
P
os
te
d
on

8
N
ov

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
69
94
52
39
.9
63
52
26
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Premonitory earthquakes clustering process in an equivalent

dimensions space before the Mw8.2 Tehuantepec, Mexico, 2017

mainshock

Stanislaw Lasocki1, Vassilis G. Karakostas2, F. Ramón Zúñiga3, and Eleftheria E.
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Abstract

A new approach to monitoring stochastic features of earthquake series was applied to track the preparatory process of the 2017

Tehuantepec, Mexico, Mw8.4 earthquake. The seismicity was parameterized by elapsed times and epicentral distances from

the directly preceding earthquakes and by earthquake magnitudes. The transformation to equivalent dimensions ensured the

comparability of these parameters. We were calculating the average distance between earthquakes in the transformed parameter

space in moving in time data windows, each consisting of 100 events. The average distance exhibited a consistent upward trend

from ten to two years before the main shock. Then, it declined until the main shock. This precursory up-down signal was

highly significant statistically. We showed that the detected time changes of the average distance resulted from the evolution

of the earthquake clustering in the considered parameters’ equivalent dimensions space.

Hosted file

976851_0_art_file_11517326_s2zlyg.docx available at https://authorea.com/users/561070/

articles/674555-premonitory-earthquakes-clustering-process-in-an-equivalent-dimensions-

space-before-the-mw8-2-tehuantepec-mexico-2017-mainshock

Hosted file

976851_0_supp_11492210_s2883b.docx available at https://authorea.com/users/561070/articles/

674555-premonitory-earthquakes-clustering-process-in-an-equivalent-dimensions-space-

before-the-mw8-2-tehuantepec-mexico-2017-mainshock

1

https://authorea.com/users/561070/articles/674555-premonitory-earthquakes-clustering-process-in-an-equivalent-dimensions-space-before-the-mw8-2-tehuantepec-mexico-2017-mainshock
https://authorea.com/users/561070/articles/674555-premonitory-earthquakes-clustering-process-in-an-equivalent-dimensions-space-before-the-mw8-2-tehuantepec-mexico-2017-mainshock
https://authorea.com/users/561070/articles/674555-premonitory-earthquakes-clustering-process-in-an-equivalent-dimensions-space-before-the-mw8-2-tehuantepec-mexico-2017-mainshock
https://authorea.com/users/561070/articles/674555-premonitory-earthquakes-clustering-process-in-an-equivalent-dimensions-space-before-the-mw8-2-tehuantepec-mexico-2017-mainshock
https://authorea.com/users/561070/articles/674555-premonitory-earthquakes-clustering-process-in-an-equivalent-dimensions-space-before-the-mw8-2-tehuantepec-mexico-2017-mainshock
https://authorea.com/users/561070/articles/674555-premonitory-earthquakes-clustering-process-in-an-equivalent-dimensions-space-before-the-mw8-2-tehuantepec-mexico-2017-mainshock


manuscript submitted to Geophysical Research Letters 

 

Earthquake parameters comparabilityPremonitory earthquakes clustering process 1 

in an equivalent dimensions space before the Mw8.2 Tehuantepec, Mexico, 2017 2 

mainshock 3 

Stanisław Lasocki
1
, Vasileios G. Karakostas

2
, F. Ramón Zúñiga

3
, and Eleftheria E. 4 

Papadimitriou
2
 5 

1
Institute of Geophysics, Polish Academy of Sciences 6 

2
Geophysics Department, Aristotle University of Thessaloniki 7 

3
Instituto de Geofísica, Universidad Nacional Autónoma de México 8 

Corresponding authors: Stanisław Lasocki (lasocki@igf.edu.pl)   9 

Key Points: 10 

 The average distance between earthquakes in the interevent time, interevent distance, and 11 

magnitude space systematically changed in time. 12 

 Statistically significant up-down trends of that distance occurred in the twelve years 13 

preceding the mainshock. 14 

 These premonitory changes resulted from the earthquake clustering process evolution. 15 
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Abstract 17 

