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Abstract

The modern state of the mantle and its evolution over geological timescales is of widespread importance for the Earth sciences.

For instance, it is generally agreed that mantle flow is manifest in topographic and drainage network evolution, glacio-eustasy,

volcanism, and in the distribution of sediments. An obvious way to test theoretical understanding of mantle convection is

to compare model predictions with independent observations. We take a step towards doing so by exploring sensitivities of

theoretical surface deflections generated from a systematic exploration of global mantle convection simulations. Sources of

uncertainty, model parameters that are crucial for predicting deflections, and those that are less so, are identified. We start

by quantifying similarities and discrepancies between deflections generated using numerical and analytical methods that are

ostensibly parameterised to be as-similar-as-possible. Numerical approaches have the advantage of high spatial resolution,

and can capture effects of lateral viscosity variations. However, treatment of gravity is often simplified due to computational

limitations. Analytic solutions, which leverage propagator matrices, are computationally cheap, easy to replicate, and can

employ radial gravitation. However, spherical harmonic expansions used to generate solutions can result in coarser resolution,

and the methodology cannot account for lateral viscosity variations. We quantify the impact of these factors for predicting

surface deflections. We also examine contributions from radial gravity variations, perturbed gravitational potential, excised

upper mantle, and temperature-dependent viscosity, to predicted surface deflections. Finally, we quantify effective contributions

from the mantle to surface deflections. The results emphasise the sensitivity of surface deflections to the upper mantle.
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Abstract18

The modern state of the mantle and its evolution over geological timescales is of widespread19

importance for the Earth sciences. For instance, it is generally agreed that mantle flow20

is manifest in topographic and drainage network evolution, glacio-eustasy, volcanism, and21

in the distribution of sediments. An obvious way to test theoretical understanding of man-22

tle convection is to compare model predictions with independent observations. We take23

a step towards doing so by exploring sensitivities of theoretical surface deflections gen-24

erated from a systematic exploration of global mantle convection simulations. Sources25

of uncertainty, model parameters that are crucial for predicting deflections, and those26

that are less so, are identified. We start by quantifying similarities and discrepancies be-27

tween deflections generated using numerical and analytical methods that are ostensibly28

parameterised to be as-similar-as-possible. Numerical approaches have the advantage of29

high spatial resolution, and can capture effects of lateral viscosity variations. However,30

treatment of gravity is often simplified due to computational limitations. Analytic so-31

lutions, which leverage propagator matrices, are computationally cheap, easy to repli-32

cate, and can employ radial gravitation. However, spherical harmonic expansions used33

to generate solutions can result in coarser resolution, and the methodology cannot ac-34

count for lateral viscosity variations. We quantify the impact of these factors for pre-35

dicting surface deflections. We also examine contributions from radial gravity variations,36

perturbed gravitational potential, excised upper mantle, and temperature-dependent vis-37

cosity, to predicted surface deflections. Finally, we quantify effective contributions from38

the mantle to surface deflections. The results emphasise the sensitivity of surface deflec-39

tions to the upper mantle.40

Plain Language Summary41

Flow of rock within Earth’s interior plays a crucial role in evolving the planet. It42

moves heat and chemicals from deep depths to the surface, for instance. It also moves43

the lithosphere—the Earth’s outer rocky shell—which in turn impacts processes includ-44

ing mountain building, sea-level change, formation of volcanoes, river network evolution,45

and natural resource distribution. Consequently, we wish to understand the present state,46

and history, of flowing rock within Earth’s interior. Observations exist to address this47

problem, and mathematics and computing tools can also be used to predict histories of48

flow and their impact on Earth’s surface. We explore how assumptions incorporated into49

such models affect calculated deflections of Earth’s surface. Predictions from different50

models are compared, with a view to identifying crucial modelling components. Surface51

sensitivity to deep flow is assessed, demonstrating how surface observations can enlighten52

flow histories.53

1 Introduction54

1.1 Background55

Mantle convection plays a crucial role in Earth’s evolution (e.g., Hager & Clayton,56

1989; Parsons & Daly, 1983; Pekeris, 1935). It is well understood, for instance, that flow57

in the mantle is fundamental in the transfer of heat and chemicals from the deep Earth58

to the surface, in driving horizontal and vertical lithospheric motions (thus tectonic pro-59

cesses), and in magnetism via interactions with the core (e.g., Biggin et al., 2012; Davies60

et al., 2023; Foley & Fischer, 2017; Hoggard et al., 2016; Holdt et al., 2022; Pekeris, 1935).61

In turn, many processes operating at or close to Earth’s surface are impacted, includ-62

ing glacio-eustasy, magmatism, climate, sediment routing, natural resource distribution,63

drainage network evolution, and development of biodiversity (e.g., Ball et al., 2021; Braun,64

2010; Hazzard et al., 2022; O’Malley et al., 2021; Salles et al., 2017; Stanley et al., 2021).65

Clearly, understanding the physical and chemical evolution of the mantle has broad im-66

plications. Theoretical approaches to understanding mantle convection, including global67
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simulations of mantle flow, can incorporate complex rheologies and geological histories68

(e.g., Forte, 2007; Hager & Clayton, 1989; D. P. McKenzie et al., 1974; Ribe, 2007; Ri-69

card, 2007). Such models can include data assimilation, incorporating seismic tomographic70

(and other data) into flow solutions, iterating to optimize fits to observational constraints71

(e.g., Bunge et al., 2002, 2003; Glǐsović & Forte, 2016). A general goal is to identify the-72

oretical models that are most Earth-like and, ultimately, to combine such approaches with73

observational inventories to provide accurate estimates of the actual history of mantle74

convection, and its role in governing Earth’s surface evolution.75

Properties of the convecting mantle, and its role in supporting topography at Earth’s76

surface, have become significantly better known in the last decade or so, thanks prin-77

cipally to two suites of observations. First, there has been notable convergence in seis-78

mic tomographic imaging studies of Earth’s interior, partly as a result of increased in-79

strumentational coverage (e.g., EarthScope; Lekić & Fischer, 2014). Methodological ad-80

vances, including full waveform inversion, have also improved understanding of mantle81

structure in many places (see, e.g., Fichtner et al., 2009, 2013; Fichtner & Villaseñor, 2015;82

French & Romanowicz, 2015). Mapping lithospheric thicknesses, which are crucial for83

disentangling origins of surface topography, has benefited from these improvements, as84

well as their own methodological advances (e.g., Priestley & McKenzie, 2013; F. D. Richards85

et al., 2021). Second, the inventory of residual oceanic age-depths—oceanic basement86

depths that cannot be explained by passive plate cooling with age, crustal or sedimen-87

tary processes—has become significantly more comprehensive (Davies et al., 2019; Hog-88

gard et al., 2016; Holdt et al., 2022; Menard, 1973). Measured residual depths indicate89

that the convecting mantle supports oceanic bathymetry with amplitudes up to ∼ 1 km,90

at horizontal scales ranging from those dictated by the elastic strength of the plate, i.e.,91

O(102) km, up to O(104) km. The spectral power of these deflections approximately matches92

analytical estimates for mantle flow (e.g., Kaula’s rule; Hoggard et al., 2016; Holdt et93

al., 2022; Kaula, 1963). In contrast, more complex continental rheologies and tectonic94

histories mean that quantifying modern topographic support of continental lithosphere95

from the mantle using observations is in its infancy (see, e.g., Davies et al., 2023; Hog-96

gard et al., 2021). However, potential field data (e.g., free-air gravity anomalies and their97

relationship with topography, the geoid, etc.) and seismological information about plate98

structure provide useful information to constrain the current state of the convecting man-99

tle beneath continents (and oceans; Audet, 2014; Hager & Clayton, 1989; Steinberger100

& O’Connell, 1997).101

A growing inventory of geological and geomorphological observations from atop pas-102

sive margins and within continental interiors provides increasingly coherent information103

about histories of mantle convection during the last ∼ 100 Ma (see, e.g., Hoggard et al.,104

2021, for a recent summary). For instance, pressures and temperatures of melting ob-105

tained from the composition of Neogene and younger mafic rocks globally have recently106

been shown to be broadly consistent with estimates derived from shear wave tomogra-107

phy (Ball et al., 2022). Over-compacted stratigraphy and backstripped subsidence his-108

tories along African, American and Australian margins, combined with seismological and109

gravity data, provide evidence of vertical lithospheric motion due to flow in the mantle110

(e.g., Al-Hajri et al., 2009; Czarnota et al., 2013; Flament et al., 2015; Morris et al., 2020).111

Uplifted marine and coastal rock on all continents, especially in regions that have not112

recently experienced lithospheric shortening, provides information about sub-plate sup-113

port of topography and mantle viscosity (e.g., Fernandes & Roberts, 2020; Gunnell &114

Burke, 2008; Lambeck et al., 1998). Lithospheric vertical motions from stratigraphic data115

(especially uplifted marine rock), from inverse modelling of drainage networks, and from116

denudation and sedimentary flux histories, provide indirect information about histories117

of sub-plate support beneath the continents (e.g., Galloway et al., 2011; Fernandes et118

al., 2019; O’Malley et al., 2021; Stanley et al., 2021). In summary, there now exists a global119

inventory of geophysical, geological and geomorphological observations, providing infor-120
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mation about the current state of the mantle and clues about its spatio-temporal evo-121

lution, especially during the last few tens of millions of years.122

Despite these advances, observations providing information about the history of123

mantle convection are sparse in places, especially within continental interiors. Sparsity124

increases globally back through time (see, e.g., Hoggard et al., 2021). Theoretical or mod-125

elling approaches can, in principle, be used to fill in spatio-temporal observational gaps,126

to quantify the history of mantle convection. A general goal is to combine theoretical127

insights into mantle convection, e.g., via numerical simulation or analytical advances, with128

the growing observational inventory. In our view, there are two crucial steps to doing129

so. First, a quantitative understanding of the implications of modelling choices (e.g., nu-130

merical vs. analytical solutions, boundary conditions, rheological assumptions) for pre-131

dicting quantities that are measurable at Earth’s surface (e.g., surface deflections, grav-132

itational potential, heat flow) is required. There now exists a large body of models and133

theoretical approaches that can be compared. Second, quantification of the discrimina-134

tory power of observations at Earth’s surface for identifying Earth-like simulations of man-135

tle convection is needed. Our focus in this paper is on addressing the first topic. We then136

discuss the second topic, with a view to making use of independent observations in fu-137

ture work.138

1.2 Approach139

A large body of global mantle convection simulators and simulations exist, which140

can, in principle, be used to fill observational gaps and predict histories of mantle con-141

vection (e.g., Baumgardner, 1985; Bunge & Baumgardner, 1995; Davies et al., 2013; Fla-142

ment et al., 2015; Ghelichkhan et al., 2021; Hager et al., 1985; Moucha & Forte, 2011;143

Steinberger & Antretter, 2006). This considerable body of existing work provides an op-144

portunity to assess the role different features arising from the natural complexity of man-145

tle convection play in generating surface observables. For instance, mantle convection146

simulations can incorporate radial and temperature-dependent viscosity, radial gravita-147

tion, deflection of gravitational potential fields and their subsequent impact on flow, min-148

eralogical phase changes, compressibility, different surface and core-mantle boundary slip149

conditions (e.g., rigid/no-slip, free-slip), chemical and thermal buoyancy, and plate mo-150

tions and/or tomographic constraints on mantle structure (e.g., Baumgardner, 1985; Cor-151

rieu et al., 1995; Crameri et al., 2012; Panasyuk et al., 1996; Tackley et al., 1993; Zhong152

et al., 2008). These assumptions can result in quite different predictions of surface de-153

flections. An obvious question then, which we seek to address, is, can surface observa-154

tions be used to discriminate between simulations, and, ultimately, to determine the his-155

tory of mantle convection?156

Aside from the fundamental choice of governing equations underpinning simula-157

tions, there exist different mathematical and computational approaches to predict the158

surface impact of mantle convection. These approaches sit within two broad families: nu-159

merical simulations (e.g., CitcomS, TERRA, ASPECT; Bangerth et al., 2023; Baumgard-160

ner, 1985; Zhong et al., 2000), and propagator matrix based, quasi-analytical techniques,161

that can be solved in two or three dimensions, and importantly for our purposes, spher-162

ically and spectrally (e.g., Parsons & Daly, 1983; Hager & O’Connell, 1979; Colli et al.,163

2016). Here, we investigate similarities and differences arising between surface deflections164

predicted by propagator matrix and numerical schemes (see Figure 1). We do so by com-165

paring predictions generated using the numerical code TERRA, and a modified version166

of Ghelichkhan et al. (2021)’s analytical (propagator matrix) code. We develop a flex-167

ible scheme that could be used to compare predictions from other whole-Earth models168

of mantle convection.169

This paper is arranged as follows. First, the conservation equations solved to pre-170

dict mantle flow and subsequent surface deflections, solution methodologies, and model171
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parameterizations are described. Second, numerical and analytical techniques for esti-172

mating surface deflection are summarized. Third, three metrics for comparing predicted173

surface deflections are described. Fourth, parameterizations and assumptions tested in174

this paper are described, and resultant modifications to surface deflection predictions are175

quantified. We start by comparing predictions that arise from as-similar-as-possible pa-176

rameterizations of numerical and analytical approaches. These tests compare surface de-177

flections calculated using the entirety of the modelling domains, i.e., from the core-mantle178

boundary (CMB) to the surface; no shallow structure is excised. These reference mod-179

els are purposefully simple, e.g., incompressible, constant gravitational acceleration (no180

self-gravitation or radial variation in gravitation), radial viscosity independent of tem-181

perature. The convection simulations are driven by plate motions generated using ge-182

ological observations, which are described below. For clarity, the simulations do not in-183

corporate information about the mantle derived from tomographic models. We then sys-184

tematically examine the impact of incorporating radial variations in gravitational accel-185

eration, contribution to flow from deflection of the gravitational potential field, removal186

of shallow density/viscosity structure, choice of surface and CMB slip conditions, inclu-187

sion of temperature dependent viscosity, and amplification/reduction of viscosity and den-188

sity anomalies in the upper and lower mantle. We explore a closed-loop modelling strat-189

egy in which predicted surface deflections from these relatively complex models are com-190

pared to results from reference models. Finally, a methodology for assessing effective con-191

tributions to surface topography from mantle anomalies is presented.192

We stress that we purposefully avoid isolating passive or plate-driven surface de-193

flection and sub-plate support from the simulations unless stated explicitly. The central194

focus of this work is merely on quantifying contrasting predictions of surface topogra-195

phy that arise simply from choices made when simulating mantle convection using nu-196

merical and analytical approaches. We compare results to estimates of sub-plate sup-197

port from oceanic age-depth residuals with a view to quantifying corrections necessary198

to convert surface deflections predicted by mantle convection simulations into estimates199

of sub-plate support.200

2 Equations Governing Predicted Mantle Convection201

Theoretical predictions of surface displacements from mantle convection arise from202

the application of physical laws that take the form of conservation equations for mass,203

momentum and energy (see, e.g., Hager & O’Connell, 1981; Parsons & Daly, 1983). Here,204

we solve those equations across a 3D spherical domain using the finite element code TERRA205

