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Abstract

Recently, more advanced synchronous global-scale satellite observations, the Soil Moisture Active Passive enhanced Level 3

(SMAP L3) soil moisture product and the Orbiting Carbon Observatory 2 (OCO-2) solar-induced chlorophyll fluorescence (SIF)

product, provide an opportunity to improve the simulations of both water and carbon cycles in land surface modeling. This

study introduces a mechanistic representation of SIF to the Simplified Simple Biosphere Model version 4 (SSiB4) coupled with

the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (TRIFFID). This newly developed

model with the observed satellite data indicates that introducing dynamic processes can lead to substantial improvement in

global carbon flux simulation. In the SSiB4/TRIFFID/SIF, four critical soil and vegetation parameters–B parameter, soil

hydraulic conductivity at saturation (Ks), wilting point, and maximum Rubisco carboxylation rate (Vmax)–were identified

through numerical sensitivity experiments. Among the four parameters, the B parameter has the most significant effects on

both soil moisture and SIF simulations. With the optimized B parameter, both soil moisture and SIF simulations were improved

substantially, with especially significant improvement for shrubs. The Ks and wilting point also affect both soil moisture and

SIF but with reduced magnitude. The Vmax directly affects photosynthesis, and its modification can substantially improve the

SIF simulation of needleleaf trees and C3 grasses. With all four calibrated parameters based on SMAP L3 and OCO-2 data, the

root-mean-squared error (RMSE) of soil moisture and SIF simulations decreased from 0.076 to 0.063 m3/m3 and from 0.143 to

0.117 W/m2/μm/sr, respectively.
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Key Points: 17 

• Dynamic vegetation processes substantially improve of terrestrial carbon flux simulation. 18 

• Satellite products lead to advances in simulation and understanding of water and carbon 19 

cycles and their interactions. 20 

• The B parameter, representing the slope of water retention curve, shows the most 21 

significant effects on both water and carbon cycles.  22 
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Abstract 23 

Recently, more advanced synchronous global-scale satellite observations, the Soil Moisture 24 

Active Passive enhanced Level 3 (SMAP L3) soil moisture product and the Orbiting Carbon 25 

Observatory 2 (OCO-2) solar-induced chlorophyll fluorescence (SIF) product, provide an 26 

opportunity to improve the simulations of both water and carbon cycles in land surface 27 

modeling.  This study introduces a mechanistic representation of SIF to the Simplified Simple 28 

Biosphere Model version 4 (SSiB4) coupled with the Top-down Representation of Interactive 29 

Foliage and Flora Including Dynamics Model (TRIFFID).  This newly developed model with the 30 

observed satellite data indicates that introducing dynamic processes can lead to substantial 31 

improvement in global carbon flux simulation.  In the SSiB4/TRIFFID/SIF, four critical soil and 32 

vegetation parameters--B parameter, soil hydraulic conductivity at saturation (Ks), wilting point, 33 

and maximum Rubisco carboxylation rate (Vmax)--were identified through numerical sensitivity 34 

experiments.  Among the four parameters, the B parameter has the most significant effects on 35 

both soil moisture and SIF simulations.  With the optimized B parameter, both soil moisture and 36 

SIF simulations were improved substantially, with especially significant improvement for shrubs.  37 

The Ks and wilting point also affect both soil moisture and SIF but with reduced magnitude.  The 38 

Vmax directly affects photosynthesis, and its modification can substantially improve the SIF 39 

simulation of needleleaf trees and C3 grasses.  With all four calibrated parameters based on 40 

SMAP L3 and OCO-2 data, the root-mean-squared error (RMSE) of soil moisture and SIF 41 

simulations decreased from 0.076 to 0.063 m3/m3 and from 0.143 to 0.117 W/m2/μm/sr, 42 

respectively.   43 

 44 

1 Introduction 45 

The terrestrial carbon and water cycles are tightly coupled by biological plant processes 46 

(Niyogi and Xue, 2006; Scholze et al., 2016).  The interactions between soil moisture and carbon 47 

flux have been confirmed by previous studies (Koster et al., 2016; Qiu et al., 2018).  Surface soil 48 

moisture plays a crucial role in land-atmosphere interactions (Humphrey et al., 2021; McColl et 49 

al., 2017; Seneviratne et al., 2010).  It directly affects the photosynthesis and transpiration 50 

processes (Cox et al., 2002; Zhan et al., 2003) and indirectly affects carbon assimilation through 51 
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modulating phenological processes (Zhang et al., 2015).  The amount of available soil moisture 52 

is a key limiting factor on photosynthesis and transpiration since it affects both the water use and 53 

carbon uptake of the plant through the leaf stomata gas exchange (Manzoni et al., 2013), which 54 

makes the interactions between vegetation and soil moisture dynamics contribute significantly to 55 

the structure and function in arid and semiarid ecosystems (Walker et al., 1981; Bhark and Small, 56 

2003; D'Odorico et al., 2007).  The terrestrial ecosystem provides feedback on the water cycle 57 

through transpiration and vegetation structure (Xue et al., 2004; Kang et al., 2007).   58 

Surface soil moisture has large uncertainty in spatiotemporal distribution, and great 59 

efforts have been devoted to improving measurements using active or passive microwave 60 

instruments (Font et al., 2001; Njoku et al., 2003; Entekhabi et al., 2010; Kerr et al., 2012).  The 61 

assimilation of the remotely sensed surface soil moisture has the potential to improve land 62 

surface processes modeling (Wander et al., 2014; Scholze et al., 2016).  Wu et al. (2020) found 63 

that the Soil Moisture and Ocean Salinity (SMOS) soil moisture data can be used to constrain the 64 

simulations of the terrestrial biosphere carbon cycle to optimize soil hydrological and 65 

biophysical parameters simultaneously.  The Soil Moisture Active Passive (SMAP) mission is 66 

the most recent space-borne mission at L-band and has been considered one of the most 67 

promising satellites for surface soil moisture monitoring (Wigneron et al., 2017).  Recent studies 68 

suggest that SMAP outperforms other satellite products compared to in situ soil moisture 69 

measurements (Ma et al., 2019; Beck et al., 2021).  Zhang et al. (2022) used the direct insertion 70 

of SMAP soil moisture observation to improve the simulated land-surface carbon fluxes across a 71 

variety of timescales.  The SMAP product can provide a better representation of soil moisture, 72 

which suggests its potential for improvement in coupled carbon-water dynamics in terrestrial 73 

ecosystem models.   74 

In recent years, remote sensing of solar-induced chlorophyll fluorescence (SIF) has been 75 

a rapidly advancing front in investigating carbon dynamics and other applications (Frankenberg 76 

et al., 2011; Sun et al., 2018; Doughty et al., 2022; Leng et al., 2022).  The SIF retrieved from 77 

spaceborne spectrometers has been extensively used as a proxy for terrestrial photosynthesis to 78 

understand terrestrial ecosystem dynamics (Sun et al., 2017; Helm et al., 2020).  As a signal 79 

emitted by the photochemically active centers of plants, SIF is directly linked to the actual 80 

process of photosynthesis (Porcar-Castell et al., 2014).  Gonsamo et al. (2019) found that the 81 

Orbiting Carbon Observatory-2 (OCO-2) SIF can accurately capture the control of soil moisture 82 
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on photosynthetic activity, especially for regions with distinct seasonality of rainfall.  Lee et al. 83 

(2015) incorporated equations coupling SIF to photosynthesis in a land surface model and 84 

confirmed that SIF has the potential to improve photosynthesis simulation.  Qiu et al. (2018) 85 

incorporated this mechanistic representation of SIF and the Greenhouse gases Observing 86 

SATellite (GOSAT) and the Global Ozone Monitoring Experiment-2 (GOME-2) SIF 87 

measurements into a global terrestrial biosphere model, the Simplified Simple Biosphere Model 88 

version 2 (SSiB2/SIF), to evaluate and investigate the model-simulated relationships between 89 

soil moisture and SIF.  In this study, we incorporated this existing SIF module into SSiB version 90 

4 (SSiB4) to enable the fluorescence simulation, which is directly linked to photosynthetic 91 

activity and gross primary production (GPP). 92 

In most studies, the vegetation conditions are specified based on observed and satellite-93 

derived data, which suppresses the interactions between soil moisture and carbon cycle dynamics 94 

and indicates an important deficiency in the representation of terrestrial carbon processes in 95 

coupled carbon balance-based dynamic vegetation models.  Dynamic vegetation models (DVMs) 96 

can simulate vegetation establishment, growth, competition, and mortality (Sitch et al., 2008).  97 

Studies suggest that the DVMs can be used at seasonal/interannual/decadal scales to simulate the 98 

land/atmosphere feedback (Lu et al., 2001; Levis and Bonan, 2004; Kim and Wang, 2012; Zhang 99 

et al., 2021).  The Top-down Representation of Interactive Foliage and Flora Including 100 

Dynamics model (TRIFFID) uses the CO2 fluxes at the land-atmosphere interface to update plant 101 

distributions and soil carbon, which allows the changes in biophysical properties to provide 102 

feedback onto the atmosphere (Cox et al., 2001; Hawkins et al., 2019).  TRIFFID has been 103 

validated across spatial scales and ecosystems (Cox et al., 2000; Cox et al., 2004; Piao et al., 104 

2009; Zhang et al., 2015; Liu et al., 2019).  It serves as the foundation of the Joint UK Land 105 

Environment Simulator (JULES) for global carbon budget assessment (Clark et al., 2011; Le 106 

Quéré et al., 2016) and was coupled to SSiB4 to study the connections between vegetation 107 

dynamics and climate variability (Zhang et al., 2015).  Liu et al. (2019) validated the vegetation 108 

distribution and leaf area index (LAI) simulated by SSiB4/TRIFFID against satellite products.  109 

With the coupling of TRIFFID, the relevant land-surface characteristics of vegetation cover and 110 

structure are modeled directly, which suggests SSiB4/TRIFFID can be used to investigate the 111 

role and mechanisms of the interactions between soil moisture and carbon cycle dynamics. 112 
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This study used the SMAP L3 soil moisture data, in conjunction with the OCO-2 SIF 113 

measurements, to evaluate the soil moisture and SIF simulated by SSiB2/SIF and 114 

SSiB4/TRIFFID/SIF as well as the relationships between the soil moisture and SIF simulation to 115 

investigate the effects of dynamic vegetation processes on soil moisture and carbon flux 116 

estimates.  We integrated the two satellite measurements into SSiB4/TRIFFID/SIF to improve 117 

the model parameterization and to investigate the broad-scale relationships between soil moisture 118 

and carbon cycle dynamics, providing the opportunity to better understand the mechanistic 119 

processes in the global terrestrial biosphere model that bridges water and carbon cycles.  This 120 

paper is organized as follows: Section 2 presents the model structure, experimental design, and 121 

the satellite datasets used for evaluation and calibration.  The effects of the dynamic vegetation 122 

processes and key parameters on SM, SIF, and GPP simulations and the performance after 123 

calibration are illustrated in Section 3.  Discussions and concluding remarks are presented in 124 

Section 4 and Section 5, respectively. 125 

 126 

2 Model description, experimental design, and data 127 

2.1 Model description 128 

SSiB is a biosphere model that intends to simulate the biophysical exchange processes 129 

realistically (Xue et al., 1991 and 1996).  Zhan et al. (2003) developed an analytical solution 130 

approach from a photosynthesis model (Collatz et al., 1991, 1992) and incorporated it into SSiB 131 

to generate SSiB2, which improved the land surface CO2 fluxes simulation.  The dynamic 132 

vegetation model, TRIFFID, which has been widely used in vegetation-climate interaction 133 

studies (Cox et al., 2000; Harper et al., 2016), was coupled to SSiB4 (Xue et al., 2006) to 134 

calculate vegetation dynamics.  In SSiB4/TRIFFID, SSiB4 provides net plant photosynthesis 135 

assimilation rate, autotrophic respiration, and other surface conditions such as canopy 136 

temperature and soil moisture for TRIFFID.  TRIFFID updates the vegetation dynamics, 137 

including the plant functional type (PFT) fractional coverage, vegetation height, and LAI, for 138 

SSiB4.  Equations coupling SIF to photosynthesis, which were incorporated into the Community 139 

Land Model version 4 (CLM4, Lee et al., 2015), were incorporated into SSiB2 by Qiu et al. 140 
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(2018).  In this study, the SIF module was incorporated into SSiB4/TRIFFID, forming 141 

SSiB4/TRIFFID/SIF, to enable the chlorophyll fluorescence simulation in photosynthesis. 142 

2.2 Experimental design 143 

In this study, SSiB2/SIF and SSiB4/TRIFFID/SIF were used to simulate the global soil 144 

moisture, SIF, and GPP and to assess the effects of the dynamic vegetation process on the 145 

simulations.  The SSiB2/SIF model was driven by atmospheric forcing from 2010 to 2019 146 

(Figure 1a).  For the SSiB4/TRIFFID/SIF model, we first conducted spin-up simulations driven 147 

with climatological forcing and 1979 CO2 concentration for 100 years to reach a quasi-148 

equilibrium state as done by Liu et al. (2019) and Huang et al. (2020).  Using the quasi-149 

equilibrium simulation results as the initial vegetation conditions, such as each plant functional 150 

type’s (PFT) fraction coverage, leaf area index (LAI), etc., we performed transient runs driven 151 

with historical meteorological forcing and yearly updated atmospheric CO2 concentration from 152 

1979 to 2019 (Liu et al., 2019) (Figure 1b).  The time step of model integration is 3 h, and the 153 

spatial resolution of the model is 0.5°×0.5°.  The experiments covered the period from 2010 to 154 

2019 in SSiB2/SIF and 1979 to 2019 in SSiB4/TRIFFID/SIF, and the results from April 2015 to 155 
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December 2019, when the soil moisture and SIF satellite data were both available, were 156 

analyzed.   157 

 158 

Figure 1. Experiment design for (a) SSiB2/SIF and (b) SSiB4/TRIFFID/SIF. 159 

Studies have shown that soil properties substantially impact the soil moisture simulation 160 

in SSiB models, especially the parameterization of two key parameters, the B parameter and the 161 

hydraulic conductivity at saturation (Ks) (Xue et al., 1996; Qiu et al., 2018).  The B parameter is 162 

an empirical constant that is dependent on the soil type.  It represents the slope of the water 163 

retention curve and determines the relationship between the soil water potential and the 164 

volumetric soil water content through the following pedotransfer functions (Clapp and 165 

Hornberger, 1978): 166 

𝜓 = 	𝜓!	(
𝜃
𝜃!
)"# (1) 

where ψ is the soil water potential; ψs is the soil water potential at saturation; θ is the volumetric 167 

soil water content; and θs is the volumetric soil water content at saturation.  The hydraulic 168 

conductivity at saturation (Ks) is the key coefficient in the soil water diffusion equation.  This 169 
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equation is used to calculate the transfer of water between the three soil layers in SSiB models.  170 

Both the B parameter and Ks affect the soil water diffusion (Xue et al., 1996): 171 

𝑄 =	−𝐾!	(
𝜃
𝜃!
)(%#&')[

𝜕𝜓
𝜕𝑍

+ 1] (2) 

where Q is the soil water diffusion; and ∂ψ/∂Z is the soil water potential gradient. 172 

In addition to these two parameters, Qiu et al. (2018) found that the wilting point is a 173 

parameter directly linked to stomatal resistance and consequently to photosynthesis processes, 174 

thus affecting soil moisture through transpiration and demonstrating the close link between the 175 

water and carbon cycles.  The wilting point is defined as the soil water content below which the 176 

vegetation transpiration process tends to inhibit (Tolk, 2003).  In the SSiB model, an empirical 177 

equation was developed to relate the soil moisture and stomatal conductance for each PFT (Xue 178 

et al., 1991), in which the wilting point is the natural logarithm of soil water potential at which 179 

the stomata close completely.  In SSiB2/SIF and SSiB4/TRIFFID/SIF, the wilting point controls 180 

the stomata opening and affects the photosynthesis process through the β factor, the adjustment 181 

parameter on stomatal conductance: 182 

β = 1 − exp	{−𝐶%[𝐶) − ln	(−𝜓)]} (3) 

where C1 is the wilting point and C2 is a slope factor that depends on the vegetation type. 183 

The maximum Rubisco carboxylation rate (Vmax) is a vegetation parameter that directly 184 

affects the photosynthesis rate (Zhan et al., 2003).  The model simulated photosynthesis rates are 185 

controlled by three limitation factors related to Rubisco, electron transportation, and product 186 

sink.  The vegetation parameter, Vmax, plays a key role in this computation.  It determines the 187 

photosynthetic limitations and serves as a link between the water and carbon cycles since it can 188 

also affect soil moisture through transpiration.   189 

We have conducted a large number of experiments to test the parameters that affect the 190 

water and carbon cycle simulations in SSiB4/TRIFFID/SIF, and confirmed the importance of 191 

these four parameters mentioned above.  The effects of the four parameters on soil moisture and 192 

