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Abstract

It is well known that the motion of flexible vegetation leads to drag reduction in comparison to rigid vegetation. In this

study, we use a numerical model to investigate how the detailed motion of kelp fronds in response to forcing by surface gravity

waves can impact the drag exerted by the kelp on waves. We find that this motion can be characterized in terms of three

dimensionless numbers: (1) the ratio of hydrodynamic drag to buoyancy, (2) the ratio of blade length to wave excursion, and

(3) the Keulegan-Carpenter number, which measures the ratio of drag to inertial forces. We quantify drag reduction, and find

that inertial forces can significantly impact the amplitude of kelp motion and amount of kelp drag reduction. Under certain wave

conditions, inertial forces can cause kelp fronds to accelerate more quickly relative to the wave, which can lead to increased drag

reduction and reduced wave energy dissipation. In some conditions, frond motion leads to drag augmentation in comparison

to rigid fronds. Additionally, we discuss other features of kelp motion, such as the degree of asymmetry, and their relationship

with enhanced drag reduction.
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Key Points:4

• A 2D parameter space is proposed to characterize dominant forces and classify different5

types of kelp motion6

• Inertial forces can significantly impact frond motion and drag reduction, and even lead to7

drag augmentation (compared to rigid fronds)8

• We provide empirical fits to quantify drag reduction/augmentation in low- and high-inertia9

conditions10
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Abstract11

It is well known that the motion of flexible vegetation leads to drag reduction in comparison to12

rigid vegetation. In this study, we use a numerical model to investigate how the detailed motion13

of kelp fronds in response to forcing by surface gravity waves can impact the drag exerted by the14

kelp on waves. We find that this motion can be characterized in terms of three dimensionless num-15

bers: (1) the ratio of hydrodynamic drag to buoyancy, (2) the ratio of blade length to wave ex-16

cursion, and (3) the Keulegan-Carpenter number, which measures the ratio of drag to inertial forces.17

We quantify drag reduction, and find that inertial forces can significantly impact the amplitude18

of kelp motion and amount of kelp drag reduction. Under certain wave conditions, inertial forces19

can cause kelp fronds to accelerate more quickly relative to the wave, which can lead to increased20

drag reduction and reduced wave energy dissipation. In some conditions, frond motion leads to21

drag augmentation in comparison to rigid fronds. Additionally, we discuss other features of kelp22

motion, such as the degree of asymmetry, and their relationship with enhanced drag reduction.23

Plain Language Summary24

We use a numerical model to study how kelp fronds move in response to passing ocean waves.25

Flexible motion reduces the drag forces experienced by the kelp and increases survival in extreme26

conditions such as energetic waves. Frond motion also reduces the amount of wave energy dis-27

sipation. The type of motion that the fronds undergo in response to different types of waves is28

determined by the dominant forces, and so is the amount of drag reduction. Our findings show29

that, unlike other types of aquatic vegetation, inertial forces (e.g. due to the pressure variations30

in the water) can be as important as (and sometimes more important) than the drag forces caused31

by the flow.32

1 Introduction33

Macroalgae species, such as kelp, are integral to the health of many coastal ecosystems.34

Kelp forests help preserve biodiversity by serving as habitats and food sources for different ma-35

rine species (Dayton et al., 1984; Schiel & Foster, 2015). Kelp forests also help remediate an-36

thropogenic changes, by mitigating eutrophication pollution through nitrate removal (Gao et al.,37

2021) and reducing ocean acidification and offsetting carbon dioxide emissions via carbon se-38

questration (Froehlich et al., 2019; Hoegh-Guldberg et al., 2019). Globally, kelp forests gener-39

ate an average of $500 billion a year in terms of ecosystem services (Eger et al., 2023).40
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Moreover, kelp harvesting is central to numerous local economies. Many cultures around41

the world have a rich history of relying on kelp as a food source, a way to enhance fisheries, a fer-42

tilizer for soil, etc. (Thornton, 2015; Kain & Dawes, 1987). More recently, alginate sourced from43

kelp has also been utilized as an important additive in pharmaceutical and biomedical industries44

(Peteiro, 2018). Furthermore, the high energy content and fast growth rates of kelp have singled45

them out to be a potential source of biofuel that does not compete for space with land-grown crops46

for the food industry (Milledge et al., 2014; Frieder et al., 2022).47

With all of these benefits, it is critical to understand how we can sustainably support the48

growth and maintenance of kelp forests and farms. In particular, we are interested in the hydro-49

dynamic interactions between kelp and ocean waves. This study focuses primarily on the hydro-50

dynamics of the kelp species Macrocystis pyrifera, more commonly known as giant kelp. Giant51

kelp is native to the coasts of California and is particularly well-suited for the purposes of farm-52

ing due to its fast growth rates (up to 0.5 meters per day). They are the largest species of algae53

and can reach lengths of 20 meters or more (Abbott & Hollenberg, 1992).54

This type of kelp is made up of dozens of fronds attached to a holdfast, which keeps the55

kelp anchored to the substrate. Each frond consists of a stem-like stipe and leaf-like blades, and56

at the base of each blade is a pneumatocyst, or a gas-filled bladder. These pneumatocysts allow57

M. pyrifera to be highly buoyant. Giant kelp stipes also have relatively low rigidity compared to58

seagrasses, allowing stipes to easily bend in response to hydrodynamic forces. A diagram of kelp59

physiology is given in Fig. 1(a).60

Many past observational studies on M. pyrifera (henceforth simply referred to as kelp) hy-61

drodynamics have focused on quantifying the bulk effects of kelp on the flow. The drag force im-62

parted by the kelp on the currents reduces flow rates through kelp forests (Jackson & Winant, 1983;63

Gaylord et al., 2007). For example, Monismith et al. (2022) estimated the scaling for kelp for-64

est drag coefficient in tidal flows via biomass relationships. Laboratory studies have also shown65

that the presence of kelp modifies wave orbital velocities (Rosman et al., 2013). However, kelp66

forests generally dissipate minimum amounts of wave energy due to its highly flexible nature (Elwany67

et al., 1995).68

Because of its nearshore environment, kelp are especially sensitive to the forces caused by69

surface gravity waves (Gaylord et al., 2003). High energy wave amplitudes can cause kelp stipes70

to break and entangle, or even dislodge fronds from their holdfast (Seymour et al., 1989; Day-71

ton et al., 1984). Kelp fronds have also been observed to respond differently to waves with dif-72
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ferent periods (Mullarney & Pilditch, 2017). Generally, flexibility is a strategy employed by sea-73

grasses and algae to reduce drag forces and increase survivability in high-flow environments (Vogel,74

1984; Utter & Denny, 1996). In return, the drag exerted on the waves by kelp is highly depen-75

dent on the detailed motion of the kelp frond. Thus, the two-way interaction between flexible kelp76

fronds and waves impact both, the survivability of kelp and the physical properties of the waves.77

Numerical models have also been used to predict the forces that individual kelp fronds un-78

dergo in different wave conditions, and thus, how likely they are to survive. For example, Jackson79

and Winant (1983) modeled kelp stipes as rigid vertical columns, while Utter and Denny (1996)80

represented kelp fronds as buoys attached to a flexible rope and predicted kelp survivability rates81

under different wave conditions. They model a single point element where hydrodynamic forces82

such as buoyancy, drag, and pressure gradient forces are countered by tension (Utter & Denny,83

1996; Denny et al., 1997).84

Additionally, a number of more sophisticated numerical models have been developed to85

investigate submerged aquatic vegetation motion under wave conditions, including but not lim-86

ited to variations of the Euler-Bernoulli beam model utilized by Marjoribanks et al. (2014), Zeller87

et al. (2014), and Luhar and Nepf (2016). Zhu et al. (2020) expanded on this work and developed88

a consistent-mass cable model to study asymmetric motion of aquatic vegetation. However, these89

models have not been applied to the study of giant kelp, in part because they suffer from numer-90

ical stability issues in cases with low bending stiffness (Zeller et al., 2014).91

A major thrust of theoretical and numerical studies is to develop understanding and quan-92

tification of how plant motion affects drag reduction. For instance, Luhar and Nepf (2011) de-93

veloped a scaling model for the drag of smaller seagrasses in currents by considering the differ-94

ent balances between drag, buoyancy, and rigidity. Luhar and Nepf (2016) and Lei and Nepf (2019)95

extended this work to wave conditions and the meadow scale, mainly focusing on seagrasses for96

which hydrodynamic forcing is primarily balanced by blade stiffness. Henderson (2019) com-97

plemented this work by also analyzing drag reduction in plants where drag forces are balanced98

by both stiffness and buoyancy.99

Notably, most of the past work has been conducted with the assumption of drag dominated100

flows; that is, inertial forces such as the pressure gradient and added mass forces are insignifi-101

cant when compared to drag forces and do not contribute much to plant motion. This is relatively102

accurate for smaller seagrass species, which usually grow in very shallow waters. However, kelp103

often grows in deeper waters and fronds can be quite long. Furthermore, typical wave conditions104
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of coastal California create a natural environment where inertial forces become important. To-105

gether, all of these factors (longer plant lengths, the importance of inertial forces, the predom-106

inance of buoyancy over bending stiffness as a restoring force) produce distinct dynamical be-107

havior and lead to different laws of drag reduction.108

Thus, the purpose of this study is to gain a better understanding of kelp hydrodynamics by109

investigating the impact of inertial forces on kelp motion and consequently, kelp drag reduction.110

We first develop a generalized numerical model for kelp frond motion, and the model is then used111

to study the response of kelp fronds to different wave conditions observed on the coast of Cal-112

ifornia. We focus specifically on the importance of inertial forces and how that impacts differ-113

ent aspects of frond motion and drag reduction.114

2 Methods115

2.1 Model Description116

We constructed a two dimensional model for the motion of an individual kelp frond fol-117

lowing the approach outlined by Rosman et al. (2013) and Marjoribanks et al. (2014), which can118

be considered as a refinement of the simple tethered-buoy model developed by Utter and Denny119

(1996). The kelp frond is discretized into 𝑛 segments, and each segment is modeled as a point120

mass attached to a string with the flexibility and tensile stiffness of kelp stipes. Thus, the kelp frond121

is modeled as a set of point masses connected by strings. The position of each point mass is rep-122

resented by the vector x𝑖 = (𝑥𝑖 , 𝑧𝑖), and its velocity by the vector 𝑑x𝑖/𝑑𝑡. A visualization of this123

representation is given in Fig. 1(b). Note that kelp usually grows to form a dense canopy float-124

ing on the surface that can significantly enhance the total drag (Rosman et al., 2013). For sim-125

plicity, we do not consider the presence of the surface canopy here, and focus only on situations126

in which the frond length is smaller than the water depth.127

The motion of each point mass is governed by Newton’s second law. Following Utter and128

Denny (1996), Denny et al. (1997), and Rosman et al. (2013), we use Morison’s equation (e.g.,129

see Journee & Massie, 2000) to describe the forces acting on kelp. In the present model, we in-130

cluded the five main forces that determine kelp motion: buoyancy, drag, added mass, pressure131

gradient, and tension. We assume that the drag is exerted by the area of the blades, the bending132

stiffness originates from the kelp stipe, and the buoyancy comes from the pneumatocysts. Be-133

cause kelp stipes are very flexible, we assume that their rigidity, or resistance to bending, is neg-134

ligible. As in Utter and Denny (1996), we also neglect lift and skin friction forces, which are rel-135
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Figure 1. (a) M. pyrifera frond and (b) schematic of the discretization of the frond in the numerical model.

atively inconsequential. Assuming each segment has an effective mass 𝑚𝑘 , the governing equa-136

tion of motion for the 𝑖th segment is given by137

𝑚𝑘

𝑑2x𝑖
𝑑𝑡

= F𝐷,𝑖 + F𝐵,𝑖 + F𝑃,𝑖 + F𝐴𝑀,𝑖 + F𝑇,𝑖 + F𝑇,𝑖+1, (1)138

where F𝐷,𝑖 is the drag force, F𝐵,𝑖 is the buoyant force, F𝑃,𝑖 is the pressure gradient force, F𝐴𝑀,𝑖139

is the added mass force, and F𝑇,𝑖 and F𝑇,𝑖+1 are the tension forces on the strings that connect the140

point mass to its neighboring masses.141

The drag force is modeled using a quadratic equation given in terms of relative velocity142

F𝐷,𝑖 =
1
2
𝜌𝑤𝐶𝑑𝐴𝑖

����u𝑖 −
𝑑x𝑖
𝑑𝑡

���� (u𝑖 −
𝑑x𝑖
𝑑𝑡

)
, (2)143

where 𝜌𝑤 is the density of seawater, 𝐶𝑑 is the drag coefficient, 𝐴𝑖 is the maximal projected area144

of each frond segment, and u𝑖 = (𝑢𝑥,𝑖 , 𝑢𝑧,𝑖) is the two-dimensional fluid velocity vector. Con-145

trary to most models of seagrass dynamics (Luhar & Nepf, 2011, 2016), we assume that there146

is no reduction in exposed area with bending. This is because as kelp fronds bend, their blades147

remain oriented with the flow, so the exposed area changes very little (e.g., the contribution of148

the area of the stipe to the drag force is negligible).149

The buoyancy force is given by150

F𝐵,𝑖 = (𝜌𝑘 − 𝜌𝑤)𝑉𝑖g, (3)151

where 𝜌𝑘 is the density of the kelp frond, 𝑉𝑖 is the volume of each segment, and g is the gravi-152

tational acceleration vector.153

–6–



manuscript submitted to JGR: Oceans

Two forces are associated with the acceleration of the fluid: the pressure gradient force (or154

Froude-Krylov force) and the added mass force. They are given, respectively, by155

F𝑃,𝑖 = 𝜌𝑤𝑉𝑖
𝜕u𝑖

𝜕𝑡
(4)156

and157

F𝐴𝑀,𝑖 = 𝐶𝑎𝜌𝑤𝑉𝑖

(
𝜕u𝑖

𝜕𝑡
− 𝑑2x𝑖

𝑑𝑡

)
, (5)158

where 𝐶𝑎 is the added mass coefficient. We will refer to these two forces as the inertial forces159

acting on the kelp frond.160

In oscillatory flows, it is typical to model the drag and added mass coefficients (𝐶𝑑 and 𝐶𝑎)161

as a function of the Keulegan-Carpenter number (𝐾𝐶), which characterizes the ratio between in-162

ertial and drag forces (e.g., see Luhar & Nepf, 2016). This is done based on experiments with163

flat plates and similar objects in oscillatory flow (Keulegan & Carpenter, 1956; Sarpkaya & O’Keefe,164

1996), for which 𝐾𝐶 = 𝑈𝑤𝑇𝑝/𝑑, where𝑈𝑤 is a characteristic velocity scale, 𝑇𝑝 is the wave pe-165

riod, and 𝑑 is the thickness of the plate. These effects are attributed to the vortex shedding from166

these blunt objects and there is little reason to believe that kelp fronds have a similar behavior.167

Therefore, we do not include explicit effects of 𝐾𝐶 on 𝐶𝑑 and 𝐶𝑎 in our model.168

Each point mass is also subject to tension forces from the string connected to the point mass169

below, F𝑇,𝑖 , and to the point mass above, F𝑇,𝑖+1. Thus, the total tension force on each segment170

is given by the sum of the two tensions, or171

F𝑇,𝑖 + F𝑇,𝑖+1 = −𝐸𝐴𝑐

|x𝑖 − x𝑖−1 | − 𝑙𝑖
𝑙𝑖

e𝑠,𝑖 + 𝐸𝐴𝑐

|x𝑖+1 − x𝑖 | − 𝑙𝑖+1
𝑙𝑖+1

e𝑠,𝑖+1, (6)172

when |x𝑖 − x𝑖−1 | > 𝑙𝑖 and |x𝑖+1 − x𝑖 | > 𝑙𝑖+1, where 𝑙𝑖 and 𝑙𝑖+1 are the lengths of each segment.173

Here we have adopted the elastic model used by Utter and Denny (1996) to represent the tension174

on the string, and 𝐸 is the modulus of elasticity of the kelp, while e𝑠,𝑖 and e𝑠,𝑖+1 are the unit vec-175

tors in the direction of their respective segments. We assume that F𝑇,𝑖 = 0 at the tip of the frond176

(last segment, 𝑖 = 𝑛), and that the plant is rooted at x0 = (0, 0). Note that by adopting this model177

and solving for the tension force explicitly, our model allows for stretching and compression of178

each frond segment.179

The complete equation after dividing all terms by the total volume occupied by each kelp180

segment is181

(𝜌𝑘 + 𝐶𝑎𝜌𝑤)
𝑑2x𝑖
𝑑𝑡

= 1
2 𝜌𝑤𝐶𝑑

𝐴𝑖

𝑉𝑖

���u𝑖 − 𝑑x𝑖
𝑑𝑡

��� (u𝑖 − 𝑑x𝑖
𝑑𝑡

)
+ (𝜌𝑘 − 𝜌𝑤)g + (𝜌𝑤 + 𝐶𝑎𝜌𝑤) 𝜕u𝑖

𝜕𝑡
182

+𝐸𝐴𝑐

𝑉𝑖

(
− |x𝑖−x𝑖−1 |−𝑙𝑖

𝑙𝑖
e𝑠,𝑖 + |x𝑖+1−x𝑖 |−𝑙𝑖+1

𝑙𝑖+1
e𝑠,𝑖+1

)
(7)183
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where the effective mass 𝑚𝑘 is given by 𝑉𝑖 (𝜌𝑘+𝐶𝑎𝜌𝑤). The set of equations (7) is numerically184

integrated in time using a fourth-order Runge-Kutta algorithm to solve for the position of all point185

masses x𝑖 = (𝑥𝑖 , 𝑧𝑖) and associated velocities. In our current model implementation, all the seg-186

ment have the same geometrical properties such that 𝐴𝑖 , 𝑙𝑖 , and 𝑉𝑖 are all constant for all 𝑖.187

The main differences between our modeling approach and the more standard models used188

for seagrass (e.g., Marjoribanks et al., 2014; Zeller et al., 2014; Luhar & Nepf, 2016) are that:189

(1) we neglect bending stiffness given that the restoring force to resist motion in kelp is mostly190

provided by the buoyancy force, and models that include bending stiffness for low stiffness sys-191

tems generate numerical instability issues such as poor convergence (Zeller et al., 2014); (2) we192

allow for elastic stretching deformation instead of imposing a constant frond length, which is im-193

portant in modeling kelp motion (Johnson & Koehl, 1994; Utter & Denny, 1996). As an aside,194

we attempted to use the model developed by (Luhar & Nepf, 2016) to simulate some of our cases,195

but ran into numerical instability issues even for the shortest fronds under the least energetic wave196

conditions despite using a very fine grid resolution and small time step.197

2.2 Model Setup198

We study frond motion by imposing a two-dimensional linear wave flow field represented199

by u = (𝑢𝑥 , 𝑢𝑧). For a coordinate system located at the bottom of the ocean, the wave orbital200

velocity components at a location (𝑥, 𝑧) are given by (Dean & Dalrymple, 1991):201 
𝑢𝑥 = 𝐴𝑤𝜔

cosh(𝑘𝑧)
sinh(𝑘𝐻) cos(𝑘𝑥 − 𝜔𝑡)