A new approach to monitoring stochastic features of earthquake series was applied to track the 18 

preparatory process of the 2017 Tehuantepec, Mexico, Mw8.4 earthquake. The seismicity was 19 

parameterized by elapsed times and epicentral distances from the directly preceding earthquakes 20 

and by earthquake magnitudes. The transformation to equivalent dimensions ensured the 21 

comparability of these parameters. We were calculating the average distance between 22 

earthquakes in the transformed parameter space in moving in time data windows, each consisting 23 

of 100 events. The average distance exhibited a consistent upward trend from ten to two years 24 

before the mainshock. Then, it declined until the mainshock. This precursory up-down signal 25 

was highly significant statistically. We showed that the detected time changes of the average 26 

distance resulted from the evolution of the earthquake clustering in the considered parameters' 27 

equivalent dimensions space. 28 

Plain Language Summary 29 

Despite intense research, so far, there are no methods, which decipher with usable confidence 30 

that a seismic process leads to large and great earthquakes, and the problem awaits novel 31 

approaches. We parameterized the seismicity preceding the 2017 Tehuantepec, Mexico, Mw8.4 32 

earthquake by elapsed times and epicentral distances from the directly preceding events and 33 

earthquake magnitudes. The transformation to equivalent dimensions, an innovative 34 

methodology to investigate earthquake clustering, ensured the comparability of these parameters. 35 

The average distance between earthquakes in the space of the transformed parameters exhibited a 36 

consistent upward trend from ten to two years before the mainshock. Then it declined until the 37 

mainshock. This highly significant statistically precursory up-down signal resulted from the 38 

evolution of earthquake clustering in the used parameter space. 39 

1 Introduction 40 

Non-random, stochastic features of seismic series express the dynamics of seismic 41 

processes. Identifying and deciphering these features significantly improve the capabilities for 42 

earthquake forecasting. Commonly used earthquake parameters are the occurrence time, 43 

epicenter location, hypocentral depth, and magnitude. Due to that, many studies of the 44 

earthquake series non-randomness investigate stochastic properties – short- and long–range 45 

clustering, memory, etc. of the series of occurrence times, locations, and magnitude, or derived 46 

parameters – interoccurrence / interevent / recurrence time and interevent spatial distance.  47 

In an early study of earthquake clustering in time, Gardner and Knopoff (1974), based on 48 

the chi-square test results, concluded that earthquake series without aftershocks was Poissonian. 49 

Kagan and Jackson (1991) drew the opposite conclusion based on investigations of interevent 50 

time distribution in earthquake series deprived of short-term temporally clustered fragments. 51 

However, the authors admitted that mainshocks' long–term clustering features were not readily 52 

identifiable. Since then, much evidence of the persistence and long–term memory in the time 53 

series of seismicity parameterizations has accumulated.  54 

E.g., Corral (2004) compared the shapes of the earthquake recurrence time probability 55 

densities for different spatial areas and magnitude ranges and indicated that the clustering 56 

became self-similar in the localization–time–magnitude space after rescaling the time with the 57 

event occurrence rate. Livina et al. (2005) showed that the interevent time was positively 58 

correlated with the previous interevent time. Batac and Kantz (2014) found a certain threshold of 59 
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spatial separation of consecutive events. Events separated less than that threshold value were 60 

correlated, while the more distant events were not. Moreover, the correlated events were 61 

clustered in both time and space. Zhang et al. (2020) affirmed long–term memory for interevent 62 

times and interevent distances from the estimates of lagged conditional density functions of these 63 

parameters.  64 

The Hurst exponent, H, parameterizes the long–term memory amount in a time series 65 

(Hurst, 1951 and, e.g., Mandelbrot & Wallis, 1969). H estimated for the series of times between 66 

consecutive earthquakes was often trending downward before moderate–strong earthquakes (Liu 67 

et al., 1995). Studying H for the same parameterization Alvarez–Ramirez et al. (2012) indicated 68 

that seismicity was clustered in time and the occurrences of more significant earthquakes were 69 

positively correlated with H. The H estimates for the interevent time series, magnitude series, 70 

and the series of inter-event epicentral distances of successive earthquakes in two different 71 

seismogenic zones in Greece evidenced clustering in time and space in both areas, but the 72 

magnitude series was internally correlated only in one (Gkarlaouni et al., 2017). H estimation 73 

documented also a long–range memory in cumulative seismic moment series (Barani et al., 74 