SIF were tested through adjusting them within their normal ranges.  Figure 2 shows the 193 
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schematic flowchart of the SSiB4/TRIFFID/SIF model.  The black boxes are the model 194 

components.  The blue boxes are the satellite products used to evaluate the soil moisture and SIF 195 

simulations and to calibrate the parameters.  The brown box and the green boxes represent the 196 

soil property parameters and the vegetation parameters tested and calibrated in this study, 197 

respectively.   198 

 199 

Figure 2. Overview flowchart of the SSiB4/TRIFFID/SIF model and the modified parameters in 200 

the model.  The black boxes are the SSiB4/TRIFFID/SIF model components; the brown boxes 201 

represent the modified soil property parameters in the model; the green box represents the 202 

modified vegetation parameters in the model; and the blue boxes are the satellite data.  SMAP 203 
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L3: Soil Moisture Active Passive enhanced Level 3; OCO-2: Orbiting Carbon Observatory 2; 204 

LAI: leaf area index. 205 

We designed the following four sets of experiments to assess the effects of the four 206 

critical parameters on soil moisture and SIF simulation with the dynamic vegetation model 207 

coupled and for further calibration in SSiB4/TRIFFID/SIF (Table 1).   208 

1. For the control run (CTL), the original values of the parameters were used. 209 

2. For Test 1, the B parameter was modified.  Our preliminary experiments suggested this 210 

parameter has a larger impact on soil moisture than other parameters. 211 

3. For Test 2, the calibrated B parameter based on Test 1 was used, and the Ks was tested. 212 

4. For Test 3, the wilting point was tested with the calibrated B parameter and Ks based on 213 

Test 2. 214 

5. For Test 4, the Vmax was tested with the calibrated B parameter, Ks, and wilting point 215 

based on Test 3. 216 

 217 

Table 1. SSiB4/TRIFFID/SIF Experiment Design. 218 

 Experiment description 
CTL Original parameters 
Test 1 With modified B parameter 
Test 2 Same as Test 1 but with hydraulic conductivity at saturation (Ks) 

modified 
Test 3 Same as Test 2 but with wilting point (Wp) modified 
Test 4 Same as Test 3 but with maximum RuBP carboxylation rate (Vmax) 

modified 

2.3 Data 219 

The SSiB vegetation map and table based on ground survey and satellite-derived 220 

information are used as the initial condition for SSiB2/SIF simulation and SSiB4/TRIFFID/SIF 221 

quasi-equilibrium simulation (Dorman & Sellers, 1989; Xe et al., 1996, Zhang et al., 2015).  222 

Meteorological forcing data are used to drive the model.  The observation-based soil moisture, 223 

SIF, and GPP products are used to evaluate the model simulation and calibrate the model 224 



manuscript submitted to Global Biogeochemical Cycles 

 

parameterization.  The regions at latitudes higher than 60°N were excluded from the analysis 225 

because of the scarce satellite records. 226 

2.3.1 Meteorological forcing data 227 

The three-hourly meteorological forcing data from 1948 to 2008 used for the quasi-228 

equilibrium simulation in SSiB4/TRIFFID/SIF are from the Princeton global meteorological 229 

dataset for land surface modeling (Sheffield et al., 2006).  The dataset combines global 230 

observation-based datasets with the NCEP/NCAR reanalysis.  The spatial resolution is 1°×1°, 231 

and the temporal interval is 3 h.  Its 60-year mean climatology with 3-h intervals was generated 232 

and interpolated bilinearly to 0.5°×0.5° to drive the quasi-equilibrium simulation.  The hourly 233 

meteorological forcing data used for simulations in SSiB2/SIF and SSiB4/TRIFFID/SIF are the 234 

bias-corrected reconstruction of near-surface meteorological variables derived from the fifth 235 

generation of the European Centre for Medium-Range Weather Forecasts (ECMRF) atmospheric 236 

reanalysis (ERA5) (Cucchi et al., 2022).  This dataset has 0.5°×0.5° spatial resolution and a 1-h 237 

temporal interval.  The 3-hour average was generated to drive the transient simulations.  The 238 

variables included in the meteorological forcings are surface air temperature (K), pressure (Pa), 239 

specific humidity (g kg-1), wind speed (m s-1), downward shortwave radiation flux (W m-2), 240 

downward longwave radiation flux (W m-2), and precipitation (kg m-2 s-1). 241 

2.3.2 Observation-based data 242 

There is no human activity included in the SSiB4 model simulation.  Therefore, the 243 

potential vegetation distributions produced by the quasi-equilibrium run in SSiB4/TRIFFID/SIF 244 

are not the same as the vegetation map observed by satellite-derived products over some areas 245 

due to anthropogenic effects, such as the croplands in the Central US, Southern Brazil, Europe, 246 

India, and Eastern China.  In this study, we used the Global Land Cover (GLC) database for the 247 

year 2000 (Bartholome and Belward, 2005) derived from Satellite Pour 1’Observation de la 248 

Terre (SPOT) to exclude the cultivated and managed areas in simulation, evaluation, and 249 

analysis.     250 

The Soil Moisture Active Passive (SMAP) mission, launched by NASA on January 31, 251 

2015, is the newest L-band satellite dedicated to providing global surface soil moisture 252 
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measurements.  This study used the SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-253 

Grid Soil Moisture dataset (SMAP L3).  This dataset presents the volumetric surface soil 254 

moisture (m3/m3) at 0-5 cm and is superior to other satellite soil moisture products, including the 255 

Soil Moisture and Ocean Salinity (SMOS) and the ESA Climate Change Initiative (ESA CCI) in 256 

terms of capturing temporal trends compared with in-situ observations from global dense and 257 

sparse networks (Ma et al., 2019).  The assessment of the SMAP L3 product using the in-situ 258 

measurements from the core validation sites (CVSs) shows that the average unbiased root mean 259 

square error (ubRMSE) is lower than 0.04 m3/m3 (Colliander et al., 2017; O’Neill et al., 2020).  260 

Zhang et al. (2019) validated the SMAP L3 product using extensive ground measurements from 261 

sparse networks and found that the retrievals from the descending (6:00 AM) product and 262 

ascending (6:00 PM) product do not show significant differences.  In this study, the average of 263 

the descending and ascending products was bilinearly interpolated to 0.5°×0.5° for evaluation 264 

and calibration.  265 

The SIF simulation was evaluated using the Orbiting Carbon Observatory-2 (OCO-2) SIF 266 

product.  This mission, launched on July 2, 2014, measures SIF from the infilling of the 267 

Fraunhofer lines at 1:36 p.m. local time with a repeat frequency of approximately 16 days.  The 268 

retrieval precision of OCO-2 is considerably improved over other existing satellite SIF products, 269 

including the Greenhouse Gases Observing Satellite (GOSAT) product and the Global Ozone 270 

Monitoring Experiment-2 product (GOME-2) (Sun et al., 2018).  All soundings within a 1°×1° 271 

pixel were averaged and archived onto a 0.5° grid to generate OCO-2 SIF at 757 nm so that most 272 

of the pixels have sufficient soundings to retrieve the gridded monthly SIF (Qiu et al., 2020).  To 273 

use this dataset to assess the model simulated SIF, the simulation at noon and 3 p.m. in each time 274 

zone was selected to obtain the one at 1 p.m. through interpolation.  275 

Previous studies found that GPP and SIF had a strong linear relationship, and the satellite 276 

SIF data provide useful information on terrestrial GPP (Bacour et al., 2019; Joiner et al., 2013; 277 

Lee et al., 2015; Walther et al., 2016).  Li et al. (2018) explored the relationship between OCO-2 278 

SIF and tower GPP at 64 flux sites across the globe encompassing eight major biomes, 279 

confirming the strong correlation between SIF and GPP.  Because of the significant uncertainty 280 

in the quantification of global GPP due to the lack of direct GPP observations at a global scale 281 

(Wang et al., 2021; Zhang and Ye, 2021), we selected three global GPP datasets derived from 282 
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observation using different methods for comparison rather than evaluation or calibration.  First is 283 

the GLASS (Global Land Surface Satellite) GPP product generated from the Eddy Covariance - 284 

Light Use Efficiency (EC-LUE) model (Yuan et al., 2007).  The EC-LUE model has been 285 

validated widely throughout various ecosystems using the measurements from eddy covariance 286 

towers (Li et al., 2013; Yuan et al., 2014), and Jia et al. (2018) indicated that the EC-LUE model 287 

performed better than the MODIS algorithms.  This dataset has 0.05°×0.05° horizontal resolution 288 

and 8-day time intervals.  The second GPP product used for comparison is the FLUXCOM RS 289 

GPP product.  It uses machine learning to merge the carbon flux measurements from the 290 

FLUXNET eddy covariance towers and remote sensing data (Tramontana et al., 2016).  Zhang 291 

and Ye (2021) evaluated 45 global terrestrial GPP products by taking Model Ensemble GPP 292 

derived from observations as the reference dataset and recommended the RS product for global 293 

GPP comparison.  Its resolution is 0.5°×0.5° and the time interval is 8 days.  The last dataset is a 294 

global MODIS and FLUXNET-derived GPP product (FLUXSAT GPP) (Joiner and Yoshida, 295 

2021).  It used MODIS product as input to neutral networks to globally upscale GPP estimates 296 

from selected FLUXNET eddy covariance tower sites (Joiner and Yoshida, 2020).  The product 297 

has a 0.05° spatial resolution and a daily temporal resolution. 298 

 299 

3 Results 300 

3.1 Assessment of the simulated vegetation distribution 301 

The rate of change in vegetation fraction is less than 2% over the last 10 years of 302 

simulation, which means it reached a steady state after a 100-year spin-up (Liu et al., 2019) 303 

(Figure S1).  For most PFTs, the rate is less than 1.5%.  Using initial vegetation conditions 304 

derived from this quasi-equilibrium state, SSiB4/TRIFFID/SIF was driven with the historical 305 

meteorological forcing and yearly updated atmospheric CO2 concentration from 1979 to 2019.  306 

The simulated vegetation spatial distribution was compared with that simulated in the previous 307 

study (Liu et al., 2019) to ensure that the simulated vegetation spatial distribution is reasonable, 308 

which is the base for other simulated variables in the model.  The evergreen broadleaf trees in the 309 

Amazon, central Africa, and Indonesia, needleleaf trees in midlatitudes and high latitudes of 310 

North America and Eurasia, deciduous broadleaf trees in southeastern US, C3 grasses in central 311 
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US, South America, Eurasian Steppe, Africa, and east Australia, C4 plants in southeast US, South 312 

America, Africa, Southeast Asia, and northern Australia, and shrubs in the semi-arid areas are 313 

reasonably simulated (Figure S2).  Overall, the simulated vegetated area covers 77.5% of the 314 

global land surface.  The simulated tree, C3 grass, C4 plants, and shrubs cover 31.1%, 11.3%, 315 

15.3%, and 14.5%, respectively.  These fractions are consistent with those in the study of Liu et 316 

al. (2019). 317 

3.2 Effects of dynamic vegetation processes on SM, SIF, and GPP simulations 318 

The spatial distribution of the global SIF simulated by SSiB2/SIF and 319 

SSiB4/TRIFFID/SIF were evaluated against the OCO-2 measurements in Figure 3.  The SIF 320 

simulated in SSiB2/SIF shows a negative bias in the South American and African savanna 321 

regions, southeast China, and east US, while a positive bias in the boreal forest in North America 322 

and North and Central Asia.  In SSiB4/TRIFFID/SIF, the simulated SIF bias is positive in most 323 

regions, especially in semi-arid regions such as the Western United States, southwest South 324 

America, Africa, Central Asia, and Australia.  Its positive bias is smaller in boreal forests 325 

compared with that in SSiB2/SIF.  Table 2 lists the global spatial correlation coefficient (SCC), 326 

bias (BIAS), and root-mean-square error (RMSE) of the simulated SIF in SSiB2/SIF and 327 

SSiB4/TRIFFID/SIF compared with the OCO-2 SIF data.  The SCC increased by 10%, and the 328 

RMSE decreased by 12% in SSiB4/TRFFID/SIF, which shows an improvement in the spatial 329 

pattern of the simulated SIF in the run with dynamic vegetation included.  However, the absolute 330 

value of the global mean SIF bias increased in SSiB4/TRIFFID/SIF.  The improvement in SCC 331 

indicates that the vegetation spatial distribution simulated by SSiB4/TRIFFID/SIF is more 332 

realistic than the observation-based one used in SSiB2/SIF and further confirms the reasonability 333 

of the vegetation distribution simulation.  The simulated SIF in different seasons was also 334 

compared with OCO-2 SIF data.  The highest RMSE of simulation compared to OCO-2 occurs 335 

in summer both in SSiB2/SIF and SSiB4/TRIFFID/SIF.  The most obvious improvement in 336 
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SSiB4/TRIFFID/SIF appears in spring, with the SCC increasing by 37% and the RMSE 337 

decreasing by 18%.   338 

 339 

Figure 3.  Global differences of solar-induced chlorophyll fluorescence (SIF) between 340 

simulations in (a) SSiB2/SIF, (b) SSiB4/TRIFFID/SIF and Orbiting Carbon Observatory 2 341 

(OCO-2) data.  Units: W/m2/μm/sr. 342 

 343 

Table 2.  Spatial Correlation Coefficient (SCC), Mean Bias (BIAS), and Root-Mean-Square 344 

Error (RMSE) of annual SIF simulations compared to OCO-2 data.  Units: W/m2/μm/sr. 345 

 SSiB2/SIF SSiB4/TRIFFID/SIF 
SCC 0.779 0.864 
BIAS -0.043 0.064 
RMSE 0.169 0.143 

(a) SSiB2/SIF minus OCO-2 

 
(b) SSiB4/TRIFFID/SIF minus OCO-2 
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 346 

The GPP simulation in SSiB2/SIF and SSiB4/TRIFFID/SIF was compared with 347 

observation-based estimated GPP in 2015, excluding the polar regions.  In the three observation-348 

based estimates, the global GPP ranges from 835.2 to 1088 g C/m2/yr, with a median of 867.3 g 349 

C/m2/yr.  Figure 4 shows that the global GPP simulated by SSiB2/SIF is much lower than the 350 

observation-based estimations, with a value of 533.2 g C/m2/yr.  The simulated global GPP in 351 

SSiB4/TRIFFID/SIF is 875.2 g C/m2/yr, which is close to the median value of the three 352 

observation-based estimates.  Figure 5 further compared the latitudinal distribution of zonal 353 

mean GPP among the observation-based estimates and model simulations.  The GLASS and 354 

FLUXSAT products demonstrate higher GPP values near the equator, while the FLUXCOM 355 

product has higher GPP values in subtropical regions in the Northern Hemisphere.  The 356 

SSiB2/SIF GPP simulation is lower than the observation-based GPP products at all latitudes.  357 

The SSiB4/TRIFFID/SIF GPP simulation is close to the observation-based estimates except near 358 

the tropics, where the observation-based estimates show large discrepancies.  Therefore, the 359 

SSiB4/TRIFFID/SIF simulation is within the range of various observations.  Introducing the 360 

dynamic vegetation process can lead to significant improvement in GPP simulation throughout 361 

the globe.  The plausible reason that may contribute to the improvement of GPP simulation in 362 

SSiB4/TRIFFID/SIF is the diversity of PFTs existing in a single grid box.  In SSiB2/SIF, there is 363 

only one PFT in one grid box with the vegetation parameters, such as vegetation fraction cover 364 

(FRAC), LAI, and vegetation height (VH), specified based on a vegetation table (Sellers et al., 365 

1996).  In SSiB4/TRIFFID/SIF, each grid box consists of 7 PFTs, with the competition among 366 

them.  The vegetation parameters are updated based on the carbon budget and related to the 367 

surface energy and water cycles.  The improvement shows that the dynamic vegetation process 368 
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can substantially improve the simulation of the carbon process and can help to provide a 369 

reasonable simulation of vegetation conditions and carbon fluxes. 370 

 371 

Figure 4. Comparison among observation-based estimated, SSiB2/SIF simulated, and 372 

SSiB4/TRIFFID/SIF simulated global GPP in 2015 (60°S-75°N).  Units: g C/m2/yr. 373 
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Figure 5. Comparisons of the latitudinal distribution of the zonal mean GPP among the 375 

observation-based estimates, SSiB2/SIF simulation, and SSiB4/TRIFFID/SIF simulation. Units: 376 

g C/m2/yr. 377 

Figure S3 compares the simulated soil moisture in SSiB2/SIF and SSiB4/TRIFFID/SIF 378 

with SMAP L3 soil moisture data.  Over the globe, there was only marginal improvement in 379 

SSiB4/TRIFFID/SIF compared with SSiB2/SIF (Table S1).  However, in SSiB4/TRIFFID/SIF, 380 

the global simulated SIF is higher, which represents higher photosynthesis and transpiration, the 381 

simulated soil evaporation rate is much lower, leading to a marginal change in simulated 382 

evapotranspiration.  The spatial patterns of the soil moisture bias in SSiB2/SIF and 383 

SSiB4/TRIFFID/SIF are similar.  The models underestimated the surface soil moisture in most 384 

areas, such as the North American boreal forest, Eastern United States, Amazon Basin, 385 

equatorial Africa, and Southeast Asia.  The soil moisture was overestimated in the Eurasian 386 

boreal forest and central Asia.  Calibration of the parameters directly related to soil property and 387 

affecting the vertical soil water distribution in SSiB4/TRIFFID/SIF is needed to improve the soil 388 

moisture simulation, which will be discussed in Section 3.4.   389 

3.3 SIF-soil moisture relationship 390 

Soil moisture plays a dominant role in determining dryness stress on ecosystem 391 

production over most vegetated areas (Liu et al., 2020).  Several studies have analyzed the 392 

influence of soil water content limitation on vegetation productivity using various satellite 393 

products.  Short Gianotti et al. (2019) found that the SIF-soil moisture relationship has 394 

increasing response strength with aridity, with little in the light-limited humid regions of the 395 

contiguous United States.  Jonard et al. (2022) distinguished the water-limited and light-limited 396 

environments using the TROPOspheric Monitoring Instrument (TROPOMI) SIF data and the 397 