𝑢𝑧 = 𝐴𝑤𝜔
sinh(𝑘𝑧)
sinh(𝑘𝐻) sin(𝑘𝑥 − 𝜔𝑡)

(8)202

where 𝐴𝑤 is the wave amplitude, 𝜔 is the wave frequency, 𝑘 is the wavenumber, and 𝐻 = 12203

m is the depth of the water column (note that in this coordinate system, 𝑧 = 𝐻 at the surface).204

To investigate the motion of kelp in its natural habitat, we utilized buoy data from the Coastal205

Data Information Program (CDIP; https://cdip.ucsd.edu). More specifically, buoys 87, 88,206

and 89 recorded local wave conditions in real kelp forests along the coast of the Channel Islands207

(Santa Rosa and Santa Cruz Islands) from October 1995 through December 1995. We used their208

measurements of significant wave height, 𝐻𝑠 , and peak wave period, 𝑇𝑝 , to determine typical wave209

conditions within natural kelp forests on the California coast. The joint probability density func-210

tion of measured significant wave height and wave period is shown in Fig. 2. In total, we selected211

sixteen different wave conditions covering the full realistic range of observed waves. For the sim-212

ple monochromatic wave model, we approximated the wave amplitude as 𝐴𝑤 = 𝐻𝑠/2 and cal-213

–8–



manuscript submitted to JGR: Oceans

4 6 8 10 12 14 16 18 20
Tp [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
s [

m
]

Figure 2. Simulated wave conditions. Light gray circles represent the aggregated CDIP measurements, and

the gray lines represent the probability density function of the data (levels: 0.1, 0.25, 0.5, 0.75, 0.9). Black

squares represent the conditions we selected for our runs. Data from CDIP, Scripps Institution of Oceanogra-

phy.

culated the wave frequency from 𝜔 = 2𝜋/𝑇𝑝 and the wave number from the dispersion relation214

𝜔 =
√︁
𝑔𝑘 tanh(𝑘𝐻). The resulting waves fall in the range of 1/3 < 𝑘𝐻 < 2, so we avoid us-215

ing approximations for deep-water or shallow-water waves.216

The kelp properties used in the model were mostly compiled from Utter and Denny (1996),217

and these values are presented in Table 1. Here, the kelp density 𝜌𝑘 is supposed to represent the218

bulk density of the frond, including the gas-filled pneumatocysts. The value adopted here was219

obtained from Rosman et al. (2013) and was confirmed from measurements of frond mass and220

volume (K. A. Davis unpubl.). Notably, this is about 40% larger than the value adopted by Henderson221

(2019). The drag coefficient adopted here is from the intercept of the drag-velocity plot by Utter222

and Denny (1996) (i.e., the drag for a rigid frond), and it is in good agreement with the mode of223

the distribution obtained by Monismith et al. (2022) for intermediate biomass kelp forests. Fi-224

nally, we obtained an estimate of frond volume indirectly from the frond projected area, the av-225

erage mass per unit area, and the frond density.226
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Table 1. List of kelp properties and their associated variables and values. All values are from (Utter &

Denny, 1996), except for 𝜌𝑘 which is taken from (Rosman et al., 2013).

Variable Description Value

𝜌𝑘 Density of kelp 850 [kg m−3]

𝜌𝑤 Density of seawater 1025 [kg m−3]

𝐶𝑎 Added mass coefficient 3

𝐶𝑑 Drag coefficient 0.0148

𝑙 Frond length 2, 5, 10 [m]

𝐴 Maximal projected area of a frond 0.297 × 𝑙0.955 [m2]

𝐴𝑐 Cross-sectional area of a stipe 4.1 × 10−5 [m2]

𝑀𝐴 Average mass per unit area 0.774 [kg m2]

𝑉 Estimated volume of frond 𝑉 =
𝑀𝐴𝐴

𝜌𝑘
[m3]

𝐸 Modulus of elasticity 1.91 × 107 [Pa]

For each of the sixteen wave parameters, we tested three different frond lengths: 2 m, 5 m,227

and 10 m. Because kelp fronds can grow to be quite large, these lengths were selected in order228

to illustrate how kelp behaves in different wave conditions over its entire life cycle. This com-229

bination of plant length and wave conditions resulted in 48 simulations (see Table 2). Out of these230

cases, there were two that showed unrealistic amounts of stretching and compression (i.e. larger231

than 1% of the frond length) due to the elasticity of the kelp stipe: (1) 𝑙 = 10 m, 𝐻𝑠 = 1 m,232

𝑇𝑝 = 5 s; (2) 𝑙 = 10 m, 𝐻𝑠 = 2 m, 𝑇𝑝 = 5 s. Thus, we removed these two cases from further233

analysis. The wave conditions in the removed cases are exceptionally high energy, and rarely oc-234

cur in the real world (see Fig. 2). We postulate that realistically, kelp fronds would probably be-235

come dislodged in those extreme, storm like wave conditions.236

Each model kelp frond is discretized into 50 nodes, and initially starts at rest in a vertically237

upright position. To maximize accuracy while preserving stability, we set a time step of Δ𝑡 =238

𝑇𝑝/10000. We found that generally, the model kelp fronds required 5-7 wave periods before reach-239

ing an equilibrium cycle. Thus, we ran each simulation for 10 wave cycles, and only data from240

the last wave cycle were utilized for analysis. Tests showed no sensitivity of the results to using241

more nodes or reducing the time step.242

It is rather difficult to perform validation of our code, as most detailed data from flume ex-243

periments available (e.g. Zeller et al., 2014; Luhar & Nepf, 2016) is for systems in which the bend-244
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ing stiffness is important. Therefore, we validate the model and test the assumption that stiffness245

is not important against the theory for steady flow developed by Luhar and Nepf (2011), and present246

results for the range of kelp and wave properties relevant to our study in Appendix A.247

2.3 Theory248

Luhar and Nepf (2016) first introduced three dimensionless parameters that govern blade249

motion in wave conditions: the Cauchy number (𝐶𝑎), buoyancy parameter (𝐵), and the ratio of250

blade length to wave excursion (𝐿). These parameters are given by251

𝐶𝑎 =
1
2 𝜌𝑤𝐶𝑑𝐴𝑈

2
𝑤

𝐸𝐼

𝑙2
(9)

𝐵 =
(𝜌𝑤−𝜌𝑘 )𝑔𝑉

𝐸𝐼

𝑙2
(10)

𝐿 = 𝑙𝜔
𝑈𝑤

= 𝑙
Δ𝑥𝑤

(11)

Note that quantities denoted without the subscript i refer to the same variable for the entire frond252

instead of per segment (e.g., 𝐴𝑖 is the projected frond area for each segment in the numerical model,253

while 𝐴 is the projected area for the entire frond).254

The Cauchy number 𝐶𝑎 represents the ratio of drag forces (the most common force driv-255

ing plant motion) to restoring force due to stiffness, while 𝐵 represents the ratio of buoyancy to256

stiffness (i.e., the two forces that act to reduce plant motion). The parameter 𝐿 also impacts blade257

dynamics, as is discussed below. Here, 𝐼 is the second moment of area (for kelp stipes with cir-258

cular cross-sectional area, 𝐼 = 𝜋𝑟4
𝑠/4, where 𝑟𝑠 is the radius of the stipe), and𝑈𝑤 and Δ𝑥𝑤 are259

characteristic scales for the horizontal wave orbital velocities and excursions, respectively. Be-260

cause kelp fronds are typically much longer and grow in deeper water than seagrasses, the vari-261

ation of the wave orbital velocity along the length of the frond can be important. We define𝑈𝑤262

as the amplitude of the horizontal wave orbital velocity averaged over the length of the frond263

𝑈𝑤 =
1
𝑙

∫ 𝑙

0
𝐴𝑤𝜔

cosh(𝑘𝑧)
sinh(𝑘𝐻) 𝑑𝑧 =

𝐴𝑤𝜔

𝑘𝑙

sinh(𝑘𝑙)
sinh(𝑘𝐻) . (12)264

Consequently, we also define Δ𝑥𝑤 as an average along the length, or Δ𝑥𝑤 = 𝑈𝑤/𝜔. In this way,265

𝐿 is interpreted as the ratio between frond length and average horizontal wave excursion. Note266

that as a result of our definition of𝑈𝑤 , any parameter that is function of𝑈𝑤 implicitly takes into267

account the impact of wave decay with depth.268

In most seagrasses, drag is the main force driving motion, bending stiffness is the main restor-269

ing mechanism, buoyancy in negligible, and blade dynamics and drag reduction can be fully char-270

acterized by 𝐶𝑎 and 𝐿. In steady flow, for 𝐶𝑎 ≪ 1, the blade remains upright and has very lit-271
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tle drag reduction (Luhar & Nepf, 2011). For 𝐶𝑎 ≫ 1, significant bending occurs before the272

restoring force balances the drag force and this reconfiguration allows for a large drag reduction273

(via reduction in the plant surface area). In unsteady flows, drag reduction in the 𝐶𝑎 ≫ 1 limit274

also depends on the excursion of the blade, which Luhar and Nepf (2016) quantified using 𝐿. When275

𝐿 ≪ 1, the blade length is much smaller than the wave excursion, so the blade should reach a276

maximum excursion while the fluid continues traveling past it. Thus, the blade behaves similarly277

as in steady flows, and drag reduction in this limit is still only dependent on 𝐶𝑎. On the other hand,278

when 𝐿 ≫ 1, the blade length is much larger than the wave excursion, so we expect that only279

the tip moves with the wave orbital velocity. The majority of the plant is akin to a rigid blade,280

and drag reduction is proportional to the product 𝐶𝑎𝐿.281

Unlike seagrasses, kelp rigidity is very low (the stipe is very flexible), while buoyancy is282

very high. Therefore, drag forces are primarily balanced by buoyancy. As a result, for most wave283

conditions, stiffness plays an insignificant role in kelp motion (i.e, 𝐶𝑎 ≫ 1 and 𝐵 ≫ 1). Thus,284

for our cases, the buoyancy parameter285

𝑃 =

1
2 𝜌𝑤𝐶𝑑𝐴𝑈

2
𝑤

(𝜌𝑤 − 𝜌𝑘)𝑔𝑉
=
𝐶𝑎

𝐵
, (13)286

first introduced by Nikora et al. (1998) is more relevant. Note that 𝑃 is equivalent to 𝐶𝑎, except287

it measures the magnitude of the drag force in comparison to the resistance to bending provided288

by buoyancy. This definition is consistent with Henderson (2019), which built on previous re-289

sults to develop a framework for the analysis of the response of aquatic vegetation to wave forc-290

ing in the presence of both buoyancy and stiffness. In particular, they identified the joint impor-291

tance of 𝐶𝑎𝐿 and 𝑃𝐿 in governing plant motion and drag reduction.292

All of the studies discussed above start from the assumption that the Keulegan-Carpenter293

number is large and that the drag force is the main driver of blade motion. As we will show later,294

in many of our simulations, inertial forces are larger than the drag forces. To characterize this ef-295

fect, we define the Keulegan-Carpenter number as296

𝐾𝐶 =

1
2 𝜌𝑤𝐶𝑑𝑈

2
𝑤

𝜌𝑤𝑑 (1 + 𝐶𝑎)𝑈𝑤𝜔
=

𝐶𝑑

2(1 + 𝐶𝑎)
𝑈𝑤

𝜔𝑑
, (14)297

where 𝑑 is a thickness associated with the cross sectional area (𝑑 = 𝑉/𝐴). This specific def-298

inition, instead of the more traditional 𝐾𝐶 = 2𝜋𝑈𝑤/(𝜔𝑑), is motivated by the scale analysis299

of the equations of frond motion and will be further discussed in Sec. 2.3.1.300

For the wave and kelp conditions studied here, the values of 𝐵 lie in the range of 𝑂 (103) <301

𝐵 < 𝑂 (106), indicating that buoyancy forces are the dominant restoring forces preventing mo-302
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Table 2. List of numerical simulations and their associated dimensionless parameters defined in Equations

(13), (11), and (14). Wave periods of 5 s, 10 s, 15 s, 20 s correspond with wave numbers of 0.167 m−1, 0.063

m−1, 0.04 m−1, 0.03 m−1, respectively.

𝐻𝑠 [m] 𝑇𝑝 [s]
𝑙 = 2 [m] 𝑙 = 5 [m] 𝑙 = 10 [m]

𝑃 𝐿 𝐾𝐶 𝑃 𝐿 𝐾𝐶 𝑃 𝐿 𝐾𝐶

0.25 5 0.0094 57.2 0.071 0.011 130.0 0.078 0.021 189.9 0.11

0.25 10 0.044 13.3 0.31 0.045 32.7 0.31 0.050 62.2 0.33

0.25 15 0.054 8.0 0.51 0.054 19.8 0.51 0.056 38.8 0.52

0.25 20 0.055 5.9 0.69 0.056 14.7 0.69 0.057 29.0 0.70

0.5 5 0.038 28.6 0.14 0.045 65.0 0.16 0.085 95.0 0.21

0.5 10 0.18 6.6 0.61 0.18 16.3 0.62 0.20 31.1 0.65

0.5 15 0.22 4.0 1.02 0.22 9.9 1.03 0.23 19.4 1.05

0.5 20 0.22 2.9 1.38 0.22 7.3 1.40 0.23 14.5 1.40

1 5 0.15 14.3 0.28 0.18 32.5 0.31 0.34 47.5 0.43

1 10 0.70 3.3 1.23 0.72 8.2 1.24 0.79 15.6 1.31

1 15 0.86 2.0 2.04 0.87 5.0 2.05 0.90 9.7 2.09

1 20 0.89 1.5 2.76 0.89 3.7 2.77 0.91 7.2 2.80

2 5 0.60 7.2 0.57 0.73 16.3 0.63 1.36 23.7 0.86

2 10 2.80 1.7 2.45 2.88 4.1 2.49 3.17 7.8 2.61

2 15 3.43 1.0 4.08 3.47 2.5 4.1 3.61 4.9 4.18

2 20 3.55 0.74 5.53 3.57 1.8 5.54 3.65 3.6 5.61

tion and that bending stiffness can be safely neglected (see also discussion in the appendix). The303

corresponding values of the Cauchy number are 𝑂 (10) < 𝐶𝑎 < 𝑂 (106). Thus, the relevant304

parameters characterizing our simulations are 𝑃, 𝐿, and 𝐾𝐶, and values are listed on Table 2.305

2.3.1 Scaling306

To gain some insight into frond behavior, we follow the approach used by Henderson (2019)307

and start from a horizontal force balance of the governing equation of frond motion, Eq. (7). Here,308

we write the equation for the entire kelp frond, as opposed to the discrete version we use in the309

numerical model. In particular, Henderson (2019) assumes an equilibrium (i.e., a force balance310

with no frond acceleration) and neglects the vertical velocities. Instead, we keep the horizontal311
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acceleration term and write Eq. (7) as312 
(𝜌𝑘 + 𝐶𝑎𝜌𝑤)

𝑑𝑢𝑘

𝑑𝑡
=

1
2
𝜌𝑤𝐶𝑑

𝐴

𝑉
|𝑢𝑥 − 𝑢𝑘 | (𝑢𝑥 − 𝑢𝑘) + (𝜌𝑤 + 𝐶𝑎𝜌𝑤)

𝜕𝑢𝑥

𝜕𝑡
+ 𝐸𝐴𝑐

𝑉

(
|x| − 𝑙
𝑙

)
sin 𝜃

−(𝜌𝑘 − 𝜌𝑤)𝑔 +
𝐸𝐴𝑐

𝑉

(
|x| − 𝑙
𝑙

)
cos 𝜃 = 0

(15)313

Here, 𝜃 is the angle of deflection from the vertical, 𝑢𝑥 is the representative horizontal wave ve-314

locity at the frond tip, 𝑢𝑘 is the horizontal component of the tip velocity of the kelp 𝑑x/𝑑𝑡, and315

x is the position of the frond tip. We proceed by assuming that 𝜃 is small enough so that the small316

angle approximation cos 𝜃 ≈ 1 can be invoked, reducing the vertical balance in (15) to317

(𝜌𝑘 − 𝜌𝑤)𝑔 =
𝐸𝐴𝑐

𝑉

(
|x| − 𝑙
𝑙

)
(16)318

which yields the new horizontal balance319

(𝜌𝑘 + 𝐶𝑎𝜌𝑤)
𝑑𝑢𝑘

𝑑𝑡
=

1
2
𝜌𝑤𝐶𝑑𝑑 |𝑢𝑥 − 𝑢𝑘 | (𝑢𝑥 − 𝑢𝑘) + (𝜌𝑤 + 𝐶𝑎𝜌𝑤)

𝜕𝑢𝑥

𝜕𝑡
+ (𝜌𝑘 − 𝜌𝑤)𝑔

𝑥

𝑙
(17)320

Note that we also used sin 𝜃 = 𝑥/𝑙.321

Normalizing by 𝜌𝑤 ,𝑈𝑤 , 𝜔, and Δ𝑥𝑤 , Eq. (17) can be written as322

𝑃𝐿

𝐾𝐶

[
𝑑𝑢∗

𝑘

𝑑𝑡∗
− 𝜕𝑢∗𝑥
𝜕𝑡∗

]
= 𝑃𝐿

[
|𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢

∗
𝑥 − 𝑢∗𝑘)

]
+ [𝑥∗] , (18)323

where we used the approximation (𝜌𝑘/𝜌𝑤+𝐶𝑎 )
(1+𝐶𝑎 ) ≈ 1. Here, all the terms denoted by ∗ are dimen-324

sionless and assumed to be of order unity.325

The equivalent equation for the force balance (i.e., assuming no acceleration) as done in326

Henderson (2019) is given by327

𝑃𝐿

𝐾𝐶

[
−𝜕𝑢

∗
𝑥

𝜕𝑡∗

]
= 𝑃𝐿

[
|𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢

∗
𝑥 − 𝑢∗𝑘)

]
+ [𝑥∗] . (19)328

The more complete Eq. (18) and its force balance version (19) both suggest the use of 𝑃𝐿329

and 𝑃𝐿/𝐾𝐶 as two main scaling parameters. A visualization of this two-dimensional parame-330

ter space is given in Fig. 3.331

It is useful to understand the behavior of kelp fronds in three asymptotic regimes: (1) the332

“buoyancy dominated” regime, given by 𝑃𝐿 ≪ 1 and 𝑃𝐿/𝐾𝐶 ≪ 1 and corresponding to points333

in the red region and closer to the origin in Fig. 3(a), (2) the “drag dominated” regime, given by334

𝑃𝐿 ≫ 1 and 𝐾𝐶 ≫ 1 and corresponding to points in the blue region and closer to the bottom335

right corner of Fig. 3(a), and (3) the “inertia dominated” regime, given by 𝑃𝐿/𝐾𝐶 ≫ 1 and336

𝐾𝐶 ≪ 1 and corresponding to points in the yellow region and closer to the top left corner of337

Fig. 3(a).338
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1
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3
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(a)

(b)

wave
period

wave
height

frond
length

Figure 3. (a) The parameter space for kelp motion. The red region represents where motion is buoyancy

dominated; blue represents where motion is drag dominated; yellow represents where motion is inertia dom-

inated. The gray lines represent the dividers 𝑃𝐿 = 1, 𝑃𝐿/𝐾𝐶 = 1, and the dashed gray line is 𝐾𝐶 = 1. The

black points are where our simulations fall, where different shapes represent each of the plant lengths. The

purple, green, and orange solid lines show increasing wave period, wave height, and plant length, respectively.