2018).  75 

Whereas space-time clustering of earthquakes is generally accepted, the views on the 76 

stochasticity of earthquake size (magnitude, seismic moment, energy) vary. In many studies, the 77 

magnitude was considered memoryless and modeled by an exponential distribution resulting 78 

from the Gutenberg-Richer relation (e.g., Kagan & Knopoff, 1981; Ogata, 1988; Sornette & 79 

Helmstetter, 2002; Baiesi & Paczuski, 2004; Zaliapin et al., 2008; Zaliapin & Ben-Zion, 2013; 80 

Batac et al., 2017; Michas et al., 2021), even though rigorous statistical tests undermined the 81 

universality of the Gutenberg-Richter relation (Lasocki & Papadimitriou, 2006; Lasocki, 2007). 82 

In recent years, however, there appeared studies evidencing the existence of memory in 83 

magnitude series (e.g., Lennartz et al., 2008; Lippiello et al., 2008; Węglarczyk & Lasocki, 2009; 84 

Gkarlaouni et al., 2017; Barani et al., 2018; 2021; Chen et al., 2022). 85 

We studied the clustering of seismicity before the M8.2 Tehuantepec, Mexico, 86 

earthquake. It occurred on September 8, 2017, at 04:49:18 (UTC) and is the largest intraslab 87 

earthquake documented along the Mexican subduction zone.  88 

The above-mentioned earthquake clustering studies indicate that interdependencies 89 

among earthquakes in time and space are more easily discernible when examining interevent 90 

times and interevent distances. For this reason, we parameterized the earthquakes from the 15 91 

years before the M8.2 Tehuantepec earthquake by these two parameters and magnitudes. We 92 

transformed these parameters to equivalent dimensions (Lasocki, 2014) to get the Euclidean 93 

distance function in their 3D space. Then, in time-moving data windows, we calculated the 94 

average distance between the earthquakes in this space, and we found statistically significant 95 

time trends of this distance, which preceded the mainshock. 96 
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2 Data and Methods 97 

 The M8.2 Tehuantepec earthquake from September 8, 2017 exhibited normal faulting 98 

(Melgar et al., 2018; Suárez et al., 2019) within the subducting Cocos Plate ~70 km landward  99 

(Ye, et al., 2017) from the Middle American Trench beneath the Tehuantepec gap (Kelleher, et 100 

al., 1973; Kelleher & McCann, 1976) (Figure 1). 101 

 102 

Figure 1. The study area where the epicentral distribution of earthquakes that occurred from 1990 – 2017 is shown. Different 103 
symbols show different magnitude ranges, as indicated in the legend. The thick black line shows the inferred surface extension of 104 

the main rupture. 105 

 The study area is bounded between 13
o
-18

o
 N and 92

o
-96

ο
W, with its length along the 106 

subduction front taken about three times the fault length of the 2017 rupture. We used the data 107 

since 1999 from the earthquake catalog compiled by the Universidad Nacional Autónoma de 108 

México, whose magnitudes were homogeneously calculated (Zúñiga et al., 2000). Because the 109 

selected data exhibited a sharp, physically unjustified increase of the event occurrence rate that 110 

began in 2015 but concerned only smaller events of magnitudes up to 4.5, we decided to use 111 

earthquakes of M>4.5. The studied dataset comprised 1048 events and the mainshock within this 112 

earthquake series was event #1049. The earthquakes were parameterized by the occurrence time, 113 

focal latitude, longitude and depth, and magnitude. 114 

 We re-parameterized these earthquakes by the occurrence time, t, magnitude, M, and the 115 

interevent time, dt, and orthodromic epicentral distance (interevent distance), dr, between this 116 

event and the preceding event. The  re-parameterized series comprised 1047 eartquakes. 117 

