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Abstract

Earthquake swarms commonly occur in upper-crustal hydrothermal-magmatic systems and activate mesh-like fault-fracture

networks at zone of fault complexity. How these networks develop through space and time along seismic faults is poorly

constrained in the geological record. Here, we describe a spatially dense array of small-displacement (< 1.5 m) epidote-rich

fault-veins within granitoids, occurring at the intersections of subsidiary faults with the exhumed seismogenic Bolfin Fault Zone

(Atacama Fault System, Northern Chile). Epidote faulting and veining occurred at 3-7 km depth and 200-300 °C ambient

temperature. At distance [?] 1 cm to fault-veins, the magmatic quartz of the wall-rock shows (i) thin (<10- μm-thick) interlaced

deformation lamellae, and (ii) crosscutting quartz-healed veinlets. The epidote-rich fault-veins (i) include clasts of deformed

magmatic quartz, with deformation lamellae and quartz-healed veinlets, and (ii) record cyclic events of extensional-to-hybrid

veining and either aseismic and seismic shearing. Deformation of the wall-rock quartz is interpreted to record the large stress

perturbations associated with the rupture propagation of small earthquakes. Instead, dilation and shearing forming the epidote-

rich fault-veins are interpreted to record the later development of a mature and hydraulically-connected fault-fracture system.

In this latter stage, the fault-fracture system cyclically ruptured due to fluid pressure fluctuations, possibly correlated with

swarm-like earthquake sequences.
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Key Points 11 

• Epidote-rich veins exhumed from 3-5 km depth are well-exposed in the Atacama Desert and fill 12 

honey mesh-like fault-fracture networks.  13 

• Wall-rock microstructures record rupture propagation; instead, fault-veins record cyclic veining 14 

and aseismic-seismic shearing. 15 

• The epidote-rich fault-vein networks represent ancient seismogenic hydrothermal systems, 16 

possibly producing earthquake swarms. 17 

 18 
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Abstract 25 

Earthquake swarms commonly occur in upper-crustal hydrothermal-magmatic systems and activate 26 

mesh-like fault-fracture networks at zone of fault complexity. How these networks develop through space 27 

and time along seismic faults is poorly constrained in the geological record. Here, we describe a spatially 28 

dense array of small-displacement (< 1.5 m) epidote-rich fault-veins within granitoids, occurring at the 29 

intersections of subsidiary faults with the exhumed seismogenic Bolfin Fault Zone (Atacama Fault 30 

System, Northern Chile). Epidote faulting and veining occurred at 3-7 km depth and 200-300 °C ambient 31 

temperature. At distance ≤ 1 cm to fault-veins, the magmatic quartz of the wall-rock shows (i) thin (<10- 32 

µm-thick) interlaced deformation lamellae, and (ii) crosscutting quartz-healed veinlets. The epidote-rich 33 

fault-veins (i) include clasts of deformed magmatic quartz, with deformation lamellae and quartz-healed 34 

veinlets, and (ii) record cyclic events of extensional-to-hybrid veining and either aseismic and seismic 35 

shearing. Deformation of the wall-rock quartz is interpreted to record the large stress perturbations 36 

associated with the rupture propagation of small earthquakes. Instead, dilation and shearing forming the 37 

epidote-rich fault-veins are interpreted to record the later development of a mature and hydraulically-38 

connected fault-fracture system. In this latter stage, the fault-fracture system cyclically ruptured due to 39 

fluid pressure fluctuations, possibly correlated with swarm-like earthquake sequences. 40 

 41 

Keywords: earthquake swarm, fault zone, seismically-active fault-fracture network, veining, 42 

deformation lamellae. 43 

 44 
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1. Introduction 49 

The thermo-hydro-mechanical and chemical properties of fault zones and their host rocks affect 50 

a wide range of processes in the Earth’s crust, such as earthquake nucleation, propagation and arrest (e.g., 51 

Faulkner et al., 2006; Sibson, 1985; Wesnousky, 1988, 2006), crustal rheology (e.g., Behr & Platt, 2014; 52 

Handy et al., 2007) and migration of fluids (e.g., hydrothermal, magmatic, oil, gas; Cembrano & Lara, 53 

2009; Mittempergher et al., 2014; Richards, 2013; Tardani et al., 2016). The mechanical and hydraulic 54 

proprieties of fault zones vary largely through space and time during the seismic cycle and are 55 

intrinsically coupled (Caine et al., 1996; Faulkner et al., 2010; Wibberley et al., 2008). In particular, 56 

permeability changes during the seismic cycle at seismogenic depths are expected to promote co- to post-57 

seismic episodic fluid flow (i.e., fault-valve behavior; Sibson, 1989, 1992a, 1992b). Indeed, fault rupture 58 

events can lead to large, transitory increases of fault permeability (Cox, 2016; Sibson, 1989). Where 59 

ruptures breach overpressured fluid reservoirs, high-permeability fault segments provide conduits 60 

facilitating fluid redistribution in the Earth’s crust. On the other hand, post- to inter-seismic fault healing 61 

and sealing due to compaction and precipitation of hydrothermal minerals in pores and fractures reduce 62 

fault permeability, eventually arresting fluid flow (Cox, 2016; Sibson, 1989, 1992b, 1992a).  63 

The expression of the coupling among fault activity, fault permeability, fluid flow, fluid pressure 64 

and loading conditions in the geological record is documented by hydrothermal (e.g., epidote, quartz, 65 

chlorite, calcite, zeolite) fault-vein networks in exhumed fault zones over several geological settings 66 

(e.g., Cerchiari et al., 2020; Cox & Munroe, 2016; Dempsey et al., 2014; Lucca et al., 2019; Malatesta et 67 

al., 2021; Masoch et al., 2022; Micklethwaite et al., 2010; Ujiie et al., 2018). Mineralized fault-fracture 68 

networks display extensive hydrothermal alteration, mutually overprinting extension-to-hybrid vein 69 

arrays and dilatant breccias (Cox, 2016; Sibson, 2020). These features record significant stages of fluid 70 

flow and mineral precipitation during fault evolution, possibly associated with ancient seismic activity 71 