Black squares 1, 2, 3, and 4 denote cases selected for further analysis in later sections. (b) Expected kelp

motion in each asymptotic regime.
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In the “buoyancy dominated” regime, Eq. (18) suggests 𝑥∗ ≪ 1, which implies 𝑥 ≪ Δ𝑥𝑤339

(i.e., Δ𝑥𝑤 is not the appropriate scale for the horizontal excursion of the tip). Here, buoyancy is340

very strong and severely limits plant motion as depicted in Fig. 3(b). This is equivalent to the nearly341

rigid plant configuration considered by both Luhar and Nepf (2016) and Henderson (2019).342

The “drag dominated” regime corresponds to the small excursion limit of Luhar and Nepf343

(2016) and Henderson (2019). Here, drag forces are much larger than inertial forces and the frond344

motion is driven mostly by drag. In this case, the left hand side of Eq. (18) is approximately 0,345

resulting in the following simplification:346

|𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢
∗
𝑥 − 𝑢∗𝑘) =

|𝑥∗ |
𝑃𝐿

. (20)347

Since 𝑃𝐿 ≫ 1, it is expected that cases in this regime should have small relative velocity, or348

that |𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢
∗
𝑥 − 𝑢∗𝑘) ≪ 1. The frond should move closely with the wave motion, meaning349

that 𝑥∗ ≈ 1, or 𝑥 ≈ Δ𝑥𝑤 as illustrated in Fig. 3(b).350

Finally, in the “inertia limit”, inertial forces are much larger than drag and buoyancy. Thus,351

we can assume that352

𝑃𝐿

𝐾𝐶

[
𝑑𝑢∗

𝑘

𝑑𝑡∗
− 𝜕𝑢∗

𝜕𝑡∗

]
≫ 𝑃𝐿

[
|𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢

∗
𝑥 − 𝑢∗𝑘)

]
, (21)353

and applying that simplification to Eq. (18) yields354

𝑃𝐿

𝐾𝐶

[
𝑑𝑢∗

𝑘

𝑑𝑡∗
− 𝜕𝑢∗

𝜕𝑡∗

]
= [𝑥∗] . (22)355

Because 𝑃𝐿/𝐾𝐶 ≫ 1, this requires356 [
𝑑𝑢∗

𝑘

𝑑𝑡∗
− 𝜕𝑢∗𝑥
𝜕𝑡∗

]
∝
(
𝑃𝐿

𝐾𝐶

)−1
, (23)357

implying that the two accelerations are of the same order of magnitude. In practice, this means358

that the frond acceleration is mostly caused by the same pressure gradient force that is driving359

the wave motion. Because kelp is less dense than the fluid (𝜌𝑘 < 𝜌𝑤), the frond acceleration360

in response to the same pressure gradient force is larger than that of a fluid parcel, causing the361

frond to perform an orbital motion with larger horizontal displacements than the fluid itself. Hence,362

when 𝑃𝐿/𝐾𝐶 ≫ 1, we also have 𝑥∗ = 𝑥/Δ𝑥𝑤 > 1, meaning that it is possible for the kelp ex-363

cursion to be greater than the wave excursion.364

2.3.2 Drag Coefficient Scaling365

The varying flexibility of aquatic vegetation can reduce the drag force exerted on the flow366

by two mechanisms: (1) a reduction of the frontal area exposed to the flow, and (2) a reduction367
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in the relative velocity due to synchronous motion of vegetation and water. Luhar and Nepf (2011)368

quantified this effect by defining the effective length, 𝑙𝑒, which represents the length of a rigid369

blade that generates the same drag as a flexible blade of length 𝑙. Physically, 𝑙𝑒/𝑙 represents the370

ratio of the real horizontal drag force (𝐹𝐷) to the horizontal drag force experienced by a rigid blade371

(𝐹𝐷,𝑅𝑖𝑔). Alternatively, it is equivalent and sometimes more convenient to define a reduced drag372

coefficient 𝐶𝑑, 𝑓 to represent the effect of motion on the drag force (Razmi et al., 2020), or373

𝑙𝑒

𝑙
=

𝐹𝐷

𝐹𝐷,𝑅𝑖𝑔

=
𝐶𝑑, 𝑓

𝐶𝑑

. (24)374

If 𝐶𝑑, 𝑓 is known, one can calculate the true drag force using the fluid velocity (without explicit375

knowledge of the vegetation motion) via376

𝐹𝐷 =
1
2
𝜌𝑤𝐶𝑑, 𝑓 𝐴|𝑢𝑥 |𝑢𝑥 . (25)377

The drag reduction due to plant motion is modeled by the reduced value of 𝐶𝑑, 𝑓 (when compared378

to 𝐶𝑑).379

Luhar and Nepf (2016) found that for plants where the restoring force is primarily from the380

bending rigidity, 𝐶𝑑, 𝑓 /𝐶𝑑 ∝ (𝐶𝑎𝐿)−1. Henderson (2019) considered the case with both bend-381

ing rigidity and buoyancy when the motion is driven by a linearized drag force. Their solution382

recovers the result from Luhar and Nepf (2016) when buoyancy in negligible and yields a new383

result for the case of interest here, where buoyancy is the dominant restoring mechanism. In this384

case, their result yields385

𝐶𝑑, 𝑓

𝐶𝑑

=

[
𝜋2/(4𝑃𝐿)2

1 + 𝜋2/(4𝑃𝐿)2

]1/4

, (26)386

which transitions from a region in which 𝐶𝑑, 𝑓 /𝐶𝑑 ≈ 1 in the buoyancy dominated regime to387

𝐶𝑑, 𝑓 /𝐶𝑑 ∝ (𝑃𝐿)−1/2 for large 𝑃𝐿 in the drag dominated regime. Previous studies did not con-388

sider the cases where inertia is important (𝐾𝐶 ≪ 1), and it is unclear how that would impact389

the total drag force.390

2.3.3 Parameter Space391

The cases shown in Table 2 are presented on the parameter space formed by 𝑃𝐿 and 𝑃𝐿/𝐾𝐶392

in Fig. 3. For most wave conditions, our simulations are in a transition region (𝐾𝐶 ≈ 1, 𝑃𝐿 ≈393

1, or 𝑃𝐿/𝐾𝐶 ≈ 1), so we do not expect to observe results that resemble the asymptotic con-394

ditions discussed in Section 2.3.1. Note that most studies to date have focused on the regime in395

which 𝐾𝐶 ≫ 1, investigating motion and drag in the transition between the red and blue regions.396
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To facilitate interpretation of our results presented in the next sections, we have included397

in Fig. 3 arrows indicating how varying wave properties and frond length impact the location of398

points on the parameter space. Wave orbital velocity amplitudes are proportionate to 𝐴𝑤𝜔, so399

larger wave periods (and smaller wavenumbers) generally leads to smaller 𝑃𝐿 and larger 𝐾𝐶 val-400

ues. In other words, increasing wave period (reducing wavelength) results in cases where buoy-401

ancy is relatively larger and drag is more important than inertial forces. Lines of increasing wave402

height have constant 𝑃𝐿/𝐾𝐶 values (parallel to the 𝑥-axis in Fig. 3), transitioning further away403

from the limiting behavior of buoyancy or inertia dominated regimes into the drag dominated regime.404

Similarly, only increasing frond length does not affect 𝐾𝐶, but correlates with increasing 𝑃𝐿 and405

𝑃𝐿/𝐾𝐶 values, meaning buoyancy becomes relatively less important.406

3 Results and Discussion407

3.1 Characterization of Kelp Motion408

In general, model kelp responded to different wave conditions with a wide range of behav-409

ior. Initially, all upright fronds undergo an adjustment period that lasts a few wave periods be-410

fore they reach an equilibrium cycle, the type of which depends on where the simulation falls in411

the parameter space of Fig. 3(a).412

Fig. 4 shows example frond excursion plots for different regimes of kelp motion: buoyancy413

dominated, drag dominated, inertia dominated, and a transition case (refer back to Figure 3(a)414

for where each case is located in the parameter space). Animations for these four cases are pre-415

sented in the Supporting Information. For each case, we also show how the relative horizontal416

frond excursion417

𝛿𝑥 =
(𝑥max − 𝑥min)

2𝛿𝑥𝑤 (𝑧)
(27)418

varies along the length of the plant. Here, 2𝛿𝑥𝑤 (𝑧) is the local horizontal wave excursion at the419

mean vertical position of each segment over the wave cycle, or420

𝛿𝑥𝑤 (𝑧) = 𝐴𝑤𝜔 cosh(𝑘𝑧)/sinh(𝑘𝐻) (28)421

Physically, 𝛿𝑥 is a measure of the frond excursion normalized by the average wave excursion.422

In the buoyancy dominated region of the parameter space (Case 1, Fig. 4a), the frond ex-423

cursion is less than the wave excursion as the entire frond remains mostly upright. The maximum424

frond excursion is <90% of the horizontal wave excursion. In this case, 𝑃𝐿 ≈ 0.3 and (𝑃𝐿)/𝐾𝐶 ≈425

0.5, so buoyancy is only around 2-3 times larger than the other forces, which is why the blade ex-426
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Figure 4. The cases of kelp motion from different regions of the parameter space; see Figure 3(a). Left

panels are blade excursions over one equilibrium wave cycle; blue dashed lines represent the horizontal wave

excursion at each depth. Both axes are normalized by plant length (𝑙). Right panels are relative horizontal ex-

cursion plots for the buoyancy dominated case. (a) Case 1: buoyancy dominated. (b) Case 2: drag dominated.

(c) Case 3: inertia dominated. (d) Case 4: transition.
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cursion is still fairly large. As points move farther into the buoyancy dominated regime (closer427

to the origin in the parameter space), we expect that the maximum blade excursion would decrease428

to nearly zero.429

For drag dominated cases (Case 2, Fig. 4b), the upper half of the frond moves more-or-less430

with the wave, while the bottom portion of the frond moves less than the wave excursion around431

it. A slight concavity in the profile of 𝛿𝑥 indicates that the majority of drag is being generated432

in the bottom 50% of the frond, as postulated by Henderson (2019). There is a part of the tip that433

moves about 30% more than the wave, which we hypothesize may be the additional effects of the434

inertial forces or asymmetric motion. Overall, this is the classic example of drag reduction in flex-435

ible vegetation due to synchronous oscillation with the wave motion (i.e., reduction in relative436

velocity between the frond and the water).437

In the inertia dominated limit (Case 3, Fig. 4c), a majority of the frond (around 60%) moves438

more than the wave excursion. Note that the displacements are only a small fraction of the plant439

length, and that the aspect ratio of the figure is highly distorted. The maximum frond excursion440

is almost twice as large as the wave excursion; this is clearly a much greater effect than in the pre-441

vious two cases. Different portions of the frond are out of phase with each other (the animation442

included in Supporting Information is particularly illuminating here), corresponding to a higher443

natural mode of vibration. This would be equivalent to mode 2 motion identified by Mullarney444

and Henderson (2010). This higher mode leads to a non-monotonic variation of the amplitude445

of the frond motion along its length, and we hypothesize that higher inertial forces potentially446

lead to the amplification of higher natural modes of motion.447

Finally, we included a typical example of our transition cases (Case 4, Fig. 4d). Here, the448

frond excursion plots displays a mix of traits from the other three limits. About half of the frond449

moves more than the wave, with the tip moving over twice as much as the fluid does. The frond450

also stays relatively upright and straight, as in the buoyancy dominated regime. Unlike the in-451

ertia dominated example, there is a smooth transition in the amplitude of kelp motion.452

Despite the large variation in frond motion depending on the dominant forcing mechanisms,453

some general conclusions are possible. For a fixed frond length 𝑙, the relative horizontal blade454

excursion 𝛿𝑥 decreases with increasing 𝐾𝐶. When 𝐾𝐶 < 1 (inertial forces are larger than drag455

forces), the entire frond moves more than the wave excursion. On the other hand, when 𝐾𝐶 >456

1, a majority of the frond moves less than the wave, with the tip moving about the same. Figure457

5 illustrates how the average of 𝛿𝑥 over the frond length, denoted 𝛿𝑥, varies with 𝐾𝐶. Clearly,458
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frond
length

Figure 5. Variation in relative horizontal excursion, averaged over length of the blade (𝛿𝑥) with 𝐾𝐶. Yel-

low points are inertia dominated (𝑃𝐿/𝐾𝐶 > 1 and 𝐾𝐶 < 1), red are buoyancy dominated (𝑃𝐿 < 1 and

𝑃𝐿/𝐾𝐶 < 1), and blue are drag dominated (𝑃𝐿 > 1 and 𝐾𝐶 > 1). Different shapes represent different frond

lengths, with circles representing 2 m fronds, triangles are 5 m, and squares are 10 m. Dashed lines were

added to facilitate interpretation.

for each frond length, 𝛿𝑥 reduces with increasing 𝐾𝐶. The buoyancy dominated cases (red sym-459

bols) appear as outliers, having much smaller excursions than suggested by the behavior of neigh-460

boring points.461

Luhar and Nepf (2016) described the relative blade excursion for seagrasses (bending re-462

sistance being the dominant restoring force) in the large 𝐾𝐶 (drag dominated) regime. In par-463

ticular, they argued that 𝛿𝑥 ≈ 1 for 𝐿 ≫ 1 and 𝛿𝑥 ≪ 1 for 𝐿 ≪ 1. Note that in our cases,464

Eqs. (11) and (14) imply 𝐿 ∝ (𝑙/𝑑)𝐾𝐶−1. Since we keep the stipe diameter 𝑑 constant in all465

our simulations, at a constant value of 𝐾𝐶 we have 𝐿 ∝ 𝑙. Results in Fig. 5 agree with Luhar466

and Nepf (2016) for the large 𝐾𝐶 regime (𝐾𝐶 > 1, represented by blue symbols), in that at a467

fixed value of 𝐾𝐶, 𝛿𝑥 increases with increasing 𝐿 and approaches 𝛿𝑥 ≈ 1 for large 𝐿. Interest-468

ingly, all the frond lengths seem to match the wave excursion for 𝐾𝐶 ≈ 0.7, and the behavior469

switches for values of 𝐾𝐶 below this threshold (i.e., in the inertia dominated regime) where fronds470

have larger excursions than the water and 𝛿𝑥 increases with decreasing 𝐿. In this small 𝐾𝐶 regime,471

𝛿𝑥 ≈ 1 still holds for large 𝐿, but 𝛿𝑥 ≫ 1 for 𝐿 ≪ 1. Therefore, the unifying conclusion from472

Fig. 5 valid across the entire 𝐾𝐶 regime is that 𝛿𝑥 ≈ 1 for 𝐿 ≫ 1, and deviations increase with473
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increasing 𝐿 in different directions depending on the dominant forcing mechanism (drag vs. in-474

ertia).475

3.2 Characterization of Drag Forces476

In our numerical simulations, the drag force is a function of position along the frond and477

time. We follow Luhar and Nepf (2016) and integrate the horizontal drag force over the frond478

length, and take its root mean square (RMS) value over one wave cycle to characterize the total479

drag for each simulation. We verified that as tested by Luhar and Nepf (2016), using the max-480

imum value over the cycle here as well does not produce significant changes. Therefore, we cal-481

culate the drag reduction as482

𝐶𝑑, 𝑓

𝐶𝑑

=
[𝐹𝐷]𝑅𝑀𝑆[
𝐹𝐷,𝑅𝑖𝑔

]
𝑅𝑀𝑆

=

[∫ 𝑙

0
1
2 𝜌𝑤𝐶𝑑𝑎 |u − 𝑑x

𝑑𝑡
| (𝑢𝑥 − 𝑑𝑥

𝑑𝑡
)𝑑𝑙

]
𝑅𝑀𝑆[∫ 𝑙

0
1
2 𝜌𝑤𝐶𝑑𝑎 |u|𝑢𝑥𝑑𝑧

]
𝑅𝑀𝑆

, (29)483

where 𝑎 = 𝐴/𝑙 is the maximal frond projected area per unit length (i.e., the frond area density).484

Resulting values of 𝐶𝑑, 𝑓 /𝐶𝑑 are displayed as a function of 𝑃𝐿 and separated by drag dom-485

inated (𝐾𝐶 ≤ 1) and inertia dominated (𝐾𝐶 > 1) regimes in Fig. 6a. As expected, there is486

good agreement between our drag-dominated cases (𝐾𝐶 > 1, circles) and the prediction from487

Henderson (2019) given by Eq. 26. Our own power-law fit to these cases yields488

𝐶𝑑, 𝑓 /𝐶𝑑 = (𝑃𝐿)−0.6 (30)489

across the entire range of 𝑃𝐿, extending to values larger than 1 for 𝑃𝐿 < 1 (to be discussed be-490

low). The small difference in exponent likely originates, among other things, from the linearized491

drag approximation employed in the derivation of (26) and the presence of inertial forces in our492

simulations.493

On the other hand, the inertia dominated cases (𝐾𝐶 < 1, triangles) do not scale as well494

with Eq. (26). Generally, values of 𝐶𝑑, 𝑓 /𝐶𝑑 seem to be independent of 𝐾𝐶 in the range 𝑃𝐿 <495

1, but the power-law decay in the large 𝑃𝐿 region is steeper for the inertia dominated cases. We496

expect the drag reduction to be a joint function of 𝑃𝐿 and 𝐾𝐶, but unfortunately our simulated497

cases are not enough to support a two-dimensional fit with any confidence. Instead, we note that498

both Eq. (26) and the empirical fit (30) can serve as an upper bound on the true drag. Our best499

fit for the inertia dominated cases yields 𝐶𝑑, 𝑓 /𝐶𝑑 = 0.7(𝑃𝐿)−0.8.500

Two important features of Fig. 6 require further explanation: the larger drag reduction in501

the inertia dominated cases and the increase in drag compared to a rigid frond (i.e. drag augmen-502
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Figure 6. Effective drag coefficients calculated using horizontal drag force only versus 𝑃𝐿. The solid black

line is the best fit (𝑅2 = 0.92) for cases where 𝐾𝐶 > 1, while the dashed black line is the best fit (𝑅2 = 0.86)

for 𝐾𝐶 < 1. The gray line represents Eq. (26). Triangles represent cases where 𝐾𝐶 < 1, while circles are

cases where 𝐾𝐶 > 1.
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tation) for most cases in which 𝑃𝐿 < 1. To address these questions, we note once again that in503

our model all changes to drag are caused by the relative velocity between the frond and the wa-504

ter. We define a normalized relative velocity505

𝑢𝑟𝑒𝑙 =
(𝑢𝑥 − 𝑑𝑥/𝑑𝑡)