Subsequently, we transformed the dt, dr, and M into their equivalent dimensions (EDs), DT, DR, 118 

and MC, respectively. 119 

The transformation to EDs (Lasocki, 2014; 2021), based on a probabilistic equivalence of 120 

parameters of objects under study, replaces parameter values with their cumulative distribution 121 

function (CDF) values. Unknown CDF-s are estimated from data using the non–parametric 122 

kernel estimators. We used the data of all 1047 earthquakes under study to estimate the CDF-s of 123 
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dt, dr, and M (See: Supporting Information Text S1 on the transformation applied in the present 124 

work). 125 

All parameters transformed to EDs are uniformly distributed in [0, 1], hence comparable, 126 

and the space of ED–transformed parameters has the Euclidean metric. After the transformation, 127 

the earthquakes became points [DT, DR, MC] in the 3D cube [0, 1].  128 

From the Euclidean metric of ED-s spaces, it comes that the average distance between n 129 

earthquakes in the {DT, DR, MC} space reads 130 

𝑑𝑐 =
2

(𝑛−1)𝑛
∑ ∑ 𝐷(𝑘, 𝑗)𝑛

𝑗=𝑘+1
𝑛−1
𝑘=1 =131 

2

(𝑛−1)𝑛
∑ ∑ √(𝐷𝑇𝑘 − 𝐷𝑇𝑗)

2
+ (𝐷𝑅𝑘 − 𝐷𝑅𝑗)

2
+ (𝑀𝐶𝑘 − 𝑀𝐶𝑗)

2𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1 .  (1) 132 

Starting with event #8, we overlaid the event series 10–1047 with 48 windows of 100 133 

consecutive events each, being shifted by 20 events, and calculated dc in windows. Unless the 134 

event generation process is stationary and ergodic, taking parameters of n consecutive events 135 

from a time series of N events, n<N, is a non-random draw. Therefore, while in the population of 136 

all data, the transformed parameters, DT, DR, and MC, were uniformly distributed in [0, 1], their 137 

distributions in the sliding window were not and were changeable, likewise dc, reflecting the 138 

earthquake process's properties in the window's period. We linked dc-s to the occurrence times of 139 

the last events in the windows obtaining the 48-element time series dc(t). 140 

The statistical significance of non–random features of dc(t) was studied in two ways. 141 

First, we calculated dc-values in 100,000 samples of size 100, each randomly drawn from the 142 

initial series of [DT, DR, MC] triples from #8 to #1047 obtaining the empirical distribution of 143 

{dc|random sampling of [DT, DR, MC] triples}. From this distribution, we estimated the pα and 144 

p1-α percentiles of dc.  145 

If a series of dc comprises n values that were calculated from randomly drawn triples 146 

[DT, DR, MC], the probability that k values > pα equals the probability that k values < p1-α and is: 147 

Pr(𝑛, 𝑘, 𝑝𝛼) = 1 − ∑ (
𝑛
𝑚

) (1 − 𝛼)𝑚𝛼𝑛−𝑚𝑘−1
𝑚=0 .        (2) 148 

Using the significance α=0.995 we counted the number of times, k, the dc(t)-values were 149 

greater than pα / less than p1-α and applied Eq. 2 to calculate Pr(48, 𝑘, 𝑝0.995) / Pr(48, 𝑘, 𝑝0.005). 150 

In the second test, we shuffled a hundred times the original series of triples [DTk, DRk, 151 

MCk], k=1, …, 1047. Then, using windows of 100 triples consecutive in shuffled series and 152 

sliding them by 20 triples, we calculated one hundred dc(t|shuffled series of [DT, DR, MC] 153 

triples) series and compared qualitatively their shapes with the shape of actual dc(t) series. 154 

 155 
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3 Results and Discussion 156 

 The obtained time series of the average distances between earthquakes in the consecutive 157 

data windows, dc(t), is shown in Figure 2. From dc=0.64 in window #20, attributed to 20 March 158 

2007, dc(t) increases systematically until 28 June 2015 (dc=0.78). Afterward, the trend of dc(t) 159 

exhibits a rapid decline, which continues from 6 May 2017 (dc=0.68) to 7 September 2017 160 