(Baumgardner, 1985; Bunge & Baumgardner, 1995, etc.). Under this formulation, the-206

oretical convection in an incompressible fluid can be expressed by the following three di-207

mensionless equations (e.g., Baumgardner, 1985; Davies et al., 2013; D. P. McKenzie et208

al., 1974; Parsons & Daly, 1983). First, the continuity condition for conservation of mass,209

∇ · u = 0, (1)

where u is the fluid velocity vector. Since the Prandtl number is likely to always be ex-210

tremely large in this system—mantle viscosity is expected to be many orders of magni-211

tude larger than the product of density and thermal diffusivity—inertial terms can be212

neglected (e.g., Parsons & Daly, 1983). Second, the equation of motion,213

∇σ = −ρ′g, (2)

where214

ρ′ = −αρ0(T − Tref). (3)
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σ is the 3×3 stress tensor where the (radial) hydrostatic component balancing the ref-215

erence density structure has been subtracted, ρ′ is the density difference due to temper-216

ature, α is the coefficient of thermal expansion, T is temperature, Tref is a radially vary-217

ing reference temperature structure, which has a constant value in the mid-mantle and218

joins to a cold thermal boundary layer near the surface and a hot one at the CMB, reach-219

ing the actual surface, Ts, and core mantle boundary, TCMB temperatures at the respec-220

tive boundaries, and g is gravitational acceleration acting radially (see Table 1). This221

stress tensor σij is decomposed into deviatoric and lithostatic components:222

σij = τij − pδij , (4)

where τij is the deviatoric stress tensor, p is dynamic pressure and δij is the Kronecker223

delta function. The deviatoric stress tensor and the strain-rate tensor, ϵ̇ij , are related224

by:225

τij = 2ηϵ̇ij = η

(
∂ui

∂xj
+

∂uj

∂xi

)
, (5)

where η is viscosity, and ∂/∂xi is the spatial partial derivative. By combining equations226

2, 4 and 5 we solve the equation of motion:227

∂(ηϵij)

∂xj
− ∂p

∂xi
= −ρ′gδir, (6)

where g is the scalar value of g and δir is the Kronecker delta selecting the radial direc-228

tion r.229

We first examine predictions from models in which viscosity varies only with depth,230

i.e., η = η0 × ηr, where η0 is reference viscosity (see Table 1), and ηr is a scaling fac-231

tor dependent only on radius, plotted with model results as appropriate throughout this232

manuscript. We then include temperature dependence of viscosity, i.e., η = η0 × ηr ×233

ηT , where234

ηT = exp(z′ − 2T ′). (7)

Dimensionless depth, z′ = z/d, where d = zsurface−zCMB = 2890 km, and dimension-235

less temperature T ′ = (T − Ts)/(TCMB − Ts), where TCMB − Ts = 2700 K.236

Finally, the heat transport equation is solved to ensure conservation of energy:237

∂T

∂t
+ u · ∇T = κ∇2T +

H

Cp
, (8)

where κ is thermal diffusivity, H is internal heat generation and Cp is specific heat ca-238

pacity. See Table 1 for parameter values and units. Heat generation within the mantle239

depends on the distribution of radiogenic isotopes (e.g., Ricard, 2015). Concentrations240

of such elements can be tracked in TERRA, using particles, varying as a consequence of241

flow and melting (see, e.g., Panton et al., 2023; van Heck et al., 2016, for full explana-242

tion). The bulk composition field, C, which varies between 0 and 1, is also tracked on243

particles and calculated for each of the finite elements in the model. The end-members244

represent completely depleted/harzburgitic material (C = 0), and fully enriched/basaltic245

material (C = 1). As a result, radiogenic heat production across the whole mantle vol-246

ume varies, being ≈ 24 TW (5.8×10−12 W kg−1) at 1.2 Ga, and ∼ 18 TW (4.5×10−12
247
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W kg−1) by 0 Ma. Simulations are initialised such that the average mantle composition248

is C = 0.20 (Panton et al., 2023), and composition obeys the conservation equation:249

∂C

∂t
= −∇ · (Cu). (9)

2.1 Numerical Modelling Strategy250

The Stokes equations described above are solved by the finite element method on251

a series of stacked spherical shells composed of nodes based on a subdivision of a reg-252

ular icosahedron, with an identical geometry for each shell when projected onto the CMB253

(see, e.g., Figure 1 of Baumgardner, 1985). The radial spacing of consecutive shells is254

45 km, which is the same as the mean horizontal spacing of the elements across the en-255

tire model domain. The stacking of identically partitioned shells leads to a finer mean256

horizontal resolution of ≈ 33 km at the CMB, and a coarser resolution of ≈ 60 km at257

the surface. The surfaces of the uppermost elements in the shallowest shell lie at zero258

depth. To enable estimates of stress from these models to be directly compared with an-259

alytical solutions obtained from Green functions across layer boundaries, the predicted260

values of deviatoric stress were calculated using the calculated velocities from the near-261

est shells using the interpolating linear shape functions of the underlying finite elements,262

while the dynamic pressure is calculated directly at the surface (Section 3.3).263

Each numerical model presented in this paper has two computational stages: ‘spin-264

up’, which is used to initialize the model, and the geologically more realistic ‘main’ stage,265

from which we generate predictions of surface deflections. The spin-up stage includes 2.2266

billion years of model run-time. It has the following conditions imposed to avoid sharp267

velocity and temperature gradients, and sudden reorganization of mantle flow when the268

main model starts. First, a free-slip condition is imposed at the surface. Second, an ini-269

tial, random white noise temperature field generated with power across spherical har-270

monic degrees 1-19, is inserted. Mean mantle temperature is initially 2000 K. Mantle con-271

vection arises naturally over the first two billion years of model run-time. A fixed-slip272

surface velocity condition is then applied to the surface for 200 Ma. These velocities are273

set to be equal to those at 1 Ga extracted from the reconstructions of Merdith et al. (2021);274

the vertical component of slip is zero. The resultant mantle structure is used as the ini-275

tial condition for the main model.276

The main model routine predicts flow from 1 Ga to the present-day (0 Ma). It in-277

cludes an isothermal condition imposed at the surface, Ts = 300 K. A fixed-slip con-278

dition is imposed such that the vertical component of u is zero. Horizontal slip is pre-279

scribed using the plate reconstructions of Merdith et al. (2021); these are applied in 1280

Ma long stages. As such, stirring by plate drift and slab sinking play a role in driving281

mantle flow in these models. An isothermal condition is also imposed at the core-mantle282

boundary such that TCMB = 3000 K. A free-slip velocity boundary condition is imposed283

there, i.e., so the radial component of the mantle flow velocity (ur) = 0. While this ra-284

dial velocity boundary condition is of the Dirichlet type, in a free-slip boundary condi-285

tion no tangential restriction is imposed on the flow velocity but rather on the tangen-286

tial deviatoric stresses acting on the boundary (τrθ, τrϕ where r, θ and ϕ are the radial287

and two tangential directions respectively), which are zero. Horizontal components of288

slip are allowed to naturally emerge and evolve subject to lowermost mantle flow. Plume289

behaviour is not artificially suppressed.290

To ensure numerical stability and computational accuracy in these simulations, the291

reference viscosity, η0, is set to 4×1021 Pa s. This value is probably an order of mag-292

nitude greater than the viscosity of the actual upper mantle (e.g., Forte, 2007; Ghelichkhan293

et al., 2021; Mitrovica & Forte, 2004, and references therein). Consequently, flow veloc-294

ities in the simulations are likely to be significantly slower than in actuality. An obvi-295
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Table 1. Summary of Model Parameters.

Parameter Symbol Value Units

Surface temperature Ts 300 K
Core-mantle boundary temperature TCMB 3000 K

Internal heating rate H See text. W kg−1

Thermal expansivity α 2.5× 10−5 K−1

Thermal conductivity K 4 W m−1K−1

Thermal diffusivity κ 8.08 ×10−7 m2s−1

Specific heat capacity Cp 1100 J kg−1K−1

Reference viscosity η0 4× 1021 Pa s
Reference density ρ0 4500 kg m−3

Overlying fluid density ρw 1 or 1030 kg m−3

ous cause for concern is that using actual (comparatively fast) plate velocities as surface296

boundary conditions atop a relatively slowly convecting ‘mantle’ is likely to induce un-297

realistic flow. To address this issue, imposed plate velocities are scaled such that the root-298

mean squared (RMS) values of the actual applied velocities (≈ 5 cm yr−1 unscaled) match299

RMS values of surface velocities (≈ 2.5 cm yr−1) calculated during the spin-up phase300

(before plate velocities are imposed on the model) when the model mantle is convect-301

ing naturally and not being driven by surface velocities. The applied surface plate ve-302

locities are therefore scaled by a factor of 0.5 (i.e., 2.5/5) in the simulations examined303

in this study. To ensure that volumetric fluxes through ridges and subduction zones are304

realistic, simulation run times are increased by a factor of 2; i.e., the 1 Myr long plate305

stages are run for twice their elapsed time (2 Myr), but at half the speed. All times stated306

throughout the rest of this manuscript refer to times re-scaled for real-world compari-307

son; i.e., the actual age of the respective plate stage.308

For the reference case (Model 1), these conditions lead to the density distributions309

shown in Figure 2. Surface layer density anomalies occur only as a result of predicted310

compositional variation, since the surface temperature, Ts, is constant globally. This model311

represents the first of two reference numerical models examined in this contribution. It312

has the radial viscosity structure shown in Figure 3c. Later, we investigate a second nu-313

merical model incorporating temperature-dependent viscosity (Equation 7). In the fol-314

lowing section, we describe two approaches that use output from these models to cal-315

culate instantaneous surface deflections.316

317

3 Numerical and Analytical Calculations of Surface Deflection318

We examine two widely used approaches for calculating radial stress, σrr, and de-319

flections, h, at Earth’s surface (Figure 1). First, we investigate numerical solutions ob-320

tained using the TERRA software. A methodology for representing this data in the spher-321

ical harmonic domain is then described. Secondly, we investigate analytical solutions ob-322

tained in the spherical harmonic domain using propagator matrix techniques.323

3.1 Numerical Solution324

Following Parsons and Daly (1983), surface deformation is estimated from numer-325

ical simulations of mantle convection by making use of the requirement that normal stress326

is continuous across the upper boundary of the solid Earth (see also D. McKenzie, 1977;327
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Ricard, 2015). In other words, radial stresses generated by the solid Earth are required328

to be balanced by stresses generated by the overlying (oceanic or atmospheric) fluid. There329

are three contributions to normal stress at this boundary from the mantle: hydrostatic330

stress that would exist even in the absence of convection, dynamic stress arising from331

convection, and viscous stress which opposes fluid motion (see Equations 2–6). To sat-332

isfy the continuity condition, these stresses must be balanced by those generated by the333

water (or air) column atop this boundary. If the pressure from the overlying column is334

hydrostatic, the resultant condition is335

ρwgRh = ρmgRh+ σrr, (10)

where σrr (defined in Equation 2) incorporates deviatoric viscous stresses generated by336

mantle convection and dynamic pressure (σrr = τrr − p), obtained by solving Equa-337

tion 2. In practice, since values for this term are obtained by subtracting radial litho-338

static stress from the total stress, values of σrr integrate to zero globally. gR is gravi-339

tational acceleration at Earth’s surface, ρm is the mean density for the surficial layer,340

and ρw is the density of the overlying fluid (see Table 1). Figure 3a-b shows normal stresses,341

σrr, calculated at the surface of Model 1, and associated statistics. This model was gen-342

erated using the viscosity structure shown in Figure 3c. By convention, positive stresses343

imply compression and hence downward surface deflection, which could be manifest as344

lithospheric drawdown, i.e., subsidence. Prominent regions of positive stress anomalies345

in this model include locations atop imposed collision zones, where subduction naturally346

results, e.g., along the Pacific margin of South America. Negative stresses imply dila-347

tion and hence positive lithospheric support (i.e., surface uplift). Figure 3a shows dilata-348

tional stresses beneath Southern Africa, for example, and along mid-oceanic ridges in349

the Indian and Atlantic Oceans. Note that we do not impose additional oceanic plate350

cooling, e.g., due to hydrothermal circulation at ridges. Cooling and subsequent subsi-351

dence, as well as passive return flow at ridges, arise naturally from solution of the gov-352

erning equations laid out in Section 2.353

Surface deflection arising in response to predicted mantle convective flow, h, is ap-354

proximated by rearranging Equation 10,355

h ≈ − σrr

(ρm − ρw)gs
, (11)

where gs is gravitational acceleration at the surface, here = 10 m s−2. In this applica-356

tion of TERRA, surface deflections are estimated from radial stresses at times of inter-357

est (e.g., the present-day) by re-running one time-step of the model. During that time,358

a free-slip boundary condition, for which analytical approximations for surface deflec-359

tion exist, is imposed instead of the plate-slip condition prescribed during the main model360

run routine (see Section 3.3; Ricard, 2015). We assess the accuracy of modifying bound-361

ary conditions in this way by converting calculated deflections into the spherical harmonic362

domain and comparing them to predictions generated from the analytical propagator ma-363

trix (Figure 3d–f). The consistent boundary flux (CBF) method provides an alternative364

means to accurately calculate normal stresses (Zhong et al., 1993). Previous benchmark-365

ing with TERRA has shown mean errors of a few percent or less for surface deflection pre-366

dictions at low harmonic degrees, l ≤ 16 (Davies et al., 2013).367

3.2 Spherical Harmonic Representation of Surface Deflection368

Transforming stress, or surface deflections, calculated using numerical approaches
into the frequency domain provides a means of quantifying their spectral power, i.e., the
magnitude of contribution to the total signal from different wavelengths. We do so us-
ing spherical harmonics, since the models that we investigate are global in scope. Any
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real, square-integrable function over the surface of the Earth can be described as a func-
tion of longitude θ and latitude ϕ by a linear combination of spherical harmonics of de-
gree l and order m,

f(θ, ϕ) =

L∑
l=1

l∑
m=−l

flmYlm(θ, ϕ). (12)

The spherical harmonic functions Ylm are the natural orthogonal set of basis functions369

on the sphere, and flm are the spherical harmonic coefficients. As an example, Figure 3d370

shows spherical harmonic expansion of the surface stress field predicted by Model 1 at371