𝑈𝑤

, (31)506

and show the variation of 𝑢𝑟𝑒𝑙 over one equilibrium wave period at several locations along the507

frond in Fig. 7 for the four sample cases illustrated in Fig. 4 (refer to Fig. 8b for the specific 𝐶𝑑, 𝑓 /𝐶𝑑508

value corresponding to the cases shown in Fig. 7).509

In a typical drag dominated case, the upper portion of the frond moves with the waves, re-510

ducing the relative velocities towards the frond tip (e.g., see Figure S1 of the Supporting Infor-511

mation). In this case, most of the drag originates from the bottom of the frond where the rela-512

tive velocities are comparable to the wave velocity due to restricted frond motion (Luhar & Nepf,513

2016; Henderson, 2019). In our selected drag dominated case (Fig. 7b), the behavior is already514

more complex than that. The relative velocity at a given time switches sign between the bottom515

and the top of the frond (e.g., at 𝑡/𝑇𝑝 = 0.5 we have 𝑢𝑟𝑒𝑙 > 0 at 𝑧/𝑙 = 0.2 and 𝑢𝑟𝑒𝑙 < 0 at516

𝑧/𝑙 = 1.0). This change in sign occurs when the frond velocity in the upper portion of the frond517

is larger than the wave velocity, which happens when the frond excursion is larger than that of518

the fluid as described in the previous subsection (see Fig. 4b). The cancellation between drag forces519

from the top and bottom of the frond lead to additional drag reduction in comparison to the typ-520

ical case described above, and it may also in part explain the steeper (𝑃𝐿)−0.6 decay of 𝐶𝑑, 𝑓 /𝐶𝑑521

in comparison to the prediction by Henderson (2019).522

In order to explain the drag augmentation that occurs for most cases with 𝑃𝐿 < 1, we con-523

trast the classic drag reduction behavior to that observed for the buoyancy dominated case in Fig.524

7a (which has 𝐶𝑑, 𝑓 /𝐶𝑑 ≈ 1.6, as seen in Fig. 8b). Here we notice that, contrary to expectations,525

the relative velocity (and therefore the drag force) monotonically increases from the bottom to526

the top of the frond. This is only possible if the frond velocity is out-of-phase with the water ve-527

locity so that (𝑢𝑥 − 𝑑𝑥/𝑑𝑡) > 𝑢𝑥 (e.g., when 𝑢𝑥 > 0, we must have 𝑑𝑥/𝑑𝑡 < 0 for this to be528

possible). In this case, most of the drag actually comes from the tip of the frond, and the total drag529

is larger than that of a rigid frond, yielding 𝐶𝑑, 𝑓 /𝐶𝑑 > 1. Therefore, we conclude that drag aug-530

mentation is a physical feature of flexible vegetation that occurs when the frond motion is out-531

of-phase with the wave orbital velocity and it must also be taken into account. This out-of-phase532

motion is caused by inertial forces (note that the pressure gradient force is 90 degrees out of phase533

with the wave motion).534
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Figure 7. Relative velocities at five different locations along the length of the blade (0.2 𝑙, 0.4 𝑙, 0.6 𝑙, 0.8

𝑙, and 𝑙) over the course of one wave cycle for each case of frond motion. Solid and dotted blue lines indicate

the fluid velocity at the tip of the frond and at 0.2𝑙, respectively. All velocities are normalized by𝑈𝑤 . (a)

Case 1: buoyancy dominated, 𝐻𝑠 = 0.25 [m], 𝑇𝑝 = 20 [s], 𝑙 = 5 [m]. (b) Case 2: drag dominated, 𝐻𝑠 = 2 [m],

𝑇𝑝 = 20 [s], 𝑙 = 10 [m]. (c) Case 3: inertia dominated, 𝐻𝑠 = 0.25 [m], 𝑇𝑝 = 5 [s], 𝑙 = 10 [m]. (d) Case 4:

transition, 𝐻𝑠 = 0.25 [m], 𝑇𝑝 = 20 [s], 𝑙 = 5 [m].
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1
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4

Figure 8. (a) 𝐶𝑑, 𝑓 /𝐶𝑑 versus 𝑃𝐿, where points are colored by log(𝐾𝐶). Positive color values indicate

𝐾𝐶 > 1, while negative values represent points with 𝐾𝐶 < 1. (b) 𝐶𝑑, 𝑓 /𝐶𝑑 versus 𝑃𝐿, where points are

colored by Δ𝐹𝐷,𝑙 , which quantifies the difference between the drag exerted by the bottom half of the plant and

the top half. Black squares 1, 2, 3, and 4 represent the same cases referenced in 3a. In both panels, the black

line is the same best fit as in Fig. 6.

To further characterize this behavior, we define the parameter535

Δ𝐹 =
[𝐹𝐷,𝑡𝑜𝑝]𝑅𝑀𝑆 − [𝐹𝐷,𝑏𝑜𝑡 ]𝑅𝑀𝑆

[𝐹𝐷,𝑡𝑜𝑝]𝑅𝑀𝑆 + [𝐹𝐷,𝑏𝑜𝑡 ]𝑅𝑀𝑆

(32)536

where [𝐹𝐷,𝑡𝑜𝑝]𝑅𝑀𝑆 and [𝐹𝐷,𝑏𝑜𝑡 ]𝑅𝑀𝑆 are the RMS of the drag integrated over the top half and537

bottom half of the frond. When Δ𝐹 is positive, more drag is generated by the top half of the frond538

than the bottom half; the opposite is true when Δ𝐹 is negative. Figure 8a shows 𝐶𝑑, 𝑓 /𝐶𝑑 against539

𝑃𝐿, but with points colored by Δ𝐹. All the points with 𝐶𝑑, 𝑓 /𝐶𝑑 > 1 have positive Δ𝐹 values,540

meaning that a majority of the drag is originated from the top half of the frond, thus implying out-541

of-phase motion between frond and water. In our most extreme case, the drag force from the up-542

per half of the frond is almost four times as large as that of the bottom half. We have verified that543

all these cases with drag augmentation have relative velocity profiles similar to the one shown544

in Fig. 7a.545

As previously discussed, the drag force decays even faster than (𝑃𝐿)−0.6 in the inertia dom-546

inated cases. For the case illustrated in Fig. 7c, we see that the drag force changes sign twice be-547

tween the bottom and the top of the frond. This is in part associated with the complex behavior548

associated with the higher natural mode that corresponds to the motion of these cases (see Fig.549

4c). The large cancellations of the drag force along the frond in these cases with 𝐾𝐶 < 1 lead550

to much smaller values of the total drag in comparison to other cases. This is clearly seen in Fig.551
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8b, where 𝐶𝑑, 𝑓 /𝐶𝑑 is displayed against 𝑃𝐿 and colors represent their value of log𝐾𝐶. Positive552

color values represent simulations where 𝐾𝐶 > 1, and negative color values represents simu-553

lations where 𝐾𝐶 < 1. There is generally a smooth decrease in KC as points move farther away554

from the best fit line for the large 𝐾𝐶 regime, suggesting a smooth reduction in 𝐶𝑑, 𝑓 /𝐶𝑑 with555

decreasing 𝐾𝐶. As a result, this type of motion appears even more “flexible” than in the drag dom-556

inated regime. Note also that these inertia dominated cases tend to have more drag originating557

from the bottom of the frond or, at most, an even distribution between top and bottom drag (see558

Fig. 8a).559

Finally, our transition case (Fig. 7d) displays a mix of traits from the three aforementioned560

cases, including increased drag from the upper portion of the frond due to out-of-phase motion561

with the water (and associated 𝐶𝑑, 𝑓 /𝐶𝑑 > 1) and a switch in sign of the drag along the frond562

due to larger frond excursions in comparison to water parcels. For more elaboration on how to563

interpret Fig. 7, please refer to Figure S1 of the Supporting Information.564

3.3 Asymmetric Motion565

Another interesting aspect of flexible vegetation motion is the degree of asymmetry, even566

under symmetric wave forcing. Zhu et al. (2020) conducted an in depth analysis of the conditions567

for asymmetric blade motion, concluding that there are only a few conditions where blade mo-568

tion is nearly symmetric: (1) when blade length is much smaller than the wavelength 𝜆 = 2𝜋/𝑘 ,569

(2) blade length is much smaller than the water depth, or (3) the water depth is much smaller than570

the wavelength. In our simulations, wavelengths vary between 𝜆 = 37 m and 𝜆 = 210 m, so571

the vast majority of our cases satisfy both (1) and (3) and we would expect symmetric frond mo-572

tion. Zhu et al. (2020) quantified degree of asymmetry defining 𝛽𝑥𝑇 = 𝑥/|𝑥max |, where 𝑥 is the573

average displacement over an equilibrium cycle and |𝑥max | is the maximum horizontal displace-574

ment (they also used an arbitrary threshold 𝛽𝑥𝑇 < 0.05 for nearly symmetric motion). Based575

on the values of |𝛽𝑥𝑇 | shown in Fig. 9, most of our simulations display asymmetric motion. A576

few of our cases with 𝐾𝐶 ≤ 1 had negative 𝛽𝑥𝑇 values, meaning that 𝑥 is slightly negative even577

though the wave propagates in the positive 𝑥 direction. This is likely due to the effects of iner-578

tial forces being out of phase with drag. To include these points, we chose to plot the absolute579

value of 𝛽𝑥𝑇 .580

Zhu et al. (2020) attributes the cause of asymmetric motion to be either the effect of ver-581

tical wave orbital velocities or spatial asymmetry of the encountered wave orbital velocities from582
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Figure 9. Degree of asymmetry, 𝛽𝑥𝑇 increases with 𝑃𝐿. Blue filled circles are drag dominated cases

(𝐾𝐶 > 1); open triangles are inertia dominated (𝐾𝐶 ≤ 1). Black line represents the best fit for the 𝐾𝐶 > 1

points (𝑅2 = 0.94).

horizontal blade displacements. We performed numerical simulations removing these two effects583

(i.e., by setting the vertical wave velocity to zero and eliminating the forcing dependence on the584

𝑥-position of the nodes) and observed only a very small reduction in the degree of asymmetry585

(not shown), suggesting that other mechanisms may be involved in our cases. Nevertheless, it is586

remarkable that the parameter 𝑃𝐿 is an excellent predictor of the degree of asymmetry measured587

by 𝛽𝑥𝑇 . The coefficient of determination (𝑅2) is larger than that for the drag coefficient reduc-588

tion in Fig. 6, and even though the spread is larger for the inertia dominated cases, there seems589

to be no trend with 𝐾𝐶 as in the case of the drag coefficient. Note that increasing 𝑃𝐿 is mostly590

accomplished by increasing wave height, increasing frond length, or reducing buoyancy, condi-591

tions that are expected to lead to more asymmetric motion (Zhu et al., 2020). Importantly, the592

scaling of 𝐶𝑑, 𝑓 /𝐶𝑑 and 𝛽𝑥𝑇 with 𝑃𝐿 suggests that there is a correlation between drag reduction593

and motion asymmetry.594

4 Conclusion595

In this study, we developed a numerical model to investigate the motion of kelp fronds and596

its impact on drag forces in response to realistic monochromatic wave forcing. From the wave597
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parameters retrieved from observations, it becomes clear that the usual assumption of weak in-598

ertial forces (i.e., large Keulegan-Carpenter number 𝐾𝐶) is not always applicable to kelp motion599

in nearshore waters. A more detailed scaling analysis of the equations of frond motion suggests600

a 2-dimensional parameter space formed by a combination of 𝐾𝐶, the buoyancy parameter 𝑃,601

and the ratio of frond length to wave horizontal excursion 𝐿. Motivated by the governing equa-602

tion of motion, we chose to use 𝑃𝐿 and 𝑃𝐿/𝐾𝐶 as the two independent parameters. This leads603

to 3 asymptotic regimes (dominated by buoyancy, drag, and inertia) and successful classification604

of different types of frond motion (see Fig. 3).605

We quantified the relative horizontal excursion of the frond in comparison to that of wa-606

ter, and the results shows strong dependence on 𝐾𝐶 and 𝐿. For the drag-dominated cases (large607

𝐾𝐶), frond excursion is smaller than water excursion, and differences increase with increasing608

𝐾𝐶 and decreasing frond length. This is consistent with the analysis of Luhar and Nepf (2016).609

For the inertia dominated cases (small 𝐾𝐶), frond excursion is larger than water excursion and610

differences increase with decreasing 𝐾𝐶 and frond length. Interesting, for all frond lengths, frond611

excursions match water excursion for 𝐾𝐶 ≈ 0.7.612

We have also investigated the extent that kelp motion impacts its drag reduction (in com-613

parison to a rigid kelp frond). We quantify drag reduction by introducing a ratio of the true drag614

coefficient to that of a rigid frond 𝐶𝑑, 𝑓 /𝐶𝑑 , and found that drag reduction is a function of 𝐾𝐶615

and 𝑃𝐿. Our empirical fit to simulation results yields616

𝐶𝑑, 𝑓 /𝐶𝑑 =


(𝑃𝐿)−0.6 if 𝐾𝐶 > 1

0.7(𝑃𝐿)−0.8 if 𝐾𝐶 ≤ 1
(33)617

The result for the drag dominated regime (𝐾𝐶 > 1) is fairly close to the prediction by Henderson618

(2019). The steeper drag reduction with 𝑃𝐿 in the inertia dominated case (𝐾𝐶 ≤ 1) results from619

a reversal of the drag direction along the frond and cancellation between drag forces acting in op-620

posite directions. We also observe drag augmentation (i.e., 𝐶𝑑, 𝑓 /𝐶𝑑 > 1) for cases in which621

𝑃𝐿 < 1, and track the origin of this to the motion of the frond being out-of-phase with the mo-622

tion of the water.623

It is important to note that drag reduction is directly associated with the efficiency of wave624

energy dissipation by the vegetation. As a general conclusion, in the regimes of frond motion stud-625

ied here, the effective drag coefficient is reduced with increasing 𝑃𝐿 and decreasing 𝐾𝐶. Waves626

with smaller periods correspond to smaller 𝐾𝐶 and larger 𝑃𝐿, and thus smaller drag coefficient627
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and less efficient energy dissipation. Similarly, increasing wave height increases 𝑃𝐿 (without af-628

fecting 𝐾𝐶), leading to smaller drag.629

Future research needs to extend the modeling to include effects of mean currents and broad-630

band wave spectra (and possibly turbulence) on the frond motion, and the presence of surface canopies.631

In addition, observational confirmation by synchronous measurements of wave and kelp motions632

are necessary to validate our modeling results.633

Appendix A Model Validation634

Due to lack of detailed observations of blade/frond motion and drag reduction for cases with635

negligible bending stiffness that could be used to validate our model assumptions, we test our model636

against the theory developed by Luhar and Nepf (2011) for bending of flexible blades in steady637

unidirectional flow. More specifically, we compare model results to the predictions of effective638

length given by their Equation 16, which includes both bending stiffness and buoyancy as restor-639

ing forces and can be written in terms of 𝑃 as640

𝑙𝑒

𝑙
= 1 − 1 − 0.9𝐶𝑎−1/3

1 + 8𝐶𝑎−3/2 + 𝑃−3/2 . (A1)641

Note that this theory-based expression has empirical constants. We made small adjustments to642

our numerical model to better match the conditions used in Luhar and Nepf (2011). We mod-643

ified the drag force to include the frontal area reduction due to blade bending (i.e., including the644

cos 𝜃 term), and removed the drag force in the 𝑧 direction (the relative velocity being defined only645

based on the 𝑥 component).646

Our goal is to test the hypothesis that, for our range of values of 𝐶𝑎 and 𝑃, neglecting the647

bending stiffness (i.e., assuming 𝐶𝑎 → ∞) has a negligible effect on the results. Our study de-648

sign uses all the kelp geometric and constitutive properties described in Section 2.2, neglecting649

the bending stiffness and still allowing for stretching of the blade. We tested model performance650

across a wide range of 𝑃 by varying current velocity while holding buoyancy constant via kelp651

density. Results are shown in Fig. A1.652

The effective length predicted by our model compares well to the results from Eq. (A1) across653

the entire range of 𝑃 (Fig. A1a). The fractional error in predictions (Fig. A1b) is always below654

10% for the range of 𝑃 in our wave simulations (0.01 < 𝑃 < 4). In addition to our neglect of655

bending stiffness, differences could also originate from the error between the simulations in Luhar656

and Nepf (2011) and their fitted equation, and also our inclusion of frond stretching. We note that657
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Figure A1. (a) Model predictions of effective length (black squares) compared to the model from Luhar

and Nepf (2011) given by Eq. (A1) (dashed gray line). (b) Fractional error of present model predictions.

comparing Eq. (A1) including and neglecting 𝐶𝑎 leads to errors of only up to 3% for the range658

of conditions used in our model. Therefore, despite the differences between blade response to659

a steady flow and our study of unsteady wave motion, we conclude that the errors incurred by ne-660

glecting bending stiffness in our numerical model are likely minor and would not impact the over-661

all conclusions of our study.662
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types of kelp motion6

• Inertial forces can significantly impact frond motion and drag reduction, and even lead to7
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Abstract11

It is well known that the motion of flexible vegetation leads to drag reduction in comparison to12

rigid vegetation. In this study, we use a numerical model to investigate how the detailed motion13

of kelp fronds in response to forcing by surface gravity waves can impact the drag exerted by the14

kelp on waves. We find that this motion can be characterized in terms of three dimensionless num-15

bers: (1) the ratio of hydrodynamic drag to buoyancy, (2) the ratio of blade length to wave ex-16

cursion, and (3) the Keulegan-Carpenter number, which measures the ratio of drag to inertial forces.17

We quantify drag reduction, and find that inertial forces can significantly impact the amplitude18

of kelp motion and amount of kelp drag reduction. Under certain wave conditions, inertial forces19

can cause kelp fronds to accelerate more quickly relative to the wave, which can lead to increased20

drag reduction and reduced wave energy dissipation. In some conditions, frond motion leads to21

drag augmentation in comparison to rigid fronds. Additionally, we discuss other features of kelp22

motion, such as the degree of asymmetry, and their relationship with enhanced drag reduction.23