(dc=0.68). The mainshock occurred on 8 September 2017. 161 

 162 

Figure 2. Time series of the average distance in the {DT, DR, MC} space between a hundred consecutive earthquakes. 163 
Horizontal solid - the mean dc for one hundred perfectly unclustered [DT, DR, MC] points. Dashed lines - the 90–per cent 164 

confidence interval of dc for a single draw of unclustered points. Dotted lines - one hundred dc-series obtained from the shuffled 165 
[DT, DR, MC] triples. Arrows - the points on dc(t) used for an insight into the evolution of earthquake clustering. 166 

 From the empirical distribution of {dc|random sampling of [DT, DR, MC] triples} 167 

obtained from 100,000 draws, we established the 0.005 and 0.995 percentiles to be p0.005=0.6141 168 

and p0.995=0.7041. In the dc(t) series, seven values were greater than p0.995 and eight values were 169 

less than p0.005. These results yielded highly low probabilities, Pr(48,7, 𝑝0.995) = 4.81 × 10−9 170 

and Pr(48,8, 𝑝0.005) = 1.23 × 10−10, for the thesis that the peaks of dc(t) were due to the 171 

statistical scatter of dc obtained from random triples [DT, DR, MC]. 172 

However, due to the overlaps of windows in which we calculated dc(t), these dc-s were 173 

correlated. Consequently, the probabilities Pr(48,7, 𝑝0.995) and Pr(48,8, 𝑝0.005) were not as from 174 

Eq. (2). To study the consequences of the window overlaps, we used the one hundred 175 

dc(t|shuffled series of [DT, DR, MC] triples) series (see: Data and Methods), counting in each 176 

series the number of times its values were greater than p0.995 / less than p0.005. Proportions of the 177 

dc(t|shuffled series of [DT, DR, MC] triples) series in which dc–values were greater/less than 178 

p0.995/p0.005 k=1, 2, 3, 4, 5 times are compared with the respective probabilities from Eq. (2) in 179 

Table 1. 180 

For k>1, the non-zero proportions are greater than the respective probabilities for truly 181 

randomly drawn triples [DT, DR, MC]. A very rough estimate of a multiplication factor of this 182 

probability increase is 10
k-1

. If so, the probability of a random origin of the number of times that 183 

dc(t) exhibits the values above/below p0.995/p0.005 would still be on the order of 10
-3

. Furthermore, 184 

the maximum number of instances where the values of dc(t|shuffled series of [DT, DR, MC] 185 
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triples) series deviated from the interval [p0.005, p0.995] was six. In contrast, the original dc(t) 186 

series had fifteen instances where its values fell outside this interval. 187 

  188 
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Table 1. Comparison of the shuffled series proportions, in which dc-values k times were outside [p0.005, p0.995], with the 189 
probability of such cases according to Eq. (2). 190 

k 

Proportion of 

dc(t|shuffled series of 

[DT, DR, MC] triples) 

in which at least k-

times: 

Pr(48, 𝑘, 𝑝0.995)

=  Pr(48, 𝑘, 𝑝0.005) 

(Eq. (2)) 
dc – 

values  

p0.995 

dc – 

values  

p0.005 

1 0.17 0.22 0.214 

2 0.08 0.06 0.024 

3 0.02 0.02 0.0018 

4 0.02 0 0.0001 

5 0 0 0.000004 

 191 

We also took every fifth window. Such windows do not overlap and the probability that 192 

random scatter caused dc-values to be outside the range is as in Eq. (2). The respective dc(t) 193 

series consisted of ten elements. In this series, there were two dc-s greater than p0.995 and two dc-s 194 

less than p0.05. According to Eq. (2), the probability to get such results at random was 195 

Pr(10,2, 𝑝0.995) = Pr(10,2, 𝑝0.005) = 0.0011.  196 

Not only the extreme amplitudes, non-random as shown above, are characteristic of dc(t), 197 

but also the shape of dc(t) from March 2007 to the mainshock. This shape is compared in Figure 198 