(e.g., Boullier & Robert, 1992; Cox, 2020; Cox & Munroe, 2016; Dempsey et al., 2014; Genna et al., 72 
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1996; Micklethwaite & Cox, 2004; Muñoz-Montecinos et al., 2020; Ujiie et al., 2018). In recently or 73 

currently active hydrothermal-magmatic settings, abundant fluid flow is commonly accompanied by 74 

earthquake swarms (e.g., Danré et al., 2022; Enescu et al., 2009; Fischer et al., 2014; Legrand et al., 75 

2011; Mesimeri et al., 2021; Passarelli et al., 2018; Shelly et al., 2016; 2013; Yukutake et al., 2011), i.e., 76 

clusters of low magnitude seismic events without a characteristic mainshock (Mogi, 1963). Earthquake 77 

swarm events, lasting from a few days to months (e.g., Fischer et al., 2014), are driven by either pore 78 

fluid pressure fluctuations (e.g., Baques et al., 2023; Hill, 1977; Ross & Cochran, 2021; Shelly et al., 79 

2022; Sibson, 1996) and aseismic slip (e.g., Danré et al., 2022; De Barros et al., 2020; Lohman & 80 

McGuire, 2007; Vidale & Shearer, 2006). Besides deviating from common mainshock-aftershock 81 

sequences, earthquake swarms generate also considerable non-double-couple (i.e., isotropic) seismic 82 

signal, as a result of tensile fracturing and hybrid faulting attributed to the ingression of pressurized fluids 83 

in the fault zone/system (Legrand et al., 2011; Phillips, 1972; Sibson, 1996; Stierle et al., 2014; Vavryčuk, 84 

2002). Similar human-induced seismic sequences may be associated with industrial fluid injection in 85 

boreholes (e.g., Ellsworth, 2013; Goebel et al., 2016; Guglielmi et al., 2015; Healy et al., 1968). 86 

There has been a great deal of progress in the last years regarding (i) the imaging of fault networks 87 

illuminated by earthquake swarms (e.g., Baques et al., 2023; Ross et al., 2020; Shelly et al., 2022), (ii) 88 

the determination of focal mechanisms of very small-in-magnitude earthquakes through seismological 89 

analysis (e.g., Essing & Poli, 2022; Mesimeri et al., 2021; Poli et al., 2021), and (iii) the relation of 90 

injected fluid volumes and rates with seismic energy release through fluid-injection experiments (e.g., 91 

Dorbath et al., 2009; Guglielmi et al., 2015; McGarr, 2014). Many authors proposed that swarm-like 92 

earthquake sequences activate km-scale mesh-like fault-fracture networks in zones of fault geometric 93 

complexity, such as fault linkages and step-overs (e.g., Hill, 1977; Ross et al., 2020; Ross et al., 2017; 94 

Shelly et al., 2022, 2015; Sibson, 1996; Sykes, 1978). However, to date, how a fault-fracture network 95 

develops both in space and time in seismically-active hydrothermal systems is poorly constrained due to 96 



Manuscript submitted to Geochemistry, Geophysics, Geosystems 

5 

 

(i) the poor spatial resolution (> 10s of meters) of seismological and geophysical techniques relative to 97 

the length of (micro-)fracture processes and (ii) the limited exposure at the Earth’s surface of exhumed 98 

fault-vein networks large enough to be comparable to currently active cases. 99 

In this work, we examine an extensive epidote-rich fault-vein network located at a linkage zone 100 

of the Bolfin Fault Zone (BFZ), well-exposed at centimeter-to-decameter scales over tens of square 101 

kilometers in the Atacama Desert (Northern Chile). The BFZ is an exhumed, crustal-scale, seismogenic 102 

(pseudotachylyte-bearing) fault of the transtensional Coloso Duplex (Atacama Fault System, Chile, 103 

Figure 1) (Cembrano et al., 2005; Masoch et al., 2022, 2021; Scheuber & González, 1999). Based on the 104 

interpretation of field data and high-resolution (FEG-SEM) microstructural analysis of fault zone rocks, 105 

we reconstruct different stages during the development of an upper-crustal seismically-active 106 

hydrothermal system. The proximal wall-rock of small-displacement (< 1.5 m) fault-veins initially 107 

experienced a large transient stress pulse, attested by the occurrence of deformation lamellae within 108 

magmatic quartz. This deformed quartz is included as clasts within epidote-rich fault-veins, that record 109 

overprinting events of extensional veining and cataclasis. We interpret these microstructures as evidence 110 

of ancient swarm-like activity, from the first stages of dynamic crack propagation to the later cyclic crack 111 

opening and both seismic or aseismic slip, driven by fluid pressure fluctuations, within a mature and 112 

hydraulically connected fault-fracture system. These exposed fault-vein networks represent a unique 113 

geological record of the evolution in space and time of upper-crustal swarm-like seismic sources, from 114 

the early nucleation stage to the later development of a mature fault system.   115 

 116 
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Figure 1. Geological setting of the Bolfin Fault Zone. (a) Simplified geological map of the Coloso 118 

Duplex. The BFZ bounds the western side of the crustal-scale transtensional duplex. The green area 119 

indicates the distribution of the epidote-rich fault-vein networks and dilatant breccias within the Coloso 120 

Duplex. Modified from Cembrano et al. (2005). (b) Structural map of the BFZ architecture at Sand 121 

Quarry locality. Clusters of epidote-rich fault-vein networks and breccias are associated with NW-122 

striking, splay faults of the BFZ, and NE-striking faults. The faults splaying out from the BFZ represent 123 

transtensional faults within the duplex (thick red lines). Modified from Masoch et al. (2022). (c) 124 

Structural data of the fault core strands and epidote-rich fault-vein networks. Numbers in stereonets 125 

denote the location of structural sites in the map in (b). 126 

 127 

2. The epidote-rich fault-vein networks of the Bolfin Fault Zone  128 

The >40-km-long BFZ pertains to the 1000-km-long, Early Cretaceous, strike-slip intra-arc 129 

Atacama Fault System (Northern Chile; Figure 1) (Arabasz, 1971; Cembrano et al., 2005; Masoch et al., 130 