SMAP multitemporal dual channel algorithm (MT-DCA) soil moisture data in the growing 398 

season.  We calculated the Pearson correlation coefficient between model-simulated SIF and soil 399 

moisture and evaluated it against that between OCO-2 SIF and SMAP L3 soil moisture.  The SIF 400 

and soil moisture data used here are monthly data with seasonal cycles removed.  Figure 6 shows 401 

the comparison of the correlation coefficient distribution between soil moisture and SIF in 402 

observation and simulation.  The observed SIF-soil moisture correlation map shows a significant 403 
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positive correlation over most regions, suggesting the water limitation on vegetation growth.  404 

Both SSiB2/SIF and SSiB4/TRIFFID/SIF simulations show a strong correlation between soil 405 

moisture and SIF anomalies in semi-arid regions, such as the Western United States, South 406 

American savanna, and South and East Africa.  Meanwhile, both SSiB2/SIF and 407 

SSiB4/TRIFFID/SIF produce negative correlations over the Eastern United States, La Plata 408 

Basin, and south China, which is opposite to that in the observation.  Over the Eurasian Steppe 409 

and coastal Australia, SSiB2/SIF and SSiB4/TRIFFID/SIF simulations show different correlation 410 

relationships.  The SSiB4/TRIFFID/SIF model produced a positive relationship consistent with 411 

that derived from satellite data, while in SSiB2/SIF, the relationship is negative.  The SIF-soil 412 

moisture correlation derived from the simulations in SSiB4/TRIFFID/SIF is more consistent with 413 

that derived from satellite data, showing that the coupling with the dynamic vegetation model 414 



manuscript submitted to Global Biogeochemical Cycles 

 

helps to better capture the effects of monthly soil moisture dynamics on vegetation 415 

photosynthetic activities. 416 

 417 

Figure 6. Comparisons of the correlations in the Northern Hemisphere summer between the 418 

monthly anomalies of (a) SMAP L3 soil moisture data and OCO-2 SIF data, (b) the SSiB2/SIF 419 

(a) Correlation between SMAP L3 and OCO-2 

 
(b) SSiB2/SIF correlation between soil moisture and SIF 

 
(c) SSiB4/TRIFFID/SIF correlation between soil moisture and SIF 
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simulated soil moisture and SIF, and (c) the SSiB4/TRIFFID/SIF simulated soil moisture and 420 

SIF. 421 

3.4 Effects of key parameters on soil moisture and SIF simulation 422 

The B parameter, Ks, wilting point, and Vmax were changed within the normal range of 423 

soil and vegetation property variations to conduct experiments to show the model sensitivity to 424 

changes in the parameters (Beerling and Quick, 1995; Von Caemmerer and Furbank, 1999; Xue 425 

et al., 1996) (Table 3).  The experiments covered the period from 2010 to 2019.  The years from 426 

2010 to 2014 were used for spin-up, and the annual results from 2015 to 2019 were analyzed.   427 

 428 

Table 3.  Soil and vegetation parameters used in the sensitivity experiments. 429 

 Values 
B parameter 3, 4, 5, 6, 7, 8, 9 
Ks 2E-3, 2E-4, 2E-5, 2E-6, 2E-7 
Wilting point 2, 4, 6, 8, 10, 12 
Vmax 20, 40, 60, 80, 100, 120, 140 (μmol/m2/s) 

 430 

3.4.1 Soil property parameters 431 

Previous studies have shown that the soil property parameters are one of the key sources 432 

of uncertainties in soil moisture simulation in land surface models (Demaria et al., 2007; Qiu et 433 

al., 2018).  According to previous work, carbon fluxes are also sensitive to soil parameters in the 434 

SSiB model (Prihodko et al., 2008).  To improve the soil moisture and SIF simulation in 435 

SSiB4/TRIFFID/SIF and to better understand the role of the parameters determining the soil 436 

texture in the interactions between the water and carbon cycles, we examined the effects of B 437 
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parameter, Ks, and wilting point on soil moisture and SIF simulation in SSiB4/TRIFFID/SIF 438 

(Figure 7). 439 

 440 

Figure 7.  Calculated soil moisture (blue), SIF (orange) for (a, d, g, j) needleleaf trees, (b, e, h, k) 441 

C4 plants, and (c, f, i, l) shrubs under different (a, b, c) B parameter; (d, e, f) logarithm of Ks; (g, 442 

h, i) wilting point, and (j, k, l) Vmax. 443 

 444 

The effects of the B parameter on water and carbon cycles are complex.  With a higher B 445 

parameter, soil moisture increased, and SIF decreased (Figures 7a, 7b, 7c).  A higher B 446 

(a) Needleleaf Trees (b) C4 Plants (c) Shrub 

   
(d) Needleleaf Trees (e) C4 Plants (f) Shrub 

   
(g) Needleleaf Trees (h) C4 Plants (i) Shrub 

   
(j) Needleleaf Trees (k) C4 Plants (l) Shrub 
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parameter represents a soil texture closer to clay, which leads to more difficulty in soil 447 

evaporation and more soil moisture.  Meanwhile, soil hydraulic conductivity decreased with 448 

increased B parameter (Eq. 2), which reduced the total runoff and may have increased 449 

evaporation; however, the change in evaporation was marginal.  Overall, a higher B parameter is 450 

associated with more soil moisture.  Moreover, the B parameter indirectly modifies SIF through 451 

its effect on the wilting point.  The change in the B parameter modifies the relationship between 452 

soil water potential and soil water content through the retention curve.  When the B parameter is 453 

higher, for a given amount of soil water content, the absolute value of water potential increases, 454 

and then the β factor in Eq. 3 is reduced, leading to stomata close and lower SIF and 455 

transpiration.  In the tropics, the soil moisture increased with a larger B parameter while the SIF 456 

and transpiration almost stayed the same.  The abundant soil water content in the rainforests 457 

keeps the β factor high in the change of the B parameter. 458 

As for Ks, the soil moisture decreases when Ks is higher (Figures 7d, 7e, 7f).  Higher Ks 459 

indicates that the soil texture is closer to sand, increasing surface infiltration and changing the 460 

vertical soil water content distribution.  The hydraulic conductivity is larger with higher Ks, 461 

leading to larger drainage and decreased total soil water content.  When Ks becomes very low, 462 

the surface infiltration becomes extremely low, leading to much larger runoff and low root zone 463 

soil moisture.  The low root zone soil water potential under low Ks conditions in 464 

SSiB4/TRIFFID/SIF lead to lower β factor and SIF.  Therefore, the SIF drops in 465 

SSiB4/TRIFFID/SIF when the Ks value is very small.  In humid regions, it is hard for the soil 466 

water content to drop to a value at which photosynthesis weakens, so the SIF does not change 467 

obviously (Figure 7d). 468 

For the wilting point, when it increases, the soil moisture, at which the stomata close 469 

completely, drops, leading to a higher β factor (Eq. 3), allowing more open stomata and higher 470 

stomatal conductance, which leads to higher SIF and photosynthesis and transpiration rates 471 

(Figures 7g, 7h, 7i).  For example, in South Africa covered by savanna, when the wilting point 472 

increased from 4 to 10, the corresponding volumetric soil moisture at which β factor started to 473 

increase rapidly decreased from 0.30 to 0.13 m3/m3, and the simulated SIF increased from 0.40 474 

to 0.42 W/m2/μm/sr (Figure 7h).  Since a higher wilting point leads to higher transpiration rates, 475 

the soil moisture decreases with the increase of the wilting point.  However, the effects of the 476 
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wilting point on soil moisture are not as efficient as that of the B parameter and Ks.  For example, 477 

the soil moisture in South Africa dropped slightly from 0.169 to 0.165 m3/m3 when the wilting 478 

point increased from 4 to 10 (Figure 7h).   479 

3.4.2 Vegetation parameter 480 

Photosynthesis is an important process of the terrestrial carbon cycle, and it is simulated 481 

in SSiB2/SIF and SSiB4/TRIFFID/SIF following the analytical solution approach developed by 482 

Zhan et al. (2003) based on the Collatz et al. (1991) and Collatz et al. (1992) model.  The 483 

vegetation parameter directly related to photosynthesis, Vmax, varies considerably among and 484 

within plant functional types (PFTs) (Kattge et al., 2009; Wang et al., 2021; Wullschleger, 1993), 485 

and it cannot be measured directly but must be inferred by model inversion from photosynthesis 486 

measurements.  The terrestrial biosphere models demonstrate considerable sensitivity in carbon 487 

flux simulation given the uncertainty in Vmax (Bonan et al., 2011; Piao et al., 2013).  To further 488 

improve the carbon flux simulation in SSiB4/TRIFFID/SIF and to explore the effects of this 489 

vegetation parameter on water and carbon cycles, we examined the effects of Vmax on soil 490 

moisture and SIF simulation in SSiB4/TRIFFID/SIF.   491 

As demonstrated in Figure 7j, the photosynthesis rates of needleleaf trees are especially 492 

sensitive to the change in Vmax in all the PFTs simulated in SSiB4/TRIFFID/SIF.  When the Vmax 493 

value increased from 20 to 100 µmol/m2/s, the SIF simulation increased dramatically from 0.30 494 

to 0.43 W/m2/μm/sr, which is a much more marked increment compared with the changes in the 495 

B parameter, Ks, and wilting point as shown in Section 3.4.1.  For other PFTs, the effects of Vmax 496 

on SIF simulation are also significant.  For example, with the Vmax changing from 20 to 80 497 

µmol/m2/s, the SIF simulation increased from 0.40 to 0.43 W/m2/μm/sr in the South African 498 

savanna, and the SIF simulation increased from 0.27 to 0.34 W/m2/μm/sr in shrubland in the 499 

Western United States (Figure 7k).  The effects of Vmax on soil moisture simulation are similar to 500 

that of the wilting point.  With the increasing Vmax, the photosynthesis rates are higher, leading to 501 

higher SIF and transpiration rates, which results in lower soil moisture.  For example, in the 502 
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Western United States, the soil moisture decreased from 0.060 to 0.054 m3/m3 when the Vmax 503 

increased from 20 to 100 µmol/m2/s (Figure 7l). 504 

3.5 Improvement in soil moisture and SIF simulation after calibration 505 

Based on the tests in section 3.4, we identified that the B parameter, Ks, wilting point, 506 

and Vmax are the key parameters that significantly impact both soil moisture and SIF simulations 507 

in SSiB4/TRIFFID/SIF.  To identify their impact on soil moisture and SIF simulation, we first 508 

conducted a set of experiments with individual parameters modified in each test.  The B 509 

parameter, Ks, wilting point, and Vmax were modified in Test B, Test Ks, Test Wp, and Test Vm.  510 

The range of these parameters is according to the sensitivity tests in section 3.4.  The soil 511 

moisture and SIF in the control run and the four tests were calculated and compared with the 512 

SMAP L3 and OCO-2 data at global scales.  In the tests with the modified soil parameters, the 513 

parameter set with minimum RMSE in soil moisture is identified as the optimized set, and the 514 

experiment with this set of parameters will be referred to as Test B opt, Test Ks opt, and Test Wp 515 

opt, while in the test with the modified vegetation parameter, the parameter set with minimum 516 

RMSE in SIF is identified as the optimized set, Test Vm opt.  517 

Figure 8 shows the improvement in the global mean bias and RMSE of soil moisture and 518 

SIF simulations in each test with the optimized values relative to SMAP L3 soil moisture and 519 

OCO-2 SIF data.  The most significant improvement in soil moisture and SIF simulations both 520 

occurred in Test B, and the most significant improvement in SIF simulation happened in Test 521 

Vm.  The improvement in soil moisture simulation is also substantial in Test Ks, but the effects of 522 

Ks are less efficient than the B parameter.  Through this set of tests, we found that the 523 

improvement of both soil moisture and SIF simulation is most with the change in the B 524 

parameter.  The soil moisture simulation is most sensitive to the B parameter and Ks, while the 525 

SIF simulation is most sensitive to Vmax.  Based on these results, we designed another set of 526 

experiments listed in Table 1 to get optimal values of the four parameters in 527 

SSiB4/TRIFFID/SIF.  The tests with the set of optimal parameters will be referred to as Test 1 528 

opt, Test 2 opt, Test 3 opt, and Test 4 opt.  The soil moisture and SIF in the control run and four 529 

tests were evaluated at global scales and for the six PFTs, including the Evergreen Broadleaf 530 
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Trees (EBT), Needleleaf Trees (NT), C3 Grasses (C3), C4 Plants (C4), Shrub (SH), and 531 

Deciduous Broadleaf Trees (DBT).   532 

 533 

Figure 8.  Global (a) mean bias (BIAS) and (b) root-mean-square error (RMSE) in the control 534 

run (CTL), Test B opt (B), Test Ks opt (Ks), Test Wp opt (Wp), and Test Vmax opt (Vm) relative 535 

to SMAP L3 soil moisture and OCO-2 SIF data. 536 

 537 
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Figure 9 shows the global mean bias and RMSE of soil moisture and SIF relative to 538 

SMAP L3 soil moisture and OCO-2 SIF data in the control run, Test 1 opt, Test 2 opt, Test 3 opt, 539 

and Test 4 opt.  The optimal B parameter led to significant improvement in both soil moisture 540 

and SIF, with the global mean bias decreasing by 49.6% (from -0.033 to -0.0165 m3/m3) and by 541 

37.0% (from 0.064 to 0.040 W/m2/μm/sr), respectively, and with the RMSE decreasing by 542 

11.9% (from 0.076 to 0.067 m3/m3) and by 9.9% (from 0.143 to 0.129 W/m2/μm/sr), 543 

respectively.  The optimal Ks also improved both soil moisture and SIF simulation but with 544 

reduced magnitude in SIF.  The global mean bias decreased by 22.7% and 13.7%, respectively, 545 

and the global RMSE decreased by 4.6% and 0.3%, respectively.  Wilting point calibration also 546 

improved the simulation but with less magnitude in soil moisture.  It decreased the mean bias by 547 

5.8% and 11.2%, respectively, and the RMSE by 0.3% and 3.1%, respectively.  The calibrated 548 

Vmax further improved the SIF simulation substantially by 44.0% on the global mean bias and 549 
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5.9% on the RMSE and improved the soil moisture simulation slightly by 14.6% on the global 550 

mean bias.   551 

 552 

Figure 9.  Global (a) mean bias (BIAS) and (b) root-mean-square error (RMSE) in the control 553 

run (CTL), Test 1 opt, Test 2 opt, Test 3 opt, and Test 4 opt relative to SMAP L3 soil moisture 554 

and OCO-2 SIF data. 555 

 556 
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Figures 10a and 10b illustrate the spatial distribution of global differences between 557 

simulated and SMAP L3 soil moisture and between simulated and OCO-2 SIF.  The 558 

SSiB4/TRIFFID/SIF model significantly underestimated the soil moisture in most regions, 559 

especially in the tropics and semi-arid regions, while overestimating the SIF throughout the 560 

globe, with the most significant overestimation occurring in the semi-arid regions covered by 561 

shrubs and savanna.  To delineate the spatial distribution of improvement in each test, Figures 562 

10c to 10j show the soil moisture and SIF differences between simulations and observations in 563 

the test runs and the control run, and Table 4 lists the spatial correlation coefficient (SCC), mean 564 

bias (BIAS), and RMSE of the soil moisture and SIF at the global scale and for different 565 

vegetation types in the test runs and the control run.  The most significant improvement for soil 566 

moisture simulation was in tropical rainforests and semi-arid regions.  In Test 1 opt, with the B 567 

parameter modified, the soil moisture increased substantially over the tropics in the Amazon 568 

basin and Central Africa and in semi-arid regions, such as the Western United States, south 569 

Argentina, Sahel, South Africa, and Australia (Figure 10c).  The soil moisture BIAS of EBT 570 

decreased from -0.103 to -0.069 m3/m3 and the RMSE from 0.124 to 0.097 m3/m3.  The BIAS 571 

and RMSE of SH decreased from 0.057 to 0.043 m3/m3 and from 0.057 to 0.043 m3/m3, 572 

respectively, in soil moisture simulation.  The SIF simulation was improved together with soil 573 

moisture in Test 1 in semi-arid regions covered by shrubs, including the Western United States, 574 

South Africa, and coastal Australia (Figure 10d).  The BIAS and RMSE of SIF simulation for SH 575 

decreased from 0.130 to 0.018 W/m2/μm/sr, and from 0.174 to 0.096 W/m2/μm/sr.  With the 576 

modification of Ks in Test 2 opt, the soil moisture simulation in the tropics was further improved 577 