0 Ma (cf. Figure 3a). We call this result Model 1b, and the original, full-resolution nu-372

merical result Model 1a. The fidelity of the spherical harmonic expansion is demonstrated373

by the similarity of the maps and histograms shown in panels a–b and d–e.374

Pl =

l∑
m=−l

f2
lm (13)

gives the total power across all spherical harmonics of a given degree l. Average power375

for each mode m within degree l, P̂l = Pl/(2l + 1), since there are 2l + 1 modes (or-376

ders) per degree—we do not explore this definition of power in this contribution, and present377

only total power per degree (see, e.g., Hoggard et al., 2016; Holdt et al., 2022). Figure 3f378

shows power as a function of degree under that convention from the expansion shown379

in panel d. Using the total power per degree convention, Hoggard et al. (2016) (their Sup-380

porting Information) derived a rule-of-thumb for estimating the power spectrum of dy-381

namic topography, PDT
l , using Kaula (1963)’s approximation for the long-wavelength382

gravity field of Earth as a function of l:383

PDT
l ≈

(
GM

ZR2

)2 (
2

l
− 3

l2
+

1

l4

)
, (14)

where G is the gravitational constant, M = 5.97 × 1024 kg is the mass of the Earth,384

R ≈ 6370 km is Earth’s radius, and long-wavelength admittance between gravity and385

topography Z = 12 mGal km−1, which we make use of in the remainder of the paper386

for reference. Although we acknowledge that the appropriate value of low-degree admit-387

tance varies as a function of Earth’s viscosity profile, and the depth and wavelength of388

its internal density anomalies (Colli et al., 2016), previous studies have found that as-389

suming an average value of 12 mGal km−1 provides a reasonable approximation of ob-390

served residual topographic trends (Hoggard et al., 2016).391

Finally, it is useful to note that Jeans (1923) related spherical harmonic degree to392

wavelength λ on Earth’s surface via,393

λ ≈ 2πR√
l(l + 1)

. (15)

3.3 Analytical Solutions394

The second methodology used to calculate surface deflection in response to man-395

tle convection is the analytical propagator matrix technique (e.g., Craig & McKenzie,396

1987; Gantmacher, 1959; Ghelichkhan et al., 2021; Parsons & Daly, 1983; M. A. Richards397

& Hager, 1984). The approach we take stems from the work of Hager and O’Connell (1981).398

They used Green’s functions to solve the equations of motion in the spherical harmonic399

domain. Those solutions are used to generate sensitivity kernels that straightforwardly400

relate, for example, density or temperature anomalies in the mantle to surface deflections.401
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The kernels are generated in the frequency domain, and constructed such that surface402

deflection sensitivity to mantle (e.g., density) anomalies is calculated as a function of depth403

(or radius) and wavenumber. A global spherical harmonic implementation introduced404

by Hager et al. (1985) has been extended to include compressibility, the effect of warp-405

ing of the gravitational potential by subsurface density distributions, and radial grav-406

ity variations calculated using radial mean density values (Corrieu et al., 1995; Forte &407

Peltier, 1991; Hager & O’Connell, 1981; M. A. Richards & Hager, 1984; Thoraval et al.,408

1994).409

In this study, following Ghelichkhan et al. (2021), surface deflection for each spher-410

ical harmonic coefficient, hlm, is calculated in the spectral domain such that411

hlm =
1

(ρm − ρw)

∫ R

RCMB

Alδρlm(r) · dr. (16)

Products of the sensitivity kernel, Al, and density anomalies, δρlm, of spherical harmonic412

degree, l, and order, m, are integrated with respect to radius, r, between the core-mantle413

boundary and Earth’s surface radii, RCMB and R, respectively. The sensitivity kernel414

is given by415

Al = −
(

η0
RgR

)(
u1 +

ρw
ρ0

u3

)
, (17)

where un(r) represents a set of poloidal variables, which are posed for solution of the set416

of simultaneous equations by matrix manipulation, such that417

u(r) =
[
y1η0 y2η0Λ (y3 + ρ̄(r)y5)r y4rΛ y5rρ0Λ y6r

2ρ0
]T

, (18)

where Λ =
√
l(l + 1), and y1 to y6 represent the spherical harmonic coefficients of ra-418

dial velocity vr, lateral velocity vθ,ϕ, radial stress σrr, lateral stress σrθ,ϕ, gravitational419

potential V , and gravitational potential gradient ∂V/∂r, respectively (Hager & Clayton,420

1989; Panasyuk et al., 1996). ρ̄ is the layer mean (l = 0) density. The kernel Al com-421

prises both u1 and u3, since those are the two terms in the matrix solution to the gov-422

erning equations which affect surface topography, by directly exerting stress on the sur-423

face boundary (u1), and by changing the gravitational potential at the surface (u3).424

The functional forms of calculated sensitivity kernels depend on chosen radial vis-425

cosity profiles and boundary conditions (e.g., free-slip or rigid; Parsons & Daly, 1983).426

Figure 5a and e show examples of sensitivity kernels generated for water- (ρw = 1030427

kg /m3), and air-loaded (ρw = 1 kg /m3) topography, with free-slip conditions imposed428

on both surface and lower boundaries. We investigate alternative slip boundary condi-429

tions for each surface later in the text. The kernels were generated using the radial vis-430

cosity profile shown in Figure 3c. Values of the other parameters used to generate these431

kernels are stated in Table 1. We limit our investigation to l ≤ 50, which corresponds432

to a horizontal wavelength λ of ≈ 792 km at Earth’s surface. Calculated present-day433

water- and air-loaded surface deflections, and their statistical properties, are shown in434

Figure 5b–d and f–h. A comparison of calculated power spectra, expected surface de-435

flection from Kaula’s rule (Equation 14), and spectra generated from observed residual436

ocean age-depth measurements is also included (Kaula, 1963; Hoggard et al., 2016; Holdt437

et al., 2022). In later sections we explore consequences of choosing different radial vis-438

cosity profiles for calculated kernels and thence surface deflections. We call this water-439

loaded analytical solution for surface deflection ‘Model 2’ (see Table 2). It represents the440

closest possible analytical solution for surface deflection predicted numerically by Model441

1 explored in this work.442
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4 Spatial and Spectral Comparison of Model Predictions443

We wish to quantify impacts of modelling assumptions and approaches, used to solve444

the equations of motion, on predicted surface deflections. Thus we compare calculated445

surface deflections (both numeric and analytical) using the following three metrics.446

4.1 Euclidean Comparisons of Amplitudes447

First, we calculate root-mean-squared difference, χ, between predicted surface de-448

flections in the spatial domain,449

χ =

√√√√ 1

N

N∑
n=1

wϕ (ha
n − hb

n)
2
, (19)

where ha
n and hb

n are predicted surface deflections from the two models being compared.450

N = number of points in the 1×1◦ gridded maps being compared (e.g., Figure 5b; N =451

65341). The prefactor wϕ is proportional to cosϕ, where ϕ is latitude, and is included452

to correct biases in cell size with latitude; mean wϕ = 1. This metric is closely asso-453

ciated with the mean vertical distance (L2-norm distance) between predicted and ref-454

erence surfaces, i.e., ∆h̄ = 1/N
∑N

n=1 wϕ|ha
n − hb

n|. These metrics are sensitive to dif-455

ferences in amplitudes and locations of surface deflections.456

4.2 Spectral Correlation Coefficients457

Second, we use pyshtools v4.10 to compute correlation coefficients, rl, between pre-458

dicted surface deflections in the spectral domain (Wieczorek & Meschede, 2018). Cor-459

relation coefficients as a function of degree l, adapted from Forte (2007), are calculated460

such that461

rl =

∑
f∗
1 f2√∑

f∗
1 f1

√∑
f∗
2 f2

, where
∑

=

+l∑
m=−l

, (20)

f1 and f2 are the spherical harmonic coefficients of the two fields (i.e., surface deflections)462

being compared, which vary as a function of m and l; f = fm
l . ∗ indicates complex con-463

jugation (see also Becker & Boschi, 2002; O’Connell, 1971). This metric is a function of464

degree l, i.e. rl = r(l), and is sensitive to the difference between predicted and refer-465

ence surface deflection signals in the frequency domain, but not to their amplitudes. To466

summarize spectral similarity between models concisely, we later refer to the mean value467

of rl over every degree (0–50), as r̄l. We refer to the standard deviation of rl across de-468

grees as sr.469

4.3 Comparing Calculated Power Spectra470

Lastly, to estimate closeness of fit between power spectra of surface deflections pre-471

dicted in this study and independent estimates, we calculate472

χp =

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

K
l

)2
+

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

H
l

)2
, (21)

where L = number of spherical harmonic degrees being compared (L = 50). Pl = power473

of predicted surface deflections generated in this study at degrees 1 ≤ l ≤ L (Equa-474

tion 13). PK
l = power of surface deflections estimated using Kaula’s law (assuming Z =475
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12 mGal km−1; Equation 14). PH
l = power of residual oceanic age-depth measurements476

from Holdt et al. (2022).477

5 Model Parameterizations and Comparison of Predictions478

The models examined in this paper are summarised in Table 2. In terms of assump-479

tions tested there are two families of models, those with viscosity independent of tem-480

perature (Models 1–10), and those with temperature-dependent viscosity (Models 11–481

20). The two approaches used to solve the equations of motion are annotated ‘Numer-482

ical’ and ‘Analytical’ in Table 2, which refers to solutions from the TERRA and prop-483

agator matrix code, respectively. Viscosities and densities calculated using TERRA were484

used as input for the propagator matrix code and thus used to generate analytical es-485

timates of surface deflection. Since analytical solutions are obtained by spherical har-486

monic expansion, surface deflections from TERRA were fit using spherical harmonics be-487

fore predicted deflections were compared (annotated ‘Mixed’ in Table 2; Section 3.2). We488

compare predicted deflections that arise from flow across entire model domains, i.e., from489

the CMB to the surface. We make no lithospheric corrections, unless explicitly stated.490

Thus, amplitudes of calculated surface deflections are not likely to represent actual resid-491

ual topography. However, it simplifies like-for-like comparison of models, and compar-492

isons to increasingly complex models. Comparisons of surface deflections predicted by493

these models are discussed in the following sections, with summary statistics given in Ta-494

ble 3.495

496

5.1 Models 1–10: Viscosity Independent of Temperature497

Models 1–10 show results generated when viscosity is independent of temperature.498

We first compare solutions generated from (reference) numerical and analytical models499

designed to be as similar as possible (Models 1 and 2). We then generate increasingly500

complex models—incorporating radial gravitation, gravitational potential energy, removal501

of shallow structure, and variable surface and CMB slip conditions—and compare pre-502

dicted surface deflections to the reference models.503

Reference Models 1–2504

Models 1 and 2 are the simplest models explored in this paper. They were designed505

to be as similar as possible, with a view to quantifying differences and similarities aris-506

ing solely from the choice of methodology (numerical or analytical) used to solve equa-507

tions of motion and to calculate surface deflections. Viscosity is independent of temper-508

ature in these models.509

Figure 2 shows calculated densities that arise from the numerical solutions (Model510

1). This figure shows the plate motion history from Merdith et al. (2021) used to pro-511

duce this (and subsequent) TERRA output (See Section 2.1). The maps and histograms512

show evolution (100 to 0 Ma) of calculated densities at the model’s surface and within513

its ‘asthenosphere’ in response to flow. This model was parameterized with the radial514

viscosity shown in Figure 3c; radial viscosity used in other geodynamic studies are shown515

alongside for comparison (Ghelichkhan et al., 2021; Mitrovica & Forte, 2004; Steinberger516

& Calderwood, 2006). The impact of varying viscosity on numerical solutions is explored517

later in the paper. Figure 3a shows resultant surface radial stress predicted by this model518

at full (numerical) resolution. Figure 3d–e show the results from fitting radial stresses519

generated by Model 1a with a global spherical harmonic interpolation up to maximum520

degree l = 50, i.e., minimum wavelength of ≈ 800 km (Section 3.2). The resultant power521

spectrum in terms of total power at each degree is shown in Figure 3f. It is approximately522
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Table 2. Summary of mantle convection simulations. Column labeled ‘Method’ indi-

cates surface deflections calculated using either ‘Numerical’ (i.e., from surface normal stresses

calculated using TERRA) or ‘Analytical’ (i.e., propagator matrix) approaches; ‘Mixed’ indicates

spherical harmonic fitting of surface stresses calculated using numerical code, enabling com-

parison with solutions to propagator matrix code. η(r) indicates models with radial viscosity,

independent of temperature (Models 1–10). η(r, T ) indicates models with temperature-dependent

(therefore laterally-varying) viscosity (Models 11–20); note that analytical Models 12–20 incor-

porate radial viscosity calculated using mean radial viscosity from Model 11a. †indicates with

respect to Model 12. See Table 2, Section 5 and figures referred to in column 5 for details.

Model Method Viscosity Parameterizations Figures

1a Numerical η(r) Full resolution numerical model 2–4
1b Mixed η(r) Spherical harmonic fit to 1a 2–4, 6
2 Analytical η(r) Propagator matrix solutions 5–6

3 Analytical η(r) Radial gravitation, g(r) 7
4 Analytical η(r) Gravitational potential terms 8

5 Analytical η(r) Removing upper 50 km of mantle 9a-d
6 Analytical η(r) Removing upper 100 km of mantle 9e-h
7 Analytical η(r) Removing upper 200 km of mantle 9i-l

8 Analytical η(r) Rigid surface, free CMB 10a-d
9 Analytical η(r) Free surface, rigid CMB 10e-h
10 Analytical η(r) Rigid surface, rigid CMB 10i-l

11a Numerical η(r, T ) Full resolution numerical model 11–13, 16a-c
11b Mixed η(r, T ) Spherical harmonic fit to 11a 11–13, 15, 16d-g
12 Analytical η(r) Mean radial η(r, T ) from Model 11a 14–16h-k

13 Analytical η(r) Decrease† radial upper mantle η 17a-d
14 Analytical η(r) Increase† radial upper mantle η 17e-h
15 Analytical η(r) Increase† radial upper mantle η 17i-l
16 Analytical η(r) Constant radial η 17m-p

17 Analytical η(r) Upper mantle densities ×2† 18a-c
18 Analytical η(r) Upper mantle densities ×1/2† 18d-f
19 Analytical η(r) Lower mantle densities ×2† 18g-i
20 Analytical η(r) Lower mantle densities ×1/2† 18j-l
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characterized by red noise, where (aside from the lack of structure at degree 0), ampli-523

tudes of stress variations decrease steadily with increasing spherical harmonic degree (i.e.,524

decreasing wavelength).525

Surface deflections calculated by converting stress into dynamic topography using526

Equation 11, assuming water-loading, are shown in Figure 4a (Model 1a: full numeri-527

cal resolution). Spherical harmonic interpolation up to l = 50 (Model 1b) is shown in528

panel b, the histograms in panels c and d summarise results. Resultant spectral power529

is compared to spectra generated using Kaula’s rule (Equations 13 and 14) and resid-530

uals from ocean age-depth anomalies are shown in panel e (see Section 4; Equation 21).531

Surface deflections calculated assuming air-loading are shown in Figures 4f-j.532