2 with the shapes of the one hundred dc(t|shuffled series of [DT, DR, MC] triples) series (dotted 199 

lines). The dc(t) series clearly differs from all dc(t|shuffled series of [DT, DR, MC] triples) series 200 

in the trends’ lengths and widths of peaks. 201 

The minimum achievable value of dc - the average distance between earthquakes in {DT, 202 

DR, MC} space, is zero. In such a case, the earthquake process is perfectly regular: interevent 203 

time and distance are constant, and magnitudes are the same. Earthquakes are clustered in one 204 

point in the {DT, DR, MC} space. In this context, a dc increase reflects the diminishing regularity 205 

of the earthquake process. 206 

Having 8xN points in the [0, 1] {DT, DR, MC} cube, dc becomes maximum if there are N 207 

points at each cube vertex. For 96 points (8x12), this maximum of dc=1.13364. For 100 points, 208 

the dc takes the maximum when 96 points are distributed among eight vertices of the cube in 209 

equal parts, and the separation of the remaining four points is maximum, e.g., they are located at 210 

(0,0,0), (1,1,1), (0,1,0), (1,0,1) or the like. For that distribution, dc=1.13303. Hence in case of one 211 

hundred earthquakes windows, an increase of dc from zero to 1.13303 means moving from a one-212 

point cluster to eight best-balanced and maximally distant one-point clusters. On the way, there 213 

is a perfectly unclustered state. 214 

Points-earthquakes are unclustered in [0, 1] cube when their components, [DT, DR, MC], 215 

are drawn from the three–dimensional standard uniform distribution. To get properties of the 216 

unclustered state, we drew one million samples, one hundred elements each, from this 217 

distribution. Based on this data, we have established that:  218 

 The mean mass center of the unclustered points is at (0.5, 0.5, 0.5), and the standard 219 

deviation of this location is (0.0289, 0.0289, 0.0289) with a precision of 10
-5

; 220 
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 The mean sum of distances from such one hundred points to their mass center is 48.03, 221 

with a standard deviation of 1.39; 222 

 The mean value of one million dc values is <dc>=0.661714, and the standard deviation is 223 

=0.017731. Hence, the 90–percent confidence interval of a single draw is (0.626960; 224 

0.696467). The mean value and the 90–percent confidence interval limits for a single 225 

draw are marked in Figure 2 by the horizontal solid and two dashed lines, respectively. 226 

The part of the dc(t) curve from March 2007 to the mainshock (8/09/2017) begins 227 

significantly below <dc>, then crosses <dc> and increases to values significantly above <dc> 228 

(Figure 2). Next, it goes down again below <dc>. This behavior suggests that the earthquakes in 229 

windows linked to smaller dc(t) values may have tended to form one cluster, and those in 230 

windows linked to greater dc(t) values may have built more than one cluster.  231 

To look closer at the evolution of earthquake clustering, we took the data from six data 232 

windows linked to the points marked by arrows in Figure 2. Out of these six, only two windows, 233 

No.s 4 and 5, partially overlapped. We estimated the optimal number of clusters in every 234 

window. Because the problem of dividing points into clusters is equivocal, different optimality 235 

criteria provide different clustering results. Out of the five tested criteria (See: Supporting 236 

Information Text S2 for the choice of the optimal number of clusters criterion), we used the gap 237 

criterion with the PCA reference data generation method (Tibshirani et al., 2001). The accepted 238 

“optimal” numbers of data clusters in the studied windows, the division of earthquakes in the 239 

windows into the clusters, and the coordinates of the resultant clusters’ centroids are shown in 240 

Table 2.  241 

The window #1 mass center was at (0.51, 0.54, 0.45). Hence, the probability that the 242 

deviations of window #1 mass center components from 0.5 were due only to statistical scatter are 243 

0.365, 0.083, 0.042, respectively, and the probability that the mass center deviated from the point 244 

