g. sea ice maps,999

output brightness temperatures) but the empirical sea ice emissivity model can change.1000

This is mainly superficial, since similar sea ice emissivity structures are created but in1001

a different order to what is seen in Fig. 4. But this highlights the fact that the mean-1002

ings of the empirical variables are not entirely fixed and are naturally affected by ran-1003

dom processes during the training.1004

Appendix B Surface emissivity model parameters1005

The trained sea ice surface emissivity model parameters are given in Tab. B1.1006

Appendix C Open Research1007

The data (Geer, 2023b) are available on Zenodo through the ECMWF open data1008

license https://apps.ecmwf.int/datasets/licences/general/ noting the conditions1009

for the underlying AMSR2 data described below. Data is copyright 2023 ECMWF and1010

is published under a Creative Commons Attribution 4.0 International (CC BY 4.0, https://1011

creativecommons.org/licenses/by/4.0/). In applying this license, ECMWF does not1012

accept any liability whatsoever for any error or omission in the data, their availability,1013

or for any loss or damage arising from their use.1014

The code (Geer, 2023a) is on GitHub and is copyright 2023 ECMWF and is licensed1015

under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE1016

-2.0). In applying this licence, ECMWF does not waive the privileges and immunities1017

granted to it by virtue of its status as an intergovernmental organisation nor does it sub-1018

mit to any jurisdiction.1019
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Original AMSR2 data for this value added data product was provided by Japan1020

Aerospace Exploration Agency (JAXA, 2023) via the G-Portal. The user is entitled to1021

use JAXA G-Portal AMSR2 data free of charge without any restrictions (including com-1022

mercial use) except for the condition about acknowledgement of data credit as stipulated1023

in Article 7.(2) of the terms and conditions at https://gportal.jaxa.jp/gpr/index/1024

eula?lang=en1025

The Python code was run on Python 3.8.8-01 (Python Software Foundation, 2021)1026

including Tensorflow and Keras 2.8.0 (Abadi et al., 2015; TensorFlow, 2021) on the ECMWF1027

ATOS supercomputer CPU nodes.1028
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