Figure 5a–d shows analytical solutions (Model 2) to the equations of motion gen-533

erated using the propagator matrix approach parameterised to be as similar as possible534

to (the numerical) Model 1. The sensitivity kernel generated using the radial viscosity535

shown in Figure 3c and free-slip surface and CMB boundary conditions is shown in panel536

a. Similar to many previous studies, the kernel indicates that surface deflections will be537

especially sensitive (across all degrees incorporated, l ≤ 50) to density anomalies in the538

upper mantle (Parsons & Daly, 1983; Hager & Clayton, 1989; Ghelichkhan et al., 2021).539

Modifications to sensitivity kernels and resultant surface deflections as a consequence of540

choosing alternative boundary conditions and viscosity profiles are explored later in the541

manuscript. From this point forward we only present water-loaded surface deflections,542

since they scale linearly with air-loaded results.543

Comparisons of surface deflections predicted by Models 1b and 2 are shown in Fig-544

ure 6. Predicted deflections are visually similar (cf. panels a and b). Absolute differences545

in amplitudes are greatest close to subduction zones (e.g., in South America and Asia;546

panel c). Differences are broadly normally distributed and centred on 0 (panel d). Note547

the comparisons shown in panel d are weighted by the cosine of latitude to avoid lati-548

tudinal biases, as described in Section 4.1. Figure 6e shows that the spherical harmonic549

correlation between numerical (strictly ‘Mixed’, i.e., spherical harmonic fit to numerical550

solution) and analytical solutions is high (close to 1 for all degrees; cf. Forte, 2007). Panel551

f shows ratios between predictions, which indicates that analytical solutions tend to be552

damped compared to numerical solutions. This result is emphasised by the histogram553

shown in panel g, which summarises the ratios between predictions. Adjusting surface554

deflections from the propagator matrix solutions by a factor of 1.1 brings them in-line555

with the numerical solutions. In other words, the propagator matrix approach dampens556

solutions by ≈ 10%. We note that power spectral slopes between Model 1b and 2 are557

similar, however (cf. Figures 4e and 5d). This smoothness of analytic solutions, and sub-558

sequent damping of topographic amplitudes, is perhaps surprising, given the fact that559

they are being compared with numerical models expanded into the spherical harmonic560

domain to the same maximum degree, l = 50. However, the surface stresses used to gen-561

erate Model 1a have full horizontal resolution (≈ 45 km) across depths, and only the sur-562

face layer is smoothed by spherical harmonic fitting, to generate Model 1b. Therefore,563

Model 1b inherently contains some contribution from degrees ≥ 50, in the sense that564

finer-resolution density structure at depth could affect longer-wavelength flow nearer the565

surface. In contrast, to generate the analytic solution (Model 2), the density structure566

of each layer of the model is smoothed by expansion to maximum l = 50, before inte-567

gration of their contributions to surface deflection. The analytical solution would pro-568

vide a better match to stress estimates from numerical models if such estimates were cal-569

culated using density structure smoothed to the same maximum l across all depths.570

We now have reference models with which we can quantify the consequences of in-571

corporating alternative assumptions for calculated surface deflections. We start by in-572

corporating more complex parameterization of gravitation.573
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Model 3: Radial Gravitation574

Figure 7a shows solutions for the analytical Model 3, which was parameterized in575

the same way as Model 2 with the addition of radial gravitation (following Hager & Clay-576

ton, 1989; Panasyuk et al., 1996, see Equation 17). The solid curve in panel b shows the577

radial gravity function used to calculate surface deflections. It was generated using the578

density distribution produced by (the numerical) Model 1a (see Figure 2), using579

g(r) =
4πG

r2

[∫ r

RCMB

ρ̄(r′) r′
2
dr′

]
+ Fcore (22)

where ρ̄(r) is layer mean density and F is a factor chosen to account for core mass, and580

such that g = 9.8 m s−2 at the surface. This formulation is derived from Gauss’s law581

assuming spherically symmetric density, combined with Newton’s law of universal grav-582

itation (Turcotte & Schubert, 2002).583

The differences between Model 2 (Figure 7c), which assumes constant g = 10 m584

s−2 across all radii, and this model (Model 3) are shown in Figure 7d–e. We interpret585

the broadly hemispherical, uniformly distributed, differences in calculated deflections as586

a consequence of deviations in g between the two models being greatest in the mid-mantle587

(∼ 500 − 2000 km depth; see panel b). Note that the sensitivity kernel calculated for588

the viscosity structure used in these models indicates that changing g in this way is likely589

to impact surface deflections at low degrees l ≲ 10 most, i.e., where the amplitudes of590

the sensitivity kernel in the mid-mantle are highest (see Figures 3c & 5a). Note that the591

amplitudes of deviations in predicted surface topography due to radial variations in g592

are relatively low, at most of the order ∼ 10% of maximum surface deflection amplitudes,593

for the instantaneous analytical solution (see Table 3). Differences in predicted surface594

deflection are likely to be larger between Model 2 and a numerical model which was run595

using g(r) calculated at each time-step, since in that case radially-varying gravitation596

would affect the mantle flow field across the entire model run time and differences would597

compound. Without additional numerical tests it is somewhat unclear whether the dif-598

ferences between that model and Model 2 would match the results for Model 3 (as a func-599

tion of degree). However, the results are consistent with the rule of thumb outlined in600

Section 7.02.2.5.2 of Ricard (2015), whereby magnitudes of differences incurred by in-601

clusion of full self-gravitation, i.e., g(θ, ϕ, r), decay as a function of spherical harmonic602

degree, proportionately to 3/(2l + 1).603

Model 4: Gravitational Potential Field Deflection604

Figure 8 compares analytical solutions for the reference Model 2, and a model that605

incorporates stress perturbations induced by deflections of the gravitational potential606

field, Model 4. Both of these models assume g = 10 m s−2 everywhere, even within the607

deflected surface layer, as was the case for Models 1–2. Following Hager and Clayton (1989)608

and Panasyuk et al. (1996), when solving for surface deflection using propagator matri-609

ces, the effect on flow of perturbation of gravitational potential is included via the u3610

term in Equation 18 (see also Ribe, 2007; Ricard, 2015). TERRA simulations do not in-611

clude this component in flow calculations (see Section 2–2.1). As expected, differences612

in surface displacement predictions are much lower than when radial gravitation is in-613

corporated (cf. Figures 7d and 8c); they are of the same order of magnitude as the geoid614

height anomalies predicted by these models. The mean Euclidean distance between the615

two predicted surfaces is only ∼110 m, and the spherical harmonic correlation is very616

high across all degrees (see Table 3). Similar to the result for Model 3, the differences617

are concentrated at low spherical harmonic degree l. Again, this test investigates the ef-618

fect of the u3 term on instantaneous solution for surface deflection. It cannot be ruled619

out from this test that inclusion of the effect of gravitational potential field perturba-620
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tion would result in greater differences across the entire model run time, although that621

is unlikely (Zhong et al., 2008).622

Models 5–7: Removal of Shallow Structure623

Disentangling contributions to Earth’s surface topography from asthenospheric con-624

vection and the lithosphere is not trivial (see, e.g., Fernandes & Roberts, 2020; Hoggard625

et al., 2021; Steinberger, 2016; Stephenson et al., 2021). Previous studies that simulate626

mantle convection have addressed this issue by discarding density anomalies in radial627

shells shallower than specified depths, before calculating surface stresses (e.g., Spasoje-628

vic & Gurnis, 2012; Flament et al., 2013; Molnar et al., 2015). Similarly, analytical ap-629

proaches have isolated contributions from the convecting mantle by only incorporating630

information from deep shells (e.g., Colli et al., 2018). This method has the advantage631

of effectively removing the effect of lithospheric cooling through time from surface de-632

flection estimates. It also avoids the need to incorporate, say, realistic crustal or depleted633

lithospheric layers within the viscous flow parameterization. However, uncertain oceanic634

and continental lithospheric thicknesses mean that choosing appropriate cut-off depths635

is not trivial. Moreover, doing so creates two obvious challenges.636

First, if the chosen depth is shallower than the lithosphere-asthenosphere bound-637

ary in places, plate and sub-plate contributions to topography will be entangled. Sec-638

ond, discarding deeper layers to ensure that all plate contribution is definitely avoided639

means that some contributions from asthenospheric flow will be missed. Calculated sen-640

sitivity kernels indicate that shallow asthenospheric density anomalies make significant641

contributions to surface topography (Figure 5). Thus, such a step is unlikely to be de-642

sirable if mantle flow models are to be used to understand, say, lithospheric vertical mo-643

tions, or vice versa (see e.g., Figure 5a, e; Davies et al., 2019; Hoggard et al., 2016). Given644

the calculated sensitivity kernels, excising layers in the upper few 100 km is likely to re-645

sult in predictions of surface deflections that are especially fraught at short wavelengths,646

i.e., high spherical harmonic degree. An alternative approach, which avoids some of these647

issues, is removal of structure based on appropriately calibrated plate models, or globally-648

averaged age-dependent density trends (e.g., F. D. Richards et al., 2020, 2023).649

To quantify the impact of discarding shallow structure, we examine differences in650

calculated surface deflection in the spatial and spherical harmonic domains. We present651

three tests, resulting in Models 5, 6 and 7, where progressively deeper structure is re-652

moved from Model 2. Figure 9 shows the results of removing contributions to surface653

deflection from density anomalies at depths shallower than 50, 100 and 200 km. As ex-654

pected from examination of surface topographic sensitivity kernels (e.g., Figure 5a, e),655

removal of these layers results in significantly reduced surface topographic amplitudes.656

Doing so results in power spectra that more closely align with independent estimates (Fig-657

ure 9b, f, j). The reduction in differences between amplitudes of calculated and observed658

spectral power is largely due to the fact that the reference model (i.e., Model 2) over-659

estimates dynamic topographic power across all degrees. We note that power spectral660

slopes for predicted surface deflection from Model 2 are close to those generated from661

Kaula’s rule, and observed oceanic residual depths (Figure 4 and 5). However, remov-662

ing shallow structure steepens spectral slopes (i.e., reduces power at high degrees) be-663

yond those expected from theoretical considerations (i.e., Kaula’s rule) or observed (i.e.,664

from oceanic residual depths), akin to results from other work that excised shallow struc-665

ture (e.g., Flament et al., 2013; Moucha et al., 2008; Steinberger, 2007). This result is666

emphasized by the slope of calculated spectral coherence, rl, between deflections with667

and without shallow structure removed (Figure 9d, h, l). While degree 1 and 2 struc-668

ture remains coherent, coherence across degrees ≳ 20 decreases from ∼ 0.9 to as low669

as 0.5, which are the largest discrepancies between any models examined in this study.670
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Models 8–10: Adjusted Slip Boundary Conditions671

Up to now, we have only considered instantaneous analytical and numerical solu-672

tions for surface deflection where both the surface and CMB have free-slip conditions im-673

posed (i.e., vertical component of flow velocity ur = 0, horizontal components are al-674

lowed to freely vary). No gradient/Neumann constraint (e.g., on ∂u/∂z) is imposed. This675

condition is generally deemed appropriate for the surface of the convecting mantle, and676

CMB, since at both boundaries, cohesion within convecting mantle is thought to be much677

stronger than adhesion to the boundary. Analytical solutions for sensitivity kernels for678

propagator matrices also exist for rigid boundaries, i.e., no-slip Dirichlet conditions, where679

horizontal components of u = 0, which may be more appropriate when the Earth’s litho-680

sphere is implicitly included in mantle convection models, as is the case here (Parsons681

& Daly, 1983; Thoraval & Richards, 1997). Therefore, we test the effect on predicted sur-682

face deflections of changing the surface boundary condition to no-slip. Although there683

is little reason to believe the adhesion of the CMB would be strong, we also test a rigid684

CMB for completeness. The numerical models themselves are driven by a quasi-rigid con-685

dition, whereby flow is driven by estimates of real plate velocities from (Merdith et al.,686

2021), and so the surface layers behave as a series of rigid, laterally mobile plates rather687

than a single rigid shell. This approach may be appropriate for driving near-surface (litho-688

spheric) flow throughout the main model run time, but it less clear whether no- or free-689

slip boundary conditions are most appropriate for calculating instantaneous dynamic to-690

pography (see, e.g., Forte & Peltier, 1994; Thoraval & Richards, 1997).691

Figure 10a, e and i show predicted sensitivity kernels as a function of depth and692

degree (l), for no-slip/free-slip, free-slip/no-slip and no-slip/no-slip boundaries respec-693

tively, where the first condition is the surface slip condition, and the second the CMB694

slip condition. Differences to the original sensitivity kernel for Model 2 (Figure 5a) are695

shown in panels c, g and k. Those panels demonstrate that when the surface boundary696

condition is rigid, there is decreased sensitivity to short wavelength shallow structure,697

and increased sensitivity to long-wavelength (low degree) structure across all depths. Fig-698

ure 10d, h and l reveal that induced misfit in the spatial domain is impacted to a greater699

degree than in tests of gravitation (Models 3 & 4), but not necessarily more severely than700

for removal of, say the upper 200 km of density structure from surface deflection calcu-701

lations. Spectral correlation is most severely impacted when both surface and CMB bound-702

aries are rigid (Model 7; see Table 3).703

5.2 Reference Models 11–12: Temperature-Dependent Viscosity704

In this section, we investigate the impact of including the temperature dependence705

of viscosity, η(r, T ), on predicted global mantle flow in numerical models, and on sub-706

sequent estimates of surface deflection. We do so by first presenting results for the nu-707

merical Model 11, which is identical to Model 1 in terms of all boundary conditions, ini-708

tialization, and physical parameters, except for the fact that viscosity depends on tem-709

perature in the manner described by Equation 7. The analytical propagator matrix ap-710

proaches used in this study require that viscosity varies only as a function of radius. In711

other words, they cannot incorporate temperature-dependent viscosity directly. So, in-712

stead we insert layer mean viscosity from the present-day 3D temperature-dependent vis-713

cosity structure predicted by numerical models (Figure 11), and use it to generate the714

analytical Model 12. The role of upper and lower mantle viscosity and density anoma-715

lies in determining surface deflections are then examined. For tests resulting in Models716

3–10, analytical instantaneous solutions for surface deflection with adjusted parameters717

and boundary conditions were simply compared with Model 2, and no new numerical718

models were generated using TERRA. In contrast, this section corresponds to a new model719

generated using TERRA, where temperature dependence of viscosity affected global man-720

tle flow across the entire run time (Model 11).721
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Figure 11 shows maps of calculated viscosity in the upper and lower mantle for Model722

11. Results, at full horizontal resolution, from the numerical Model 11a are shown in pan-723

els a, e, i, m. A slice through this three-dimensional viscosity structure is shown in Fig-724

ure 1c. Spherical harmonic interpolation of these results, up to maximum degree l =725