(Figure 10e), with the BIAS and RMSE of EBT further decreased to -0.043 m3/m3 and 0.082 578 

m3/m3, and both the soil moisture and SIF simulations were improved in the savanna in Africa, 579 

the Sahel, and coastal Australia (Figure 10e and Figure 10f).  In Test 3 opt, the soil moisture 580 

simulation was slightly improved for C3 and DBT, and the SIF simulation was improved for 581 

most PFTs, including EBT, C3, C4, SH, and DBT (Table 4).  In Test 4 opt, the Vmax modification 582 

significantly improved SIF simulation in the boreal forests in North America and Siberia and the 583 

grassland in the central United States and South America (Figure 10j).  The BIAS and RMSE of 584 

NT in SIF simulation decreased from 0.080 to 0.036 W/m2/μm/sr and from 0.128 to 0.099 585 
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W/m2/μm/sr.  For C3, the BIAS and RMSE of SIF simulation decreased from 0.111 to 0.081 586 

W/m2/μm/sr and from 0.174 to 0.153 W/m2/μm/sr. 587 

 588 

 589 

(a) CTL minus SMAP L3 soil moisture  (b) CTL minus OCO-2 SIF 

  
(c) Test 1 minus CTL soil moisture (d) Test 1 minus CTL SIF 

  
(e) Test 2 minus Test 1 soil moisture (f) Test 2 minus Test 1 SIF 

  
(g) Test 3 minus Test 2 soil moisture (h) Test 3 minus Test 2 SIF 

  
(i) Test 4 minus Test 3 soil moisture (j) Test 4 minus Test 3 SIF 
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Figure 10.  Global differences of simulated soil moisture and SIF in the control run compared to 590 

(a) SMAP L3 (units: m3/m3) and (b) OCO-2 (units: W/m2/μm/sr).  Global differences of 591 

simulated soil moisture (c, e, g, i) (units: m3/m3) and SIF (d, f, h, j) (units: W/m2/μm/sr) in the 592 

control run and different tests. (c, d) Test 1 opt minus CTL, (e, f) Test 2 opt minus Test 1 opt, (g, 593 

h) Test 3 opt minus Test 2 opt, (i, j) Test 4 opt minus Test 3 opt. 594 

 595 

Table 4.  Spatial Correlation Coefficient (SCC), Mean Bias (BIAS), and Root-Mean-Square 596 

Error (RMSE) of the comparison between SSiB4/TRIFFID/SIF simulated and observation-based 597 

soil moisture and SIF.  Units for soil moisture: m3/m3.  Units for SIF: W/m2/μm/sr. 598 

Vegetation 
Type Experiment 

Soil Moisture SIF 
SCC BIAS RMSE SCC BIAS RMSE 

Evergreen 
Broadleaf 
Trees 
(EBT) 

CTL 0.366 -0.103 0.124 0.150 -0.016 0.124 
Test 1 opt 0.366 -0.069 0.097 0.119 -0.023 0.128 
Test 2 opt 0.335 -0.043 0.082 0.120 -0.037 0.130 
Test 3 opt 0.332 -0.042 0.081 0.136 -0.035 0.128 
Test 4 opt 0.330 -0.042 0.081 0.141 -0.035 0.128 

Needleleaf 
Trees 
(NT) 

CTL 0.304 -0.012 0.087 0.411 0.082 0.130 
Test 1 opt 0.288 0.000 0.087 0.413 0.081 0.130 
Test 2 opt 0.302 0.003 0.086 0.402 0.078 0.128 
Test 3 opt 0.303 0.003 0.086 0.422 0.080 0.128 
Test 4 opt 0.312 0.006 0.086 0.439 0.036 0.099 

C3 Grasses 
(C3) 

CTL 0.489 0.012 0.070 0.407 0.124 0.187 
Test 1 opt 0.494 0.002 0.069 0.390 0.126 0.189 
Test 2 opt 0.498 -0.006 0.069 0.392 0.125 0.188 
Test 3 opt 0.498 -0.003 0.068 0.418 0.111 0.174 
Test 4 opt 0.508 0.008 0.069 0.406 0.081 0.153 

C4 Plants 
(C4) 

CTL 0.662 -0.042 0.080 0.491 0.055 0.151 
Test 1 opt 0.671 -0.022 0.071 0.514 0.044 0.145 
Test 2 opt 0.674 -0.017 0.069 0.518 0.036 0.142 
Test 3 opt 0.676 -0.016 0.069 0.542 0.026 0.138 
Test 4 opt 0.676 -0.014 0.069 0.550 0.020 0.136 

Shrub 
(SH) 

CTL 0.540 -0.034 0.057 0.368 0.130 0.174 
Test 1 opt 0.541 -0.000 0.043 0.612 0.018 0.096 
Test 2 opt 0.533 -0.001 0.043 0.617 0.008 0.098 
Test 3 opt 0.536 0.001 0.043 0.605 -0.001 0.091 
Test 4 opt 0.538 0.001 0.043 0.601 -0.005 0.090 

Deciduous 
Broadleaf 

CTL 0.858 -0.054 0.090 0.264 0.075 0.222 
Test 1 opt 0.861 -0.030 0.077 0.261 0.073 0.221 
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Trees 
(DBT) 

Test 2 opt 0.864 -0.014 0.070 0.198 0.072 0.228 
Test 3 opt 0.866 -0.014 0.069 0.224 0.068 0.222 
Test 4 opt 0.864 -0.014 0.069 0.248 0.045 0.211 

 599 

4 Discussion 600 

This study shows that the B parameter is a key parameter that connects the water and 601 

carbon cycles in SSiB models and has significant effects on both soil moisture and SIF 602 

simulations.  The B parameter has the largest impact on soil moisture for all PFTs, and its effect 603 

on SIF varies among different vegetation types.  The impact on SIF simulation is larger over 604 

semi-arid regions where the soil water content is a key limitation factor on vegetation growth.  605 

The Ks can also affect both soil moisture and SIF simulations but with reduced magnitude.  The 606 

wilting point and Vmax have significant effects on SIF simulation, but their effects on soil 607 

moisture simulation are not substantial compared with the B parameter and Ks.  Consistent with 608 

the previous study (Qiu et al., 2018) in SSiB2/SIF, the wilting point plays a role in connecting 609 

the carbon and water cycles in semiarid regions in SSiB4/TRIFFID/SIF.  For humid regions, the 610 

role of the wilting point is limited, and Vmax is more important in SIF simulation, especially for 611 

the boreal forests.   612 

To evaluate the model performance in predicting the temporal variability of soil moisture 613 

and SIF, we created the time series of the monthly satellite observations and simulations in the 614 

control run and four tests with the optimal parameter values.  Figure 11 demonstrates the 615 

monthly mean soil moisture and SIF at the global scale in the control run and the test runs 616 

together with the satellite observations from Jan 2016 to Dec 2019.  After calibrating the four 617 

parameters, the simulated global mean soil moisture increased by about 0.02 m3/m3, and the 618 

simulated global mean SIF decreased by about 0.05 W/m2/μm/sr.  Among all the PFTs, the 619 

seasonality of soil moisture and SIF simulations for C4 plants and shrubs was best simulated, and 620 

the simulated soil moisture and SIF values got the most improvement for these two PFTs (Figure 621 

12).  At the global scale, the most improvements in soil moisture were in Test 1 opt, and 622 

secondarily in Test 2 opt.  The seasonality of soil moisture had a marginal change in four tests, 623 

and the increment happened throughout the year.  The improved soil moisture simulation still has 624 

a considerable discrepancy compared with the SMAP L3 soil moisture, which means the model 625 
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needs to be further improved.  To pursue more improvement, forthcoming work can use the 626 

global high-resolution dataset of soil hydraulic properties instead of parameterization for each 627 

vegetation type in the soil moisture simulation (Dai et al., 2019).  For the SIF simulation, the 628 

most improvement happened in Test 1 opt and Test 4 opt.  The SIF simulation was improved in 629 

spring, fall, and winter, but got worse in summer.  The higher B parameter value decreased the 630 

SIF simulation in each season while the change in Vmax had more effect in summer.  To improve 631 
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the seasonality of SIF simulation, future work can test the parameters in the TRIFFID model to 632 

better simulate vegetation distribution, LAI, and SIF.   633 

 634 

Figure 11.  The monthly mean (a) soil moisture and (b) SIF at the global scale (60°S-60°N ) in 635 

different experiments.  * Indicates significant differences between different experiments 636 

(p<0.01). 637 

 638 

 639 

Figure 12.  The monthly mean (a, c) soil moisture and (b, d) SIF of (a, b) C4 plants in Africa and 640 

(c, d) shrubs in the Western United States in different experiments.  * Indicates significant 641 

differences between different experiments (p<0.01). 642 

(a) (b) 

  
 

(a) C4 Plants (b) C4 Plants 

  
(c) Shrub (d) Shrub 

  
 



manuscript submitted to Global Biogeochemical Cycles 

 

 643 

Qiu et al. (2018) integrated the SMOS soil moisture data and GOSAT SIF data into 644 

SSiB2/SIF to understand the response of SIF to soil moisture dynamics.  SSiB2/SIF largely 645 

overestimated the soil moisture and underestimated the SIF in most regions when evaluated 646 

against SMOS soil moisture and GOSAT SIF but underestimated both soil moisture and SIF in 647 

semiarid regions.  Therefore, calibration of the B parameter and Ks in SSiB2/SIF based on the 648 

SMOS soil moisture resulted in better soil moisture simulation but poorer SIF simulation for 649 

regions covered by savanna, grass, and shrub.  Ma et al. (2019) assessed several satellite surface 650 

soil moisture products using global ground-based observations and found that the SMOS 651 

products exhibited dry bias due to their underestimating surface temperature.  In this study, we 652 

used SMAP L3 soil moisture data instead of SMOS to calibrate the B parameter and Ks, and the 653 

SIF simulation was evaluated against OCO-2 SIF data.  Compared with the SMAP L3 product, 654 

SSiB4/TRIFFID/SIF underestimated the soil moisture in most regions.  Also, the introduction of 655 

the dynamic vegetation processes made the SIF simulation higher than the satellite observation 656 

throughout the globe.  These two aspects lead to improved soil moisture and SIF simulation in 657 

SSiB4/TRIFFID/SIF after calibrating the B parameter and Ks in semiarid regions, which differs 658 

from the previous results (Qiu et al., 2018).  This study confirmed the importance of using 659 

satellite products with higher accuracy and precision, and better spatial and temporal resolution 660 

in the calibration of parameters in SSiB models and the exploration of the relationship between 661 

soil moisture and SIF.  The SMAP products provide the high-resolution mapping of global soil 662 

moisture and have been widely validated against core validation sites (Burgin et al., 2017; Zhang 663 

et al., 2017).  Zhang et al. (2019) assessed the SMAP L3 product using extensive ground 664 

measurements from sparse networks and found that the product showed better performance in 665 

temperate zones and grassland while negative bias in tropical climate zones and regions with 666 

high soil organic carbon contents.  As for the OCO-2 SIF data, despite its high resolution, the 667 

satellite-observed SIF soundings are sparse, and we averaged the soundings in each 1°×1° pixel 668 

first to fulfill more grids with SIF retrieval.  This methodology can induce uncertainties in the 669 

evaluation of SIF simulation.  Those uncertainties in satellite observations can affect the 670 

parameter calibration and the understanding of water-carbon cycle interactions.  The SMAP L4 671 

product assimilates SMAP brightness temperature observations into a land surface model and 672 

provides both the 0-5 cm vertical averaged surface soil moisture and the 0-100 cm vertical 673 
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averaged root zone soil moisture with complete spatial coverage.  The Sentinel-5 674 

Precursor/TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 provides SIF 675 

data with comparable quality but with largely improved spatial and temporal coverage, and 676 

Köhler et al. (2018) suggested tying TROPOMI to OCO-2 SIF data in overlapped regions to 677 

virtually fill the large gaps left by the OCO-2 product.  Future work can include the SMAP L4 678 

and TROPOMI products as further constraints in the model simulation improvement and the 679 

SIF-soil moisture relationship exploration. 680 

This study was conducted by the offline models, SSiB2/SIF and SSiB4/TRIFFID/SIF, 681 

using meteorological forcing to drive soil moisture, SIF, and GPP simulation.  With the coupling 682 

of the dynamic vegetation model, SSiB4/TRIFFID/SIF can reproduce the global distribution of 683 

dominant vegetation types, the vegetation fraction, and the LAI, including its seasonal, 684 

interannual, and decadal variabilities (Zhang et al., 2015; Liu et al., 2019), and can provide an 685 

improved simulation of photosynthesis and carbon flux.  However, the offline model simulation 686 

is not able to include feedback to the atmosphere, which represents a lack of investigation on 687 

fully coupled two-way interaction.  The simulated SIF and GPP in SSiB4/TRIFFID/SIF were 688 

much higher than that in SSiB2/SIF, which indicated higher transpiration.  Since the same 689 

meteorological forcing was used, the simulated total evapotranspiration fluxes in the two models 690 

are consistent, with a lower simulated soil evaporation rate in SSiB4/TRIFFID/SIF.  The higher 691 

vegetation fraction, LAI, transpiration, and photosynthesis rates in SSiB4/TRIFFID/SIF cannot 692 

lead to an obvious change in the soil moisture simulation.  Zhang et al. (2021) coupled the SSiB2 693 

model and the SSiB4/TRIFFID model to the NCEP Global Forecast System (GFS) to investigate 694 

vegetation-atmosphere feedback and found that the correlations between the simulated and 695 

observed monthly LAI, albedo, near-surface temperature, and precipitation were improved with 696 

the dynamic vegetation processes included.  Therefore, it remains necessary to add the SIF 697 

module into the coupled GFS/SSiB4/TRIFFID model and to evaluate the soil moisture, SIF, and 698 

GPP simulated by it against satellite products.  This fully coupled biophysical processes model 699 

has the potential to better reproduce the satellite-observed soil moisture and carbon flux and to 700 
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contribute to the understanding of the interactions between water and carbon cycles through 701 

controls over evapotranspiration, vegetation phenology, and surface energy balance.  702 

 703 

5 Conclusions 704 

To investigate the role of dynamic vegetation processes on soil moisture and carbon flux 705 

simulations and to better understand the relationship between terrestrial carbon and soil moisture 706 

dynamics, this study incorporated the SIF module used in SSiB2/SIF into SSiB4/TRIFFID.  The 707 

soil moisture, SIF, SIF-soil moisture relationship, and GPP simulated by SSiB2/SIF and 708 

SSiB4/TRIFFID/SIF were evaluated against the SMAP L3 soil moisture data and the OCO-2 SIF 709 

data.  The three soil property parameters, the B parameter, Ks, and wilting point, and the 710 

vegetation parameter, Vmax, were tested within the normal range to confirm their important role 711 

in the water and carbon cycles in model simulation and to test their effects on soil moisture, SIF, 712 

and the interactions.  The four parameters were calibrated using the SMAP L3 soil moisture and 713 

OCO-2 SIF to improve the soil moisture and SIF simulations in SSiB4/TRIFFID/SIF. 714 

The coupling with the dynamic vegetation model, TRIFFID, led to substantial 715 

improvement in the SIF and GPP simulations.  The global spatial correlation of SIF increased by 716 

10%, and the global RMSE of SIF simulation decreased by 12%.  The global mean GPP 717 

simulation increased from 533.2 g C/m2/yr to 875.2 g C/m2/yr, which is closer to the median of 718 

three observation-based GPP products (867.3 g C/m2/yr).  The global spatial distribution of the 719 

correlation coefficient between soil moisture and SIF was more properly simulated in 720 

SSiB4/TRIFFID/SIF, with the relationship switched from negative to positive over the Eurasian 721 

Steppe and coastal Australia.   722 

The empirical coefficient, B parameter, has the largest impact on soil moisture simulation 723 

and efficiently affects the SIF simulation for plants in semi-arid regions through its effects on 724 

water potential and soil water diffusion.  Ks also affects soil moisture and SIF simulation through 725 

the water diffusion in soil layers.  The wilting point and Vmax affect the stomatal opening and the 726 
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photosynthesis process, thus changing the transpiration rates and SIF simulation.  Their effects 727 

on soil moisture simulation exist but are less in magnitude than the B parameter and Ks.   728 

The SMAP L3 and OCO-2 products improved soil moisture and SIF measurements with 729 

better quality, higher spatial and temporal resolution, and accuracy.  They can help to improve 730 

the global performance of SSiB4/TRIFFID/SIF on soil moisture and SIF simulations and provide 731 

advances in understanding the global terrestrial coupled water-carbon cycles.  The global RMSE 732 

of soil moisture and SIF decreased from 0.076 to 0.067 m3/m3 and from 0.143 to 0.129 733 

W/m2/μm/sr with the B parameter optimization and further decreased to 0.063 m3/m3 and 0.125 734 

W/m2/μm/sr with the Ks and wilting point optimized.  Calibration of Vmax further improved the 735 

SIF simulation, with the global RMSE decreased to 0.117 W/m2/μm/sr. 736 

 737 
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Key Points: 17 

• Dynamic vegetation processes substantially improve of terrestrial carbon flux simulation. 18 

• Satellite products lead to advances in simulation and understanding of water and carbon 19 

cycles and their interactions. 20 

• The B parameter, representing the slope of water retention curve, shows the most 21 

significant effects on both water and carbon cycles.  22 
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Abstract 23 

Recently, more advanced synchronous global-scale satellite observations, the Soil Moisture 24 

Active Passive enhanced Level 3 (SMAP L3) soil moisture product and the Orbiting Carbon 25 