2021; Scheuber & González, 1999; Seymour et al., 2021). The BFZ displays sinistral strike-slip 131 

kinematics and bounds the western side of the crustal-scale transtensional Coloso Duplex (Cembrano et 132 

al., 2005; Masoch et al., 2022, 2021) (Figure 1a). At regional scale, the BFZ has a sinuous geometry 133 

across Jurassic-Early Cretaceous diorite-gabbro and tonalite-granodiorite plutons (Figure 1a). The 134 

ancient (125-118 Ma) BFZ seismicity is attested by presence of pseudotachylytes, formed at 5-7 km 135 

depth and ≤ 300 °C ambient temperature (Gomila et al., 2021; Masoch et al., 2022, 2021). Seismic 136 

faulting occurred in a fluid-rich environment as documented by syn-kinematic chlorite-epidote (-quartz-137 

calcite) veining and extensive propylitic alteration (Gomila et al. 2021).  138 

In detail, the BFZ architecture consists of multiple (ultra)cataclastic strands, up 6-m-thick, within 139 

a 150-m-wide damage zone (see Masoch et al., 2022 for the description of the fault architecture; Figure 140 

1b). The damage zone consists of variably fractured and brecciated rock volumes characterized by 141 

extensive epidote-rich fault-vein networks associated with NW-to-WNW-striking faults splaying from 142 

the BFZ (Figures 1b-c; 2) (Masoch et al., 2022). These subsidiary faults accommodated transtensional 143 
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slip (Figure 1c) within the Coloso Duplex (Cembrano et al., 2005; Veloso et al., 2015), with an apparent 144 

cumulative strike-slip displacement up to 1 km (Cembrano et al., 2005; Jensen et al., 2011; Stanton-145 

Yonge et al., 2020). The epidote-rich fault-vein networks consist of (i) small-displacement (< 1.5 m) 146 

sheared veins with lineated slickensides (Figure 2a-b, 2d-e), and (ii) extensional veins and dilatant 147 

breccias sealed by epidote + prehnite ± chlorite ± quartz ± K-feldspar (Figure 2b-c, 2f; see section 4.2). 148 

The small-displacement epidote-rich fault-veins extend up to tens of meters in length (Figure 1b). 149 

Sheared and extensional veins are arranged in four sets, dipping towards SW, NE, NW and S (Figure 150 

1c). Epidote lineated slickensides are decorated  by either stepped polished surfaces or mirror-like slip 151 

surfaces (Figure 2a, 2d), and their kinematics range from normal dip-slip to strike-slip (either sinistral 152 

and dextral; Figure 1c). Veins and breccias record repeated episodes of extensional fracturing and 153 

sealing, as they include angular fragments of earlier veins and breccias (Figure 2b-c). The epidote-rich 154 

fault-vein networks are surrounded by extensive reddish alteration haloes in the damaged wall-rock 155 

(Figure 2b-c, 2e-f). The epidote-rich fault-vein networks observed in the BFZ damage zone are spatially 156 

distributed within all the duplex (see Cembrano et al., 2005; Herrera et al., 2005) (Figure 1a).  157 

 158 
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 159 

Figure 2. The epidote-rich fault-vein network of BFZ. Coin for scale. Mineral abbreviations: Ab = albite, 160 

Chl = chlorite. (a) Discrete extensional fault surface decorated by epidote slickenfibers. WGS84 GPS 161 
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location: 23.883944°S, 70.486689°W. Modified from Masoch et al. (2022). (b) Epidote-rich hybrid 162 

extensional-shear vein including angular fragments of earlier veins (dark green). The vein is reactivated 163 

by a whitish calcite-palygorskite vein (boundary on the right side), referable to post-Miocene 164 

deformation (see Masoch et al., 2021 for details). Sample 19-33. WGS GPS location: 23.99803°S, 165 

70.44051°W. Modified from Masoch et al. (2022). (c) Polished sample of an epidote sheared vein 166 

surrounded by a reddish alteration halo on both sides. The pale green-colored cataclasite includes dark 167 

green fragments of early veins. Sample 19-48. WGS84 GPS location: 23.88442°S, 70.48567°W. 168 

Modified from Masoch et al. (2022). (d) Sheared vein with lineated and highly reflective (i.e., mirror-169 

like) slickenside. The black line indicates the orientation of the thin section scan shown in (e). Sample 170 

19-38. WGS84 GPS location 23.88424°S, 70.48642°W. (e) Plane-polarized light scan of thin section of 171 

a lineated sheared vein, showing the spatial distribution of the microstructures observed in the micro-172 

damage zone and in the sheared vein (red lines). (f) Plane-polarized light scan of thin section of a sheared 173 

vein recording multiple episodes of extensional-to-hybrid veining and along vein-boundary shearing. 174 

Sample 19-46. WGS84 GPS location 23.88428°S, 70.48615°W. 175 

 176 

3. Methods  177 

Microstructural analysis was conducted on Syton-polished 100-µm-thick thin sections (n=10) cut 178 

parallel to the fault lineation and orthogonal to the fault/vein wall. We used a Tescan Solaris (Field 179 

Emission Gun – Scanning Electron Microscope; FEG-SEM) installed at the Department of Geosciences 180 

of University of Padova (Italy). The instrument is equipped with backscattered electron (BSE), 181 

cathodoluminescence (CL), electron backscattered diffraction (EBSD), and quantitative wavelength-182 

dispersive spectroscopy (WDS) detectors. BSE and CL images were acquired at 5-10 kV and 0.3-3 nA, 183 

and 10 kV and 1-3 nA as accelerating voltage and beam current, respectively. The EBSD maps were 184 

acquired using the FEG-SEM equipped with a COMOS-Symmetry EBSD detector (AZtec acquisition 185 

software, Oxford Instruments), operating at 20 kV as accelerating voltage, 5-10 nA as beam current, 186 

0.15-0.30 µm as step size, 70° sample tilt and high vacuum. EBSD data were elaborated with the MTEX 187 

toolbox (https://mtex-toolbox.github.io/).  188 

https://mtex-toolbox.github.io/
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The composition of main mineral phases was obtained by WDS-FEG analysis. Acquisition 189 

conditions were: 15 kV (accelerating voltage); 6 nA (beam current); 1 µm (electron beam size); 5 s 190 

(counting time for background), 15 s (for Si, Al, Ca, Fe), and 10 s (for Na, K, Mg, Mn, Ti, Cr) on peak. 191 

Albite (Si, Al and Na), diopside (Ca), olivine San Carlos (Mg), orthoclase (K), hematite (Fe), and Cr, Ti 192 

and Mn oxides were used as standards. Na and K were analyzed first to prevent alkali migration affects. 193 

 194 

4. Results 195 

4.1. Weakly-deformed granodiorite and micro-damage zone of the sheared veins 196 

The weakly-deformed granodiorite consists of plagioclase (labradorite to andesine; Masoch et al., 197 