Plain Language Summary24

We use a numerical model to study how kelp fronds move in response to passing ocean waves.25

Flexible motion reduces the drag forces experienced by the kelp and increases survival in extreme26

conditions such as energetic waves. Frond motion also reduces the amount of wave energy dis-27

sipation. The type of motion that the fronds undergo in response to different types of waves is28

determined by the dominant forces, and so is the amount of drag reduction. Our findings show29

that, unlike other types of aquatic vegetation, inertial forces (e.g. due to the pressure variations30

in the water) can be as important as (and sometimes more important) than the drag forces caused31

by the flow.32

1 Introduction33

Macroalgae species, such as kelp, are integral to the health of many coastal ecosystems.34

Kelp forests help preserve biodiversity by serving as habitats and food sources for different ma-35

rine species (Dayton et al., 1984; Schiel & Foster, 2015). Kelp forests also help remediate an-36

thropogenic changes, by mitigating eutrophication pollution through nitrate removal (Gao et al.,37

2021) and reducing ocean acidification and offsetting carbon dioxide emissions via carbon se-38

questration (Froehlich et al., 2019; Hoegh-Guldberg et al., 2019). Globally, kelp forests gener-39

ate an average of $500 billion a year in terms of ecosystem services (Eger et al., 2023).40
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Moreover, kelp harvesting is central to numerous local economies. Many cultures around41

the world have a rich history of relying on kelp as a food source, a way to enhance fisheries, a fer-42

tilizer for soil, etc. (Thornton, 2015; Kain & Dawes, 1987). More recently, alginate sourced from43

kelp has also been utilized as an important additive in pharmaceutical and biomedical industries44

(Peteiro, 2018). Furthermore, the high energy content and fast growth rates of kelp have singled45

them out to be a potential source of biofuel that does not compete for space with land-grown crops46

for the food industry (Milledge et al., 2014; Frieder et al., 2022).47

With all of these benefits, it is critical to understand how we can sustainably support the48

growth and maintenance of kelp forests and farms. In particular, we are interested in the hydro-49

dynamic interactions between kelp and ocean waves. This study focuses primarily on the hydro-50

dynamics of the kelp species Macrocystis pyrifera, more commonly known as giant kelp. Giant51

kelp is native to the coasts of California and is particularly well-suited for the purposes of farm-52

ing due to its fast growth rates (up to 0.5 meters per day). They are the largest species of algae53

and can reach lengths of 20 meters or more (Abbott & Hollenberg, 1992).54

This type of kelp is made up of dozens of fronds attached to a holdfast, which keeps the55

kelp anchored to the substrate. Each frond consists of a stem-like stipe and leaf-like blades, and56

at the base of each blade is a pneumatocyst, or a gas-filled bladder. These pneumatocysts allow57

M. pyrifera to be highly buoyant. Giant kelp stipes also have relatively low rigidity compared to58

seagrasses, allowing stipes to easily bend in response to hydrodynamic forces. A diagram of kelp59

physiology is given in Fig. 1(a).60

Many past observational studies on M. pyrifera (henceforth simply referred to as kelp) hy-61

drodynamics have focused on quantifying the bulk effects of kelp on the flow. The drag force im-62

parted by the kelp on the currents reduces flow rates through kelp forests (Jackson & Winant, 1983;63

Gaylord et al., 2007). For example, Monismith et al. (2022) estimated the scaling for kelp for-64

est drag coefficient in tidal flows via biomass relationships. Laboratory studies have also shown65

that the presence of kelp modifies wave orbital velocities (Rosman et al., 2013). However, kelp66

forests generally dissipate minimum amounts of wave energy due to its highly flexible nature (Elwany67

et al., 1995).68

Because of its nearshore environment, kelp are especially sensitive to the forces caused by69

surface gravity waves (Gaylord et al., 2003). High energy wave amplitudes can cause kelp stipes70

to break and entangle, or even dislodge fronds from their holdfast (Seymour et al., 1989; Day-71

ton et al., 1984). Kelp fronds have also been observed to respond differently to waves with dif-72
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ferent periods (Mullarney & Pilditch, 2017). Generally, flexibility is a strategy employed by sea-73

grasses and algae to reduce drag forces and increase survivability in high-flow environments (Vogel,74

1984; Utter & Denny, 1996). In return, the drag exerted on the waves by kelp is highly depen-75

dent on the detailed motion of the kelp frond. Thus, the two-way interaction between flexible kelp76

fronds and waves impact both, the survivability of kelp and the physical properties of the waves.77

Numerical models have also been used to predict the forces that individual kelp fronds un-78

dergo in different wave conditions, and thus, how likely they are to survive. For example, Jackson79

and Winant (1983) modeled kelp stipes as rigid vertical columns, while Utter and Denny (1996)80

represented kelp fronds as buoys attached to a flexible rope and predicted kelp survivability rates81

under different wave conditions. They model a single point element where hydrodynamic forces82

such as buoyancy, drag, and pressure gradient forces are countered by tension (Utter & Denny,83

1996; Denny et al., 1997).84

Additionally, a number of more sophisticated numerical models have been developed to85

investigate submerged aquatic vegetation motion under wave conditions, including but not lim-86

ited to variations of the Euler-Bernoulli beam model utilized by Marjoribanks et al. (2014), Zeller87

et al. (2014), and Luhar and Nepf (2016). Zhu et al. (2020) expanded on this work and developed88

a consistent-mass cable model to study asymmetric motion of aquatic vegetation. However, these89

models have not been applied to the study of giant kelp, in part because they suffer from numer-90

ical stability issues in cases with low bending stiffness (Zeller et al., 2014).91

A major thrust of theoretical and numerical studies is to develop understanding and quan-92

tification of how plant motion affects drag reduction. For instance, Luhar and Nepf (2011) de-93

veloped a scaling model for the drag of smaller seagrasses in currents by considering the differ-94

ent balances between drag, buoyancy, and rigidity. Luhar and Nepf (2016) and Lei and Nepf (2019)95

extended this work to wave conditions and the meadow scale, mainly focusing on seagrasses for96

which hydrodynamic forcing is primarily balanced by blade stiffness. Henderson (2019) com-97

plemented this work by also analyzing drag reduction in plants where drag forces are balanced98

by both stiffness and buoyancy.99

Notably, most of the past work has been conducted with the assumption of drag dominated100

flows; that is, inertial forces such as the pressure gradient and added mass forces are insignifi-101

cant when compared to drag forces and do not contribute much to plant motion. This is relatively102

accurate for smaller seagrass species, which usually grow in very shallow waters. However, kelp103

often grows in deeper waters and fronds can be quite long. Furthermore, typical wave conditions104
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of coastal California create a natural environment where inertial forces become important. To-105

gether, all of these factors (longer plant lengths, the importance of inertial forces, the predom-106

inance of buoyancy over bending stiffness as a restoring force) produce distinct dynamical be-107

havior and lead to different laws of drag reduction.108

Thus, the purpose of this study is to gain a better understanding of kelp hydrodynamics by109

investigating the impact of inertial forces on kelp motion and consequently, kelp drag reduction.110

We first develop a generalized numerical model for kelp frond motion, and the model is then used111

to study the response of kelp fronds to different wave conditions observed on the coast of Cal-112

ifornia. We focus specifically on the importance of inertial forces and how that impacts differ-113

ent aspects of frond motion and drag reduction.114

2 Methods115

2.1 Model Description116

We constructed a two dimensional model for the motion of an individual kelp frond fol-117

lowing the approach outlined by Rosman et al. (2013) and Marjoribanks et al. (2014), which can118

be considered as a refinement of the simple tethered-buoy model developed by Utter and Denny119

(1996). The kelp frond is discretized into 𝑛 segments, and each segment is modeled as a point120

mass attached to a string with the flexibility and tensile stiffness of kelp stipes. Thus, the kelp frond121

is modeled as a set of point masses connected by strings. The position of each point mass is rep-122

resented by the vector x𝑖 = (𝑥𝑖 , 𝑧𝑖), and its velocity by the vector 𝑑x𝑖/𝑑𝑡. A visualization of this123

representation is given in Fig. 1(b). Note that kelp usually grows to form a dense canopy float-124

ing on the surface that can significantly enhance the total drag (Rosman et al., 2013). For sim-125

plicity, we do not consider the presence of the surface canopy here, and focus only on situations126

in which the frond length is smaller than the water depth.127

The motion of each point mass is governed by Newton’s second law. Following Utter and128

Denny (1996), Denny et al. (1997), and Rosman et al. (2013), we use Morison’s equation (e.g.,129

see Journee & Massie, 2000) to describe the forces acting on kelp. In the present model, we in-130

cluded the five main forces that determine kelp motion: buoyancy, drag, added mass, pressure131

gradient, and tension. We assume that the drag is exerted by the area of the blades, the bending132

stiffness originates from the kelp stipe, and the buoyancy comes from the pneumatocysts. Be-133

cause kelp stipes are very flexible, we assume that their rigidity, or resistance to bending, is neg-134

ligible. As in Utter and Denny (1996), we also neglect lift and skin friction forces, which are rel-135
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Figure 1. (a) M. pyrifera frond and (b) schematic of the discretization of the frond in the numerical model.

atively inconsequential. Assuming each segment has an effective mass 𝑚𝑘 , the governing equa-136

tion of motion for the 𝑖th segment is given by137

𝑚𝑘

𝑑2x𝑖
𝑑𝑡

= F𝐷,𝑖 + F𝐵,𝑖 + F𝑃,𝑖 + F𝐴𝑀,𝑖 + F𝑇,𝑖 + F𝑇,𝑖+1, (1)138

where F𝐷,𝑖 is the drag force, F𝐵,𝑖 is the buoyant force, F𝑃,𝑖 is the pressure gradient force, F𝐴𝑀,𝑖139

is the added mass force, and F𝑇,𝑖 and F𝑇,𝑖+1 are the tension forces on the strings that connect the140

point mass to its neighboring masses.141

The drag force is modeled using a quadratic equation given in terms of relative velocity142

F𝐷,𝑖 =
1
2
𝜌𝑤𝐶𝑑𝐴𝑖

����u𝑖 −
𝑑x𝑖
𝑑𝑡

���� (u𝑖 −
𝑑x𝑖
𝑑𝑡

)
, (2)143

where 𝜌𝑤 is the density of seawater, 𝐶𝑑 is the drag coefficient, 𝐴𝑖 is the maximal projected area144

of each frond segment, and u𝑖 = (𝑢𝑥,𝑖 , 𝑢𝑧,𝑖) is the two-dimensional fluid velocity vector. Con-145

trary to most models of seagrass dynamics (Luhar & Nepf, 2011, 2016), we assume that there146

is no reduction in exposed area with bending. This is because as kelp fronds bend, their blades147

remain oriented with the flow, so the exposed area changes very little (e.g., the contribution of148

the area of the stipe to the drag force is negligible).149

The buoyancy force is given by150

F𝐵,𝑖 = (𝜌𝑘 − 𝜌𝑤)𝑉𝑖g, (3)151

where 𝜌𝑘 is the density of the kelp frond, 𝑉𝑖 is the volume of each segment, and g is the gravi-152

tational acceleration vector.153
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Two forces are associated with the acceleration of the fluid: the pressure gradient force (or154

Froude-Krylov force) and the added mass force. They are given, respectively, by155

F𝑃,𝑖 = 𝜌𝑤𝑉𝑖
𝜕u𝑖

𝜕𝑡
(4)156

and157

F𝐴𝑀,𝑖 = 𝐶𝑎𝜌𝑤𝑉𝑖

(
𝜕u𝑖

𝜕𝑡
− 𝑑2x𝑖

𝑑𝑡

)
, (5)158

where 𝐶𝑎 is the added mass coefficient. We will refer to these two forces as the inertial forces159

acting on the kelp frond.160

In oscillatory flows, it is typical to model the drag and added mass coefficients (𝐶𝑑 and 𝐶𝑎)161

as a function of the Keulegan-Carpenter number (𝐾𝐶), which characterizes the ratio between in-162

ertial and drag forces (e.g., see Luhar & Nepf, 2016). This is done based on experiments with163

flat plates and similar objects in oscillatory flow (Keulegan & Carpenter, 1956; Sarpkaya & O’Keefe,164

1996), for which 𝐾𝐶 = 𝑈𝑤𝑇𝑝/𝑑, where𝑈𝑤 is a characteristic velocity scale, 𝑇𝑝 is the wave pe-165

riod, and 𝑑 is the thickness of the plate. These effects are attributed to the vortex shedding from166

these blunt objects and there is little reason to believe that kelp fronds have a similar behavior.167

Therefore, we do not include explicit effects of 𝐾𝐶 on 𝐶𝑑 and 𝐶𝑎 in our model.168

Each point mass is also subject to tension forces from the string connected to the point mass169

below, F𝑇,𝑖 , and to the point mass above, F𝑇,𝑖+1. Thus, the total tension force on each segment170

is given by the sum of the two tensions, or171

F𝑇,𝑖 + F𝑇,𝑖+1 = −𝐸𝐴𝑐

|x𝑖 − x𝑖−1 | − 𝑙𝑖
𝑙𝑖

e𝑠,𝑖 + 𝐸𝐴𝑐

|x𝑖+1 − x𝑖 | − 𝑙𝑖+1
𝑙𝑖+1

e𝑠,𝑖+1, (6)172

when |x𝑖 − x𝑖−1 | > 𝑙𝑖 and |x𝑖+1 − x𝑖 | > 𝑙𝑖+1, where 𝑙𝑖 and 𝑙𝑖+1 are the lengths of each segment.173

Here we have adopted the elastic model used by Utter and Denny (1996) to represent the tension174

on the string, and 𝐸 is the modulus of elasticity of the kelp, while e𝑠,𝑖 and e𝑠,𝑖+1 are the unit vec-175

tors in the direction of their respective segments. We assume that F𝑇,𝑖 = 0 at the tip of the frond176

(last segment, 𝑖 = 𝑛), and that the plant is rooted at x0 = (0, 0). Note that by adopting this model177

and solving for the tension force explicitly, our model allows for stretching and compression of178

each frond segment.179

The complete equation after dividing all terms by the total volume occupied by each kelp180

segment is181

(𝜌𝑘 + 𝐶𝑎𝜌𝑤)
𝑑2x𝑖
𝑑𝑡

= 1
2 𝜌𝑤𝐶𝑑

𝐴𝑖

𝑉𝑖

���u𝑖 − 𝑑x𝑖
𝑑𝑡

��� (u𝑖 − 𝑑x𝑖
𝑑𝑡

)
+ (𝜌𝑘 − 𝜌𝑤)g + (𝜌𝑤 + 𝐶𝑎𝜌𝑤) 𝜕u𝑖

𝜕𝑡
182

+𝐸𝐴𝑐

𝑉𝑖

(
− |x𝑖−x𝑖−1 |−𝑙𝑖

𝑙𝑖
e𝑠,𝑖 + |x𝑖+1−x𝑖 |−𝑙𝑖+1

𝑙𝑖+1
e𝑠,𝑖+1

)
(7)183

–7–



manuscript submitted to JGR: Oceans

where the effective mass 𝑚𝑘 is given by 𝑉𝑖 (𝜌𝑘+𝐶𝑎𝜌𝑤). The set of equations (7) is numerically184

integrated in time using a fourth-order Runge-Kutta algorithm to solve for the position of all point185

masses x𝑖 = (𝑥𝑖 , 𝑧𝑖) and associated velocities. In our current model implementation, all the seg-186

ment have the same geometrical properties such that 𝐴𝑖 , 𝑙𝑖 , and 𝑉𝑖 are all constant for all 𝑖.187

The main differences between our modeling approach and the more standard models used188

for seagrass (e.g., Marjoribanks et al., 2014; Zeller et al., 2014; Luhar & Nepf, 2016) are that:189

(1) we neglect bending stiffness given that the restoring force to resist motion in kelp is mostly190

provided by the buoyancy force, and models that include bending stiffness for low stiffness sys-191

tems generate numerical instability issues such as poor convergence (Zeller et al., 2014); (2) we192

allow for elastic stretching deformation instead of imposing a constant frond length, which is im-193

portant in modeling kelp motion (Johnson & Koehl, 1994; Utter & Denny, 1996). As an aside,194

we attempted to use the model developed by (Luhar & Nepf, 2016) to simulate some of our cases,195

but ran into numerical instability issues even for the shortest fronds under the least energetic wave196

conditions despite using a very fine grid resolution and small time step.197

2.2 Model Setup198

We study frond motion by imposing a two-dimensional linear wave flow field represented199

by u = (𝑢𝑥 , 𝑢𝑧). For a coordinate system located at the bottom of the ocean, the wave orbital200

velocity components at a location (𝑥, 𝑧) are given by (Dean & Dalrymple, 1991):201 
𝑢𝑥 = 𝐴𝑤𝜔

cosh(𝑘𝑧)
sinh(𝑘𝐻) cos(𝑘𝑥 − 𝜔𝑡)

𝑢𝑧 = 𝐴𝑤𝜔
sinh(𝑘𝑧)
sinh(𝑘𝐻) sin(𝑘𝑥 − 𝜔𝑡)

(8)202

where 𝐴𝑤 is the wave amplitude, 𝜔 is the wave frequency, 𝑘 is the wavenumber, and 𝐻 = 12203

m is the depth of the water column (note that in this coordinate system, 𝑧 = 𝐻 at the surface).204

To investigate the motion of kelp in its natural habitat, we utilized buoy data from the Coastal205

Data Information Program (CDIP; https://cdip.ucsd.edu). More specifically, buoys 87, 88,206

and 89 recorded local wave conditions in real kelp forests along the coast of the Channel Islands207

(Santa Rosa and Santa Cruz Islands) from October 1995 through December 1995. We used their208

measurements of significant wave height, 𝐻𝑠 , and peak wave period, 𝑇𝑝 , to determine typical wave209

conditions within natural kelp forests on the California coast. The joint probability density func-210

tion of measured significant wave height and wave period is shown in Fig. 2. In total, we selected211

sixteen different wave conditions covering the full realistic range of observed waves. For the sim-212

ple monochromatic wave model, we approximated the wave amplitude as 𝐴𝑤 = 𝐻𝑠/2 and cal-213
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Figure 2. Simulated wave conditions. Light gray circles represent the aggregated CDIP measurements, and

the gray lines represent the probability density function of the data (levels: 0.1, 0.25, 0.5, 0.75, 0.9). Black

squares represent the conditions we selected for our runs. Data from CDIP, Scripps Institution of Oceanogra-

phy.

culated the wave frequency from 𝜔 = 2𝜋/𝑇𝑝 and the wave number from the dispersion relation214

𝜔 =
√︁
𝑔𝑘 tanh(𝑘𝐻). The resulting waves fall in the range of 1/3 < 𝑘𝐻 < 2, so we avoid us-215

ing approximations for deep-water or shallow-water waves.216

The kelp properties used in the model were mostly compiled from Utter and Denny (1996),217

and these values are presented in Table 1. Here, the kelp density 𝜌𝑘 is supposed to represent the218

bulk density of the frond, including the gas-filled pneumatocysts. The value adopted here was219

obtained from Rosman et al. (2013) and was confirmed from measurements of frond mass and220

volume (K. A. Davis unpubl.). Notably, this is about 40% larger than the value adopted by Henderson221

(2019). The drag coefficient adopted here is from the intercept of the drag-velocity plot by Utter222

and Denny (1996) (i.e., the drag for a rigid frond), and it is in good agreement with the mode of223

the distribution obtained by Monismith et al. (2022) for intermediate biomass kelp forests. Fi-224

nally, we obtained an estimate of frond volume indirectly from the frond projected area, the av-225

erage mass per unit area, and the frond density.226
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Table 1. List of kelp properties and their associated variables and values. All values are from (Utter &

Denny, 1996), except for 𝜌𝑘 which is taken from (Rosman et al., 2013).