Observatory 2 (OCO-2) solar-induced chlorophyll fluorescence (SIF) product, provide an 26 

opportunity to improve the simulations of both water and carbon cycles in land surface 27 

modeling.  This study introduces a mechanistic representation of SIF to the Simplified Simple 28 

Biosphere Model version 4 (SSiB4) coupled with the Top-down Representation of Interactive 29 

Foliage and Flora Including Dynamics Model (TRIFFID).  This newly developed model with the 30 

observed satellite data indicates that introducing dynamic processes can lead to substantial 31 

improvement in global carbon flux simulation.  In the SSiB4/TRIFFID/SIF, four critical soil and 32 

vegetation parameters--B parameter, soil hydraulic conductivity at saturation (Ks), wilting point, 33 

and maximum Rubisco carboxylation rate (Vmax)--were identified through numerical sensitivity 34 

experiments.  Among the four parameters, the B parameter has the most significant effects on 35 

both soil moisture and SIF simulations.  With the optimized B parameter, both soil moisture and 36 

SIF simulations were improved substantially, with especially significant improvement for shrubs.  37 

The Ks and wilting point also affect both soil moisture and SIF but with reduced magnitude.  The 38 

Vmax directly affects photosynthesis, and its modification can substantially improve the SIF 39 

simulation of needleleaf trees and C3 grasses.  With all four calibrated parameters based on 40 

SMAP L3 and OCO-2 data, the root-mean-squared error (RMSE) of soil moisture and SIF 41 

simulations decreased from 0.076 to 0.063 m3/m3 and from 0.143 to 0.117 W/m2/μm/sr, 42 

respectively.   43 

 44 

1 Introduction 45 

The terrestrial carbon and water cycles are tightly coupled by biological plant processes 46 

(Niyogi and Xue, 2006; Scholze et al., 2016).  The interactions between soil moisture and carbon 47 

flux have been confirmed by previous studies (Koster et al., 2016; Qiu et al., 2018).  Surface soil 48 

moisture plays a crucial role in land-atmosphere interactions (Humphrey et al., 2021; McColl et 49 

al., 2017; Seneviratne et al., 2010).  It directly affects the photosynthesis and transpiration 50 

processes (Cox et al., 2002; Zhan et al., 2003) and indirectly affects carbon assimilation through 51 
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modulating phenological processes (Zhang et al., 2015).  The amount of available soil moisture 52 

is a key limiting factor on photosynthesis and transpiration since it affects both the water use and 53 

carbon uptake of the plant through the leaf stomata gas exchange (Manzoni et al., 2013), which 54 

makes the interactions between vegetation and soil moisture dynamics contribute significantly to 55 

the structure and function in arid and semiarid ecosystems (Walker et al., 1981; Bhark and Small, 56 

2003; D'Odorico et al., 2007).  The terrestrial ecosystem provides feedback on the water cycle 57 

through transpiration and vegetation structure (Xue et al., 2004; Kang et al., 2007).   58 

Surface soil moisture has large uncertainty in spatiotemporal distribution, and great 59 

efforts have been devoted to improving measurements using active or passive microwave 60 

instruments (Font et al., 2001; Njoku et al., 2003; Entekhabi et al., 2010; Kerr et al., 2012).  The 61 

assimilation of the remotely sensed surface soil moisture has the potential to improve land 62 

surface processes modeling (Wander et al., 2014; Scholze et al., 2016).  Wu et al. (2020) found 63 

that the Soil Moisture and Ocean Salinity (SMOS) soil moisture data can be used to constrain the 64 

simulations of the terrestrial biosphere carbon cycle to optimize soil hydrological and 65 

biophysical parameters simultaneously.  The Soil Moisture Active Passive (SMAP) mission is 66 

the most recent space-borne mission at L-band and has been considered one of the most 67 

promising satellites for surface soil moisture monitoring (Wigneron et al., 2017).  Recent studies 68 

suggest that SMAP outperforms other satellite products compared to in situ soil moisture 69 

measurements (Ma et al., 2019; Beck et al., 2021).  Zhang et al. (2022) used the direct insertion 70 

of SMAP soil moisture observation to improve the simulated land-surface carbon fluxes across a 71 

variety of timescales.  The SMAP product can provide a better representation of soil moisture, 72 

which suggests its potential for improvement in coupled carbon-water dynamics in terrestrial 73 

ecosystem models.   74 

In recent years, remote sensing of solar-induced chlorophyll fluorescence (SIF) has been 75 

a rapidly advancing front in investigating carbon dynamics and other applications (Frankenberg 76 

et al., 2011; Sun et al., 2018; Doughty et al., 2022; Leng et al., 2022).  The SIF retrieved from 77 

spaceborne spectrometers has been extensively used as a proxy for terrestrial photosynthesis to 78 

understand terrestrial ecosystem dynamics (Sun et al., 2017; Helm et al., 2020).  As a signal 79 

emitted by the photochemically active centers of plants, SIF is directly linked to the actual 80 

process of photosynthesis (Porcar-Castell et al., 2014).  Gonsamo et al. (2019) found that the 81 

Orbiting Carbon Observatory-2 (OCO-2) SIF can accurately capture the control of soil moisture 82 
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on photosynthetic activity, especially for regions with distinct seasonality of rainfall.  Lee et al. 83 

(2015) incorporated equations coupling SIF to photosynthesis in a land surface model and 84 

confirmed that SIF has the potential to improve photosynthesis simulation.  Qiu et al. (2018) 85 

incorporated this mechanistic representation of SIF and the Greenhouse gases Observing 86 

SATellite (GOSAT) and the Global Ozone Monitoring Experiment-2 (GOME-2) SIF 87 

measurements into a global terrestrial biosphere model, the Simplified Simple Biosphere Model 88 

version 2 (SSiB2/SIF), to evaluate and investigate the model-simulated relationships between 89 

soil moisture and SIF.  In this study, we incorporated this existing SIF module into SSiB version 90 

4 (SSiB4) to enable the fluorescence simulation, which is directly linked to photosynthetic 91 

activity and gross primary production (GPP). 92 

In most studies, the vegetation conditions are specified based on observed and satellite-93 

derived data, which suppresses the interactions between soil moisture and carbon cycle dynamics 94 

and indicates an important deficiency in the representation of terrestrial carbon processes in 95 

coupled carbon balance-based dynamic vegetation models.  Dynamic vegetation models (DVMs) 96 

can simulate vegetation establishment, growth, competition, and mortality (Sitch et al., 2008).  97 

Studies suggest that the DVMs can be used at seasonal/interannual/decadal scales to simulate the 98 

land/atmosphere feedback (Lu et al., 2001; Levis and Bonan, 2004; Kim and Wang, 2012; Zhang 99 

et al., 2021).  The Top-down Representation of Interactive Foliage and Flora Including 100 

Dynamics model (TRIFFID) uses the CO2 fluxes at the land-atmosphere interface to update plant 101 

distributions and soil carbon, which allows the changes in biophysical properties to provide 102 

feedback onto the atmosphere (Cox et al., 2001; Hawkins et al., 2019).  TRIFFID has been 103 

validated across spatial scales and ecosystems (Cox et al., 2000; Cox et al., 2004; Piao et al., 104 

2009; Zhang et al., 2015; Liu et al., 2019).  It serves as the foundation of the Joint UK Land 105 

Environment Simulator (JULES) for global carbon budget assessment (Clark et al., 2011; Le 106 

Quéré et al., 2016) and was coupled to SSiB4 to study the connections between vegetation 107 

dynamics and climate variability (Zhang et al., 2015).  Liu et al. (2019) validated the vegetation 108 

distribution and leaf area index (LAI) simulated by SSiB4/TRIFFID against satellite products.  109 

With the coupling of TRIFFID, the relevant land-surface characteristics of vegetation cover and 110 

structure are modeled directly, which suggests SSiB4/TRIFFID can be used to investigate the 111 

role and mechanisms of the interactions between soil moisture and carbon cycle dynamics. 112 
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This study used the SMAP L3 soil moisture data, in conjunction with the OCO-2 SIF 113 

measurements, to evaluate the soil moisture and SIF simulated by SSiB2/SIF and 114 

SSiB4/TRIFFID/SIF as well as the relationships between the soil moisture and SIF simulation to 115 

investigate the effects of dynamic vegetation processes on soil moisture and carbon flux 116 

estimates.  We integrated the two satellite measurements into SSiB4/TRIFFID/SIF to improve 117 

the model parameterization and to investigate the broad-scale relationships between soil moisture 118 

and carbon cycle dynamics, providing the opportunity to better understand the mechanistic 119 

processes in the global terrestrial biosphere model that bridges water and carbon cycles.  This 120 

paper is organized as follows: Section 2 presents the model structure, experimental design, and 121 

the satellite datasets used for evaluation and calibration.  The effects of the dynamic vegetation 122 

processes and key parameters on SM, SIF, and GPP simulations and the performance after 123 

calibration are illustrated in Section 3.  Discussions and concluding remarks are presented in 124 

Section 4 and Section 5, respectively. 125 

 126 

2 Model description, experimental design, and data 127 

2.1 Model description 128 

SSiB is a biosphere model that intends to simulate the biophysical exchange processes 129 

realistically (Xue et al., 1991 and 1996).  Zhan et al. (2003) developed an analytical solution 130 

approach from a photosynthesis model (Collatz et al., 1991, 1992) and incorporated it into SSiB 131 

to generate SSiB2, which improved the land surface CO2 fluxes simulation.  The dynamic 132 

vegetation model, TRIFFID, which has been widely used in vegetation-climate interaction 133 

studies (Cox et al., 2000; Harper et al., 2016), was coupled to SSiB4 (Xue et al., 2006) to 134 

calculate vegetation dynamics.  In SSiB4/TRIFFID, SSiB4 provides net plant photosynthesis 135 

assimilation rate, autotrophic respiration, and other surface conditions such as canopy 136 

temperature and soil moisture for TRIFFID.  TRIFFID updates the vegetation dynamics, 137 

including the plant functional type (PFT) fractional coverage, vegetation height, and LAI, for 138 

SSiB4.  Equations coupling SIF to photosynthesis, which were incorporated into the Community 139 

Land Model version 4 (CLM4, Lee et al., 2015), were incorporated into SSiB2 by Qiu et al. 140 
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(2018).  In this study, the SIF module was incorporated into SSiB4/TRIFFID, forming 141 

SSiB4/TRIFFID/SIF, to enable the chlorophyll fluorescence simulation in photosynthesis. 142 

2.2 Experimental design 143 

In this study, SSiB2/SIF and SSiB4/TRIFFID/SIF were used to simulate the global soil 144 

moisture, SIF, and GPP and to assess the effects of the dynamic vegetation process on the 145 

simulations.  The SSiB2/SIF model was driven by atmospheric forcing from 2010 to 2019 146 

(Figure 1a).  For the SSiB4/TRIFFID/SIF model, we first conducted spin-up simulations driven 147 

with climatological forcing and 1979 CO2 concentration for 100 years to reach a quasi-148 

equilibrium state as done by Liu et al. (2019) and Huang et al. (2020).  Using the quasi-149 

equilibrium simulation results as the initial vegetation conditions, such as each plant functional 150 

type’s (PFT) fraction coverage, leaf area index (LAI), etc., we performed transient runs driven 151 

with historical meteorological forcing and yearly updated atmospheric CO2 concentration from 152 

1979 to 2019 (Liu et al., 2019) (Figure 1b).  The time step of model integration is 3 h, and the 153 

spatial resolution of the model is 0.5°×0.5°.  The experiments covered the period from 2010 to 154 

2019 in SSiB2/SIF and 1979 to 2019 in SSiB4/TRIFFID/SIF, and the results from April 2015 to 155 
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December 2019, when the soil moisture and SIF satellite data were both available, were 156 

analyzed.   157 

 158 

Figure 1. Experiment design for (a) SSiB2/SIF and (b) SSiB4/TRIFFID/SIF. 159 

Studies have shown that soil properties substantially impact the soil moisture simulation 160 

in SSiB models, especially the parameterization of two key parameters, the B parameter and the 161 

hydraulic conductivity at saturation (Ks) (Xue et al., 1996; Qiu et al., 2018).  The B parameter is 162 

an empirical constant that is dependent on the soil type.  It represents the slope of the water 163 

retention curve and determines the relationship between the soil water potential and the 164 

volumetric soil water content through the following pedotransfer functions (Clapp and 165 

Hornberger, 1978): 166 

𝜓 = 	𝜓!	(
𝜃
𝜃!
)"# (1) 

where ψ is the soil water potential; ψs is the soil water potential at saturation; θ is the volumetric 167 

soil water content; and θs is the volumetric soil water content at saturation.  The hydraulic 168 

conductivity at saturation (Ks) is the key coefficient in the soil water diffusion equation.  This 169 
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equation is used to calculate the transfer of water between the three soil layers in SSiB models.  170 

Both the B parameter and Ks affect the soil water diffusion (Xue et al., 1996): 171 

𝑄 =	−𝐾!	(
𝜃
𝜃!
)(%#&')[

𝜕𝜓
𝜕𝑍

+ 1] (2) 

where Q is the soil water diffusion; and ∂ψ/∂Z is the soil water potential gradient. 172 

In addition to these two parameters, Qiu et al. (2018) found that the wilting point is a 173 

parameter directly linked to stomatal resistance and consequently to photosynthesis processes, 174 

thus affecting soil moisture through transpiration and demonstrating the close link between the 175 

water and carbon cycles.  The wilting point is defined as the soil water content below which the 176 

vegetation transpiration process tends to inhibit (Tolk, 2003).  In the SSiB model, an empirical 177 

equation was developed to relate the soil moisture and stomatal conductance for each PFT (Xue 178 

et al., 1991), in which the wilting point is the natural logarithm of soil water potential at which 179 

the stomata close completely.  In SSiB2/SIF and SSiB4/TRIFFID/SIF, the wilting point controls 180 

the stomata opening and affects the photosynthesis process through the β factor, the adjustment 181 

parameter on stomatal conductance: 182 

β = 1 − exp	{−𝐶%[𝐶) − ln	(−𝜓)]} (3) 

where C1 is the wilting point and C2 is a slope factor that depends on the vegetation type. 183 

The maximum Rubisco carboxylation rate (Vmax) is a vegetation parameter that directly 184 

affects the photosynthesis rate (Zhan et al., 2003).  The model simulated photosynthesis rates are 185 

controlled by three limitation factors related to Rubisco, electron transportation, and product 186 

sink.  The vegetation parameter, Vmax, plays a key role in this computation.  It determines the 187 

photosynthetic limitations and serves as a link between the water and carbon cycles since it can 188 

also affect soil moisture through transpiration.   189 

We have conducted a large number of experiments to test the parameters that affect the 190 

water and carbon cycle simulations in SSiB4/TRIFFID/SIF, and confirmed the importance of 191 

these four parameters mentioned above.  The effects of the four parameters on soil moisture and 192 

SIF were tested through adjusting them within their normal ranges.  Figure 2 shows the 193 
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schematic flowchart of the SSiB4/TRIFFID/SIF model.  The black boxes are the model 194 

components.  The blue boxes are the satellite products used to evaluate the soil moisture and SIF 195 

simulations and to calibrate the parameters.  The brown box and the green boxes represent the 196 

soil property parameters and the vegetation parameters tested and calibrated in this study, 197 

respectively.   198 

 199 

Figure 2. Overview flowchart of the SSiB4/TRIFFID/SIF model and the modified parameters in 200 

the model.  The black boxes are the SSiB4/TRIFFID/SIF model components; the brown boxes 201 

represent the modified soil property parameters in the model; the green box represents the 202 

modified vegetation parameters in the model; and the blue boxes are the satellite data.  SMAP 203 
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L3: Soil Moisture Active Passive enhanced Level 3; OCO-2: Orbiting Carbon Observatory 2; 204 

LAI: leaf area index. 205 

We designed the following four sets of experiments to assess the effects of the four 206 

critical parameters on soil moisture and SIF simulation with the dynamic vegetation model 207 

coupled and for further calibration in SSiB4/TRIFFID/SIF (Table 1).   208 

1. For the control run (CTL), the original values of the parameters were used. 209 

2. For Test 1, the B parameter was modified.  Our preliminary experiments suggested this 210 

parameter has a larger impact on soil moisture than other parameters. 211 

3. For Test 2, the calibrated B parameter based on Test 1 was used, and the Ks was tested. 212 

4. For Test 3, the wilting point was tested with the calibrated B parameter and Ks based on 213 

Test 2. 214 

5. For Test 4, the Vmax was tested with the calibrated B parameter, Ks, and wilting point 215 

based on Test 3. 216 

 217 

Table 1. SSiB4/TRIFFID/SIF Experiment Design. 218 

 Experiment description 
CTL Original parameters 
Test 1 With modified B parameter 
Test 2 Same as Test 1 but with hydraulic conductivity at saturation (Ks) 

modified 
Test 3 Same as Test 2 but with wilting point (Wp) modified 
Test 4 Same as Test 3 but with maximum RuBP carboxylation rate (Vmax) 

modified 

2.3 Data 219 

The SSiB vegetation map and table based on ground survey and satellite-derived 220 

information are used as the initial condition for SSiB2/SIF simulation and SSiB4/TRIFFID/SIF 221 

quasi-equilibrium simulation (Dorman & Sellers, 1989; Xe et al., 1996, Zhang et al., 2015).  222 

Meteorological forcing data are used to drive the model.  The observation-based soil moisture, 223 