2022), quartz, K-feldspar with myrmekite, biotite, minor amphibole, ilmenite and magnetite (Figure 2c). 198 

The magmatic quartz shows weak undulose extinction and has a dominant bright to light grey CL shade 199 

locally cut by CL-dark micro-fractures (>10 µm in thickness) sealed by hydrothermal quartz ± K-feldspar 200 

(Figure 3a-b). 201 

The granodiorite adjacent to epidote-rich sheared veins is turned into reddish alteration haloes, 202 

up to 4 cm in thickness (Figures 2b-f), associated with (i) replacement of magmatic plagioclase by albite 203 

+ epidote, and of magmatic biotite and amphibole by chlorite ± opaques (Figure 2e-f), (ii) pervasive 204 

micro-fracturing, filled with epidote ± chlorite ± prehnite (Figure 2c, 2e-f), and (iii) deformation of the 205 

magmatic quartz. Quartz deformation microstructures include interlaced deformation bands, up to 10-206 

µm-thick, visible in CL by the darker shade crosscutting the bright to medium grey-shaded host quartz 207 

(Figure 3c-f). The deformation bands are in turn crosscut by thin (up to 15-µm-thick) micro-fractures 208 

healed by quartz ± K-feldspar ± albite (hereafter referred as “quartz-filled” veinlets), across quartz and 209 

K-feldspar grains (Figure 3c-f). These veinlets show a homogeneous dark CL shade and are oriented at 210 

high angle with respect to the vein boundary (Figure 3f). These deformation microstructures (hereafter 211 

referred to as “micro-damage zone”) fade away from the veins and disappear at distances ≥ 1 cm (Figure 212 
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3a-b). In the micro-damage zone, the quartz-filled veinlets increase in spatial density towards the veins 213 

(Figure 3c-f), while no apparent change in density of deformation bands is observed. In the footwall 214 

block, at < 100 µm distance from the sharp vein boundary, the magmatic quartz is strongly brecciated 215 

and healed by CL-dark grey-shaded quartz (also surrounded by epitaxial rim of CL-dark quartz; Figure 216 

3g-h). 217 

EBSD maps of the quartz show that the deformation bands visible in CL are oriented nearly 218 

orthogonal to the <c> axis (Figure 4a-b) and correspond to a minor crystallographic misorientation (< 2-219 

3°; see profiles in Figure 4c) with respect to the host grain. These features are typical of deformation 220 

lamellae (Fairbairn, 1941; Trepmann & Stöckhert, 2003), either referred to as short-wavelength 221 

undulatory extension (Trepmann & Stöckhert, 2013) or fine extinction bands (Derez et al., 2015). 222 

Therefore, quartz deformation bands will be referred to hereafter as deformation lamellae. The EBSD 223 

maps also show that the quartz-filled veinlets overgrew in epitaxial continuity with the host magmatic 224 

quartz (Figure 4a). 225 

 226 
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 227 
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Figure 3. Quartz microstructures in the weakly-undeformed granodiorite (a-b) and in the micro-damage 228 

zone of the veins (c-h). BSE images (left column) and their corresponding CL images (right column) 229 

with their distance to the vein boundary. Samples 19-37 and 19-38. Mineral abbreviations: Ab = albite, 230 

Kfs = K-feldspar, Pl = plagioclase, Qz = quartz. (a) Quartz grains outside the micro-damage zone. (b) 231 

Undeformed quartz grains show a homogeneous, bright CL signal. (c, e, g) Quartz grains appear almost 232 

undeformed in BSE images. (d, f, h) Deformed magmatic quartz shows bright to medium, CL grey-233 

shaded domains, which are pervasively cut by interlaced darker deformation lamellae (DL). These 234 

deformation features are cut by CL-dark quartz-filled veinlets. (g-h) Quartz grain close to the vein 235 

boundary in the footwall side. In the CL image in (h), the quartz grain appears strongly brecciated (almost 236 

pulverized) and is healed by CL-dark quartz. 237 

 238 

 239 

Figure 4. EBSD analysis of a deformed magmatic quartz in the micro-damage zone. (a) Inverse Pole 240 

Figure (IPF) map, color coded according to IPF legend. The analyzed large magmatic quartz grain is the 241 

same shown in Figure 3c-d. The IPF map is overlaid to the orientation contrast image. White lines mark 242 

the profiles plotted in (c). (b) Contoured pole figures. (c) Misorientation profiles. 243 

 244 

4.2. Epidote-rich sheared veins 245 

The epidote-rich sheared veins have a heterogeneous microstructure (Figures 2e-f, 5-6). Sample 246 

19-48, which includes both sides of the wall-rock surrounding the vein, consists of both undeformed and 247 
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cataclastic vein domains (Figures 2c, 2f, 6a). The undeformed domains consist of idiomorphic, zoned 248 

epidote (Al-rich; light: Fe-rich; Table S1 in the supporting information) ± prehnite (dark: Al-rich; light: 249 

Fe-rich; Table S1 in the supporting information), interstitial chlorite ± quartz ± K-feldspar, and wall-rock 250 

fragments (Figures 2c, 5a-b). Undeformed domains are generally present at the outer part of the vein, 251 

while the cataclastic domain is at the core (Figures 2c, 6a). The core of the vein consists of a porous fine-252 

grained (< 20 µm in size) matrix of epidote including fragments of earlier vein fillings and of the wall-253 

rock (Figure 2c). 254 

In samples 19-37, 19-38, and 19-46, which only include one side of the footwall wall-rock, the 255 

sheared veins consist of layered (proto)cataclasites to ultracataclasites in sharp contact with the topping 256 

undeformed vein (Figures 2e-f, 5a, 6b). Close to the wall-rock, the (proto)cataclasites consist of a fine-257 

grained (< 20 µm in size) matrix of zoned epidote ± prehnite with interstitial chlorite (Figure 5c-d), 258 

including fragments (up to cm in size) of earlier prehnite-epidote veins and wall-rock (Figure 5a, 5c-d), 259 

and some are foliated (Figure 5e). The ultracataclasites consist of a highly porous, fine-grained (≤ 500 260 

nm in size) matrix of epidote and prehnite, with interstitial chlorite, and fragments (up to 100 µm in size) 261 

of idiomorphic epidote and prehnite crystals and wall-rock (Figure 5d, 5f-g). Above the lineated 262 

slickensides, multiple vein generations are present (Figure 2f, 5a, 5d, 5f). Some veins consist of zoned 263 

prehnite crystals elongated orthogonal to the vein boundaries (Figure 5f). Other veins consist of zoned 264 

epidote-prehnite crystals, which present localized (ultra)cataclasite layers at the vein boundaries, marking 265 

further lineated slickensides (Figures 2f, 5a, 5d).  266 

Fragments of magmatic quartz within the veins appear brecciated under CL (Figure 5h). Micro-267 

fractures are sealed by CL-dark quartz, which rims the brecciated magmatic quartz fragment (Figure 5h). 268 