50, are shown in panels d, h, l and p (Model 11b). Viscosity variation shown in these maps726

is expressed as percentage deviation from layer mean. Histograms summarising the dis-727

tribution of viscosity in Model 11a are also shown, alongside radial mean values and ex-728

trema. Figure 12 shows the spatio-temporal (100 to 0 Ma) evolution of calculated den-729

sities in Model 11a at the surface of the model and within its ‘asthenosphere’, alongside730

summary statistics. Density anomalies are more localised (‘sharper’) than in Model 1,731

which is unsurprising since temperature-dependent viscosity provides stronger mechan-732

ical constrasts between cooler subducting regions and surrounding asthenosphere, when733

compared to models that do not include temperature-dependent viscosity (cf. Figure 2734

Zhong et al., 2000).735

Figure 13a-b shows calculated radial normal stresses from Model 11a and their spher-736

ical harmonic representation (Model 11b). Summary statistics and calculated power spec-737

tra are shown in panels c-d. Panels f-g show calculated water-loaded surface deflections738

for the full resolution numerical model and for the ‘Mixed’ spherical harmonic represen-739

tation (Equation 11). Panels h-j show summary statistics and power spectra as a func-740

tion of degree, alongside Kaula’s rule and an independent estimate of sub-plate support741

from residual oceanic age-depth measurements (see Section 4). Figure 14 shows surface742

deflections calculated analytically (Model 12) using layer-mean (radial) viscosity shown743

in Figure 11c, which was extracted from the numerical Model 11a. Panels a-d show the744

resultant sensitivity kernel, water-loaded deflections and summary statistics (cf. Figure745

5a-d). Air-loaded predictions are shown for Model 12 for reference, in Figure 14e–h, but746

not included in any summary statistics or future figures, for consistency with previous747

sections.748

Figure 15 compares predictions from the numerical (Model 11b) and analytical (Model749

12) schemes incorporating temperature-dependent viscosity, as discussed in the preced-750

ing sections. Similar to the results obtained for models without temperature-dependent751

viscosity (Figure 6), surface deflections calculated using the analytical approach are damped752

relative to numerical solutions (in their spherical harmonic form; see Figure 15f). The753

best fit amplification factor to align propagator matrix and numerical solutions is 1.24754

(24%), larger than the adjustment required to align reference Models 1b and 2 (1.1; 10%).755

Similar to our interpretation of those previous results, we attribute this discrepancy to756

smoothing inherent to the propagator matrix methodology. The effect is amplified com-757

pared with comparison between Models 1b and 2 because of increased short wavelength758

structure in Model 11 (as discussed above, see Section 5.1; Zhong et al., 2000). Nonethe-759

less, spherical harmonic correlation, rl, is > 0.75 for all degrees examined (l ≤ 50), and760

> 0.85 for most degrees. Cell-to-cell differences in surface deflections are broadly nor-761

mally distributed and centred on zero (Figure 15d).762

Figure 16 shows comparisons between surface deflections predicted by models with763

and without temperature-dependent viscosity. Panels a-c compare the full resolution nu-764

merical solutions (Models 1a and 11a), including summary statistics. Panels d-g com-765

pare spherical harmonic interpolations of the numerical solutions (Models 1b and 11b).766

Finally, panels h-k compare propagator matrix solutions for Models 2 and 12, where Model767

12 incorporates radial (layer-mean) viscosity extracted from solutions to the numerical768

Model 11a (incorporating temperature-dependent viscosity; Figure 11c). Unsurprisingly,769

discrepancy is greatest between the full resolution models. However, discrepancies in cell-770

to-cell deflections are again, broadly normally distributed and centred on zero, cluster-771

ing along the 1:1 relationship with χ = 1.51 (panels b-c; see Table 3). Similar results772

are obtained for both comparisons of spherical harmonically fitted results, and analyt-773

ical results, albeit with less discrepancy, which is emphasised by tighter normal distri-774

–19–



manuscript submitted to Geochemistry, Geophysics, Geosystems

butions and lower χ values. Correlation coefficients are > 0.75 for nearly all degrees for775

both comparisons.776

5.3 Upper and Lower Mantle Viscosity and Density Anomalies777

Models 13–16: Adjusted Sub-Plate Viscosity778

The radial distribution of viscosity, but not its absolute value, plays a crucial role779

in determining sensitivity of instantaneous solutions for surface deflections to density (and780

thermal) anomalies in the mantle (e.g., Parsons & Daly, 1983; Hager, 1984). Consequently,781

we performed a suite of analytical tests in which distributions of upper and lower man-782

tle (radial) temperature-dependent viscosity was varied within propagator matrix solu-783

tions. The resulting impact on calculated surface deflections was quantified by compar-784

ison with results generated using reference Model 12 (Figure 14). The radial component785

of viscosity, η(r), in each test was modified from that used to generate Model 12 (see solid786

black curve in Figure 17). Figure 17a-d show results generated by decreasing upper man-787

tle viscosity by an order of magnitude. Panels e–n show the results of decreasing upper788

mantle viscosity by an order of magnitude. Panels j–p show the impact of using increas-789

ingly simple radial viscosity. Calculated sensitivity kernels for the adjusted viscosity pro-790

files demonstrate that decreasing upper mantle viscosity (relative to the reference case)791

further reduces sensitivity of surface deflections to long-wavelength density structure, es-792

pecially in the lower mantle (Figure 17b, f, j, n). However, in general, results are sim-793

ilar to the reference model even when η(r) is drastically varied, with average χ misfit in-794

curred of only 0.17–0.38 km, and rl > 0.97 across all degrees for all tests. This result795

emphasizes the fact that viscosity only exerts a relatively minor control on sensitivity796

of surface deflection to mantle density structure, in terms of instantaneous flow (Table 3,797

see, e.g., Ghosh et al., 2010; Moucha et al., 2007; Lu et al., 2020).798

Models 17–20: Adjusted Density Anomalies799

Figure 18 shows results from tests in which the amplitudes of density anomalies800

in the upper and lower mantle were systematically increased or decreased. Similar to the801

tests shown in Figure 17, densities are amplified relative to Model 12. Radial viscosity802

is constant for each of these tests (black curve in Figure 18a; i.e., same as that used to803

generate Model 12). The reference sensitivity kernel for Model 12 is shown in Figure 14a.804

Figure 18a-d and g-i show results generated by amplifying respective upper and lower805

mantle densities by a factor of 2. Panels d-f and j-l show results when amplitudes of den-806

sity anomalies are decreased by 1/2. Table 3 summarizes the differences incurred to Model807

12; although spherical harmonic correlation between models is approximately as good808

as for the radial viscosity tests (Models 13–16), that is to be expected since we do not809

vary locations of density anomalies here, only their amplitudes, and rl is insensitive to810

amplitudes of the two results being compared. Significant is the fact that mean verti-811

cal differences between Models 17–20 and 12 (i.e., χ and ∆h̄) are higher than those cal-812

culated for Models 13–16. These results emphasize the relative sensitivity of surface de-813

flections to upper mantle density anomalies, and that even quite large uncertainties in814

lower mantle density anomalies have relatively little impact on surface deflections. Our815

conclusion is that accurately constraining and accounting for upper-mantle density struc-816

ture is of primary concern when estimating surface deflection, and dynamic topography,817

from mantle convection simulations.818

819
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Table 3. Inter-model comparison of predicted surface deflections. Models being

compared are summarised in Table 2. Metrics: root-mean-squared difference (χ, km), mean

Euclidean (L2-norm) difference in predicted deflection (∆h̄, km), and mean spherical harmonic

correlation between models (r̄l). Standard deviation of rl distribution across degrees (sr) is also

stated: note that rl ≤ 1. All spherical harmonic representations of output from numerical code

and generated by the propagator matrix code are expanded up to maximum degree, l = 50. See

body text, figures referred to in column 6, and Table 2 for details.

Models χ ∆h̄ r̄l sr Figures

1b & 2 0.95 0.69 0.97 0.02 5–6

2 & 3 0.57 0.47 0.99 4× 10−4 7
2 & 4 0.13 0.11 0.99 2× 10−5 8

2 & 5 0.67 0.48 0.93 0.04 9a-d
2 & 6 1.03 0.74 0.87 0.06 9e-h
2 & 7 1.57 1.12 0.63 0.15 9i-l

2 & 8 1.26 1.04 0.99 1× 10−3 10a-d
2 & 9 1.09 0.97 0.99 0.04 10e-h
2 & 10 1.00 0.74 0.96 0.28 10i-l

1a & 11a 1.51 1.04 — — 11–13, 16a-c
1b & 11b 1.44 0.98 0.79 0.26 11–13, 16d-g
11b & 12 1.20 0.80 0.95 0.02 15
2 & 12 0.92 0.64 0.85 0.27 14, 16h-k

12 & 13 0.31 0.20 0.99 9× 10−3 17a-d
12 & 14 0.17 0.10 0.99 3× 10−3 17e-h
12 & 15 0.32 0.20 0.98 0.01 17i-l
12 & 16 0.38 0.23 0.98 0.01 17m-p

12 & 17 0.97 0.64 0.98 7× 10−3 18a-c
12 & 18 0.48 0.32 0.98 6× 10−3 18d-f
12 & 19 0.43 0.29 0.99 3× 10−3 18g-i
12 & 20 0.22 0.14 0.99 1× 10−3 18j-l
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6 Discussion820

An important goal is to understand how geological and geomorphological obser-821

vations at (or close to) Earth’s surface can be used to determine the history of mantle822

convection during, say, the last 100 million years. Various observations now exist that823

can be used to constrain mantle convection (e.g., Hoggard et al., 2021; Holdt et al., 2022;824

Davies et al., 2023, see Section 1.1). An obvious approach is to use them to test exist-825

ing simulations of mantle convection. We start by comparing numerical and analytical826

predictions of instantaneous surface deflections generated by mantle convection simu-827

lations.828

Numerical approaches to solving the equations of motion are very flexible, and can829

incorporate a variety of assumptions and parameterizations that are not amenable to an-830

alytical attack (e.g., temperature-dependent viscosity; Section 2.1). However, ensuring831

accuracy and stability means that the computational burden is often considerable and832

hence systematic exploration of parameter space remains challenging. In contrast, an-833

alytical approaches can yield calculated surface deflections that are (mathematically) ac-834

curate for relatively little computational cost, and may include features such as radial835

gravitation with much less computational cost (Section 3.3). Consequently, it is straight-836

forward to explore parameter space, examine benchmarks, reproduce results, and inves-837

tigate sensitivity of solutions to different parameterizations. There are, however, impor-838

tant limitations to consider. First, analytical solutions are only known to exist in the spher-839

ical domain for fluid bodies with radial viscosity (i.e., no lateral variability in viscosity).840

Second, generating solutions in the spherical harmonic domain places practical limits on841

spatial resolution of solutions. Consider that the number of spherical harmonic coeffi-842

cients per degree = 2l + 1, where l is degree, so for a given maximum degree L, there843

are (L+1)2 coefficients derived in total. For our results, where L = 50, there are there-844

fore 2, 601 coefficients altogether, for each model. Consider also that spatial resolution845

increases approximately with the reciprocal of l (see Section 3.2). Incorporating full res-846

olution (60 km at the surface) output from the numerical models used in this study would847

therefore require L ≈ 880, with 776, 161 coefficients. Clearly, computational constraints848

limit our investigation to l ≲ 50. Furthermore, observational constraints on mantle-related849

surface deflection are unlikely to be finer than the flexural wavelength of the overlying850

lithosphere, l ≈ 50 (e.g., Holdt et al., 2022). With these limitations in mind, we com-851

pared surface deflections predicted using different approaches at the same resolution (up852

to l = 50; Sections 2.1 and 3.3). We then quantified the impact of incorporating increas-853

ingly complex physics into models used to predict surface deflections (Section 5; Tables854

2–3).855

First, we simply compared predictions from numerical and analytical approaches856

parameterised to be as similar as possible. In this test, the models were purposefully sim-857

ple: viscosity is radial, models are incompressible, and do not include self-gravitation,858

or radial variation in g. Numerical solutions were transformed into the frequency (spher-859

ical harmonic) domain so that they could be compared with analytical solutions, and so860

that power spectra could be directly compared at appropriate scales. The results show861

that, for as-similar-as-possible parameterizations, amplitudes of analytical solutions are862

≈ 10% lower than numerical solutions (Figure 6). If the numerical model incorporates863

temperature-dependent viscosity, this discrepancy increases to 25% (Figure 15). We in-864

terpret these results in two ways. First, once armed with viscosity and density fields, nu-865

merical and analytical approaches broadly yield similar estimates of surface deflections.866

Second, the relatively damped analytical solutions are a consequence of smoothing steps867

in the propagator matrix approach.868

The similarity of results indicates that the relatively low-cost propagator matrix869

approach can be used to explore consequences of including additional model complex-870

ity. A systematic sweep of parameters, including radial gravitation (Figure 7) and grav-871

itational potential field effects (Figure 8) indicates that their effects on surface deflec-872
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tion are relatively modest. A useful rule of thumb is that self-gravitation perturbs in-873

stantaneous surface deflections by O(1–10)% when compared to models with constant874

gravitational acceleration, and even less difference is observed at high degree (e.g., Ri-875

card, 2015, their Section 7.02.2.5.2). Full 3-D self-gravitation may affect the flow field876

over time, but modelling such effects numerically is currently challenging. Incorporat-877

ing the effect of deflections of gravitational potential field on flow has a modest impact878

on amplitudes of surface deflections at degrees 1–2, but overall it contributes even less879

than radial variation in g to surface deflections across the scales of interest (Figure 7).880

In contrast, removing shallow structure has a very large impact on predictions. It mod-881

ifies amplitudes of surface deflections, locations of uplift and subsidence, and degrees over882

which they are resolved, and hence it modifies power spectral scalings (Table 3, Figure883

9). In contrast, viscosity variations do not have much impact on surface deflections com-884

pared to other effects, even if they are decreased or increased by an order of magnitude885

(Figure 17). The distribution of density anomalies, especially in the upper mantle, does886

however play a very significant role in deflecting the surface (Figure 18). Calculated sum-887

mary statistics suggest that systematically increasing or decreasing mantle densities sig-888

nificantly impacts amplitudes of surface deflections. Conversely, spherical harmonic cor-889

relation coefficients between models with and without density anomalies were largely un-890

affected, as locations of anomalies were not varied.891

These results emphasise the importance of considering sensitivities of surface de-892

flections to the location and scale of flow in the mantle. Taking inspiration from Hager893

and O’Connell (1981) and Parsons and Daly (1983), we calculate the net contributions894

from density anomaly structure to surface deflections, as a function of radius, latitude895

and longitude across all spherical harmonic degrees considered (i.e., l = 1 to 50). Con-896

tributions to surface deflections from densities at particular radii r, across all spherical897

harmonic degrees and orders, for each latitude and longitude, he(θ, ϕ), are calculated such898

that899

he(θ, ϕ, r) =

L∑
l=1

m=l∑
m=−l

[Ylm(θ, ϕ) · δρlm(r) ·Al(r) ·∆r] , (23)

where ∆r is the layer spacing ≈ 45 km, Ylm, δρlm and Al are spherical harmonic co-900

efficients, density anomalies and sensitivities as defined in Section 3.3. Contributions from901

specific locations and depths to surface deflections as a function of latitude and longi-902

tude are shown in Figure 19 for Model 12, for all degrees 1 ≤ l ≤ 50. Results for lower903

maximum l are shown in Supporting Information. Panels a-d show slices through effec-904

tive density in the upper (at 45, 135, 360 km) and lower mantle (1445 km). A 180◦ cross-905

section showing effective densities from the core-mantle-boundary to the surface beneath906

the Pacific to the Indian Ocean encompassing South America and southern Africa (the907

same transect as shown in Figure 1) is shown in panel e. Calculated total net surface de-908

flections along the transect from Model 12, which incorporates temperature-dependent909

viscosity, and Model 2, which does not, are both shown in panel f. A Cartesian version910

of the cross-section with the same horizontal scale is shown in panel g. The adjacent panel911

h shows mean density anomaly amplitudes as a function of radius for Model 12 (dashed912

grey curve), alongside mean effective densities for the two models, and for the case where913