SIF, and GPP products are used to evaluate the model simulation and calibrate the model 224 
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parameterization.  The regions at latitudes higher than 60°N were excluded from the analysis 225 

because of the scarce satellite records. 226 

2.3.1 Meteorological forcing data 227 

The three-hourly meteorological forcing data from 1948 to 2008 used for the quasi-228 

equilibrium simulation in SSiB4/TRIFFID/SIF are from the Princeton global meteorological 229 

dataset for land surface modeling (Sheffield et al., 2006).  The dataset combines global 230 

observation-based datasets with the NCEP/NCAR reanalysis.  The spatial resolution is 1°×1°, 231 

and the temporal interval is 3 h.  Its 60-year mean climatology with 3-h intervals was generated 232 

and interpolated bilinearly to 0.5°×0.5° to drive the quasi-equilibrium simulation.  The hourly 233 

meteorological forcing data used for simulations in SSiB2/SIF and SSiB4/TRIFFID/SIF are the 234 

bias-corrected reconstruction of near-surface meteorological variables derived from the fifth 235 

generation of the European Centre for Medium-Range Weather Forecasts (ECMRF) atmospheric 236 

reanalysis (ERA5) (Cucchi et al., 2022).  This dataset has 0.5°×0.5° spatial resolution and a 1-h 237 

temporal interval.  The 3-hour average was generated to drive the transient simulations.  The 238 

variables included in the meteorological forcings are surface air temperature (K), pressure (Pa), 239 

specific humidity (g kg-1), wind speed (m s-1), downward shortwave radiation flux (W m-2), 240 

downward longwave radiation flux (W m-2), and precipitation (kg m-2 s-1). 241 

2.3.2 Observation-based data 242 

There is no human activity included in the SSiB4 model simulation.  Therefore, the 243 

potential vegetation distributions produced by the quasi-equilibrium run in SSiB4/TRIFFID/SIF 244 

are not the same as the vegetation map observed by satellite-derived products over some areas 245 

due to anthropogenic effects, such as the croplands in the Central US, Southern Brazil, Europe, 246 

India, and Eastern China.  In this study, we used the Global Land Cover (GLC) database for the 247 

year 2000 (Bartholome and Belward, 2005) derived from Satellite Pour 1’Observation de la 248 

Terre (SPOT) to exclude the cultivated and managed areas in simulation, evaluation, and 249 

analysis.     250 

The Soil Moisture Active Passive (SMAP) mission, launched by NASA on January 31, 251 

2015, is the newest L-band satellite dedicated to providing global surface soil moisture 252 
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measurements.  This study used the SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-253 

Grid Soil Moisture dataset (SMAP L3).  This dataset presents the volumetric surface soil 254 

moisture (m3/m3) at 0-5 cm and is superior to other satellite soil moisture products, including the 255 

Soil Moisture and Ocean Salinity (SMOS) and the ESA Climate Change Initiative (ESA CCI) in 256 

terms of capturing temporal trends compared with in-situ observations from global dense and 257 

sparse networks (Ma et al., 2019).  The assessment of the SMAP L3 product using the in-situ 258 

measurements from the core validation sites (CVSs) shows that the average unbiased root mean 259 

square error (ubRMSE) is lower than 0.04 m3/m3 (Colliander et al., 2017; O’Neill et al., 2020).  260 

Zhang et al. (2019) validated the SMAP L3 product using extensive ground measurements from 261 

sparse networks and found that the retrievals from the descending (6:00 AM) product and 262 

ascending (6:00 PM) product do not show significant differences.  In this study, the average of 263 

the descending and ascending products was bilinearly interpolated to 0.5°×0.5° for evaluation 264 

and calibration.  265 

The SIF simulation was evaluated using the Orbiting Carbon Observatory-2 (OCO-2) SIF 266 

product.  This mission, launched on July 2, 2014, measures SIF from the infilling of the 267 

Fraunhofer lines at 1:36 p.m. local time with a repeat frequency of approximately 16 days.  The 268 

retrieval precision of OCO-2 is considerably improved over other existing satellite SIF products, 269 

including the Greenhouse Gases Observing Satellite (GOSAT) product and the Global Ozone 270 

Monitoring Experiment-2 product (GOME-2) (Sun et al., 2018).  All soundings within a 1°×1° 271 

pixel were averaged and archived onto a 0.5° grid to generate OCO-2 SIF at 757 nm so that most 272 

of the pixels have sufficient soundings to retrieve the gridded monthly SIF (Qiu et al., 2020).  To 273 

use this dataset to assess the model simulated SIF, the simulation at noon and 3 p.m. in each time 274 

zone was selected to obtain the one at 1 p.m. through interpolation.  275 

Previous studies found that GPP and SIF had a strong linear relationship, and the satellite 276 

SIF data provide useful information on terrestrial GPP (Bacour et al., 2019; Joiner et al., 2013; 277 

Lee et al., 2015; Walther et al., 2016).  Li et al. (2018) explored the relationship between OCO-2 278 

SIF and tower GPP at 64 flux sites across the globe encompassing eight major biomes, 279 

confirming the strong correlation between SIF and GPP.  Because of the significant uncertainty 280 

in the quantification of global GPP due to the lack of direct GPP observations at a global scale 281 

(Wang et al., 2021; Zhang and Ye, 2021), we selected three global GPP datasets derived from 282 
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observation using different methods for comparison rather than evaluation or calibration.  First is 283 

the GLASS (Global Land Surface Satellite) GPP product generated from the Eddy Covariance - 284 

Light Use Efficiency (EC-LUE) model (Yuan et al., 2007).  The EC-LUE model has been 285 

validated widely throughout various ecosystems using the measurements from eddy covariance 286 

towers (Li et al., 2013; Yuan et al., 2014), and Jia et al. (2018) indicated that the EC-LUE model 287 

performed better than the MODIS algorithms.  This dataset has 0.05°×0.05° horizontal resolution 288 

and 8-day time intervals.  The second GPP product used for comparison is the FLUXCOM RS 289 

GPP product.  It uses machine learning to merge the carbon flux measurements from the 290 

FLUXNET eddy covariance towers and remote sensing data (Tramontana et al., 2016).  Zhang 291 

and Ye (2021) evaluated 45 global terrestrial GPP products by taking Model Ensemble GPP 292 

derived from observations as the reference dataset and recommended the RS product for global 293 

GPP comparison.  Its resolution is 0.5°×0.5° and the time interval is 8 days.  The last dataset is a 294 

global MODIS and FLUXNET-derived GPP product (FLUXSAT GPP) (Joiner and Yoshida, 295 

2021).  It used MODIS product as input to neutral networks to globally upscale GPP estimates 296 

from selected FLUXNET eddy covariance tower sites (Joiner and Yoshida, 2020).  The product 297 

has a 0.05° spatial resolution and a daily temporal resolution. 298 

 299 

3 Results 300 

3.1 Assessment of the simulated vegetation distribution 301 

The rate of change in vegetation fraction is less than 2% over the last 10 years of 302 

simulation, which means it reached a steady state after a 100-year spin-up (Liu et al., 2019) 303 

(Figure S1).  For most PFTs, the rate is less than 1.5%.  Using initial vegetation conditions 304 

derived from this quasi-equilibrium state, SSiB4/TRIFFID/SIF was driven with the historical 305 

meteorological forcing and yearly updated atmospheric CO2 concentration from 1979 to 2019.  306 

The simulated vegetation spatial distribution was compared with that simulated in the previous 307 

study (Liu et al., 2019) to ensure that the simulated vegetation spatial distribution is reasonable, 308 

which is the base for other simulated variables in the model.  The evergreen broadleaf trees in the 309 

Amazon, central Africa, and Indonesia, needleleaf trees in midlatitudes and high latitudes of 310 

North America and Eurasia, deciduous broadleaf trees in southeastern US, C3 grasses in central 311 
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US, South America, Eurasian Steppe, Africa, and east Australia, C4 plants in southeast US, South 312 

America, Africa, Southeast Asia, and northern Australia, and shrubs in the semi-arid areas are 313 

reasonably simulated (Figure S2).  Overall, the simulated vegetated area covers 77.5% of the 314 

global land surface.  The simulated tree, C3 grass, C4 plants, and shrubs cover 31.1%, 11.3%, 315 

15.3%, and 14.5%, respectively.  These fractions are consistent with those in the study of Liu et 316 

al. (2019). 317 

3.2 Effects of dynamic vegetation processes on SM, SIF, and GPP simulations 318 

The spatial distribution of the global SIF simulated by SSiB2/SIF and 319 

SSiB4/TRIFFID/SIF were evaluated against the OCO-2 measurements in Figure 3.  The SIF 320 

simulated in SSiB2/SIF shows a negative bias in the South American and African savanna 321 

regions, southeast China, and east US, while a positive bias in the boreal forest in North America 322 

and North and Central Asia.  In SSiB4/TRIFFID/SIF, the simulated SIF bias is positive in most 323 

regions, especially in semi-arid regions such as the Western United States, southwest South 324 

America, Africa, Central Asia, and Australia.  Its positive bias is smaller in boreal forests 325 

compared with that in SSiB2/SIF.  Table 2 lists the global spatial correlation coefficient (SCC), 326 

bias (BIAS), and root-mean-square error (RMSE) of the simulated SIF in SSiB2/SIF and 327 

SSiB4/TRIFFID/SIF compared with the OCO-2 SIF data.  The SCC increased by 10%, and the 328 

RMSE decreased by 12% in SSiB4/TRFFID/SIF, which shows an improvement in the spatial 329 

pattern of the simulated SIF in the run with dynamic vegetation included.  However, the absolute 330 

value of the global mean SIF bias increased in SSiB4/TRIFFID/SIF.  The improvement in SCC 331 

indicates that the vegetation spatial distribution simulated by SSiB4/TRIFFID/SIF is more 332 

realistic than the observation-based one used in SSiB2/SIF and further confirms the reasonability 333 

of the vegetation distribution simulation.  The simulated SIF in different seasons was also 334 

compared with OCO-2 SIF data.  The highest RMSE of simulation compared to OCO-2 occurs 335 

in summer both in SSiB2/SIF and SSiB4/TRIFFID/SIF.  The most obvious improvement in 336 
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SSiB4/TRIFFID/SIF appears in spring, with the SCC increasing by 37% and the RMSE 337 

decreasing by 18%.   338 

 339 

Figure 3.  Global differences of solar-induced chlorophyll fluorescence (SIF) between 340 

simulations in (a) SSiB2/SIF, (b) SSiB4/TRIFFID/SIF and Orbiting Carbon Observatory 2 341 

(OCO-2) data.  Units: W/m2/μm/sr. 342 

 343 

Table 2.  Spatial Correlation Coefficient (SCC), Mean Bias (BIAS), and Root-Mean-Square 344 

Error (RMSE) of annual SIF simulations compared to OCO-2 data.  Units: W/m2/μm/sr. 345 

 SSiB2/SIF SSiB4/TRIFFID/SIF 
SCC 0.779 0.864 
BIAS -0.043 0.064 
RMSE 0.169 0.143 

(a) SSiB2/SIF minus OCO-2 

 
(b) SSiB4/TRIFFID/SIF minus OCO-2 
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 346 

The GPP simulation in SSiB2/SIF and SSiB4/TRIFFID/SIF was compared with 347 

observation-based estimated GPP in 2015, excluding the polar regions.  In the three observation-348 

based estimates, the global GPP ranges from 835.2 to 1088 g C/m2/yr, with a median of 867.3 g 349 

C/m2/yr.  Figure 4 shows that the global GPP simulated by SSiB2/SIF is much lower than the 350 

observation-based estimations, with a value of 533.2 g C/m2/yr.  The simulated global GPP in 351 

SSiB4/TRIFFID/SIF is 875.2 g C/m2/yr, which is close to the median value of the three 352 

observation-based estimates.  Figure 5 further compared the latitudinal distribution of zonal 353 

mean GPP among the observation-based estimates and model simulations.  The GLASS and 354 

FLUXSAT products demonstrate higher GPP values near the equator, while the FLUXCOM 355 

product has higher GPP values in subtropical regions in the Northern Hemisphere.  The 356 

SSiB2/SIF GPP simulation is lower than the observation-based GPP products at all latitudes.  357 

The SSiB4/TRIFFID/SIF GPP simulation is close to the observation-based estimates except near 358 

the tropics, where the observation-based estimates show large discrepancies.  Therefore, the 359 

SSiB4/TRIFFID/SIF simulation is within the range of various observations.  Introducing the 360 

dynamic vegetation process can lead to significant improvement in GPP simulation throughout 361 

the globe.  The plausible reason that may contribute to the improvement of GPP simulation in 362 

SSiB4/TRIFFID/SIF is the diversity of PFTs existing in a single grid box.  In SSiB2/SIF, there is 363 

only one PFT in one grid box with the vegetation parameters, such as vegetation fraction cover 364 

(FRAC), LAI, and vegetation height (VH), specified based on a vegetation table (Sellers et al., 365 

1996).  In SSiB4/TRIFFID/SIF, each grid box consists of 7 PFTs, with the competition among 366 

them.  The vegetation parameters are updated based on the carbon budget and related to the 367 

surface energy and water cycles.  The improvement shows that the dynamic vegetation process 368 
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can substantially improve the simulation of the carbon process and can help to provide a 369 

reasonable simulation of vegetation conditions and carbon fluxes. 370 

 371 

Figure 4. Comparison among observation-based estimated, SSiB2/SIF simulated, and 372 

SSiB4/TRIFFID/SIF simulated global GPP in 2015 (60°S-75°N).  Units: g C/m2/yr. 373 
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Figure 5. Comparisons of the latitudinal distribution of the zonal mean GPP among the 375 

observation-based estimates, SSiB2/SIF simulation, and SSiB4/TRIFFID/SIF simulation. Units: 376 

g C/m2/yr. 377 

Figure S3 compares the simulated soil moisture in SSiB2/SIF and SSiB4/TRIFFID/SIF 378 

with SMAP L3 soil moisture data.  Over the globe, there was only marginal improvement in 379 

SSiB4/TRIFFID/SIF compared with SSiB2/SIF (Table S1).  However, in SSiB4/TRIFFID/SIF, 380 

the global simulated SIF is higher, which represents higher photosynthesis and transpiration, the 381 

simulated soil evaporation rate is much lower, leading to a marginal change in simulated 382 

evapotranspiration.  The spatial patterns of the soil moisture bias in SSiB2/SIF and 383 

SSiB4/TRIFFID/SIF are similar.  The models underestimated the surface soil moisture in most 384 

areas, such as the North American boreal forest, Eastern United States, Amazon Basin, 385 

equatorial Africa, and Southeast Asia.  The soil moisture was overestimated in the Eurasian 386 

boreal forest and central Asia.  Calibration of the parameters directly related to soil property and 387 

affecting the vertical soil water distribution in SSiB4/TRIFFID/SIF is needed to improve the soil 388 

moisture simulation, which will be discussed in Section 3.4.   389 

3.3 SIF-soil moisture relationship 390 

Soil moisture plays a dominant role in determining dryness stress on ecosystem 391 

production over most vegetated areas (Liu et al., 2020).  Several studies have analyzed the 392 

influence of soil water content limitation on vegetation productivity using various satellite 393 

products.  Short Gianotti et al. (2019) found that the SIF-soil moisture relationship has 394 

increasing response strength with aridity, with little in the light-limited humid regions of the 395 

contiguous United States.  Jonard et al. (2022) distinguished the water-limited and light-limited 396 

environments using the TROPOspheric Monitoring Instrument (TROPOMI) SIF data and the 397 

SMAP multitemporal dual channel algorithm (MT-DCA) soil moisture data in the growing 398 

season.  We calculated the Pearson correlation coefficient between model-simulated SIF and soil 399 

moisture and evaluated it against that between OCO-2 SIF and SMAP L3 soil moisture.  The SIF 400 

and soil moisture data used here are monthly data with seasonal cycles removed.  Figure 6 shows 401 

the comparison of the correlation coefficient distribution between soil moisture and SIF in 402 

observation and simulation.  The observed SIF-soil moisture correlation map shows a significant 403 
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positive correlation over most regions, suggesting the water limitation on vegetation growth.  404 

Both SSiB2/SIF and SSiB4/TRIFFID/SIF simulations show a strong correlation between soil 405 

moisture and SIF anomalies in semi-arid regions, such as the Western United States, South 406 

American savanna, and South and East Africa.  Meanwhile, both SSiB2/SIF and 407 

SSiB4/TRIFFID/SIF produce negative correlations over the Eastern United States, La Plata 408 

Basin, and south China, which is opposite to that in the observation.  Over the Eurasian Steppe 409 

and coastal Australia, SSiB2/SIF and SSiB4/TRIFFID/SIF simulations show different correlation 410 

relationships.  The SSiB4/TRIFFID/SIF model produced a positive relationship consistent with 411 

that derived from satellite data, while in SSiB2/SIF, the relationship is negative.  The SIF-soil 412 

moisture correlation derived from the simulations in SSiB4/TRIFFID/SIF is more consistent with 413 

that derived from satellite data, showing that the coupling with the dynamic vegetation model 414 
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helps to better capture the effects of monthly soil moisture dynamics on vegetation 415 

photosynthetic activities. 416 

 417 

Figure 6. Comparisons of the correlations in the Northern Hemisphere summer between the 418 

monthly anomalies of (a) SMAP L3 soil moisture data and OCO-2 SIF data, (b) the SSiB2/SIF 419 