This darker rim shows a faint oscillatory zoning in the external part (Figure 5h). Magmatic quartz 269 

included in large (mm in size) wall-rock fragments shows the same deformation features (i.e., 270 
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deformation lamellae cut by epitaxial quartz-filled veinlets, Figure 5i-j) as observed in the micro-damage 271 

zone (Figure 3). 272 
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Figure 5. Microstructures of the epidote-rich sheared veins (samples 19-37, 19-38, 19-46 and 19-48). 274 

Mineral abbreviations: Ab = albite, Chl = chlorite, Ep = epidote, Kfs = K-feldspar, Prn = prehnite, Qz = 275 

quartz. (a) Overview of an epidote-prehnite sheared vein and associated footwall block. The sheared vein 276 

recorded multiple extensional-to-hybrid veining and along vein-boundary cataclasis. The largest vein 277 

includes mm-large fragments of earlier veins (dashed yellow lines) within the cataclastic domain. Dashed 278 

white lines indicate the top of each vein boundary. The white box indicates the detail shown in (d). (b) 279 

Vein filling consisting of idiomorphic zoned epidote. (c) Angular fragment of an early prehnite-epidote 280 

vein (dashed white line) included in epidote-rich vein protocataclasite. (d) Cataclasite with epidote grains 281 

overprinted by an extensional vein with epidote-prehnite crystals. (e) Foliated cataclasite. The sigmoidal 282 

clast consists of wall-rock fragments with elongated tails of finer fragments and epidote grains. (f) 283 

Ultracataclasite, defining the slip zone of a discrete polished surface, includes angular fragments of zoned 284 

epidote (light grey) and prehnite (dark grey). Multiple events of extensional-to-hybrid veining reactivate 285 

the sheared vein. The latter vein is sealed by elongated prehnite crystals and reactivating a hybrid 286 

extensional-shear one. Note the fibrous prehnite crystals above the white dashed line. (g) Matrix of 287 

ultracataclasite consisting of epidote nanoparticles (≤ 500 µm in size). Fragmented idiomorphic crystals 288 

of epidote and prehnite are included in the matrix. The ultrafine epidote grains have triple junctions and 289 

pores (<< 1 µm in size), locally filled with chlorite. (h) Quartz fragments within an epidote cataclasite. 290 

The quartz fragments are brecciated and rimmed by CL-darker quartz. (i-j) Quartz grains in wall-rock 291 

fragments (the larger is marked by the dashed white line) show the same deformation features observed 292 

in the micro-damage zone of the veins, shown in Figure 3. 293 

 294 



Manuscript submitted to Geochemistry, Geophysics, Geosystems 

19 

 

 295 

Figure 6. Schematic illustration summarizing the different microstructures observed in the epidote-rich 296 

sheared veins and associated wall-rock. (a) Sheared veins with both footwall and hanging wall blocks 297 

preserved. (b) Sheared veins with only the footwall block preserved. 298 

 299 

5. Discussion 300 

The epidote-rich fault-vein networks of the BFZ formed at temperatures ≤ 300 °C (Herrera et al., 301 

2005; Masoch et al., 2022), i.e. at conditions close to the brittle-ductile transition for quartz-rich crustal 302 
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rocks and corresponding to the base of the seismogenic upper crust (Scholz, 2019). Ancient (125-118 303 

Ma) seismicity along the BFZ is attested by pseudotachylytes, produced in a fluid-rich environment 304 

(Gomila et al., 2021) along the main segments of the fault system (Masoch et al., 2022, 2021). The 305 

epidote-rich fault-vein networks represent a subsidiary linkage set of structures that accommodated slip 306 

deficit along, and/or slip transfer between, the main seismogenic segments, during fault system growth 307 

(Cembrano et al., 2005; Herrera et al., 2005; Masoch et al., 2022, 2021).   308 

The SEM images document a polyphase deformation history associated with vein array 309 

formation, including (i) an initial stage (well-preserved in the wall-rocks nearby the epidote-rich veins, 310 

i.e., micro-damage zone) of fracture propagation with local fluid redistribution along micro-cracks, and 311 

(ii) following pulses of hydrothermal fluid infiltration, with of epidote ± prehnite, alternating with vein-312 

parallel cataclastic shearing, which shaped the mature architecture of the fault-fracture system. Below, 313 

we discuss the microstructural observations and propose a conceptual model for the nucleation (section 314 

5.1) and development (section 5.2) of a highly interconnected fault-fracture network in a seismically-315 

active hydrothermal system (Figure 7), distinguishing two deformation environments (rock-buffered vs. 316 

fluid-buffered) based on the mineralogy of vein fillings. Lastly, we compare our findings with 317 

observations of currently active systems (section 5.3). 318 

 319 

5.1. Wall-rock damage and local fluid redistribution during dynamic crack propagation 320 

Quartz deformation lamellae and quartz-filled veinlets in the micro-damage zone (Figures 3c-h, 321 

4) of the epidote-rich fault-veins formed at an early stage of development of the hydrothermal fault-vein 322 

system (Figure 7a), as attested by the presence of these microstructures within clasts inside the veins 323 

(Figure 5e-g). Quartz deformation lamellae have been reported in shock-impact rocks (e.g., Carter, 1965) 324 

and in exhumed middle-crustal shear zones from the Sesia-Lanzo Zone (Western Alps), associated with 325 

other high-stress deformation microstructures (e.g., twinning of jadeite, shattering of garnet), as evidence 326 
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of upper-crustal seismic ruptures that transiently propagated in the underlying ductile crust (Trepmann 327 