Model 12 was only expanded to maximum l = 10. These panels again emphasize the914

contribution of density anomalies in the upper mantle to surface displacements, and the915

risks associated with discarding shallow structure when predicting dynamic topography.916

In other words, instantaneous surface deflections are most sensitive to the distribution917

of density anomalies in the upper mantle.918

Encouragingly, surface deflections are sensitive to simulated mantle convection pat-919

terns and resulting density distributions, and appear to be relatively insensitive to the920

methodologies used to calculate deflections when parameterizations (assumptions) are921
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consistent. The next step is to make use of independent geological observations to iden-922

tify optimal simulations and associated parameterizations. In this study, we compared923

power spectra (strictly, spherical harmonic coefficients) from calculated surface deflec-924

tions and oceanic age-depth residuals (e.g., Figure 4; Holdt et al., 2022). The simula-925

tions examined have spectral slopes consistent with observations if the entire modelling926

domain (core-mantle boundary to surface) is incorporated, however amplitudes are over-927

predicted by 1–2 orders of magnitude. The uppermost 100–450 km of the mantle is of-928

ten excised in geodynamic studies prior to estimating surface deflections. We demonstrate929

that removing the upper 200 km can generate surface deflections with amplitudes that930

more closely match observations, especially at spherical harmonic degrees > 10. How-931

ever, the spectral slopes of predicted deflections are redder than for the oceanic resid-932

uals, which implies that a different approach to removing the contribution of upper man-933

tle/lithospheric structure is required. An obvious avenue for future work is to incorpo-934

rate information about lithospheric structure into these predictions.935

The body of geologic and geomorphologic observations that could be used to test936

the predicted history of surface deflections from mantle convection simulations has grown937

substantially in the last decade (e.g., uplift and subsidence histories; Section 1.1; see, e.g.,938

Hoggard et al., 2021). A suite of other geological and geophysical observables are also939

predicted by, or can be derived from, such simulations (e.g., mantle temperatures, heat940

flux, geoid, seismic velocities, true polar wander). Using them alongside histories of sur-941

face deflections to identify optimal simulations is an obvious avenue for future work (e.g.,942

Ball et al., 2021; Lau et al., 2017; Panton et al., 2023; F. D. Richards et al., 2023). Us-943

ing such data and the methodologies explored in this paper may be a fruitful way of iden-944

tifying optimal simulations from the considerable inventory that already exists.945

7 Conclusions946

This study is concerned with quantifying sensitivities and uncertainties of Earth’s947

surface deflections that arise in simulations of mantle convection. Calculated sensitiv-948

ities of instantaneous deflection of Earth’s surface to mantle density structure empha-949

sise the importance of accurate mapping of the upper mantle. Surface deflections are some-950

what sensitive to the distribution of viscosity throughout the mantle, but especially to951

the locations and scales of density anomalies in the upper mantle. The largest discrep-952

ancies between predicted deflections seen in this study are generated when upper man-953

tle structure is excised or altered. Doing so changes both the amplitude and distribu-954

tion of calculated deflections, modifying their power spectral slopes. These results em-955

phasise the importance of incorporating accurate models of lithospheric structure into956

calculation of sub-plate support of topography, and also the need to accurately deter-957

mine plate contributions to topography. In contrast, the choice of methodology to es-958

timate surface deflections—analytical or numerical—or boundary conditions are relatively959

small sources of uncertainty. Similarly, assumed gravitational profiles and temperature960

dependence of viscosity are relatively minor contributors to uncertainty given reason-961

able, Earth-like, parameterizations. Nonetheless, these parameterizations may impact962

surface deflections through their role in determining how upper mantle flow evolves through963

geologic time. A fruitful next step could be to use the approaches developed in this pa-964

per, in combination with careful isolation of plate cooling signatures from surface deflec-965

tion predictions, to test mantle convection simulations using the existing and growing966

body of geologic, geomorphologic and geophysical observations.967

Open Research Section968

TERRA models are archived [here]. The propagator matrix code is archived [here].969

Parameterization files are archived [here]. [TO ED: this section will be completed upon970
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final submission, when confirmation of the precise models published is obtained after re-971

view.]972
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Figure 1. Examples of mantle densities and viscosity used to calculate stresses and

dynamic topography numerically and analytically. (a) Great-circle slice (180°) through
full-resolution, present-day, density ρ, predicted by TERRA model with temperature dependent

viscosity (Model 11a; see Table 2 and body text); see globe to left for location. White circles

= 20° intervals; filled black circle indicates orientation of cross section; dashed line = 660 km

depth contour; dotted line = 1038 km depth contour, at which depth ρ is plotted on globe; white-

black curve = numerical prediction of surface normal stress σrr from Model 11a. (b) As (a) but

slice is through spherical harmonic expansion of density structure, to maximum degree l = 50

(λ ≈ 792 km; Model 11b); black-white curve = surface deflection h, calculated using (analytic)

propagator matrix approach (Model 12). (c) As (a) but for slice through full-resolution viscosity

structure of numerical model. (d) As (c) but for mean (radial) viscosity structure, used along

with the density structure shown in (b) to generate analytical solution for surface deflection

shown by black-white curve atop (b). (e–f) As (c–d) but viscosity is expressed as a percentage

anomaly with respect to the layer (radial) mean.

Figure 2. Model 1: Densities predicted from numerical simulation of mantle con-

vection. (a) Predicted present-day density ρ, at surface (z=0), from TERRA model with vis-

cosity independent of temperature (Table 2: Model 1a), plotted at grid resolution of 1 degree.

(b) Histogram of values shown in (a), weighted by latitude to correct to equal-area. (c–d) As

(a–b) but for densities at a depth of 270 km. (e–h) As (a–d) but for time slice at 10 Ma; paleo-

coastlines generated from Phanerozoic plate rotation history of Merdith et al. (2021). (i–l) As

(a–d) but for time slice at 100 Ma.

Figure 3. Model 1: Surface stresses from numerical simulation of mantle con-

vection and spherical harmonic expansion up to degree 50. (a) Predicted present-day

surface radial stress, σrr from numerical TERRA model (Model 1a), plotted at grid resolution

of 1 degree. (b) Histogram of values shown in (a), weighted by latitude to correct to equal-area.

(c) Black line = radial viscosity structure used to drive Model 1a and thus produce grid shown

in panel (a). Gray dashed lines = alternative viscosity profiles of (from darkest to lightest),

Mitrovica and Forte (2004), Steinberger and Calderwood (2006), and µ1, µ2 from Ghelichkhan

et al. (2021). (d) Model 1b: Global interpolation of spherical harmonic expansion of Model 1a

(panel a), up to maximum degree l = 50 (i.e., minimum wavelength λ ≈ 792 km; Model 1b),

calculated using inversion approach of Hoggard et al. (2016). (e) Histogram of values shown in

(d), weighted by latitude to correct to equal-area. (f) Power spectrum, in terms of total power

per degree, of stress field shown in (d), as a function of spherical harmonic degree l.

–32–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 4. Model 1: Predicted water- and air-loaded dynamic topography. (a)

Water-loaded, present day, surface deflection predicted by Model 1a. Figure 3a shows normal

stress, σ, used with Equation 11 to calculate dynamic topography, h; ρw = 1030 kg m−3. (b)

Spherical harmonic fit (Model 1b) up to degree l = 50 of grid shown in (a), calculated using the

approach of Hoggard et al. (2016). (c–d) Histogram of values shown in (a) and (b) respectively,

weighted by latitude to correct to equal-area. (e) Black line = power spectrum in terms of total

power per degree, from spherical harmonic expansion shown in (b); gray line and band = ex-

pected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal km−1 (Kaula,

1963). Orange dashed line = expected power spectrum for water-loaded residual topography from

Holdt et al. (2022), via analytical solution of special case of Equation 16. χp = total root-mean-

squared difference between distribution of modeled and theoretical surface deflection power (see

Equation 21. (f–j) As (a–e) but for air-loaded surface deflection; ρw = 1 kg m−3.

Figure 5. Model 2: Propagator matrix solution for surface deflection with as-

sociated sensitivity kernels. (a) Surface deflection sensitivity kernel Al, as a function of

spherical harmonic degree, l, and depth, calculated for the radial viscosity structure (and other

parameters) which were used to generate Model 1; see Equation 17. (b) Present-day predicted

water-loaded surface deflection, calculated using propagator matrix method, from spherical har-

monic expansion (to maximum degree l = 50) of density structure (e.g., Figure 2a, c) and radial

viscosity structure (e.g., Figure 3c; Corrieu et al., 1995; Hager et al., 1985; Parsons & Daly,

1983). Note that for comparison with numeric calculations shown in Figure 4, no terms related

to flow-related perturbation of gravitational potential terms are included (see Equations 17 and

18), and gravitational acceleration g = 10 m s−2 everywhere. (c) Histogram of values shown in

(b), weighted by latitude to correct to equal-area. (d) Black line = power spectrum in terms of

total power per degree, from surface deflection prediction shown in (a); gray line and band = ex-

pected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal km−1 (Kaula,

1963). Orange dashed line = power spectrum of water-loaded residual topography from Holdt et

al. (2022), via analytical solution of special case of Equation 16. χp = total root-mean-squared

difference between distribution of modeled and theoretical surface deflection power (see Equa-

tion 21. (e–h) As (a–d) but for air-loaded surface deflection; ρw = 1 kg m−3.

Figure 6. Comparison of numeric and analytic estimation of dynamic topogra-

phy (Models 1b & 2). (a) Model 1b: Spherical harmonic expansion of predicted present-

day water-loaded surface deflection converted from stress output from TERRA (Model 1a), to

maximum degree l = 50, as in Figure 4f. (b) Model 2: As (a) but for prediction made using

propagator matrix method, as in Figure 5b. (c) Difference, ∆h, between Models 1b and 2 (pan-

els a and b). (d) Histogram of difference values shown in (c), weighted by latitude to correct

to equal-area. (e) Spectral correlation coefficient, rl, between predictions shown in (a) and (b);

Equation 20. (f) Numeric (Model 1b) versus analytic (Model 2) predictions of surface deflection;

χ = root-mean-squared difference between predictions, Equation 19; gray dashed line = 1:1 ratio.

(g) Black bars = histogram of ratios between analytic:numeric solutions for surface deflection as

in (f), weighted by latitude. Gray dashed line = 1 (i.e., identical values). Gray bars = as black

bars, but for propagator matrix solution amplitudes scaled up by optimal factor to fit numerical

solution (10%).
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Figure 7. Model 3: Predicted surface deflection from mantle convection in pres-

ence of radial gravitation. (a) Predicted present-day water-loaded surface deflection calcu-

lated using propagator matrix method, incorporating radial gravitation i.e., g(r), black curve in

(b). (b) Black curve = profile of gravitational acceleration as a function of radius, given density

distribution predicted by Model 1a; gray dashed line = constant value of g = 10 m s−2 used

within TERRA model runs and in previous figures. (c) As (a) but calculated using g = 10 m s−2

everywhere, i.e., same as Figure 5a (dashed line in panel b). (d) Difference between surface de-

flections predicted by Models 3 and 2 (panels a and c). (e) Histogram of values in (d), weighted

by latitude to correct to equal-area.

Figure 8. Model 4: Comparing predicted surface deflections with and without

stress perturbations induced by gravitational potential of deflected surface. (a) Pre-

dicted present-day water-loaded surface deflection calculated using propagator matrix method,

with g = 10 m s−2 everywhere, including terms describing stress perturbation due to change

in gravitational potential (i.e., u3 term in Equation 17). (b) As (a) but calculated excluding u3

term, i.e., same as Figure 5a. (c) Difference between Models 4 and 2 (panels a and b). Note same

colour scales are used as in Figure 7. (d) Histogram of values in (d), weighted by latitude to cor-

rect to equal-area.

Figure 9. Models 5–7: Effect of removing shallow structure from analytic surface

deflection calculations. (a) Model 5: Predicted water-loaded surface deflection from propa-

gator matrix solution for Model 2, i.e., as Figure 5b, but with effect of upper 50 km of density

anomaly structure ignored in calculation. (b) Black line = power spectrum of surface deflection

shown in (a); gray line and band = expected dynamic topography from Kaula’s rule using admit-

tance Z = 12 ± 3 mGal km−1 (Kaula, 1963). Orange dashed line = expected power spectrum for

water-loaded residual topography from Holdt et al. (2022), via analytical solution of special case

of Equation 16. χp = total root-mean-squared difference between distribution of modeled and

theoretical surface deflection power (see Equation 21). (c) Difference between Models 5 and 2,

i.e., between panel (a) and original propagator matrix solution, Model 2, shown in Figure 5b. (d)

Spectral correlation coefficient, rl, between Model 5 and 2; Equation 20. (e–h) and (i–l) as (a–d)

but for depth cut-offs of 100 (Model 6) and 200 km (Model 7), respectively.

Figure 10. Models 8–10: Testing free-slip vs. no-slip (“rigid”) surface and CMB

boundary conditions. (a) Water-loaded surface deflection sensitivity kernel Al, for Model

8, which has a no-slip surface boundary condition, but otherwise is parameterised the same as

Model 2. (b) Sensitivity kernel of Model 8 minus sensitivity kernel of Model 2 (see Figure 5a).

Note, positive difference implies reduced sensitivity compared to Model 2, and vice versa, since

Al is negative. (c) Predicted water-loaded surface deflection for Model 8. (d) Difference between

surface deflection predictions for Model 8 and Model 2 (see Figure 5b). (e–h) as (a–d) but for

Model 9: free-slip surface boundary, no-slip CMB. (i–l) as (a–d) but for Model 10: no-slip surface

and CMB boundaries.
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Figure 11. Model 11: Numerical simulation of mantle convection with tempera-

ture dependent viscosity, η, and spherical harmonic representation. (a) Present-day

viscosity at surface from Model 11a, expressed as percentage deviation from layer mean, δη, plot-

ted at grid resolution of 1 degree. (b) Histogram of values shown in (a), weighted by latitude to

correct to equal-area. (c) Black line and gray band = global mean and extreme viscosity values

as a function of depth; pink band = depth slice shown in (a). (d) Model 11b: Spherical harmonic

fit up to degree l = 50 of grid shown in (a), using inverse approach of Hoggard et al. (2016). (e–

h) As (a–d) but for depth slice at 271 km below surface. (i–l) and (m–p) 587 km and 2032 km

depth slices.