(a) Correlation between SMAP L3 and OCO-2 

 
(b) SSiB2/SIF correlation between soil moisture and SIF 

 
(c) SSiB4/TRIFFID/SIF correlation between soil moisture and SIF 
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simulated soil moisture and SIF, and (c) the SSiB4/TRIFFID/SIF simulated soil moisture and 420 

SIF. 421 

3.4 Effects of key parameters on soil moisture and SIF simulation 422 

The B parameter, Ks, wilting point, and Vmax were changed within the normal range of 423 

soil and vegetation property variations to conduct experiments to show the model sensitivity to 424 

changes in the parameters (Beerling and Quick, 1995; Von Caemmerer and Furbank, 1999; Xue 425 

et al., 1996) (Table 3).  The experiments covered the period from 2010 to 2019.  The years from 426 

2010 to 2014 were used for spin-up, and the annual results from 2015 to 2019 were analyzed.   427 

 428 

Table 3.  Soil and vegetation parameters used in the sensitivity experiments. 429 

 Values 
B parameter 3, 4, 5, 6, 7, 8, 9 
Ks 2E-3, 2E-4, 2E-5, 2E-6, 2E-7 
Wilting point 2, 4, 6, 8, 10, 12 
Vmax 20, 40, 60, 80, 100, 120, 140 (μmol/m2/s) 

 430 

3.4.1 Soil property parameters 431 

Previous studies have shown that the soil property parameters are one of the key sources 432 

of uncertainties in soil moisture simulation in land surface models (Demaria et al., 2007; Qiu et 433 

al., 2018).  According to previous work, carbon fluxes are also sensitive to soil parameters in the 434 

SSiB model (Prihodko et al., 2008).  To improve the soil moisture and SIF simulation in 435 

SSiB4/TRIFFID/SIF and to better understand the role of the parameters determining the soil 436 

texture in the interactions between the water and carbon cycles, we examined the effects of B 437 



manuscript submitted to Global Biogeochemical Cycles 

 

parameter, Ks, and wilting point on soil moisture and SIF simulation in SSiB4/TRIFFID/SIF 438 

(Figure 7). 439 

 440 

Figure 7.  Calculated soil moisture (blue), SIF (orange) for (a, d, g, j) needleleaf trees, (b, e, h, k) 441 

C4 plants, and (c, f, i, l) shrubs under different (a, b, c) B parameter; (d, e, f) logarithm of Ks; (g, 442 

h, i) wilting point, and (j, k, l) Vmax. 443 

 444 

The effects of the B parameter on water and carbon cycles are complex.  With a higher B 445 

parameter, soil moisture increased, and SIF decreased (Figures 7a, 7b, 7c).  A higher B 446 

(a) Needleleaf Trees (b) C4 Plants (c) Shrub 

   
(d) Needleleaf Trees (e) C4 Plants (f) Shrub 

   
(g) Needleleaf Trees (h) C4 Plants (i) Shrub 

   
(j) Needleleaf Trees (k) C4 Plants (l) Shrub 
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parameter represents a soil texture closer to clay, which leads to more difficulty in soil 447 

evaporation and more soil moisture.  Meanwhile, soil hydraulic conductivity decreased with 448 

increased B parameter (Eq. 2), which reduced the total runoff and may have increased 449 

evaporation; however, the change in evaporation was marginal.  Overall, a higher B parameter is 450 

associated with more soil moisture.  Moreover, the B parameter indirectly modifies SIF through 451 

its effect on the wilting point.  The change in the B parameter modifies the relationship between 452 

soil water potential and soil water content through the retention curve.  When the B parameter is 453 

higher, for a given amount of soil water content, the absolute value of water potential increases, 454 

and then the β factor in Eq. 3 is reduced, leading to stomata close and lower SIF and 455 

transpiration.  In the tropics, the soil moisture increased with a larger B parameter while the SIF 456 

and transpiration almost stayed the same.  The abundant soil water content in the rainforests 457 

keeps the β factor high in the change of the B parameter. 458 

As for Ks, the soil moisture decreases when Ks is higher (Figures 7d, 7e, 7f).  Higher Ks 459 

indicates that the soil texture is closer to sand, increasing surface infiltration and changing the 460 

vertical soil water content distribution.  The hydraulic conductivity is larger with higher Ks, 461 

leading to larger drainage and decreased total soil water content.  When Ks becomes very low, 462 

the surface infiltration becomes extremely low, leading to much larger runoff and low root zone 463 

soil moisture.  The low root zone soil water potential under low Ks conditions in 464 

SSiB4/TRIFFID/SIF lead to lower β factor and SIF.  Therefore, the SIF drops in 465 

SSiB4/TRIFFID/SIF when the Ks value is very small.  In humid regions, it is hard for the soil 466 

water content to drop to a value at which photosynthesis weakens, so the SIF does not change 467 

obviously (Figure 7d). 468 

For the wilting point, when it increases, the soil moisture, at which the stomata close 469 

completely, drops, leading to a higher β factor (Eq. 3), allowing more open stomata and higher 470 

stomatal conductance, which leads to higher SIF and photosynthesis and transpiration rates 471 

(Figures 7g, 7h, 7i).  For example, in South Africa covered by savanna, when the wilting point 472 

increased from 4 to 10, the corresponding volumetric soil moisture at which β factor started to 473 

increase rapidly decreased from 0.30 to 0.13 m3/m3, and the simulated SIF increased from 0.40 474 

to 0.42 W/m2/μm/sr (Figure 7h).  Since a higher wilting point leads to higher transpiration rates, 475 

the soil moisture decreases with the increase of the wilting point.  However, the effects of the 476 
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wilting point on soil moisture are not as efficient as that of the B parameter and Ks.  For example, 477 

the soil moisture in South Africa dropped slightly from 0.169 to 0.165 m3/m3 when the wilting 478 

point increased from 4 to 10 (Figure 7h).   479 

3.4.2 Vegetation parameter 480 

Photosynthesis is an important process of the terrestrial carbon cycle, and it is simulated 481 

in SSiB2/SIF and SSiB4/TRIFFID/SIF following the analytical solution approach developed by 482 

Zhan et al. (2003) based on the Collatz et al. (1991) and Collatz et al. (1992) model.  The 483 

vegetation parameter directly related to photosynthesis, Vmax, varies considerably among and 484 

within plant functional types (PFTs) (Kattge et al., 2009; Wang et al., 2021; Wullschleger, 1993), 485 

and it cannot be measured directly but must be inferred by model inversion from photosynthesis 486 

measurements.  The terrestrial biosphere models demonstrate considerable sensitivity in carbon 487 

flux simulation given the uncertainty in Vmax (Bonan et al., 2011; Piao et al., 2013).  To further 488 

improve the carbon flux simulation in SSiB4/TRIFFID/SIF and to explore the effects of this 489 

vegetation parameter on water and carbon cycles, we examined the effects of Vmax on soil 490 

moisture and SIF simulation in SSiB4/TRIFFID/SIF.   491 

As demonstrated in Figure 7j, the photosynthesis rates of needleleaf trees are especially 492 

sensitive to the change in Vmax in all the PFTs simulated in SSiB4/TRIFFID/SIF.  When the Vmax 493 

value increased from 20 to 100 µmol/m2/s, the SIF simulation increased dramatically from 0.30 494 

to 0.43 W/m2/μm/sr, which is a much more marked increment compared with the changes in the 495 

B parameter, Ks, and wilting point as shown in Section 3.4.1.  For other PFTs, the effects of Vmax 496 

on SIF simulation are also significant.  For example, with the Vmax changing from 20 to 80 497 

µmol/m2/s, the SIF simulation increased from 0.40 to 0.43 W/m2/μm/sr in the South African 498 

savanna, and the SIF simulation increased from 0.27 to 0.34 W/m2/μm/sr in shrubland in the 499 

Western United States (Figure 7k).  The effects of Vmax on soil moisture simulation are similar to 500 

that of the wilting point.  With the increasing Vmax, the photosynthesis rates are higher, leading to 501 

higher SIF and transpiration rates, which results in lower soil moisture.  For example, in the 502 
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Western United States, the soil moisture decreased from 0.060 to 0.054 m3/m3 when the Vmax 503 

increased from 20 to 100 µmol/m2/s (Figure 7l). 504 

3.5 Improvement in soil moisture and SIF simulation after calibration 505 

Based on the tests in section 3.4, we identified that the B parameter, Ks, wilting point, 506 

and Vmax are the key parameters that significantly impact both soil moisture and SIF simulations 507 

in SSiB4/TRIFFID/SIF.  To identify their impact on soil moisture and SIF simulation, we first 508 

conducted a set of experiments with individual parameters modified in each test.  The B 509 

parameter, Ks, wilting point, and Vmax were modified in Test B, Test Ks, Test Wp, and Test Vm.  510 

The range of these parameters is according to the sensitivity tests in section 3.4.  The soil 511 

moisture and SIF in the control run and the four tests were calculated and compared with the 512 

SMAP L3 and OCO-2 data at global scales.  In the tests with the modified soil parameters, the 513 

parameter set with minimum RMSE in soil moisture is identified as the optimized set, and the 514 

experiment with this set of parameters will be referred to as Test B opt, Test Ks opt, and Test Wp 515 

opt, while in the test with the modified vegetation parameter, the parameter set with minimum 516 

RMSE in SIF is identified as the optimized set, Test Vm opt.  517 

Figure 8 shows the improvement in the global mean bias and RMSE of soil moisture and 518 

SIF simulations in each test with the optimized values relative to SMAP L3 soil moisture and 519 

OCO-2 SIF data.  The most significant improvement in soil moisture and SIF simulations both 520 

occurred in Test B, and the most significant improvement in SIF simulation happened in Test 521 

Vm.  The improvement in soil moisture simulation is also substantial in Test Ks, but the effects of 522 

Ks are less efficient than the B parameter.  Through this set of tests, we found that the 523 

improvement of both soil moisture and SIF simulation is most with the change in the B 524 

parameter.  The soil moisture simulation is most sensitive to the B parameter and Ks, while the 525 

SIF simulation is most sensitive to Vmax.  Based on these results, we designed another set of 526 

experiments listed in Table 1 to get optimal values of the four parameters in 527 

SSiB4/TRIFFID/SIF.  The tests with the set of optimal parameters will be referred to as Test 1 528 

opt, Test 2 opt, Test 3 opt, and Test 4 opt.  The soil moisture and SIF in the control run and four 529 

tests were evaluated at global scales and for the six PFTs, including the Evergreen Broadleaf 530 
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Trees (EBT), Needleleaf Trees (NT), C3 Grasses (C3), C4 Plants (C4), Shrub (SH), and 531 

Deciduous Broadleaf Trees (DBT).   532 

 533 

Figure 8.  Global (a) mean bias (BIAS) and (b) root-mean-square error (RMSE) in the control 534 

run (CTL), Test B opt (B), Test Ks opt (Ks), Test Wp opt (Wp), and Test Vmax opt (Vm) relative 535 

to SMAP L3 soil moisture and OCO-2 SIF data. 536 
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Figure 9 shows the global mean bias and RMSE of soil moisture and SIF relative to 538 

SMAP L3 soil moisture and OCO-2 SIF data in the control run, Test 1 opt, Test 2 opt, Test 3 opt, 539 

and Test 4 opt.  The optimal B parameter led to significant improvement in both soil moisture 540 

and SIF, with the global mean bias decreasing by 49.6% (from -0.033 to -0.0165 m3/m3) and by 541 

37.0% (from 0.064 to 0.040 W/m2/μm/sr), respectively, and with the RMSE decreasing by 542 

11.9% (from 0.076 to 0.067 m3/m3) and by 9.9% (from 0.143 to 0.129 W/m2/μm/sr), 543 

respectively.  The optimal Ks also improved both soil moisture and SIF simulation but with 544 

reduced magnitude in SIF.  The global mean bias decreased by 22.7% and 13.7%, respectively, 545 

and the global RMSE decreased by 4.6% and 0.3%, respectively.  Wilting point calibration also 546 

improved the simulation but with less magnitude in soil moisture.  It decreased the mean bias by 547 

5.8% and 11.2%, respectively, and the RMSE by 0.3% and 3.1%, respectively.  The calibrated 548 

Vmax further improved the SIF simulation substantially by 44.0% on the global mean bias and 549 
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5.9% on the RMSE and improved the soil moisture simulation slightly by 14.6% on the global 550 

mean bias.   551 

 552 

Figure 9.  Global (a) mean bias (BIAS) and (b) root-mean-square error (RMSE) in the control 553 

run (CTL), Test 1 opt, Test 2 opt, Test 3 opt, and Test 4 opt relative to SMAP L3 soil moisture 554 

and OCO-2 SIF data. 555 
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Figures 10a and 10b illustrate the spatial distribution of global differences between 557 

simulated and SMAP L3 soil moisture and between simulated and OCO-2 SIF.  The 558 

SSiB4/TRIFFID/SIF model significantly underestimated the soil moisture in most regions, 559 

especially in the tropics and semi-arid regions, while overestimating the SIF throughout the 560 

globe, with the most significant overestimation occurring in the semi-arid regions covered by 561 

shrubs and savanna.  To delineate the spatial distribution of improvement in each test, Figures 562 

10c to 10j show the soil moisture and SIF differences between simulations and observations in 563 

the test runs and the control run, and Table 4 lists the spatial correlation coefficient (SCC), mean 564 

bias (BIAS), and RMSE of the soil moisture and SIF at the global scale and for different 565 

vegetation types in the test runs and the control run.  The most significant improvement for soil 566 

moisture simulation was in tropical rainforests and semi-arid regions.  In Test 1 opt, with the B 567 

parameter modified, the soil moisture increased substantially over the tropics in the Amazon 568 

basin and Central Africa and in semi-arid regions, such as the Western United States, south 569 

Argentina, Sahel, South Africa, and Australia (Figure 10c).  The soil moisture BIAS of EBT 570 

decreased from -0.103 to -0.069 m3/m3 and the RMSE from 0.124 to 0.097 m3/m3.  The BIAS 571 

and RMSE of SH decreased from 0.057 to 0.043 m3/m3 and from 0.057 to 0.043 m3/m3, 572 

respectively, in soil moisture simulation.  The SIF simulation was improved together with soil 573 

moisture in Test 1 in semi-arid regions covered by shrubs, including the Western United States, 574 

South Africa, and coastal Australia (Figure 10d).  The BIAS and RMSE of SIF simulation for SH 575 

decreased from 0.130 to 0.018 W/m2/μm/sr, and from 0.174 to 0.096 W/m2/μm/sr.  With the 576 

modification of Ks in Test 2 opt, the soil moisture simulation in the tropics was further improved 577 

(Figure 10e), with the BIAS and RMSE of EBT further decreased to -0.043 m3/m3 and 0.082 578 

m3/m3, and both the soil moisture and SIF simulations were improved in the savanna in Africa, 579 

the Sahel, and coastal Australia (Figure 10e and Figure 10f).  In Test 3 opt, the soil moisture 580 

simulation was slightly improved for C3 and DBT, and the SIF simulation was improved for 581 

most PFTs, including EBT, C3, C4, SH, and DBT (Table 4).  In Test 4 opt, the Vmax modification 582 

significantly improved SIF simulation in the boreal forests in North America and Siberia and the 583 

grassland in the central United States and South America (Figure 10j).  The BIAS and RMSE of 584 

NT in SIF simulation decreased from 0.080 to 0.036 W/m2/μm/sr and from 0.128 to 0.099 585 
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W/m2/μm/sr.  For C3, the BIAS and RMSE of SIF simulation decreased from 0.111 to 0.081 586 

W/m2/μm/sr and from 0.174 to 0.153 W/m2/μm/sr. 587 

 588 

 589 

(a) CTL minus SMAP L3 soil moisture  (b) CTL minus OCO-2 SIF 

  
(c) Test 1 minus CTL soil moisture (d) Test 1 minus CTL SIF 

  
(e) Test 2 minus Test 1 soil moisture (f) Test 2 minus Test 1 SIF 

  
(g) Test 3 minus Test 2 soil moisture (h) Test 3 minus Test 2 SIF 

  
(i) Test 4 minus Test 3 soil moisture (j) Test 4 minus Test 3 SIF 
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Figure 10.  Global differences of simulated soil moisture and SIF in the control run compared to 590 

(a) SMAP L3 (units: m3/m3) and (b) OCO-2 (units: W/m2/μm/sr).  Global differences of 591 

simulated soil moisture (c, e, g, i) (units: m3/m3) and SIF (d, f, h, j) (units: W/m2/μm/sr) in the 592 

control run and different tests. (c, d) Test 1 opt minus CTL, (e, f) Test 2 opt minus Test 1 opt, (g, 593 

h) Test 3 opt minus Test 2 opt, (i, j) Test 4 opt minus Test 3 opt. 594 

 595 

Table 4.  Spatial Correlation Coefficient (SCC), Mean Bias (BIAS), and Root-Mean-Square 596 

Error (RMSE) of the comparison between SSiB4/TRIFFID/SIF simulated and observation-based 597 

soil moisture and SIF.  Units for soil moisture: m3/m3.  Units for SIF: W/m2/μm/sr. 598 