& Stöckhert, 2003). Deformation lamellae were produced experimentally in natural quartz deformed 328 

under high stresses and relatively low temperatures (400 °C) (Trepmann & Stöckhert, 2013). Similarly, 329 

they develop in metals deformed at high-strain rates and low temperatures (Drury, 1993).  330 

During an earthquake rupture propagation, a dynamic transient high-stress field is produced in 331 

the immediate surrounding of the rupture tip and leads to instantaneous rock failure and pulverization 332 

(Faulkner et al., 2011; Okubo et al., 2019; Reches & Dewers, 2005; Vermilye & Scholz, 1998) as 333 

recorded in the wall-rock of several exhumed pseudotachylyte-bearing faults (e.g., Di Toro et al., 2005; 334 

Mancktelow et al., 2022; Petley-Ragan et al., 2019). In contrast to seismic ruptures propagating at 335 

velocities of 1-4×103 m/s, micro-cracks may also propagate at extremely low velocities (sub-seismic: 10-336 

9-10-4 m/s) by sub-critical crack growth driven by stress corrosion (Atkinson & Meredith, 1987). Sub-337 

critical crack propagation is particularly efficient in silicate-built rocks in the presence of pressurized 338 

water, which maintains crack connectivity, and at high fluid temperatures (T ≥ 200°C), therefore at the 339 

ambient conditions during formation of the fault-vein networks described in this study. However, sub-340 

critical crack propagation cannot explain the high-stress perturbations recorded by the quartz deformation 341 

lamellae in the wall-rock surrounding the epidote-rich fault-veins (Trepmann & Stöckhert, 2013) 342 

(Figures 3c-h, 4). Thus, in the relatively small-displacement (< 1.5 m) and up to 10s-m-long faults and 343 

hybrid fractures of the epidote-rich fault-vein networks, we interpret the occurrence of deformation 344 

lamellae in the wall-rock quartz to reflect the high-stress field associated with rupture tip propagation at 345 

seismic speeds during initial fracturing (Figure 7a). Blenkinsop & Drury (1988) proposed a similar 346 

interpretation for the formation of this low-temperature intra-crystalline deformation microstructure 347 

found in the damage zone of the Bayas Fault hosted in quartzites (Cantabrian Zone, Variscan Orogen, 348 

Spain).  349 
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Quartz-filled veinlets sharply crosscutting the quartz deformation lamellae (Figure 3d, 3f) within 350 

the micro-damage zone of the epidote-rich veins (Figures 2e-f, 3-4) increase in spatial density towards 351 

the vein boundary (Figure 3), are mostly oriented at high angle with respect to the vein boundary (Figure 352 

3f, 3h), and are healed by the minerals (quartz, K-feldspar and albite) of the crosscut wall-rock (Figures 353 

3c-h, 4). Moreover, at the vein boundary in the footwall blocks, the deformed magmatic quartz is strongly 354 

brecciated (Figure 3g-h), resembling in-situ shattered or pulverized fault rocks found in exhumed upper 355 

to mid-lower crustal seismic fault zones (e.g., Fondriest et al., 2015; Johnson et al., 2021; Mancktelow 356 

et al., 2022; Mitchell et al., 2011; Ostermeijer et al., 2022). We therefore infer that the quartz-healed 357 

veinlets also resulted from wall-rock damage associated with the dynamic stress field during earthquake 358 

rupture tip propagation. Micro-fracturing and rapid healing of seismic faults has been documented in 359 

pseudotachylyte-bearing faults hosted in quartzo-feldspathic rocks and referred to the initial stage of 360 

seismic rupture propagation (Bestmann et al., 2016, 2012; Mancktelow et al., 2022). Williams & 361 

Fagereng (2022) reviewed the role of quartz precipitation in healing seismic faults during the seismic 362 

cycle at different environmental conditions and by different mechanisms (e.g., fluid advection, fluid 363 

depressurization, dissolution-precipitation creep, frictional heating). The authors observed that, at crustal 364 

conditions similar at which the epidote-rich fault-vein networks formed (i.e., temperature ≤ 300 °C and 365 

3-7 km depth), micrometer-thick veins can be completely healed by quartz in a timeframe spanning from 366 

days to hundreds of years, depending on the mechanisms involved in quartz precipitation. The quartz-367 

filled veinlets are hundreds of µm in length (Figure 3d, 3f. 3h) and up to 15 µm in thickness (Figure 3f) 368 

with most veinlets ~2-3-µm-thick (Figure 3d, 3f, 3h). The co-seismic opening of these micro-cracks 369 

induced a sudden decrease of pore-fluid pressure ranging from near-lithostatic to sub-MPa levels (e.g., 370 

Brantut, 2020; Cox, 2016; Sibson, 1992a, 1992b) that likely resulted in quartz (super)saturation, and 371 

eventually into local fluid vaporization (Amagai et al., 2019; Williams, 2019), and in rapid precipitation 372 

of amorphous silica (Amagai et al., 2019). Assuming the healing rates estimated by Williams & Fagereng 373 
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(2022) (see their Figure 8 and their discussion), the quartz-filled veinlets could have reasonably healed 374 

in a timeframe as long as tens of years (considering the largest veinlets), during the co- to post-seismic 375 

phase. Moreover, the veinlet filling is controlled in composition by the crosscut wall-rock minerals 376 

(quartz ± K-feldspar ± albite; Figure 3c-h), discarding any extensive fluid advection from external 377 

reservoirs (Williams & Fagereng, 2022). This observation also indicates that the co-to-post-seismic 378 

micro-fracture formation and healing occurred in a rock-buffered system, where percolation of external 379 

hydrothermal fluids or fluid redistribution was still minor, owing to the still immature stage of 380 

development of a fully interconnected network of permeable fractures and more conspicuous fluid 381 

circulation (Figure 7a). In summary, the microstructures preserved in the deformed magmatic quartz in 382 

the proximity of epidote-rich sheared veins resulted from dynamic propagation of seismic ruptures and 383 

co- to post-seismic healing of a newly-produced micro-fracture network. Both low-temperature crystal-384 

plasticity (deformation lamellae in quartz) and micro-fracturing accommodated the high-stress 385 

conditions around a propagating seismic rupture (Figure 7a). 386 

 387 
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Figure 7. Conceptual model summarizing the development of the seismically-active hydrothermal 389 

system recorded in the studied epidote-rich fault-vein networks. (a) Stage 1: initial stages of dynamic 390 

propagation of small seismic ruptures. The fault-fracture network is poorly interconnected, and, in turn, 391 

fluid circulation is relatively low and at cm-scale (rock-buffered system).  The blue box marks the zoom 392 

at the crack tip and shows the sequences of deformation processes that recorded the initial stages, well 393 

preserved in the wall-rocks, of seismic rupture propagation. (b) Stage 2: distributed swarm-like seismicity 394 