Figure 12. Model 11: Densities predicted by numerical simulation with

temperature-dependent viscosity. (a) Predicted present-day density ρ, at surface (z=0),

from TERRA model. (b) Histogram of values shown in (a), weighted by latitude. (c–d) As panels

(a–b) but for densities at 270 km depth. (e–h) and (i–l) As panels (a–d) for time slices at 10

and 100 Ma (see caption of Figure 2 for expanded description; Figure 11 for viscosity structure;

Equation 7).

Figure 13. Model 11: Predictions of surface stresses and deflections from simu-

lations with temperature dependent viscosity. (a) Predicted present-day surface radial

stress, σrr from numerical TERRA model (Model 11a), plotted at grid resolution of 1 degree. (b)

Model 11b: Spherical harmonic representation of Model 11a up to degree l = 50. (c) Histogram

of values shown in (a), weighted by latitude to correct to equal-area. (d) Histogram of values

shown in panel (b). (e) Power spectrum of surface stresses. (f–i) Calculated water-loaded surface

deflections and associated histograms for full resolution numerical solutions (f, h) and spherical

harmonic representation (g, i). (j) Power spectrum (black) of water-loaded surface deflection

(panel g), Kaula’s rule (grey curve and band), and water-loaded residual topography (orange);

see Figure 4 for expanded description.

Figure 14. Model 12: Analytical (propagator matrix) predictions of surface de-

flections from simulations with temperature dependent viscosity. Radial viscosity is

calculated using mean (radial) values from numerical model with temperature-dependent viscos-

ity (i.e., Model 11a; Figure 13). (a–d) Present-day, water-loaded, surface deflection calculated

analytically using propagator matrix solution; see Figure 5 for expanded description of panels.

(e–h) Air-loaded deflection and associated metrics.
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Figure 15. Models 11b & 12: Comparison of surface deflections calculated numer-

ically and analytically using results from simulation with temperature dependent

viscosity. (a) Model 11b: Spherical harmonic expansion of predicted present-day water-loaded

surface deflection converted from stress output from TERRA (Model 11a), to maximum de-

gree l = 50. (b) Model 12: As (a) but for prediction made using propagator matrix method.

(c) Difference, ∆h, between Models 11b and 12 (panels a and b). (d) Histogram of difference

values shown in (c), weighted by latitude to correct to equal-area. (e) Spectral correlation co-

efficient, rl, between predictions shown in (a) and (b); Equation 20. (f) Numeric (Model 11b)

versus analytic (Model 12) predictions of surface deflection; χ = root-mean-squared difference

between predictions, Equation 19; gray dashed line = 1:1 ratio. (g) Histogram of ratios between

analytic:numeric solutions for surface deflection as in (f), weighted by latitude. Gray dashed line

= 1 (i.e., identical values). Gray bars = as black bars, but for propagator matrix solution ampli-

tudes scaled up by optimal factor to fit numerical solution (24%).

Figure 16. Comparing surface deflections calculated using normal stresses from

numeric simulations (Models 1 and 11) and analytic estimates (Models 2 and 12)

with and without temperature dependent viscosity. (a) Difference in predicted sur-

face deflection, ∆h, between numerical simulations with (Model 11a) and without (Model 1a)

temperature-dependent viscosity. Full-resolution surface radial stresses are converted into surface

deflections, h, using Equation 11. (b) Histogram of values shown in (a). (c) Pixel-wise compar-

ison of predicted surface deflection between the two models; χ = root-mean-squared difference

between predictions, see Equation 19; gray dashed line = 1:1 ratio. (d–f) as (a–c) but for surface

deflection calculated using spherical harmonic expansion of surface radial stresses (Model 1b

vs. 11b). (g) Spectral correlation coefficient, rl, between model predictions (with and without

temperature dependent viscosity; see Equation 20). (h–k) as (d–g) but for surface deflections

calculated for each model using the propagator matrix approach (Model 2 vs. 12).

Figure 17. Models 13–16: Sensitivity of calculated analytic surface deflection to

adjusted radial viscosity. (a) Model 13: Black curve = prediction of present-day radial mean

viscosity from Model 11; red line = adjusted radial profile with viscosity decreased by a factor of

10 between depths of ∼ 300–500 km; gray dashed lines = viscosity profiles used in other studies

(see Figure 3). (b) Sensitivity kernel generated using adjusted viscosity shown in (a). (c) Surface

deflection calculated using propagator matrix approach parameterised using adjusted viscosity

profile (red curve in panel a), and resulting sensitivity kernel shown in panel (b). (d) Difference

between propagator matrix solutions generated using adjusted and un-adjusted viscosity pro-

files, i.e., panel (c) minus Figure 15b (Model 13 vs. 12). Value of root-mean-squared difference,

χ, (between calculated surface deflections for un-adjusted and adjusted viscosity) is stated (see

Equation 19). (e–h) Model 14: As (a–d) but applying an increase in viscosity of a factor of 10

between ∼ 300–500 km. (i–l) Model 15: As (a–d) but applying an increase in viscosity of a factor

of 100 between ∼ 300–500 km. (m–p) Model 16: As (a–d) but applying an constant viscosity of

≈ 7.5× 1022 Pa s (i.e., the mean value of the reference profile) across all depths.
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Figure 18. Models 17–20: Sensitivity of calculated analytic surface deflection to

adjusted density anomalies. Annotation is as for Figure 17 but for adjusted density anoma-

lies (red lines in left panels), by directly scaling spherical harmonic coefficients (l > 0) up or down

by a factor of 2 (Models 17 & 19, panels a–c & g–i, respectively) or 1
2
(Models 18 & 20: d–f &

j–l ). Viscosity structure applied in each case is same as that used to generate Figure 15b. Sensi-

tivity kernels for surface deflection are not shown since they are invariant with respect to density

anomalies, ∆ρ, depending only on viscosity structure.

Figure 19. Effective density. Contributions from density anomalies to surface deflection.

(a–d) Maps of net contribution to present-day water-loaded surface deflection calculated using

propagator matrix approach (Model 12; see body text for details). Depth slices at 45, 135, 360

and 1445 km depth incorporating all spherical harmonic degrees l and orders m, up to l = 50. (e)

Great-circle slice (180°) showing contributions to surface deflection; globe to right shows transect

location and calculated surface deflection (same as Figure 14b). White circles = 20° intervals;
note filled black circle for orientation; dashed line = 660 km depth contour. (f) White-black

curve = total surface deflection along transect shown atop globe in panel (e); abscissa aligned

with panel g; orange dashed line = same but for maximum l = 10 (see Supporting Information

Figure S4); red dashed curve = surface deflection from Model 2. (g) Cartesian version of panel

(e); ordinate aligned with panel (h). (h) Grey dashed curve = mean absolute value of density

anomalies in Model 12—see top axis for values. Black curve = global mean amplitude (modulus)

of contribution from density structure in Model 12 to total surface deflection h, across all l and

m; orange line = same but for maximum l = 10; red dashed line = results for Model 2.
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Abstract18

The modern state of the mantle and its evolution over geological timescales is of widespread19

importance for the Earth sciences. For instance, it is generally agreed that mantle flow20

is manifest in topographic and drainage network evolution, glacio-eustasy, volcanism, and21

in the distribution of sediments. An obvious way to test theoretical understanding of man-22

tle convection is to compare model predictions with independent observations. We take23

a step towards doing so by exploring sensitivities of theoretical surface deflections gen-24

erated from a systematic exploration of global mantle convection simulations. Sources25

of uncertainty, model parameters that are crucial for predicting deflections, and those26

that are less so, are identified. We start by quantifying similarities and discrepancies be-27

tween deflections generated using numerical and analytical methods that are ostensibly28

parameterised to be as-similar-as-possible. Numerical approaches have the advantage of29

high spatial resolution, and can capture effects of lateral viscosity variations. However,30

treatment of gravity is often simplified due to computational limitations. Analytic so-31

lutions, which leverage propagator matrices, are computationally cheap, easy to repli-32

cate, and can employ radial gravitation. However, spherical harmonic expansions used33

to generate solutions can result in coarser resolution, and the methodology cannot ac-34

count for lateral viscosity variations. We quantify the impact of these factors for pre-35

dicting surface deflections. We also examine contributions from radial gravity variations,36

perturbed gravitational potential, excised upper mantle, and temperature-dependent vis-37

cosity, to predicted surface deflections. Finally, we quantify effective contributions from38

the mantle to surface deflections. The results emphasise the sensitivity of surface deflec-39

tions to the upper mantle.40

Plain Language Summary41

Flow of rock within Earth’s interior plays a crucial role in evolving the planet. It42

moves heat and chemicals from deep depths to the surface, for instance. It also moves43

the lithosphere—the Earth’s outer rocky shell—which in turn impacts processes includ-44

ing mountain building, sea-level change, formation of volcanoes, river network evolution,45

and natural resource distribution. Consequently, we wish to understand the present state,46

and history, of flowing rock within Earth’s interior. Observations exist to address this47

problem, and mathematics and computing tools can also be used to predict histories of48

flow and their impact on Earth’s surface. We explore how assumptions incorporated into49

such models affect calculated deflections of Earth’s surface. Predictions from different50

models are compared, with a view to identifying crucial modelling components. Surface51

sensitivity to deep flow is assessed, demonstrating how surface observations can enlighten52

flow histories.53

1 Introduction54

1.1 Background55

Mantle convection plays a crucial role in Earth’s evolution (e.g., Hager & Clayton,56

1989; Parsons & Daly, 1983; Pekeris, 1935). It is well understood, for instance, that flow57

in the mantle is fundamental in the transfer of heat and chemicals from the deep Earth58

to the surface, in driving horizontal and vertical lithospheric motions (thus tectonic pro-59

cesses), and in magnetism via interactions with the core (e.g., Biggin et al., 2012; Davies60

et al., 2023; Foley & Fischer, 2017; Hoggard et al., 2016; Holdt et al., 2022; Pekeris, 1935).61

In turn, many processes operating at or close to Earth’s surface are impacted, includ-62

ing glacio-eustasy, magmatism, climate, sediment routing, natural resource distribution,63

drainage network evolution, and development of biodiversity (e.g., Ball et al., 2021; Braun,64

2010; Hazzard et al., 2022; O’Malley et al., 2021; Salles et al., 2017; Stanley et al., 2021).65

Clearly, understanding the physical and chemical evolution of the mantle has broad im-66

plications. Theoretical approaches to understanding mantle convection, including global67
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simulations of mantle flow, can incorporate complex rheologies and geological histories68

(e.g., Forte, 2007; Hager & Clayton, 1989; D. P. McKenzie et al., 1974; Ribe, 2007; Ri-69

card, 2007). Such models can include data assimilation, incorporating seismic tomographic70

(and other data) into flow solutions, iterating to optimize fits to observational constraints71

(e.g., Bunge et al., 2002, 2003; Glǐsović & Forte, 2016). A general goal is to identify the-72

oretical models that are most Earth-like and, ultimately, to combine such approaches with73

observational inventories to provide accurate estimates of the actual history of mantle74

convection, and its role in governing Earth’s surface evolution.75

Properties of the convecting mantle, and its role in supporting topography at Earth’s76

surface, have become significantly better known in the last decade or so, thanks prin-77

cipally to two suites of observations. First, there has been notable convergence in seis-78

mic tomographic imaging studies of Earth’s interior, partly as a result of increased in-79

strumentational coverage (e.g., EarthScope; Lekić & Fischer, 2014). Methodological ad-80

vances, including full waveform inversion, have also improved understanding of mantle81

structure in many places (see, e.g., Fichtner et al., 2009, 2013; Fichtner & Villaseñor, 2015;82

French & Romanowicz, 2015). Mapping lithospheric thicknesses, which are crucial for83

disentangling origins of surface topography, has benefited from these improvements, as84

well as their own methodological advances (e.g., Priestley & McKenzie, 2013; F. D. Richards85

et al., 2021). Second, the inventory of residual oceanic age-depths—oceanic basement86

depths that cannot be explained by passive plate cooling with age, crustal or sedimen-87

tary processes—has become significantly more comprehensive (Davies et al., 2019; Hog-88

gard et al., 2016; Holdt et al., 2022; Menard, 1973). Measured residual depths indicate89

that the convecting mantle supports oceanic bathymetry with amplitudes up to ∼ 1 km,90

at horizontal scales ranging from those dictated by the elastic strength of the plate, i.e.,91

O(102) km, up to O(104) km. The spectral power of these deflections approximately matches92

analytical estimates for mantle flow (e.g., Kaula’s rule; Hoggard et al., 2016; Holdt et93

al., 2022; Kaula, 1963). In contrast, more complex continental rheologies and tectonic94

histories mean that quantifying modern topographic support of continental lithosphere95

from the mantle using observations is in its infancy (see, e.g., Davies et al., 2023; Hog-96

gard et al., 2021). However, potential field data (e.g., free-air gravity anomalies and their97

relationship with topography, the geoid, etc.) and seismological information about plate98

structure provide useful information to constrain the current state of the convecting man-99

tle beneath continents (and oceans; Audet, 2014; Hager & Clayton, 1989; Steinberger100

& O’Connell, 1997).101

A growing inventory of geological and geomorphological observations from atop pas-102

sive margins and within continental interiors provides increasingly coherent information103

about histories of mantle convection during the last ∼ 100 Ma (see, e.g., Hoggard et al.,104

2021, for a recent summary). For instance, pressures and temperatures of melting ob-105

tained from the composition of Neogene and younger mafic rocks globally have recently106

been shown to be broadly consistent with estimates derived from shear wave tomogra-107

phy (Ball et al., 2022). Over-compacted stratigraphy and backstripped subsidence his-108

tories along African, American and Australian margins, combined with seismological and109

gravity data, provide evidence of vertical lithospheric motion due to flow in the mantle110

(e.g., Al-Hajri et al., 2009; Czarnota et al., 2013; Flament et al., 2015; Morris et al., 2020).111

Uplifted marine and coastal rock on all continents, especially in regions that have not112

recently experienced lithospheric shortening, provides information about sub-plate sup-113

port of topography and mantle viscosity (e.g., Fernandes & Roberts, 2020; Gunnell &114

Burke, 2008; Lambeck et al., 1998). Lithospheric vertical motions from stratigraphic data115