Vegetation 
Type Experiment 

Soil Moisture SIF 
SCC BIAS RMSE SCC BIAS RMSE 

Evergreen 
Broadleaf 
Trees 
(EBT) 

CTL 0.366 -0.103 0.124 0.150 -0.016 0.124 
Test 1 opt 0.366 -0.069 0.097 0.119 -0.023 0.128 
Test 2 opt 0.335 -0.043 0.082 0.120 -0.037 0.130 
Test 3 opt 0.332 -0.042 0.081 0.136 -0.035 0.128 
Test 4 opt 0.330 -0.042 0.081 0.141 -0.035 0.128 

Needleleaf 
Trees 
(NT) 

CTL 0.304 -0.012 0.087 0.411 0.082 0.130 
Test 1 opt 0.288 0.000 0.087 0.413 0.081 0.130 
Test 2 opt 0.302 0.003 0.086 0.402 0.078 0.128 
Test 3 opt 0.303 0.003 0.086 0.422 0.080 0.128 
Test 4 opt 0.312 0.006 0.086 0.439 0.036 0.099 

C3 Grasses 
(C3) 

CTL 0.489 0.012 0.070 0.407 0.124 0.187 
Test 1 opt 0.494 0.002 0.069 0.390 0.126 0.189 
Test 2 opt 0.498 -0.006 0.069 0.392 0.125 0.188 
Test 3 opt 0.498 -0.003 0.068 0.418 0.111 0.174 
Test 4 opt 0.508 0.008 0.069 0.406 0.081 0.153 

C4 Plants 
(C4) 

CTL 0.662 -0.042 0.080 0.491 0.055 0.151 
Test 1 opt 0.671 -0.022 0.071 0.514 0.044 0.145 
Test 2 opt 0.674 -0.017 0.069 0.518 0.036 0.142 
Test 3 opt 0.676 -0.016 0.069 0.542 0.026 0.138 
Test 4 opt 0.676 -0.014 0.069 0.550 0.020 0.136 

Shrub 
(SH) 

CTL 0.540 -0.034 0.057 0.368 0.130 0.174 
Test 1 opt 0.541 -0.000 0.043 0.612 0.018 0.096 
Test 2 opt 0.533 -0.001 0.043 0.617 0.008 0.098 
Test 3 opt 0.536 0.001 0.043 0.605 -0.001 0.091 
Test 4 opt 0.538 0.001 0.043 0.601 -0.005 0.090 

Deciduous 
Broadleaf 

CTL 0.858 -0.054 0.090 0.264 0.075 0.222 
Test 1 opt 0.861 -0.030 0.077 0.261 0.073 0.221 
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Trees 
(DBT) 

Test 2 opt 0.864 -0.014 0.070 0.198 0.072 0.228 
Test 3 opt 0.866 -0.014 0.069 0.224 0.068 0.222 
Test 4 opt 0.864 -0.014 0.069 0.248 0.045 0.211 

 599 

4 Discussion 600 

This study shows that the B parameter is a key parameter that connects the water and 601 

carbon cycles in SSiB models and has significant effects on both soil moisture and SIF 602 

simulations.  The B parameter has the largest impact on soil moisture for all PFTs, and its effect 603 

on SIF varies among different vegetation types.  The impact on SIF simulation is larger over 604 

semi-arid regions where the soil water content is a key limitation factor on vegetation growth.  605 

The Ks can also affect both soil moisture and SIF simulations but with reduced magnitude.  The 606 

wilting point and Vmax have significant effects on SIF simulation, but their effects on soil 607 

moisture simulation are not substantial compared with the B parameter and Ks.  Consistent with 608 

the previous study (Qiu et al., 2018) in SSiB2/SIF, the wilting point plays a role in connecting 609 

the carbon and water cycles in semiarid regions in SSiB4/TRIFFID/SIF.  For humid regions, the 610 

role of the wilting point is limited, and Vmax is more important in SIF simulation, especially for 611 

the boreal forests.   612 

To evaluate the model performance in predicting the temporal variability of soil moisture 613 

and SIF, we created the time series of the monthly satellite observations and simulations in the 614 

control run and four tests with the optimal parameter values.  Figure 11 demonstrates the 615 

monthly mean soil moisture and SIF at the global scale in the control run and the test runs 616 

together with the satellite observations from Jan 2016 to Dec 2019.  After calibrating the four 617 

parameters, the simulated global mean soil moisture increased by about 0.02 m3/m3, and the 618 

simulated global mean SIF decreased by about 0.05 W/m2/μm/sr.  Among all the PFTs, the 619 

seasonality of soil moisture and SIF simulations for C4 plants and shrubs was best simulated, and 620 

the simulated soil moisture and SIF values got the most improvement for these two PFTs (Figure 621 

12).  At the global scale, the most improvements in soil moisture were in Test 1 opt, and 622 

secondarily in Test 2 opt.  The seasonality of soil moisture had a marginal change in four tests, 623 

and the increment happened throughout the year.  The improved soil moisture simulation still has 624 

a considerable discrepancy compared with the SMAP L3 soil moisture, which means the model 625 
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needs to be further improved.  To pursue more improvement, forthcoming work can use the 626 

global high-resolution dataset of soil hydraulic properties instead of parameterization for each 627 

vegetation type in the soil moisture simulation (Dai et al., 2019).  For the SIF simulation, the 628 

most improvement happened in Test 1 opt and Test 4 opt.  The SIF simulation was improved in 629 

spring, fall, and winter, but got worse in summer.  The higher B parameter value decreased the 630 

SIF simulation in each season while the change in Vmax had more effect in summer.  To improve 631 
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the seasonality of SIF simulation, future work can test the parameters in the TRIFFID model to 632 

better simulate vegetation distribution, LAI, and SIF.   633 

 634 

Figure 11.  The monthly mean (a) soil moisture and (b) SIF at the global scale (60°S-60°N ) in 635 

different experiments.  * Indicates significant differences between different experiments 636 

(p<0.01). 637 

 638 

 639 

Figure 12.  The monthly mean (a, c) soil moisture and (b, d) SIF of (a, b) C4 plants in Africa and 640 

(c, d) shrubs in the Western United States in different experiments.  * Indicates significant 641 

differences between different experiments (p<0.01). 642 

(a) (b) 

  
 

(a) C4 Plants (b) C4 Plants 

  
(c) Shrub (d) Shrub 
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 643 

Qiu et al. (2018) integrated the SMOS soil moisture data and GOSAT SIF data into 644 

SSiB2/SIF to understand the response of SIF to soil moisture dynamics.  SSiB2/SIF largely 645 

overestimated the soil moisture and underestimated the SIF in most regions when evaluated 646 

against SMOS soil moisture and GOSAT SIF but underestimated both soil moisture and SIF in 647 

semiarid regions.  Therefore, calibration of the B parameter and Ks in SSiB2/SIF based on the 648 

SMOS soil moisture resulted in better soil moisture simulation but poorer SIF simulation for 649 

regions covered by savanna, grass, and shrub.  Ma et al. (2019) assessed several satellite surface 650 

soil moisture products using global ground-based observations and found that the SMOS 651 

products exhibited dry bias due to their underestimating surface temperature.  In this study, we 652 

used SMAP L3 soil moisture data instead of SMOS to calibrate the B parameter and Ks, and the 653 

SIF simulation was evaluated against OCO-2 SIF data.  Compared with the SMAP L3 product, 654 

SSiB4/TRIFFID/SIF underestimated the soil moisture in most regions.  Also, the introduction of 655 

the dynamic vegetation processes made the SIF simulation higher than the satellite observation 656 

throughout the globe.  These two aspects lead to improved soil moisture and SIF simulation in 657 

SSiB4/TRIFFID/SIF after calibrating the B parameter and Ks in semiarid regions, which differs 658 

from the previous results (Qiu et al., 2018).  This study confirmed the importance of using 659 

satellite products with higher accuracy and precision, and better spatial and temporal resolution 660 

in the calibration of parameters in SSiB models and the exploration of the relationship between 661 

soil moisture and SIF.  The SMAP products provide the high-resolution mapping of global soil 662 

moisture and have been widely validated against core validation sites (Burgin et al., 2017; Zhang 663 

et al., 2017).  Zhang et al. (2019) assessed the SMAP L3 product using extensive ground 664 

measurements from sparse networks and found that the product showed better performance in 665 

temperate zones and grassland while negative bias in tropical climate zones and regions with 666 

high soil organic carbon contents.  As for the OCO-2 SIF data, despite its high resolution, the 667 

satellite-observed SIF soundings are sparse, and we averaged the soundings in each 1°×1° pixel 668 

first to fulfill more grids with SIF retrieval.  This methodology can induce uncertainties in the 669 

evaluation of SIF simulation.  Those uncertainties in satellite observations can affect the 670 

parameter calibration and the understanding of water-carbon cycle interactions.  The SMAP L4 671 

product assimilates SMAP brightness temperature observations into a land surface model and 672 

provides both the 0-5 cm vertical averaged surface soil moisture and the 0-100 cm vertical 673 
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averaged root zone soil moisture with complete spatial coverage.  The Sentinel-5 674 

Precursor/TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 provides SIF 675 

data with comparable quality but with largely improved spatial and temporal coverage, and 676 

Köhler et al. (2018) suggested tying TROPOMI to OCO-2 SIF data in overlapped regions to 677 

virtually fill the large gaps left by the OCO-2 product.  Future work can include the SMAP L4 678 

and TROPOMI products as further constraints in the model simulation improvement and the 679 

SIF-soil moisture relationship exploration. 680 

This study was conducted by the offline models, SSiB2/SIF and SSiB4/TRIFFID/SIF, 681 

using meteorological forcing to drive soil moisture, SIF, and GPP simulation.  With the coupling 682 

of the dynamic vegetation model, SSiB4/TRIFFID/SIF can reproduce the global distribution of 683 

dominant vegetation types, the vegetation fraction, and the LAI, including its seasonal, 684 

interannual, and decadal variabilities (Zhang et al., 2015; Liu et al., 2019), and can provide an 685 

improved simulation of photosynthesis and carbon flux.  However, the offline model simulation 686 

is not able to include feedback to the atmosphere, which represents a lack of investigation on 687 

fully coupled two-way interaction.  The simulated SIF and GPP in SSiB4/TRIFFID/SIF were 688 

much higher than that in SSiB2/SIF, which indicated higher transpiration.  Since the same 689 

meteorological forcing was used, the simulated total evapotranspiration fluxes in the two models 690 

are consistent, with a lower simulated soil evaporation rate in SSiB4/TRIFFID/SIF.  The higher 691 

vegetation fraction, LAI, transpiration, and photosynthesis rates in SSiB4/TRIFFID/SIF cannot 692 

lead to an obvious change in the soil moisture simulation.  Zhang et al. (2021) coupled the SSiB2 693 

model and the SSiB4/TRIFFID model to the NCEP Global Forecast System (GFS) to investigate 694 

vegetation-atmosphere feedback and found that the correlations between the simulated and 695 

observed monthly LAI, albedo, near-surface temperature, and precipitation were improved with 696 

the dynamic vegetation processes included.  Therefore, it remains necessary to add the SIF 697 

module into the coupled GFS/SSiB4/TRIFFID model and to evaluate the soil moisture, SIF, and 698 

GPP simulated by it against satellite products.  This fully coupled biophysical processes model 699 

has the potential to better reproduce the satellite-observed soil moisture and carbon flux and to 700 
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contribute to the understanding of the interactions between water and carbon cycles through 701 

controls over evapotranspiration, vegetation phenology, and surface energy balance.  702 

 703 

5 Conclusions 704 

To investigate the role of dynamic vegetation processes on soil moisture and carbon flux 705 

simulations and to better understand the relationship between terrestrial carbon and soil moisture 706 

dynamics, this study incorporated the SIF module used in SSiB2/SIF into SSiB4/TRIFFID.  The 707 

soil moisture, SIF, SIF-soil moisture relationship, and GPP simulated by SSiB2/SIF and 708 

SSiB4/TRIFFID/SIF were evaluated against the SMAP L3 soil moisture data and the OCO-2 SIF 709 

data.  The three soil property parameters, the B parameter, Ks, and wilting point, and the 710 

vegetation parameter, Vmax, were tested within the normal range to confirm their important role 711 

in the water and carbon cycles in model simulation and to test their effects on soil moisture, SIF, 712 

and the interactions.  The four parameters were calibrated using the SMAP L3 soil moisture and 713 

OCO-2 SIF to improve the soil moisture and SIF simulations in SSiB4/TRIFFID/SIF. 714 

The coupling with the dynamic vegetation model, TRIFFID, led to substantial 715 

improvement in the SIF and GPP simulations.  The global spatial correlation of SIF increased by 716 

10%, and the global RMSE of SIF simulation decreased by 12%.  The global mean GPP 717 

simulation increased from 533.2 g C/m2/yr to 875.2 g C/m2/yr, which is closer to the median of 718 

three observation-based GPP products (867.3 g C/m2/yr).  The global spatial distribution of the 719 

correlation coefficient between soil moisture and SIF was more properly simulated in 720 

SSiB4/TRIFFID/SIF, with the relationship switched from negative to positive over the Eurasian 721 

Steppe and coastal Australia.   722 

The empirical coefficient, B parameter, has the largest impact on soil moisture simulation 723 

and efficiently affects the SIF simulation for plants in semi-arid regions through its effects on 724 

water potential and soil water diffusion.  Ks also affects soil moisture and SIF simulation through 725 

the water diffusion in soil layers.  The wilting point and Vmax affect the stomatal opening and the 726 
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photosynthesis process, thus changing the transpiration rates and SIF simulation.  Their effects 727 

on soil moisture simulation exist but are less in magnitude than the B parameter and Ks.   728 

The SMAP L3 and OCO-2 products improved soil moisture and SIF measurements with 729 

better quality, higher spatial and temporal resolution, and accuracy.  They can help to improve 730 

the global performance of SSiB4/TRIFFID/SIF on soil moisture and SIF simulations and provide 731 

advances in understanding the global terrestrial coupled water-carbon cycles.  The global RMSE 732 

of soil moisture and SIF decreased from 0.076 to 0.067 m3/m3 and from 0.143 to 0.129 733 

W/m2/μm/sr with the B parameter optimization and further decreased to 0.063 m3/m3 and 0.125 734 

W/m2/μm/sr with the Ks and wilting point optimized.  Calibration of Vmax further improved the 735 

SIF simulation, with the global RMSE decreased to 0.117 W/m2/μm/sr. 736 

 737 
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Figure S1.  Fractional coverage of each plant functional type (PFT) in the equilibrium 27 

experiment in SSiB4/TRIFFID/SIF. 28 
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 30 

Figure S2.  2015-2019 averaged vegetation fractional coverage (Frac) distribution for (a) 31 

Evergreen broadleaf trees, (b) Needleleaf trees, (c) C3 grasses, (d) C4 plants, (e) Shrubs, and (f) 32 

Deciduous broadleaf trees in SSiB4/TRIFFID/SIF. 33 
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(c) C3 grasses (d) C4 plants 

  
(e) Shrubs (f) Deciduous broadleaf trees 

  

 
 



 35 

Figure S3.  Global differences of soil moisture between simulations in (a) SSiB2/SIF, (b) 36 

SSiB4/TRIFFID/SIF and Soil Moisture Active Passive enhanced Level 3 (SMAP L3) data, units: 37 

m3/m3. 38 

 39 

 40 

(a) SSiB2/SIF minus SMAP L3 

 
(b) SSiB4/TRIFFID/SIF minus SMAP L3 
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Table S1. Spatial Correlation Coefficient (SCC), Mean Bias (BIAS), and Root-Mean-Square Error 29 

(RMSE) of annual soil moisture simulations compared to SMAP L3 data, units: m3/m3. 30 

 SSiB2/SIF SSiB4/TRIFFID/SIF 
SCC 0.849 0.831 
BIAS -0.037 -0.033 
RMSE 0.076 0.076 

 31 

 32 

Table S2. Descriptions for the vegetation types in SSiB4/TRIFFID/SIF 33 

Type Description 
1 Evergreen broadleaf trees (EBT) 
2 Needleleaf trees (NT) 
3 C3 grasses (C3) 
4 C4 plants (C4) 
5 Shrubs (SH) 
6 Tundra 
7 Deciduous broadleaf trees (DBT) 
8 Bare soil 
9 Crops 
10 Ice 

 34 

 35 

Table S3. The original and new values of soil property parameters 36 

 Original  
B parameter 

New  
B parameter 

Original  
Ks 

New  
Ks 

Original 
wilting 
point 

New 
wilting 
point 

EBT 7.12 10.0 2.0×10-5 1.0×10-6 5.85 8.35 
NT 7.12 7.82 2.0×10-5 1.0×10-5 5.53 4.00 
C3 7.12 5.62 2.0×10-5 2.0×10-4 5.80 4.15 
C4 7.12 9.12 2.0×10-5 1.0×10-5 5.67 4.05 
SH 4.05 6.80 1.8×10-4 1.0×10-4 5.01 4.00 

DBT 7.12 10.0 2.0×10-5 1.0×10-6 5.57 4.10 
 37 

 38 

 39 

 40 

 41 



Table S4. The original and new values of vegetation parameter, units: μmol/m2/s 42 

 Original  
Vmax 

New  
Vmax 

EBT 100 100 
NT 60 30 
C3 60 30 
C4 30 30 
SH 60 60 

DBT 100 80 
 43 
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