(fluid-buffered system). Highly-interconnected fault-fracture networks allow the ingression of 395 

overpressured fluids leading to swarm-like earthquake sequences, well recorded in the sheared veins. 396 

The cyclic deformation sequence is driven by fluid pressure fluctuations as illustrated in Figure 8. 397 

 398 

 399 

Figure 8. λ – Δσ diagram (left) and cartoon (right) illustrating the deformation cycle governing seismicity 400 

during the swarm stage. Failure curves represented for the minimum and maximum formation depths of 401 

the epidote-rich fault-vein network. The schematic λ – Δσ diagram illustrates the fluid pressure vs. 402 

tectonic stress paths recorded by the sheared veins, which show cyclic fluid-driven extensional-to-hybrid 403 

veining and shearing. The evolution of fluid pressure and stress states controls the temporal evolution 404 

and deformation path of swarm sequence till fluid depletion. 405 

 406 

5.2. Pore pressure oscillations in a highly connected hydrothermal (fluid-buffered) fault-fracture 407 

network  408 

The epidote-rich veining and shearing postdate the initial short-term co- to post-seismic 409 

deformation recorded in the deformed wall-rock magmatic quartz, as discussed in the previous section. 410 
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The initial fracturing and associated wall-rock damage was precursory to development of a more robust 411 

external fluid ingression within the initially low-permeability crystalline rocks (Figure 7). Robust fluid 412 

ingression was accompanied by a switch from the initially fluid-poor rock-buffered system to a fluid-413 

buffered one (Figure 7b). In hydrothermal systems, rock failure is governed by fault-valve behavior 414 

(Sibson, 1989, 1992a, 1992b), associated with transient fluctuations in pore fluid pressure. 415 

The epidote-rich fault-vein networks show cyclic and mutually overprinting events of extensional 416 

veining and shearing (Figures 2e-f, 5a-d). Cataclasites include fragments of earlier veins (Figures 2b-c, 417 

2e-f, 5a-d), indicating that extensional veining preceded either hybrid extensional-shear fracturing 418 

(Figures 2b, 5c) or shearing (Figure 2a). Cataclasites are overprinted by extensional(-shear) veins, which 419 

show cataclastic shearing along vein boundaries (Figures 2f, 5a, 5d, 5f). Some cataclasites are foliated 420 

(Figure 5e) suggesting that slip likely occurred by aseismic fault creep  (e.g., Chester & Chester, 1998; 421 

Rutter et al., 1986). On the other hand, most cataclasites display suspended clasts of wall-rocks and 422 

earlier veins (Figures 2e, 5a, 5c, 5h-j) similar to the microstructures observed in fluidized cataclasites 423 

and breccias, which have been interpreted as markers of co-seismic slip (e.g., Cox, 2016; Fondriest et 424 

al., 2012; Masoch et al., 2019; Smith et al., 2008). 425 

The overprinting between extensional veining and shearing can be interpreted with the use of  λ 426 

– Δσ failure mode diagrams (Cox, 2010), where λ is the pore fluid factor (λ = 
𝑝

𝜎𝑣
 ; where p and σv is the 427 

pore fluid pressure and the vertical stress, respectively) and Δσ is the differential stress (Δσ = σ1 – σ3; 428 

where σ1 and σ3 are the maximum and minimum principal compressive stresses, respectively). At low 429 

differential stresses (Δσ < 4T ; where T is the tensile strength of the material) and larger rate of increase 430 

in pore fluid pressure respect to the increase in tectonic loading, hydraulic fracturing (and extensional 431 

veining) occurs before shear failure (Murrel-Griffith failure criteria; Price & Cosgrove, 1990) (step A, 432 

Figure 8). Opening of extensional fractures prevents further increase in fluid pressure and pressurizes the 433 

fracture network. The progressive increase in tectonic-related differential stress leads to hybrid 434 
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extensional-shear failure (step B, Figure 8) to shear failure (step C, Figure 8), causing stress drop and 435 

fault depressurization (step D, Figure 8).  The progressive increase in tectonic-related differential stress 436 

could be achieved because the NE-, SW- and NW-dipping small-displacement epidote-rich vein arrays 437 

are (near-)optimally oriented with respect to the tectonic stress field (i.e., nearly subvertical-oriented 438 

compression direction; Cembrano et al., 2005; Veloso et al., 2015). The described deformation cycle can 439 

repeatedly occur if the system is dominated by increase rate of fluid pressure larger than increase rate of 440 

tectonic loading (Cox, 2016; Phillips, 1972). However, we cannot rule out that part of the cyclic 441 

deformation history recorded by the epidote-rich veins is the result of deformation events unrelated to 442 

the coupled evolution of fluid pressure and tectonic differential stress.  443 

 444 

5.3. Comparison with natural fluid-driven earthquake swarms    445 

Earthquake swarms are characterized by a spatiotemporal clustering of large number of small 446 

magnitude events, without a clear triggering mainshock (Mogi, 1963). Such a behavior requires external 447 

mechanisms driving seimsicity, among which fluid diffusion and aseismic slip are the preferred ones 448 

(e.g., De Barros et al., 2020; Lohman & McGuire, 2007; Vidale & Shearer, 2006). Recent studies 449 

revealed that both processes can coexists with fluid diffusion favoring the occurrence of aseismic slip, 450 

which triggers seismicity by stress transfer ahead of the slip front (e.g., Danré et al., 2022; Guglielmi et 451 

al., 2015). The occurrence of swarms is also controlled by the complexity of fault systems, such as fault 452 

linkages, step-overs, or hydrated fracture zones (e.g., Essing & Poli, 2022; Legrand et al., 2011; Poli et 453 

al., 2017; Ross et al., 2020, 2017; Shelly et al., 2022). For instance, thanks to high-precision earthquake 454 

relocation, Shelly et al. (2022) documented that two conjugate sets of strike-slip faults well-oriented with 455 

respect to the far-field stress were activated during the swarm-like 2020 Maacama sequence. Most 456 

earthquakes had moment magnitude MW < 1 and localized in overstepping segments of the Maacana 457 