Variable Description Value

𝜌𝑘 Density of kelp 850 [kg m−3]

𝜌𝑤 Density of seawater 1025 [kg m−3]

𝐶𝑎 Added mass coefficient 3

𝐶𝑑 Drag coefficient 0.0148

𝑙 Frond length 2, 5, 10 [m]

𝐴 Maximal projected area of a frond 0.297 × 𝑙0.955 [m2]

𝐴𝑐 Cross-sectional area of a stipe 4.1 × 10−5 [m2]

𝑀𝐴 Average mass per unit area 0.774 [kg m2]

𝑉 Estimated volume of frond 𝑉 =
𝑀𝐴𝐴

𝜌𝑘
[m3]

𝐸 Modulus of elasticity 1.91 × 107 [Pa]

For each of the sixteen wave parameters, we tested three different frond lengths: 2 m, 5 m,227

and 10 m. Because kelp fronds can grow to be quite large, these lengths were selected in order228

to illustrate how kelp behaves in different wave conditions over its entire life cycle. This com-229

bination of plant length and wave conditions resulted in 48 simulations (see Table 2). Out of these230

cases, there were two that showed unrealistic amounts of stretching and compression (i.e. larger231

than 1% of the frond length) due to the elasticity of the kelp stipe: (1) 𝑙 = 10 m, 𝐻𝑠 = 1 m,232

𝑇𝑝 = 5 s; (2) 𝑙 = 10 m, 𝐻𝑠 = 2 m, 𝑇𝑝 = 5 s. Thus, we removed these two cases from further233

analysis. The wave conditions in the removed cases are exceptionally high energy, and rarely oc-234

cur in the real world (see Fig. 2). We postulate that realistically, kelp fronds would probably be-235

come dislodged in those extreme, storm like wave conditions.236

Each model kelp frond is discretized into 50 nodes, and initially starts at rest in a vertically237

upright position. To maximize accuracy while preserving stability, we set a time step of Δ𝑡 =238

𝑇𝑝/10000. We found that generally, the model kelp fronds required 5-7 wave periods before reach-239

ing an equilibrium cycle. Thus, we ran each simulation for 10 wave cycles, and only data from240

the last wave cycle were utilized for analysis. Tests showed no sensitivity of the results to using241

more nodes or reducing the time step.242

It is rather difficult to perform validation of our code, as most detailed data from flume ex-243

periments available (e.g. Zeller et al., 2014; Luhar & Nepf, 2016) is for systems in which the bend-244
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ing stiffness is important. Therefore, we validate the model and test the assumption that stiffness245

is not important against the theory for steady flow developed by Luhar and Nepf (2011), and present246

results for the range of kelp and wave properties relevant to our study in Appendix A.247

2.3 Theory248

Luhar and Nepf (2016) first introduced three dimensionless parameters that govern blade249

motion in wave conditions: the Cauchy number (𝐶𝑎), buoyancy parameter (𝐵), and the ratio of250

blade length to wave excursion (𝐿). These parameters are given by251

𝐶𝑎 =
1
2 𝜌𝑤𝐶𝑑𝐴𝑈

2
𝑤

𝐸𝐼

𝑙2
(9)

𝐵 =
(𝜌𝑤−𝜌𝑘 )𝑔𝑉

𝐸𝐼

𝑙2
(10)

𝐿 = 𝑙𝜔
𝑈𝑤

= 𝑙
Δ𝑥𝑤

(11)

Note that quantities denoted without the subscript i refer to the same variable for the entire frond252

instead of per segment (e.g., 𝐴𝑖 is the projected frond area for each segment in the numerical model,253

while 𝐴 is the projected area for the entire frond).254

The Cauchy number 𝐶𝑎 represents the ratio of drag forces (the most common force driv-255

ing plant motion) to restoring force due to stiffness, while 𝐵 represents the ratio of buoyancy to256

stiffness (i.e., the two forces that act to reduce plant motion). The parameter 𝐿 also impacts blade257

dynamics, as is discussed below. Here, 𝐼 is the second moment of area (for kelp stipes with cir-258

cular cross-sectional area, 𝐼 = 𝜋𝑟4
𝑠/4, where 𝑟𝑠 is the radius of the stipe), and𝑈𝑤 and Δ𝑥𝑤 are259

characteristic scales for the horizontal wave orbital velocities and excursions, respectively. Be-260

cause kelp fronds are typically much longer and grow in deeper water than seagrasses, the vari-261

ation of the wave orbital velocity along the length of the frond can be important. We define𝑈𝑤262

as the amplitude of the horizontal wave orbital velocity averaged over the length of the frond263

𝑈𝑤 =
1
𝑙

∫ 𝑙

0
𝐴𝑤𝜔

cosh(𝑘𝑧)
sinh(𝑘𝐻) 𝑑𝑧 =

𝐴𝑤𝜔

𝑘𝑙

sinh(𝑘𝑙)
sinh(𝑘𝐻) . (12)264

Consequently, we also define Δ𝑥𝑤 as an average along the length, or Δ𝑥𝑤 = 𝑈𝑤/𝜔. In this way,265

𝐿 is interpreted as the ratio between frond length and average horizontal wave excursion. Note266

that as a result of our definition of𝑈𝑤 , any parameter that is function of𝑈𝑤 implicitly takes into267

account the impact of wave decay with depth.268

In most seagrasses, drag is the main force driving motion, bending stiffness is the main restor-269

ing mechanism, buoyancy in negligible, and blade dynamics and drag reduction can be fully char-270

acterized by 𝐶𝑎 and 𝐿. In steady flow, for 𝐶𝑎 ≪ 1, the blade remains upright and has very lit-271
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tle drag reduction (Luhar & Nepf, 2011). For 𝐶𝑎 ≫ 1, significant bending occurs before the272

restoring force balances the drag force and this reconfiguration allows for a large drag reduction273

(via reduction in the plant surface area). In unsteady flows, drag reduction in the 𝐶𝑎 ≫ 1 limit274

also depends on the excursion of the blade, which Luhar and Nepf (2016) quantified using 𝐿. When275

𝐿 ≪ 1, the blade length is much smaller than the wave excursion, so the blade should reach a276

maximum excursion while the fluid continues traveling past it. Thus, the blade behaves similarly277

as in steady flows, and drag reduction in this limit is still only dependent on 𝐶𝑎. On the other hand,278

when 𝐿 ≫ 1, the blade length is much larger than the wave excursion, so we expect that only279

the tip moves with the wave orbital velocity. The majority of the plant is akin to a rigid blade,280

and drag reduction is proportional to the product 𝐶𝑎𝐿.281

Unlike seagrasses, kelp rigidity is very low (the stipe is very flexible), while buoyancy is282

very high. Therefore, drag forces are primarily balanced by buoyancy. As a result, for most wave283

conditions, stiffness plays an insignificant role in kelp motion (i.e, 𝐶𝑎 ≫ 1 and 𝐵 ≫ 1). Thus,284

for our cases, the buoyancy parameter285

𝑃 =

1
2 𝜌𝑤𝐶𝑑𝐴𝑈

2
𝑤

(𝜌𝑤 − 𝜌𝑘)𝑔𝑉
=
𝐶𝑎

𝐵
, (13)286

first introduced by Nikora et al. (1998) is more relevant. Note that 𝑃 is equivalent to 𝐶𝑎, except287

it measures the magnitude of the drag force in comparison to the resistance to bending provided288

by buoyancy. This definition is consistent with Henderson (2019), which built on previous re-289

sults to develop a framework for the analysis of the response of aquatic vegetation to wave forc-290

ing in the presence of both buoyancy and stiffness. In particular, they identified the joint impor-291

tance of 𝐶𝑎𝐿 and 𝑃𝐿 in governing plant motion and drag reduction.292

All of the studies discussed above start from the assumption that the Keulegan-Carpenter293

number is large and that the drag force is the main driver of blade motion. As we will show later,294

in many of our simulations, inertial forces are larger than the drag forces. To characterize this ef-295

fect, we define the Keulegan-Carpenter number as296

𝐾𝐶 =

1
2 𝜌𝑤𝐶𝑑𝑈

2
𝑤

𝜌𝑤𝑑 (1 + 𝐶𝑎)𝑈𝑤𝜔
=

𝐶𝑑

2(1 + 𝐶𝑎)
𝑈𝑤

𝜔𝑑
, (14)297

where 𝑑 is a thickness associated with the cross sectional area (𝑑 = 𝑉/𝐴). This specific def-298

inition, instead of the more traditional 𝐾𝐶 = 2𝜋𝑈𝑤/(𝜔𝑑), is motivated by the scale analysis299

of the equations of frond motion and will be further discussed in Sec. 2.3.1.300

For the wave and kelp conditions studied here, the values of 𝐵 lie in the range of 𝑂 (103) <301

𝐵 < 𝑂 (106), indicating that buoyancy forces are the dominant restoring forces preventing mo-302
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Table 2. List of numerical simulations and their associated dimensionless parameters defined in Equations

(13), (11), and (14). Wave periods of 5 s, 10 s, 15 s, 20 s correspond with wave numbers of 0.167 m−1, 0.063

m−1, 0.04 m−1, 0.03 m−1, respectively.

𝐻𝑠 [m] 𝑇𝑝 [s]
𝑙 = 2 [m] 𝑙 = 5 [m] 𝑙 = 10 [m]

𝑃 𝐿 𝐾𝐶 𝑃 𝐿 𝐾𝐶 𝑃 𝐿 𝐾𝐶

0.25 5 0.0094 57.2 0.071 0.011 130.0 0.078 0.021 189.9 0.11

0.25 10 0.044 13.3 0.31 0.045 32.7 0.31 0.050 62.2 0.33

0.25 15 0.054 8.0 0.51 0.054 19.8 0.51 0.056 38.8 0.52

0.25 20 0.055 5.9 0.69 0.056 14.7 0.69 0.057 29.0 0.70

0.5 5 0.038 28.6 0.14 0.045 65.0 0.16 0.085 95.0 0.21

0.5 10 0.18 6.6 0.61 0.18 16.3 0.62 0.20 31.1 0.65

0.5 15 0.22 4.0 1.02 0.22 9.9 1.03 0.23 19.4 1.05

0.5 20 0.22 2.9 1.38 0.22 7.3 1.40 0.23 14.5 1.40

1 5 0.15 14.3 0.28 0.18 32.5 0.31 0.34 47.5 0.43

1 10 0.70 3.3 1.23 0.72 8.2 1.24 0.79 15.6 1.31

1 15 0.86 2.0 2.04 0.87 5.0 2.05 0.90 9.7 2.09

1 20 0.89 1.5 2.76 0.89 3.7 2.77 0.91 7.2 2.80

2 5 0.60 7.2 0.57 0.73 16.3 0.63 1.36 23.7 0.86

2 10 2.80 1.7 2.45 2.88 4.1 2.49 3.17 7.8 2.61

2 15 3.43 1.0 4.08 3.47 2.5 4.1 3.61 4.9 4.18

2 20 3.55 0.74 5.53 3.57 1.8 5.54 3.65 3.6 5.61

tion and that bending stiffness can be safely neglected (see also discussion in the appendix). The303

corresponding values of the Cauchy number are 𝑂 (10) < 𝐶𝑎 < 𝑂 (106). Thus, the relevant304

parameters characterizing our simulations are 𝑃, 𝐿, and 𝐾𝐶, and values are listed on Table 2.305

2.3.1 Scaling306

To gain some insight into frond behavior, we follow the approach used by Henderson (2019)307

and start from a horizontal force balance of the governing equation of frond motion, Eq. (7). Here,308

we write the equation for the entire kelp frond, as opposed to the discrete version we use in the309

numerical model. In particular, Henderson (2019) assumes an equilibrium (i.e., a force balance310

with no frond acceleration) and neglects the vertical velocities. Instead, we keep the horizontal311
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acceleration term and write Eq. (7) as312 
(𝜌𝑘 + 𝐶𝑎𝜌𝑤)

𝑑𝑢𝑘

𝑑𝑡
=

1
2
𝜌𝑤𝐶𝑑

𝐴

𝑉
|𝑢𝑥 − 𝑢𝑘 | (𝑢𝑥 − 𝑢𝑘) + (𝜌𝑤 + 𝐶𝑎𝜌𝑤)

𝜕𝑢𝑥

𝜕𝑡
+ 𝐸𝐴𝑐

𝑉

(
|x| − 𝑙
𝑙

)
sin 𝜃

−(𝜌𝑘 − 𝜌𝑤)𝑔 +
𝐸𝐴𝑐

𝑉

(
|x| − 𝑙
𝑙

)
cos 𝜃 = 0

(15)313

Here, 𝜃 is the angle of deflection from the vertical, 𝑢𝑥 is the representative horizontal wave ve-314

locity at the frond tip, 𝑢𝑘 is the horizontal component of the tip velocity of the kelp 𝑑x/𝑑𝑡, and315

x is the position of the frond tip. We proceed by assuming that 𝜃 is small enough so that the small316

angle approximation cos 𝜃 ≈ 1 can be invoked, reducing the vertical balance in (15) to317

(𝜌𝑘 − 𝜌𝑤)𝑔 =
𝐸𝐴𝑐

𝑉

(
|x| − 𝑙
𝑙

)
(16)318

which yields the new horizontal balance319

(𝜌𝑘 + 𝐶𝑎𝜌𝑤)
𝑑𝑢𝑘

𝑑𝑡
=

1
2
𝜌𝑤𝐶𝑑𝑑 |𝑢𝑥 − 𝑢𝑘 | (𝑢𝑥 − 𝑢𝑘) + (𝜌𝑤 + 𝐶𝑎𝜌𝑤)

𝜕𝑢𝑥

𝜕𝑡
+ (𝜌𝑘 − 𝜌𝑤)𝑔

𝑥

𝑙
(17)320

Note that we also used sin 𝜃 = 𝑥/𝑙.321

Normalizing by 𝜌𝑤 ,𝑈𝑤 , 𝜔, and Δ𝑥𝑤 , Eq. (17) can be written as322

𝑃𝐿

𝐾𝐶

[
𝑑𝑢∗

𝑘

𝑑𝑡∗
− 𝜕𝑢∗𝑥
𝜕𝑡∗

]
= 𝑃𝐿

[
|𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢

∗
𝑥 − 𝑢∗𝑘)

]
+ [𝑥∗] , (18)323

where we used the approximation (𝜌𝑘/𝜌𝑤+𝐶𝑎 )
(1+𝐶𝑎 ) ≈ 1. Here, all the terms denoted by ∗ are dimen-324

sionless and assumed to be of order unity.325

The equivalent equation for the force balance (i.e., assuming no acceleration) as done in326

Henderson (2019) is given by327

𝑃𝐿

𝐾𝐶

[
−𝜕𝑢

∗
𝑥

𝜕𝑡∗

]
= 𝑃𝐿

[
|𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢

∗
𝑥 − 𝑢∗𝑘)

]
+ [𝑥∗] . (19)328

The more complete Eq. (18) and its force balance version (19) both suggest the use of 𝑃𝐿329

and 𝑃𝐿/𝐾𝐶 as two main scaling parameters. A visualization of this two-dimensional parame-330

ter space is given in Fig. 3.331

It is useful to understand the behavior of kelp fronds in three asymptotic regimes: (1) the332

“buoyancy dominated” regime, given by 𝑃𝐿 ≪ 1 and 𝑃𝐿/𝐾𝐶 ≪ 1 and corresponding to points333

in the red region and closer to the origin in Fig. 3(a), (2) the “drag dominated” regime, given by334

𝑃𝐿 ≫ 1 and 𝐾𝐶 ≫ 1 and corresponding to points in the blue region and closer to the bottom335

right corner of Fig. 3(a), and (3) the “inertia dominated” regime, given by 𝑃𝐿/𝐾𝐶 ≫ 1 and336

𝐾𝐶 ≪ 1 and corresponding to points in the yellow region and closer to the top left corner of337

Fig. 3(a).338
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1

2

3

4

(a)

(b)

wave
period

wave
height

frond
length

Figure 3. (a) The parameter space for kelp motion. The red region represents where motion is buoyancy

dominated; blue represents where motion is drag dominated; yellow represents where motion is inertia dom-

inated. The gray lines represent the dividers 𝑃𝐿 = 1, 𝑃𝐿/𝐾𝐶 = 1, and the dashed gray line is 𝐾𝐶 = 1. The

black points are where our simulations fall, where different shapes represent each of the plant lengths. The

purple, green, and orange solid lines show increasing wave period, wave height, and plant length, respectively.