(0.5, 0.5, 0.5) due to statistical scatter is 1.310
-3

. The total distance of the points in windows #1 245 

to their mass centers was 43.18. The probability that a single draw of one hundred unclustered 246 

points would provide this distance value is 2.410
-4

. 247 

The window #6 mass center was at (0.45, 0.46, 0.53). The probabilities that only 248 

statistical scatter caused the deviations of mass center components from 0.5 and the mass center 249 

deviation from (0.5, 0.5, 0.5) are 0.042, 0.083, 0.150, and 5.210
-4

, respectively. The total 250 

distance of window #6 points to the mass center was 45.85. The probability that such a result 251 

would be obtained for an unclustered points draw is 0.058.  252 

These results indicate that the points in windows #1 and #6 were not unclustered but built 253 

single clusters. This fact and the results from Table 2 suggest that the up-down trends of dc(t) 254 

preceding the Tehuantepec mainshock resulted from the following earthquake clustering process 255 

in the {DT, DR, MC} [0, 1] cube. At the beginning (18/08/2005 – 20/03/2007), the earthquakes 256 

formed one cluster. The decay of this cluster in separate groups – four in windows #2 and #3 257 

increased dc(t). The maximum dc(t) was linked to separating of one hundred earthquakes into as 258 

many as six clusters. Next, the number of clusters was gradually reduced – four clusters in 259 

window #5 and only one in the last window before the mainshock (window #6). This decrease in 260 

clusters caused the systematic decrease of dc(t). The centroids' coordinates from Table 2 suggest 261 

that this clustering process could schematically look like in Figure 3.  262 
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 263 
 264 
 265 

Table 2. Results of the division of earthquakes in windows into the optimal number of clusters. Centroid coordinates for ‘all 266 
data’ cases refer to the mass centers of all points in windows. 267 

No. 
Window 

time point, t 
dc(t) 

Optimal 

number 

of 

clusters 

Cluster 

No 

Centroid coordinates 
Number of 

cluster 

members 
DT DR MC 

1 20/03/2007 0.601 1 I 0.51 0.54 0.45 100 

2 9/10/2008 0.636 4 

I 0.15 0.19 0.37 25 

II 0.75 0.34 0.34 21 

III 0.41 0.77 0.17 25 

IV 0.38 0.59 0.73 29 

3 4/07/2013 0.696 4 

I 0.15 0.17 0.72 29 

II 0.63 0.59 0.22 22 

III 0.83 0.30 0.79 24 

IV 0.55 0.80 0.77 25 

4 28/06/2015 0.733 6 

I 0.40 0.16 0.25 13 

II 0.34 0.86 0.24 14 

III 0.16 0.18 0.73 21 

IV 0.85 0.71 0.27 16 

V 0.76 0.36 0.82 22 

VI 0.52 0.85 0.85 14 

5 27/04/2016 0.685 4 

I 0.53 0.21 0.22 20 

II 0.16 0.20 0.74 19 

III 0.52 0.77 0.22 29 

IV 0.67 0.55 0.82 32 

6 7/09/2017 0.639 1 I 0.45 0.46 0.53 100 

 268 

 269 

Figure 3. The proposed scheme of the earthquake clustering process preceding the Tehuantepec M8.2 mainshock. W1-W6 mark 270 
windows, and roman numbers denote the windows’ clusters as in Table 2. The windows locations on time axis agree with periods 271 
between times of the windows’ middles. The vertical separations of the nodes/clusters in the same window are proportional to the 272 

distance between centroids of neighboring nodes.   273 

 274 
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4 Conclusions 275 

The re-parameterization of seismicity into interevent times and distances and the use of 276 

the transformation to equivalent dimensions to ensure comparability of parameters shed new 277 

light on the preparatory process to the Tehuantepec earthquake. The average distance between 278 

earthquakes in the space of equivalent: interevent time, interevent distance, and magnitude time 279 

series exhibited distinct and systematic time changes. Its part from March 2007 until the 280 

mainshock (9/09/2017) was a statistically significant precursory signal. This signal included a 281 

well-developed rise from March 2007 to June 2015, followed by a decrease until the mainshock. 282 

These premonitory changes were linked to the earthquake clustering process evolution. Further 283 

research across other great earthquake cases will determine the usefulness of the approach 284 

presented here in the earthquake forecasting problem. 285 
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