Fault (Northern California). Moreover, swarm-like sequences produce both non-double-couple (i.e., 458 
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isotropic) and double-couple events in the same period of time, resulting from co-seismic fault opening 459 

(dilation) and shearing, respectively (e.g., Legrand et al., 2011; Shelly et al., 2013). 460 

Our geological observations (Figures 1-2, 5) show several analogies with the characteristics of 461 

earthquake swarms. At Stage 1, we infer the early development of a fault-fracture mesh within a low-462 

permeability intact rock volume, producing the pathways for the ingression of external pressurized 463 

hydrothermal fluids sustaining the swarmogenic activity of Stage 2 (Figures 7b-8). The microstructures 464 

found in the micro-damage zones of the veins and hybrid fractures (i.e., quartz deformation lamellae and 465 

quartz-filled veinlets; Figures 3-4) are consistent with rupture propagation of small-in-magnitude 466 

earthquakes, possibly also accompanied by quasi-static crack growth (Stage 1, Figure 7a). The fault-467 

fracture network progressively became hydraulically more connected during Stage 2 (Figure 7b). Cyclic 468 

fluid pressure fluctuations drove widespread epidote precipitation and development of the epidote-rich 469 

hybrid fracture and vein system (Figures 7b-8). We associate this stage with the activation of a 470 

swarmogenic system (Figure 7b) as suggested by the following analogies between our geological 471 

observations and earthquake swarms: 472 

1. Fault geometric complexity: the small-displacement (< 1.5 m) veins are located at geometric 473 

complexities, such as fault linkages and intersections (Figure 1b), within the crustal Coloso 474 

Duplex (Cembrano et al., 2005; Masoch et al., 2022) (Figure 1a). The fault-vein system is 475 

arranged into sets (i.e., NW-, NE- and SW-dipping fault-veins; Figure 1c) (near-)optimally 476 

oriented with respect to the local-stress field (i.e.,  subvertical-oriented σ1; Cembrano et al., 477 

2005; Veloso et al., 2015). Many works have shown that fault geometric complexities are the 478 

loci for the development of earthquake swarms (e.g., Legrand et al., 2011; Ross et al., 2020, 479 

2017), commonly activing fault-fracture networks well-oriented with the stress field (Shelly 480 

et al., 2022). Moreover, this structural arrangement forms a honey mesh-like fault network at 481 
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the scale up to 100s of meter (Figure 1b), which is the fault-fracture geometry commonly 482 

inferred to be activated during swarms (Hill, 1977; Sibson, 1996).  483 

2. Fluid diffusion within the fault system: faulting was driven by the ingression of pressurized 484 

fluids within the fault system (section 5.2) and the veins recorded cyclic extensional-to-hybrid 485 

veining and shearing (Figures 2b-f, 5a-g), which might be interpreted as the source of non-486 

double-couple (crack opening) and double-couple (shear fracture) processes occurring in 487 

swarm-like sequences (e.g., Legrand et al., 2011; Shelly et al., 2013). Bursts of short-lasting 488 

(tens to thousands of seconds) fluid pressure variations trigger repeated small earthquakes 489 

along active fault systems (Collettini, 2002; Essing & Poli, 2022; Piana Agostinetti et al., 490 

2017). Similarly, such a repeated condition of fluid (over-)pressurization in short timespans 491 

drives the deformation cycle (i.e., crack opening followed by along vein-boundary slip) 492 

recorded in the veins (Figure 5a, 5c-g) and described by the diagram in Figure 8.  493 

3. Coexistence of both aseismic and seismic slip: the sheared veins accommodated either 494 

aseismic fault slip, as attested by foliated cataclastic horizons (Figure 5e), and possible 495 

seismic fault slip, as documented by the occurrence of suspended clasts within cataclasites 496 

(Figures 2e, 5a, 5c, 5h-j), mutually overprinting crack opening (i.e., extensional veins) (Figure 497 

5a, 5f). The occurrence of both slip behaviors, coupled with fluid pressure diffusion, has been 498 

recently observed in the both natural swarm-like sequences (Danré, De Barros, Cappa, et al., 499 

2022) and fluid-injection experiments (Guglielmi et al., 2015). 500 

4. Small scale length: the veins extend for tens of meters in length (Figure 1b) and have a 501 

thickness up to 2-3 cm (Figure 2b-c), resulted from multiple events of crack opening and 502 

fracture shearing (Figures 2b-c, 2e-f, 5a, 5c-d, 5f-g). Considering that each crack opening 503 

episode results in dilatant slip ranging from tens to hundreds of µm (Figures 2f, 5a, 5f), these 504 
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are equivalent to micro-seismic events with -2 < MW < 0 (Wells & Coppersmith, 1994), which 505 

is the magnitude range typical of earthquake swarms (Mogi, 1963). 506 

 507 

6. Conclusions 508 

The extensive epidote-rich fault-vein networks of the damage zone of Bolfin Fault Zone and of 509 

the Coloso Duplex, at larger scale, are exceptionally well-exposed over tens of square kilometers in the 510 

Atacama Desert (Northern Chile) (Figure 1). The fault-vein networks are spatially distributed around 511 

major transtensional pseudotachylyte-bearing faults of the duplex, and consist of fault-veins with lineated 512 

slickenside, extensional veins and dilatant breccias (Figure 2). Based on microstructural analysis, we 513 

document that the wall-rocks in proximity to small-displacement (< 1.5 m) fault-veins initially 514 

experienced dynamic high stresses related to the propagation of small seismic ruptures in a poorly 515 

connected fault-fracture system with limited fluid infiltration (Figures 3-4, 7a). Instead, the epidote-rich 516 

fault-veins recorded cyclic crack opening and either seismic or aseismic shearing dominated by fluid 517 

pressure fluctuations in a mature and highly interconnected fault-fracture system (Figures 5-6, 7b, 8). As 518 

a consequence, the epidote-rich fault-vein networks of the Bolfin Fault Zone and, at larger scale, of the 519 

Coloso Duplex represent the mature architecture of a fault-fracture system in a high-fluid flux 520 

hydrothermal setting. Thus, the Coloso Duplex is interpreted as a fossil example of an upper-crustal 521 

seismogenic hydrothermal system, which generated fluid-driven earthquake swarms.  522 

 523 
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