Black squares 1, 2, 3, and 4 denote cases selected for further analysis in later sections. (b) Expected kelp

motion in each asymptotic regime.
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In the “buoyancy dominated” regime, Eq. (18) suggests 𝑥∗ ≪ 1, which implies 𝑥 ≪ Δ𝑥𝑤339

(i.e., Δ𝑥𝑤 is not the appropriate scale for the horizontal excursion of the tip). Here, buoyancy is340

very strong and severely limits plant motion as depicted in Fig. 3(b). This is equivalent to the nearly341

rigid plant configuration considered by both Luhar and Nepf (2016) and Henderson (2019).342

The “drag dominated” regime corresponds to the small excursion limit of Luhar and Nepf343

(2016) and Henderson (2019). Here, drag forces are much larger than inertial forces and the frond344

motion is driven mostly by drag. In this case, the left hand side of Eq. (18) is approximately 0,345

resulting in the following simplification:346

|𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢
∗
𝑥 − 𝑢∗𝑘) =

|𝑥∗ |
𝑃𝐿

. (20)347

Since 𝑃𝐿 ≫ 1, it is expected that cases in this regime should have small relative velocity, or348

that |𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢
∗
𝑥 − 𝑢∗𝑘) ≪ 1. The frond should move closely with the wave motion, meaning349

that 𝑥∗ ≈ 1, or 𝑥 ≈ Δ𝑥𝑤 as illustrated in Fig. 3(b).350

Finally, in the “inertia limit”, inertial forces are much larger than drag and buoyancy. Thus,351

we can assume that352

𝑃𝐿

𝐾𝐶

[
𝑑𝑢∗

𝑘

𝑑𝑡∗
− 𝜕𝑢∗

𝜕𝑡∗

]
≫ 𝑃𝐿

[
|𝑢∗𝑥 − 𝑢∗𝑘 | (𝑢

∗
𝑥 − 𝑢∗𝑘)

]
, (21)353

and applying that simplification to Eq. (18) yields354

𝑃𝐿

𝐾𝐶

[
𝑑𝑢∗

𝑘

𝑑𝑡∗
− 𝜕𝑢∗

𝜕𝑡∗

]
= [𝑥∗] . (22)355

Because 𝑃𝐿/𝐾𝐶 ≫ 1, this requires356 [
𝑑𝑢∗

𝑘

𝑑𝑡∗
− 𝜕𝑢∗𝑥
𝜕𝑡∗

]
∝
(
𝑃𝐿

𝐾𝐶

)−1
, (23)357

implying that the two accelerations are of the same order of magnitude. In practice, this means358

that the frond acceleration is mostly caused by the same pressure gradient force that is driving359

the wave motion. Because kelp is less dense than the fluid (𝜌𝑘 < 𝜌𝑤), the frond acceleration360

in response to the same pressure gradient force is larger than that of a fluid parcel, causing the361

frond to perform an orbital motion with larger horizontal displacements than the fluid itself. Hence,362

when 𝑃𝐿/𝐾𝐶 ≫ 1, we also have 𝑥∗ = 𝑥/Δ𝑥𝑤 > 1, meaning that it is possible for the kelp ex-363

cursion to be greater than the wave excursion.364

2.3.2 Drag Coefficient Scaling365

The varying flexibility of aquatic vegetation can reduce the drag force exerted on the flow366

by two mechanisms: (1) a reduction of the frontal area exposed to the flow, and (2) a reduction367
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in the relative velocity due to synchronous motion of vegetation and water. Luhar and Nepf (2011)368

quantified this effect by defining the effective length, 𝑙𝑒, which represents the length of a rigid369

blade that generates the same drag as a flexible blade of length 𝑙. Physically, 𝑙𝑒/𝑙 represents the370

ratio of the real horizontal drag force (𝐹𝐷) to the horizontal drag force experienced by a rigid blade371

(𝐹𝐷,𝑅𝑖𝑔). Alternatively, it is equivalent and sometimes more convenient to define a reduced drag372

coefficient 𝐶𝑑, 𝑓 to represent the effect of motion on the drag force (Razmi et al., 2020), or373

𝑙𝑒

𝑙
=

𝐹𝐷

𝐹𝐷,𝑅𝑖𝑔

=
𝐶𝑑, 𝑓

𝐶𝑑

. (24)374

If 𝐶𝑑, 𝑓 is known, one can calculate the true drag force using the fluid velocity (without explicit375

knowledge of the vegetation motion) via376

𝐹𝐷 =
1
2
𝜌𝑤𝐶𝑑, 𝑓 𝐴|𝑢𝑥 |𝑢𝑥 . (25)377

The drag reduction due to plant motion is modeled by the reduced value of 𝐶𝑑, 𝑓 (when compared378

to 𝐶𝑑).379

Luhar and Nepf (2016) found that for plants where the restoring force is primarily from the380

bending rigidity, 𝐶𝑑, 𝑓 /𝐶𝑑 ∝ (𝐶𝑎𝐿)−1. Henderson (2019) considered the case with both bend-381

ing rigidity and buoyancy when the motion is driven by a linearized drag force. Their solution382

recovers the result from Luhar and Nepf (2016) when buoyancy in negligible and yields a new383

result for the case of interest here, where buoyancy is the dominant restoring mechanism. In this384

case, their result yields385

𝐶𝑑, 𝑓

𝐶𝑑

=

[
𝜋2/(4𝑃𝐿)2

1 + 𝜋2/(4𝑃𝐿)2

]1/4

, (26)386

which transitions from a region in which 𝐶𝑑, 𝑓 /𝐶𝑑 ≈ 1 in the buoyancy dominated regime to387

𝐶𝑑, 𝑓 /𝐶𝑑 ∝ (𝑃𝐿)−1/2 for large 𝑃𝐿 in the drag dominated regime. Previous studies did not con-388

sider the cases where inertia is important (𝐾𝐶 ≪ 1), and it is unclear how that would impact389

the total drag force.390

2.3.3 Parameter Space391

The cases shown in Table 2 are presented on the parameter space formed by 𝑃𝐿 and 𝑃𝐿/𝐾𝐶392

in Fig. 3. For most wave conditions, our simulations are in a transition region (𝐾𝐶 ≈ 1, 𝑃𝐿 ≈393

1, or 𝑃𝐿/𝐾𝐶 ≈ 1), so we do not expect to observe results that resemble the asymptotic con-394

ditions discussed in Section 2.3.1. Note that most studies to date have focused on the regime in395

which 𝐾𝐶 ≫ 1, investigating motion and drag in the transition between the red and blue regions.396
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To facilitate interpretation of our results presented in the next sections, we have included397

in Fig. 3 arrows indicating how varying wave properties and frond length impact the location of398

points on the parameter space. Wave orbital velocity amplitudes are proportionate to 𝐴𝑤𝜔, so399

larger wave periods (and smaller wavenumbers) generally leads to smaller 𝑃𝐿 and larger 𝐾𝐶 val-400

ues. In other words, increasing wave period (reducing wavelength) results in cases where buoy-401

ancy is relatively larger and drag is more important than inertial forces. Lines of increasing wave402

height have constant 𝑃𝐿/𝐾𝐶 values (parallel to the 𝑥-axis in Fig. 3), transitioning further away403

from the limiting behavior of buoyancy or inertia dominated regimes into the drag dominated regime.404

Similarly, only increasing frond length does not affect 𝐾𝐶, but correlates with increasing 𝑃𝐿 and405

𝑃𝐿/𝐾𝐶 values, meaning buoyancy becomes relatively less important.406

3 Results and Discussion407

3.1 Characterization of Kelp Motion408

In general, model kelp responded to different wave conditions with a wide range of behav-409

ior. Initially, all upright fronds undergo an adjustment period that lasts a few wave periods be-410

fore they reach an equilibrium cycle, the type of which depends on where the simulation falls in411

the parameter space of Fig. 3(a).412

Fig. 4 shows example frond excursion plots for different regimes of kelp motion: buoyancy413

dominated, drag dominated, inertia dominated, and a transition case (refer back to Figure 3(a)414

for where each case is located in the parameter space). Animations for these four cases are pre-415

sented in the Supporting Information. For each case, we also show how the relative horizontal416

frond excursion417

𝛿𝑥 =
(𝑥max − 𝑥min)

2𝛿𝑥𝑤 (𝑧)
(27)418

varies along the length of the plant. Here, 2𝛿𝑥𝑤 (𝑧) is the local horizontal wave excursion at the419

mean vertical position of each segment over the wave cycle, or420

𝛿𝑥𝑤 (𝑧) = 𝐴𝑤𝜔 cosh(𝑘𝑧)/sinh(𝑘𝐻) (28)421

Physically, 𝛿𝑥 is a measure of the frond excursion normalized by the average wave excursion.422

In the buoyancy dominated region of the parameter space (Case 1, Fig. 4a), the frond ex-423

cursion is less than the wave excursion as the entire frond remains mostly upright. The maximum424

frond excursion is <90% of the horizontal wave excursion. In this case, 𝑃𝐿 ≈ 0.3 and (𝑃𝐿)/𝐾𝐶 ≈425

0.5, so buoyancy is only around 2-3 times larger than the other forces, which is why the blade ex-426
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Figure 4. The cases of kelp motion from different regions of the parameter space; see Figure 3(a). Left

panels are blade excursions over one equilibrium wave cycle; blue dashed lines represent the horizontal wave

excursion at each depth. Both axes are normalized by plant length (𝑙). Right panels are relative horizontal ex-

cursion plots for the buoyancy dominated case. (a) Case 1: buoyancy dominated. (b) Case 2: drag dominated.

(c) Case 3: inertia dominated. (d) Case 4: transition.
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cursion is still fairly large. As points move farther into the buoyancy dominated regime (closer427

to the origin in the parameter space), we expect that the maximum blade excursion would decrease428

to nearly zero.429

For drag dominated cases (Case 2, Fig. 4b), the upper half of the frond moves more-or-less430

with the wave, while the bottom portion of the frond moves less than the wave excursion around431

it. A slight concavity in the profile of 𝛿𝑥 indicates that the majority of drag is being generated432

in the bottom 50% of the frond, as postulated by Henderson (2019). There is a part of the tip that433

moves about 30% more than the wave, which we hypothesize may be the additional effects of the434

inertial forces or asymmetric motion. Overall, this is the classic example of drag reduction in flex-435

ible vegetation due to synchronous oscillation with the wave motion (i.e., reduction in relative436

velocity between the frond and the water).437

In the inertia dominated limit (Case 3, Fig. 4c), a majority of the frond (around 60%) moves438

more than the wave excursion. Note that the displacements are only a small fraction of the plant439

length, and that the aspect ratio of the figure is highly distorted. The maximum frond excursion440

is almost twice as large as the wave excursion; this is clearly a much greater effect than in the pre-441

vious two cases. Different portions of the frond are out of phase with each other (the animation442

included in Supporting Information is particularly illuminating here), corresponding to a higher443

natural mode of vibration. This would be equivalent to mode 2 motion identified by Mullarney444

and Henderson (2010). This higher mode leads to a non-monotonic variation of the amplitude445

of the frond motion along its length, and we hypothesize that higher inertial forces potentially446

lead to the amplification of higher natural modes of motion.447

Finally, we included a typical example of our transition cases (Case 4, Fig. 4d). Here, the448

frond excursion plots displays a mix of traits from the other three limits. About half of the frond449

moves more than the wave, with the tip moving over twice as much as the fluid does. The frond450

also stays relatively upright and straight, as in the buoyancy dominated regime. Unlike the in-451

ertia dominated example, there is a smooth transition in the amplitude of kelp motion.452

Despite the large variation in frond motion depending on the dominant forcing mechanisms,453

some general conclusions are possible. For a fixed frond length 𝑙, the relative horizontal blade454

excursion 𝛿𝑥 decreases with increasing 𝐾𝐶. When 𝐾𝐶 < 1 (inertial forces are larger than drag455

forces), the entire frond moves more than the wave excursion. On the other hand, when 𝐾𝐶 >456

1, a majority of the frond moves less than the wave, with the tip moving about the same. Figure457

5 illustrates how the average of 𝛿𝑥 over the frond length, denoted 𝛿𝑥, varies with 𝐾𝐶. Clearly,458
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frond
length

Figure 5. Variation in relative horizontal excursion, averaged over length of the blade (𝛿𝑥) with 𝐾𝐶. Yel-

low points are inertia dominated (𝑃𝐿/𝐾𝐶 > 1 and 𝐾𝐶 < 1), red are buoyancy dominated (𝑃𝐿 < 1 and

𝑃𝐿/𝐾𝐶 < 1), and blue are drag dominated (𝑃𝐿 > 1 and 𝐾𝐶 > 1). Different shapes represent different frond

lengths, with circles representing 2 m fronds, triangles are 5 m, and squares are 10 m. Dashed lines were

added to facilitate interpretation.

for each frond length, 𝛿𝑥 reduces with increasing 𝐾𝐶. The buoyancy dominated cases (red sym-459

bols) appear as outliers, having much smaller excursions than suggested by the behavior of neigh-460

boring points.461

Luhar and Nepf (2016) described the relative blade excursion for seagrasses (bending re-462

sistance being the dominant restoring force) in the large 𝐾𝐶 (drag dominated) regime. In par-463

ticular, they argued that 𝛿𝑥 ≈ 1 for 𝐿 ≫ 1 and 𝛿𝑥 ≪ 1 for 𝐿 ≪ 1. Note that in our cases,464

Eqs. (11) and (14) imply 𝐿 ∝ (𝑙/𝑑)𝐾𝐶−1. Since we keep the stipe diameter 𝑑 constant in all465

our simulations, at a constant value of 𝐾𝐶 we have 𝐿 ∝ 𝑙. Results in Fig. 5 agree with Luhar466

and Nepf (2016) for the large 𝐾𝐶 regime (𝐾𝐶 > 1, represented by blue symbols), in that at a467

fixed value of 𝐾𝐶, 𝛿𝑥 increases with increasing 𝐿 and approaches 𝛿𝑥 ≈ 1 for large 𝐿. Interest-468

ingly, all the frond lengths seem to match the wave excursion for 𝐾𝐶 ≈ 0.7, and the behavior469

switches for values of 𝐾𝐶 below this threshold (i.e., in the inertia dominated regime) where fronds470

have larger excursions than the water and 𝛿𝑥 increases with decreasing 𝐿. In this small 𝐾𝐶 regime,471

𝛿𝑥 ≈ 1 still holds for large 𝐿, but 𝛿𝑥 ≫ 1 for 𝐿 ≪ 1. Therefore, the unifying conclusion from472

Fig. 5 valid across the entire 𝐾𝐶 regime is that 𝛿𝑥 ≈ 1 for 𝐿 ≫ 1, and deviations increase with473
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increasing 𝐿 in different directions depending on the dominant forcing mechanism (drag vs. in-474

ertia).475

3.2 Characterization of Drag Forces476

In our numerical simulations, the drag force is a function of position along the frond and477

time. We follow Luhar and Nepf (2016) and integrate the horizontal drag force over the frond478

length, and take its root mean square (RMS) value over one wave cycle to characterize the total479

drag for each simulation. We verified that as tested by Luhar and Nepf (2016), using the max-480

imum value over the cycle here as well does not produce significant changes. Therefore, we cal-481

culate the drag reduction as482

𝐶𝑑, 𝑓

𝐶𝑑

=
[𝐹𝐷]𝑅𝑀𝑆[
𝐹𝐷,𝑅𝑖𝑔

]
𝑅𝑀𝑆

=

[∫ 𝑙

0
1
2 𝜌𝑤𝐶𝑑𝑎 |u − 𝑑x

𝑑𝑡
| (𝑢𝑥 − 𝑑𝑥

𝑑𝑡
)𝑑𝑙

]
𝑅𝑀𝑆[∫ 𝑙

0
1
2 𝜌𝑤𝐶𝑑𝑎 |u|𝑢𝑥𝑑𝑧

]
𝑅𝑀𝑆

, (29)483

where 𝑎 = 𝐴/𝑙 is the maximal frond projected area per unit length (i.e., the frond area density).484

Resulting values of 𝐶𝑑, 𝑓 /𝐶𝑑 are displayed as a function of 𝑃𝐿 and separated by drag dom-485

inated (𝐾𝐶 ≤ 1) and inertia dominated (𝐾𝐶 > 1) regimes in Fig. 6a. As expected, there is486

good agreement between our drag-dominated cases (𝐾𝐶 > 1, circles) and the prediction from487

Henderson (2019) given by Eq. 26. Our own power-law fit to these cases yields488

𝐶𝑑, 𝑓 /𝐶𝑑 = (𝑃𝐿)−0.6 (30)489

across the entire range of 𝑃𝐿, extending to values larger than 1 for 𝑃𝐿 < 1 (to be discussed be-490

low). The small difference in exponent likely originates, among other things, from the linearized491

drag approximation employed in the derivation of (26) and the presence of inertial forces in our492

simulations.493

On the other hand, the inertia dominated cases (𝐾𝐶 < 1, triangles) do not scale as well494

with Eq. (26). Generally, values of 𝐶𝑑, 𝑓 /𝐶𝑑 seem to be independent of 𝐾𝐶 in the range 𝑃𝐿 <495

1, but the power-law decay in the large 𝑃𝐿 region is steeper for the inertia dominated cases. We496

expect the drag reduction to be a joint function of 𝑃𝐿 and 𝐾𝐶, but unfortunately our simulated497

cases are not enough to support a two-dimensional fit with any confidence. Instead, we note that498

both Eq. (26) and the empirical fit (30) can serve as an upper bound on the true drag. Our best499

fit for the inertia dominated cases yields 𝐶𝑑, 𝑓 /𝐶𝑑 = 0.7(𝑃𝐿)−0.8.500

Two important features of Fig. 6 require further explanation: the larger drag reduction in501

the inertia dominated cases and the increase in drag compared to a rigid frond (i.e. drag augmen-502
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Figure 6. Effective drag coefficients calculated using horizontal drag force only versus 𝑃𝐿. The solid black

line is the best fit (𝑅2 = 0.92) for cases where 𝐾𝐶 > 1, while the dashed black line is the best fit (𝑅2 = 0.86)

for 𝐾𝐶 < 1. The gray line represents Eq. (26). Triangles represent cases where 𝐾𝐶 < 1, while circles are

cases where 𝐾𝐶 > 1.
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tation) for most cases in which 𝑃𝐿 < 1. To address these questions, we note once again that in503

our model all changes to drag are caused by the relative velocity between the frond and the wa-504

ter. We define a normalized relative velocity505

𝑢𝑟𝑒𝑙 =
(𝑢𝑥 − 𝑑𝑥/𝑑𝑡)

𝑈𝑤

, (31)506

and show the variation of 𝑢𝑟𝑒𝑙 over one equilibrium wave period at several locations along the507

frond in Fig. 7 for the four sample cases illustrated in Fig. 4 (refer to Fig. 8b for the specific 𝐶𝑑, 𝑓 /𝐶𝑑508

value corresponding to the cases shown in Fig. 7).509

In a typical drag dominated case, the upper portion of the frond moves with the waves, re-510

ducing the relative velocities towards the frond tip (e.g., see Figure S1 of the Supporting Infor-511

mation). In this case, most of the drag originates from the bottom of the frond where the rela-512

tive velocities are comparable to the wave velocity due to restricted frond motion (Luhar & Nepf,513

2016; Henderson, 2019). In our selected drag dominated case (Fig. 7b), the behavior is already514

more complex than that. The relative velocity at a given time switches sign between the bottom515

and the top of the frond (e.g., at 𝑡/𝑇𝑝 = 0.5 we have 𝑢𝑟𝑒𝑙 > 0 at 𝑧/𝑙 = 0.2 and 𝑢𝑟𝑒𝑙 < 0 at516

𝑧/𝑙 = 1.0). This change in sign occurs when the frond velocity in the upper portion of the frond517

is larger than the wave velocity, which happens when the frond excursion is larger than that of518

the fluid as described in the previous subsection (see Fig. 4b). The cancellation between drag forces519

from the top and bottom of the frond lead to additional drag reduction in comparison to the typ-520

ical case described above, and it may also in part explain the steeper (𝑃𝐿)−0.6 decay of 𝐶𝑑, 𝑓 /𝐶𝑑521

in comparison to the prediction by Henderson (2019).522

In order to explain the drag augmentation that occurs for most cases with 𝑃𝐿 < 1, we con-523

trast the classic drag reduction behavior to that observed for the buoyancy dominated case in Fig.524

7a (which has 𝐶𝑑, 𝑓 /𝐶𝑑 ≈ 1.6, as seen in Fig. 8b). Here we notice that, contrary to expectations,525

the relative velocity (and therefore the drag force) monotonically increases from the bottom to526

the top of the frond. This is only possible if the frond velocity is out-of-phase with the water ve-527

locity so that (𝑢𝑥 − 𝑑𝑥/𝑑𝑡) > 𝑢𝑥 (e.g., when 𝑢𝑥 > 0, we must have 𝑑𝑥/𝑑𝑡 < 0 for this to be528

possible). In this case, most of the drag actually comes from the tip of the frond, and the total drag529

is larger than that of a rigid frond, yielding 𝐶𝑑, 𝑓 /𝐶𝑑 > 1. Therefore, we conclude that drag aug-530

mentation is a physical feature of flexible vegetation that occurs when the frond motion is out-531

of-phase with the wave orbital velocity and it must also be taken into account. This out-of-phase532

motion is caused by inertial forces (note that the pressure gradient force is 90 degrees out of phase533

with the wave motion).534
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Figure 7. Relative velocities at five different locations along the length of the blade (0.2 𝑙, 0.4 𝑙, 0.6 𝑙, 0.8

𝑙, and 𝑙) over the course of one wave cycle for each case of frond motion. Solid and dotted blue lines indicate

the fluid velocity at the tip of the frond and at 0.2𝑙, respectively. All velocities are normalized by𝑈𝑤 . (a)

Case 1: buoyancy dominated, 𝐻𝑠 = 0.25 [m], 𝑇𝑝 = 20 [s], 𝑙 = 5 [m]. (b) Case 2: drag dominated, 𝐻𝑠 = 2 [m],

𝑇𝑝 = 20 [s], 𝑙 = 10 [m]. (c) Case 3: inertia dominated, 𝐻𝑠 = 0.25 [m], 𝑇𝑝 = 5 [s], 𝑙 = 10 [m]. (d) Case 4:

transition, 𝐻𝑠 = 0.25 [m], 𝑇𝑝 = 20 [s], 𝑙 = 5 [m].
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Figure 8. (a) 𝐶𝑑, 𝑓 /𝐶𝑑 versus 𝑃𝐿, where points are colored by log(𝐾𝐶). Positive color values indicate

𝐾𝐶 > 1, while negative values represent points with 𝐾𝐶 < 1. (b) 𝐶𝑑, 𝑓 /𝐶𝑑 versus 𝑃𝐿, where points are

colored by Δ𝐹𝐷,𝑙 , which quantifies the difference between the drag exerted by the bottom half of the plant and

the top half. Black squares 1, 2, 3, and 4 represent the same cases referenced in 3a. In both panels, the black

line is the same best fit as in Fig. 6.

To further characterize this behavior, we define the parameter535

Δ𝐹 =
[𝐹𝐷,𝑡𝑜𝑝]𝑅𝑀𝑆 − [𝐹𝐷,𝑏𝑜𝑡 ]𝑅𝑀𝑆

[𝐹𝐷,𝑡𝑜𝑝]𝑅𝑀𝑆 + [𝐹𝐷,𝑏𝑜𝑡 ]𝑅𝑀𝑆

(32)536

where [𝐹𝐷,𝑡𝑜𝑝]𝑅𝑀𝑆 and [𝐹𝐷,𝑏𝑜𝑡 ]𝑅𝑀𝑆 are the RMS of the drag integrated over the top half and537

bottom half of the frond. When Δ𝐹 is positive, more drag is generated by the top half of the frond538

than the bottom half; the opposite is true when Δ𝐹 is negative. Figure 8a shows 𝐶𝑑, 𝑓 /𝐶𝑑 against539

𝑃𝐿, but with points colored by Δ𝐹. All the points with 𝐶𝑑, 𝑓 /𝐶𝑑 > 1 have positive Δ𝐹 values,540

meaning that a majority of the drag is originated from the top half of the frond, thus implying out-541

of-phase motion between frond and water. In our most extreme case, the drag force from the up-542

per half of the frond is almost four times as large as that of the bottom half. We have verified that543

all these cases with drag augmentation have relative velocity profiles similar to the one shown544

in Fig. 7a.545

As previously discussed, the drag force decays even faster than (𝑃𝐿)−0.6 in the inertia dom-546

inated cases. For the case illustrated in Fig. 7c, we see that the drag force changes sign twice be-547

tween the bottom and the top of the frond. This is in part associated with the complex behavior548

associated with the higher natural mode that corresponds to the motion of these cases (see Fig.549

4c). The large cancellations of the drag force along the frond in these cases with 𝐾𝐶 < 1 lead550

to much smaller values of the total drag in comparison to other cases. This is clearly seen in Fig.551
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8b, where 𝐶𝑑, 𝑓 /𝐶𝑑 is displayed against 𝑃𝐿 and colors represent their value of log𝐾𝐶. Positive552

color values represent simulations where 𝐾𝐶 > 1, and negative color values represents simu-553

lations where 𝐾𝐶 < 1. There is generally a smooth decrease in KC as points move farther away554

from the best fit line for the large 𝐾𝐶 regime, suggesting a smooth reduction in 𝐶𝑑, 𝑓 /𝐶𝑑 with555

decreasing 𝐾𝐶. As a result, this type of motion appears even more “flexible” than in the drag dom-556

inated regime. Note also that these inertia dominated cases tend to have more drag originating557

from the bottom of the frond or, at most, an even distribution between top and bottom drag (see558

Fig. 8a).559

Finally, our transition case (Fig. 7d) displays a mix of traits from the three aforementioned560

cases, including increased drag from the upper portion of the frond due to out-of-phase motion561

with the water (and associated 𝐶𝑑, 𝑓 /𝐶𝑑 > 1) and a switch in sign of the drag along the frond562

due to larger frond excursions in comparison to water parcels. For more elaboration on how to563

interpret Fig. 7, please refer to Figure S1 of the Supporting Information.564

3.3 Asymmetric Motion565

Another interesting aspect of flexible vegetation motion is the degree of asymmetry, even566

under symmetric wave forcing. Zhu et al. (2020) conducted an in depth analysis of the conditions567

for asymmetric blade motion, concluding that there are only a few conditions where blade mo-568

tion is nearly symmetric: (1) when blade length is much smaller than the wavelength 𝜆 = 2𝜋/𝑘 ,569

(2) blade length is much smaller than the water depth, or (3) the water depth is much smaller than570

the wavelength. In our simulations, wavelengths vary between 𝜆 = 37 m and 𝜆 = 210 m, so571

the vast majority of our cases satisfy both (1) and (3) and we would expect symmetric frond mo-572

tion. Zhu et al. (2020) quantified degree of asymmetry defining 𝛽𝑥𝑇 = 𝑥/|𝑥max |, where 𝑥 is the573

average displacement over an equilibrium cycle and |𝑥max | is the maximum horizontal displace-574

ment (they also used an arbitrary threshold 𝛽𝑥𝑇 < 0.05 for nearly symmetric motion). Based575

on the values of |𝛽𝑥𝑇 | shown in Fig. 9, most of our simulations display asymmetric motion. A576

few of our cases with 𝐾𝐶 ≤ 1 had negative 𝛽𝑥𝑇 values, meaning that 𝑥 is slightly negative even577

though the wave propagates in the positive 𝑥 direction. This is likely due to the effects of iner-578

tial forces being out of phase with drag. To include these points, we chose to plot the absolute579

value of 𝛽𝑥𝑇 .580

Zhu et al. (2020) attributes the cause of asymmetric motion to be either the effect of ver-581

tical wave orbital velocities or spatial asymmetry of the encountered wave orbital velocities from582
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Figure 9. Degree of asymmetry, 𝛽𝑥𝑇 increases with 𝑃𝐿. Blue filled circles are drag dominated cases

(𝐾𝐶 > 1); open triangles are inertia dominated (𝐾𝐶 ≤ 1). Black line represents the best fit for the 𝐾𝐶 > 1

points (𝑅2 = 0.94).

horizontal blade displacements. We performed numerical simulations removing these two effects583

(i.e., by setting the vertical wave velocity to zero and eliminating the forcing dependence on the584

𝑥-position of the nodes) and observed only a very small reduction in the degree of asymmetry585

(not shown), suggesting that other mechanisms may be involved in our cases. Nevertheless, it is586

remarkable that the parameter 𝑃𝐿 is an excellent predictor of the degree of asymmetry measured587

by 𝛽𝑥𝑇 . The coefficient of determination (𝑅2) is larger than that for the drag coefficient reduc-588

tion in Fig. 6, and even though the spread is larger for the inertia dominated cases, there seems589

to be no trend with 𝐾𝐶 as in the case of the drag coefficient. Note that increasing 𝑃𝐿 is mostly590

accomplished by increasing wave height, increasing frond length, or reducing buoyancy, condi-591

tions that are expected to lead to more asymmetric motion (Zhu et al., 2020). Importantly, the592

scaling of 𝐶𝑑, 𝑓 /𝐶𝑑 and 𝛽𝑥𝑇 with 𝑃𝐿 suggests that there is a correlation between drag reduction593

and motion asymmetry.594

4 Conclusion595

In this study, we developed a numerical model to investigate the motion of kelp fronds and596

its impact on drag forces in response to realistic monochromatic wave forcing. From the wave597
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parameters retrieved from observations, it becomes clear that the usual assumption of weak in-598

ertial forces (i.e., large Keulegan-Carpenter number 𝐾𝐶) is not always applicable to kelp motion599

in nearshore waters. A more detailed scaling analysis of the equations of frond motion suggests600

a 2-dimensional parameter space formed by a combination of 𝐾𝐶, the buoyancy parameter 𝑃,601

and the ratio of frond length to wave horizontal excursion 𝐿. Motivated by the governing equa-602

tion of motion, we chose to use 𝑃𝐿 and 𝑃𝐿/𝐾𝐶 as the two independent parameters. This leads603

to 3 asymptotic regimes (dominated by buoyancy, drag, and inertia) and successful classification604

of different types of frond motion (see Fig. 3).605

We quantified the relative horizontal excursion of the frond in comparison to that of wa-606

ter, and the results shows strong dependence on 𝐾𝐶 and 𝐿. For the drag-dominated cases (large607

𝐾𝐶), frond excursion is smaller than water excursion, and differences increase with increasing608

𝐾𝐶 and decreasing frond length. This is consistent with the analysis of Luhar and Nepf (2016).609

For the inertia dominated cases (small 𝐾𝐶), frond excursion is larger than water excursion and610

differences increase with decreasing 𝐾𝐶 and frond length. Interesting, for all frond lengths, frond611

excursions match water excursion for 𝐾𝐶 ≈ 0.7.612

We have also investigated the extent that kelp motion impacts its drag reduction (in com-613

parison to a rigid kelp frond). We quantify drag reduction by introducing a ratio of the true drag614

coefficient to that of a rigid frond 𝐶𝑑, 𝑓 /𝐶𝑑 , and found that drag reduction is a function of 𝐾𝐶615

and 𝑃𝐿. Our empirical fit to simulation results yields616

𝐶𝑑, 𝑓 /𝐶𝑑 =


(𝑃𝐿)−0.6 if 𝐾𝐶 > 1

0.7(𝑃𝐿)−0.8 if 𝐾𝐶 ≤ 1
(33)617

The result for the drag dominated regime (𝐾𝐶 > 1) is fairly close to the prediction by Henderson618

(2019). The steeper drag reduction with 𝑃𝐿 in the inertia dominated case (𝐾𝐶 ≤ 1) results from619

a reversal of the drag direction along the frond and cancellation between drag forces acting in op-620

posite directions. We also observe drag augmentation (i.e., 𝐶𝑑, 𝑓 /𝐶𝑑 > 1) for cases in which621

𝑃𝐿 < 1, and track the origin of this to the motion of the frond being out-of-phase with the mo-622

tion of the water.623

It is important to note that drag reduction is directly associated with the efficiency of wave624

energy dissipation by the vegetation. As a general conclusion, in the regimes of frond motion stud-625

ied here, the effective drag coefficient is reduced with increasing 𝑃𝐿 and decreasing 𝐾𝐶. Waves626

with smaller periods correspond to smaller 𝐾𝐶 and larger 𝑃𝐿, and thus smaller drag coefficient627
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and less efficient energy dissipation. Similarly, increasing wave height increases 𝑃𝐿 (without af-628

fecting 𝐾𝐶), leading to smaller drag.629

Future research needs to extend the modeling to include effects of mean currents and broad-630

band wave spectra (and possibly turbulence) on the frond motion, and the presence of surface canopies.631

In addition, observational confirmation by synchronous measurements of wave and kelp motions632

are necessary to validate our modeling results.633

Appendix A Model Validation634

Due to lack of detailed observations of blade/frond motion and drag reduction for cases with635

negligible bending stiffness that could be used to validate our model assumptions, we test our model636

against the theory developed by Luhar and Nepf (2011) for bending of flexible blades in steady637

unidirectional flow. More specifically, we compare model results to the predictions of effective638

length given by their Equation 16, which includes both bending stiffness and buoyancy as restor-639

ing forces and can be written in terms of 𝑃 as640

𝑙𝑒

𝑙
= 1 − 1 − 0.9𝐶𝑎−1/3

1 + 8𝐶𝑎−3/2 + 𝑃−3/2 . (A1)641

Note that this theory-based expression has empirical constants. We made small adjustments to642

our numerical model to better match the conditions used in Luhar and Nepf (2011). We mod-643

ified the drag force to include the frontal area reduction due to blade bending (i.e., including the644

cos 𝜃 term), and removed the drag force in the 𝑧 direction (the relative velocity being defined only645

based on the 𝑥 component).646

Our goal is to test the hypothesis that, for our range of values of 𝐶𝑎 and 𝑃, neglecting the647

bending stiffness (i.e., assuming 𝐶𝑎 → ∞) has a negligible effect on the results. Our study de-648

sign uses all the kelp geometric and constitutive properties described in Section 2.2, neglecting649

the bending stiffness and still allowing for stretching of the blade. We tested model performance650

across a wide range of 𝑃 by varying current velocity while holding buoyancy constant via kelp651

density. Results are shown in Fig. A1.652

The effective length predicted by our model compares well to the results from Eq. (A1) across653

the entire range of 𝑃 (Fig. A1a). The fractional error in predictions (Fig. A1b) is always below654

10% for the range of 𝑃 in our wave simulations (0.01 < 𝑃 < 4). In addition to our neglect of655

bending stiffness, differences could also originate from the error between the simulations in Luhar656

and Nepf (2011) and their fitted equation, and also our inclusion of frond stretching. We note that657
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Figure A1. (a) Model predictions of effective length (black squares) compared to the model from Luhar

and Nepf (2011) given by Eq. (A1) (dashed gray line). (b) Fractional error of present model predictions.

comparing Eq. (A1) including and neglecting 𝐶𝑎 leads to errors of only up to 3% for the range658

of conditions used in our model. Therefore, despite the differences between blade response to659

a steady flow and our study of unsteady wave motion, we conclude that the errors incurred by ne-660

glecting bending stiffness in our numerical model are likely minor and would not impact the over-661

all conclusions of our study.662
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1. Caption for large Table S1

2. Captions for Movies S1 to S4

Introduction

To support our discussion, we have included supplementary animations of the equi-

librium cycles of kelp frond motion corresponding with Fig. 4 in the main text. In all

movies, the black line represents the modeled kelp frond, blue dashed lines represent the

wave excursion, and gray arrows represent the direction and relative magnitude of the

instantaneous fluid velocity. Both axes are normalized by frond length (l). Frame rates

are standardized across all animations so that each cycle appears 10 s long and is looped

5 times. Additionally, Figure S1 is included to help illustrate the relationship between

the frond velocity and relative velocity between the flow and the frond. Table S1 lists all

the variables and notation referenced in the main text.
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Table S1. List of all variables referenced in the main text. Boldface denotes vector

quantities.

Movie S1. Movie illustrating frond motion corresponding with Fig. 4a (buoyancy dom-

inated), with Hs = 0.25 [m], Tp = 20 [s], l = 2 [m].

Movie S1. : Movie illustrating frond motion corresponding with Fig. 4b (drag domi-

nated), with Hs = 2 [m], Tp = 20 [s], l = 10 [m].

Movie S1. : Movie illustrating frond motion corresponding with Fig. 4b (drag domi-

nated), with Hs = 0.25 [m], Tp = 5 [s], l = 10 [m].

Movie S1. : Movie illustrating frond motion corresponding with Fig. 4b (drag domi-

nated), with Hs = 0.25 [m], Tp = 20 [s], l = 5 [m].
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Figure S1. Schematic illustrating how different profiles of kelp frond velocity and their

corresponding relative velocity plots. Thick blue lines represent the wave velocity; solid gray

lines represent classical example of a flexible frond with reduced drag (e.g., the frond moves

closely with the wave and thus has little relative velocity); dashed black lines represent a frond

moving out of phase with the wave (e.g., Fig 7a); dotted black lines represent a frond with a

larger excursion than the wave does (e.g., Fig 7b).
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Variable Description

βxT Parameter for asymmetric motion

δx Relative horizontal blade excursion

δxw(z) Local horizontal wave excursion

∆t Time step

∆xw Average horizontal wave excursion along length of kelp

∆F Parameter for ratio of top drag force and bottom drag force

γ Ratio of frond length to wavelength

λ Wavelength

ρk Density of kelp

ρw Density of seawater

θ Angle of deflection from the vertical

ω Wave frequency

a Area per unit length

A Maximal projected area of a frond

Ac Cross-sectional area of a stipe

Aw Wave amplitude

B Buoyancy parameter

Ca Added mass coefficient

Cd Drag coefficient

Cd,f Reduced drag coefficient

Ca Cauchy number

d Thickness of a plate

E Modulus of elasticity

es Unit vector in direction of segment

FAM Added mass force

FB Buoyant force

FD Drag force

FD Horizontal drag force

FD,Rig Rigid drag force

1



FD,top Top drag force

FD,bot Bottom drag force

FP Pressure gradient force

FT Tension force

g Gravitational acceleration vector

H Depth of water column

Hs Wave height

I Second moment of area

k Wavenumber

KC Keulegan-Carpenter number

l Frond length

le Effective length

L Ratio of blade length to wave excursion

MA Average mass per unit area

mk Effective mass of each segment

n Number of segments

P Ca/B

rs Radius of stipe

Tp Wave period

u = (ux, uz) Fluid velocity

uk X-component of the kelp tip velocity

urel Normalized relative velocity

Uw Characteristic wave orbital velocity scale

V Estimated volume of a frond

x = (x, z) Position vector of each point mass

z̄ Mean vertical position of each segment over one wave cycle

xi Denotes ith segment of kelp model
∗ Denotes dimensionless and of order unity
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