(especially uplifted marine rock), from inverse modelling of drainage networks, and from116

denudation and sedimentary flux histories, provide indirect information about histories117

of sub-plate support beneath the continents (e.g., Galloway et al., 2011; Fernandes et118

al., 2019; O’Malley et al., 2021; Stanley et al., 2021). In summary, there now exists a global119

inventory of geophysical, geological and geomorphological observations, providing infor-120
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mation about the current state of the mantle and clues about its spatio-temporal evo-121

lution, especially during the last few tens of millions of years.122

Despite these advances, observations providing information about the history of123

mantle convection are sparse in places, especially within continental interiors. Sparsity124

increases globally back through time (see, e.g., Hoggard et al., 2021). Theoretical or mod-125

elling approaches can, in principle, be used to fill in spatio-temporal observational gaps,126

to quantify the history of mantle convection. A general goal is to combine theoretical127

insights into mantle convection, e.g., via numerical simulation or analytical advances, with128

the growing observational inventory. In our view, there are two crucial steps to doing129

so. First, a quantitative understanding of the implications of modelling choices (e.g., nu-130

merical vs. analytical solutions, boundary conditions, rheological assumptions) for pre-131

dicting quantities that are measurable at Earth’s surface (e.g., surface deflections, grav-132

itational potential, heat flow) is required. There now exists a large body of models and133

theoretical approaches that can be compared. Second, quantification of the discrimina-134

tory power of observations at Earth’s surface for identifying Earth-like simulations of man-135

tle convection is needed. Our focus in this paper is on addressing the first topic. We then136

discuss the second topic, with a view to making use of independent observations in fu-137

ture work.138

1.2 Approach139

A large body of global mantle convection simulators and simulations exist, which140

can, in principle, be used to fill observational gaps and predict histories of mantle con-141

vection (e.g., Baumgardner, 1985; Bunge & Baumgardner, 1995; Davies et al., 2013; Fla-142

ment et al., 2015; Ghelichkhan et al., 2021; Hager et al., 1985; Moucha & Forte, 2011;143

Steinberger & Antretter, 2006). This considerable body of existing work provides an op-144

portunity to assess the role different features arising from the natural complexity of man-145

tle convection play in generating surface observables. For instance, mantle convection146

simulations can incorporate radial and temperature-dependent viscosity, radial gravita-147

tion, deflection of gravitational potential fields and their subsequent impact on flow, min-148

eralogical phase changes, compressibility, different surface and core-mantle boundary slip149

conditions (e.g., rigid/no-slip, free-slip), chemical and thermal buoyancy, and plate mo-150

tions and/or tomographic constraints on mantle structure (e.g., Baumgardner, 1985; Cor-151

rieu et al., 1995; Crameri et al., 2012; Panasyuk et al., 1996; Tackley et al., 1993; Zhong152

et al., 2008). These assumptions can result in quite different predictions of surface de-153

flections. An obvious question then, which we seek to address, is, can surface observa-154

tions be used to discriminate between simulations, and, ultimately, to determine the his-155

tory of mantle convection?156

Aside from the fundamental choice of governing equations underpinning simula-157

tions, there exist different mathematical and computational approaches to predict the158

surface impact of mantle convection. These approaches sit within two broad families: nu-159

merical simulations (e.g., CitcomS, TERRA, ASPECT; Bangerth et al., 2023; Baumgard-160

ner, 1985; Zhong et al., 2000), and propagator matrix based, quasi-analytical techniques,161

that can be solved in two or three dimensions, and importantly for our purposes, spher-162

ically and spectrally (e.g., Parsons & Daly, 1983; Hager & O’Connell, 1979; Colli et al.,163

2016). Here, we investigate similarities and differences arising between surface deflections164

predicted by propagator matrix and numerical schemes (see Figure 1). We do so by com-165

paring predictions generated using the numerical code TERRA, and a modified version166

of Ghelichkhan et al. (2021)’s analytical (propagator matrix) code. We develop a flex-167

ible scheme that could be used to compare predictions from other whole-Earth models168

of mantle convection.169

This paper is arranged as follows. First, the conservation equations solved to pre-170

dict mantle flow and subsequent surface deflections, solution methodologies, and model171
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parameterizations are described. Second, numerical and analytical techniques for esti-172

mating surface deflection are summarized. Third, three metrics for comparing predicted173

surface deflections are described. Fourth, parameterizations and assumptions tested in174

this paper are described, and resultant modifications to surface deflection predictions are175

quantified. We start by comparing predictions that arise from as-similar-as-possible pa-176

rameterizations of numerical and analytical approaches. These tests compare surface de-177

flections calculated using the entirety of the modelling domains, i.e., from the core-mantle178

boundary (CMB) to the surface; no shallow structure is excised. These reference mod-179

els are purposefully simple, e.g., incompressible, constant gravitational acceleration (no180

self-gravitation or radial variation in gravitation), radial viscosity independent of tem-181

perature. The convection simulations are driven by plate motions generated using ge-182

ological observations, which are described below. For clarity, the simulations do not in-183

corporate information about the mantle derived from tomographic models. We then sys-184

tematically examine the impact of incorporating radial variations in gravitational accel-185

eration, contribution to flow from deflection of the gravitational potential field, removal186

of shallow density/viscosity structure, choice of surface and CMB slip conditions, inclu-187

sion of temperature dependent viscosity, and amplification/reduction of viscosity and den-188

sity anomalies in the upper and lower mantle. We explore a closed-loop modelling strat-189

egy in which predicted surface deflections from these relatively complex models are com-190

pared to results from reference models. Finally, a methodology for assessing effective con-191

tributions to surface topography from mantle anomalies is presented.192

We stress that we purposefully avoid isolating passive or plate-driven surface de-193

flection and sub-plate support from the simulations unless stated explicitly. The central194

focus of this work is merely on quantifying contrasting predictions of surface topogra-195

phy that arise simply from choices made when simulating mantle convection using nu-196

merical and analytical approaches. We compare results to estimates of sub-plate sup-197

port from oceanic age-depth residuals with a view to quantifying corrections necessary198

to convert surface deflections predicted by mantle convection simulations into estimates199

of sub-plate support.200

2 Equations Governing Predicted Mantle Convection201

Theoretical predictions of surface displacements from mantle convection arise from202

the application of physical laws that take the form of conservation equations for mass,203

momentum and energy (see, e.g., Hager & O’Connell, 1981; Parsons & Daly, 1983). Here,204

we solve those equations across a 3D spherical domain using the finite element code TERRA205

(Baumgardner, 1985; Bunge & Baumgardner, 1995, etc.). Under this formulation, the-206

oretical convection in an incompressible fluid can be expressed by the following three di-207

mensionless equations (e.g., Baumgardner, 1985; Davies et al., 2013; D. P. McKenzie et208

al., 1974; Parsons & Daly, 1983). First, the continuity condition for conservation of mass,209

∇ · u = 0, (1)

where u is the fluid velocity vector. Since the Prandtl number is likely to always be ex-210

tremely large in this system—mantle viscosity is expected to be many orders of magni-211

tude larger than the product of density and thermal diffusivity—inertial terms can be212

neglected (e.g., Parsons & Daly, 1983). Second, the equation of motion,213

∇σ = −ρ′g, (2)

where214

ρ′ = −αρ0(T − Tref). (3)
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σ is the 3×3 stress tensor where the (radial) hydrostatic component balancing the ref-215

erence density structure has been subtracted, ρ′ is the density difference due to temper-216

ature, α is the coefficient of thermal expansion, T is temperature, Tref is a radially vary-217

ing reference temperature structure, which has a constant value in the mid-mantle and218

joins to a cold thermal boundary layer near the surface and a hot one at the CMB, reach-219

ing the actual surface, Ts, and core mantle boundary, TCMB temperatures at the respec-220

tive boundaries, and g is gravitational acceleration acting radially (see Table 1). This221

stress tensor σij is decomposed into deviatoric and lithostatic components:222

σij = τij − pδij , (4)

where τij is the deviatoric stress tensor, p is dynamic pressure and δij is the Kronecker223

delta function. The deviatoric stress tensor and the strain-rate tensor, ϵ̇ij , are related224

by:225

τij = 2ηϵ̇ij = η

(
∂ui

∂xj
+

∂uj

∂xi

)
, (5)

where η is viscosity, and ∂/∂xi is the spatial partial derivative. By combining equations226

2, 4 and 5 we solve the equation of motion:227

∂(ηϵij)

∂xj
− ∂p

∂xi
= −ρ′gδir, (6)

where g is the scalar value of g and δir is the Kronecker delta selecting the radial direc-228

tion r.229

We first examine predictions from models in which viscosity varies only with depth,230

i.e., η = η0 × ηr, where η0 is reference viscosity (see Table 1), and ηr is a scaling fac-231

tor dependent only on radius, plotted with model results as appropriate throughout this232

manuscript. We then include temperature dependence of viscosity, i.e., η = η0 × ηr ×233

ηT , where234

ηT = exp(z′ − 2T ′). (7)

Dimensionless depth, z′ = z/d, where d = zsurface−zCMB = 2890 km, and dimension-235

less temperature T ′ = (T − Ts)/(TCMB − Ts), where TCMB − Ts = 2700 K.236

Finally, the heat transport equation is solved to ensure conservation of energy:237

∂T

∂t
+ u · ∇T = κ∇2T +

H

Cp
, (8)

where κ is thermal diffusivity, H is internal heat generation and Cp is specific heat ca-238

pacity. See Table 1 for parameter values and units. Heat generation within the mantle239

depends on the distribution of radiogenic isotopes (e.g., Ricard, 2015). Concentrations240

of such elements can be tracked in TERRA, using particles, varying as a consequence of241

flow and melting (see, e.g., Panton et al., 2023; van Heck et al., 2016, for full explana-242

tion). The bulk composition field, C, which varies between 0 and 1, is also tracked on243

particles and calculated for each of the finite elements in the model. The end-members244

represent completely depleted/harzburgitic material (C = 0), and fully enriched/basaltic245

material (C = 1). As a result, radiogenic heat production across the whole mantle vol-246

ume varies, being ≈ 24 TW (5.8×10−12 W kg−1) at 1.2 Ga, and ∼ 18 TW (4.5×10−12
247
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W kg−1) by 0 Ma. Simulations are initialised such that the average mantle composition248

is C = 0.20 (Panton et al., 2023), and composition obeys the conservation equation:249

∂C

∂t
= −∇ · (Cu). (9)

2.1 Numerical Modelling Strategy250

The Stokes equations described above are solved by the finite element method on251

a series of stacked spherical shells composed of nodes based on a subdivision of a reg-252

ular icosahedron, with an identical geometry for each shell when projected onto the CMB253

(see, e.g., Figure 1 of Baumgardner, 1985). The radial spacing of consecutive shells is254

45 km, which is the same as the mean horizontal spacing of the elements across the en-255

tire model domain. The stacking of identically partitioned shells leads to a finer mean256

horizontal resolution of ≈ 33 km at the CMB, and a coarser resolution of ≈ 60 km at257

the surface. The surfaces of the uppermost elements in the shallowest shell lie at zero258

depth. To enable estimates of stress from these models to be directly compared with an-259

alytical solutions obtained from Green functions across layer boundaries, the predicted260

values of deviatoric stress were calculated using the calculated velocities from the near-261

est shells using the interpolating linear shape functions of the underlying finite elements,262

while the dynamic pressure is calculated directly at the surface (Section 3.3).263

Each numerical model presented in this paper has two computational stages: ‘spin-264

up’, which is used to initialize the model, and the geologically more realistic ‘main’ stage,265

from which we generate predictions of surface deflections. The spin-up stage includes 2.2266

billion years of model run-time. It has the following conditions imposed to avoid sharp267

velocity and temperature gradients, and sudden reorganization of mantle flow when the268

main model starts. First, a free-slip condition is imposed at the surface. Second, an ini-269

tial, random white noise temperature field generated with power across spherical har-270

monic degrees 1-19, is inserted. Mean mantle temperature is initially 2000 K. Mantle con-271

vection arises naturally over the first two billion years of model run-time. A fixed-slip272

surface velocity condition is then applied to the surface for 200 Ma. These velocities are273

set to be equal to those at 1 Ga extracted from the reconstructions of Merdith et al. (2021);274

the vertical component of slip is zero. The resultant mantle structure is used as the ini-275

tial condition for the main model.276

The main model routine predicts flow from 1 Ga to the present-day (0 Ma). It in-277

cludes an isothermal condition imposed at the surface, Ts = 300 K. A fixed-slip con-278

dition is imposed such that the vertical component of u is zero. Horizontal slip is pre-279

scribed using the plate reconstructions of Merdith et al. (2021); these are applied in 1280

Ma long stages. As such, stirring by plate drift and slab sinking play a role in driving281

mantle flow in these models. An isothermal condition is also imposed at the core-mantle282

boundary such that TCMB = 3000 K. A free-slip velocity boundary condition is imposed283

there, i.e., so the radial component of the mantle flow velocity (ur) = 0. While this ra-284

dial velocity boundary condition is of the Dirichlet type, in a free-slip boundary condi-285

tion no tangential restriction is imposed on the flow velocity but rather on the tangen-286

tial deviatoric stresses acting on the boundary (τrθ, τrϕ where r, θ and ϕ are the radial287

and two tangential directions respectively), which are zero. Horizontal components of288

slip are allowed to naturally emerge and evolve subject to lowermost mantle flow. Plume289

behaviour is not artificially suppressed.290

To ensure numerical stability and computational accuracy in these simulations, the291

reference viscosity, η0, is set to 4×1021 Pa s. This value is probably an order of mag-292

nitude greater than the viscosity of the actual upper mantle (e.g., Forte, 2007; Ghelichkhan293

et al., 2021; Mitrovica & Forte, 2004, and references therein). Consequently, flow veloc-294

ities in the simulations are likely to be significantly slower than in actuality. An obvi-295
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Table 1. Summary of Model Parameters.

Parameter Symbol Value Units

Surface temperature Ts 300 K
Core-mantle boundary temperature TCMB 3000 K

Internal heating rate H See text. W kg−1

Thermal expansivity α 2.5× 10−5 K−1

Thermal conductivity K 4 W m−1K−1

Thermal diffusivity κ 8.08 ×10−7 m2s−1

Specific heat capacity Cp 1100 J kg−1K−1

Reference viscosity η0 4× 1021 Pa s
Reference density ρ0 4500 kg m−3

Overlying fluid density ρw 1 or 1030 kg m−3

ous cause for concern is that using actual (comparatively fast) plate velocities as surface296

boundary conditions atop a relatively slowly convecting ‘mantle’ is likely to induce un-297

realistic flow. To address this issue, imposed plate velocities are scaled such that the root-298

mean squared (RMS) values of the actual applied velocities (≈ 5 cm yr−1 unscaled) match299

RMS values of surface velocities (≈ 2.5 cm yr−1) calculated during the spin-up phase300

(before plate velocities are imposed on the model) when the model mantle is convect-301

ing naturally and not being driven by surface velocities. The applied surface plate ve-302

locities are therefore scaled by a factor of 0.5 (i.e., 2.5/5) in the simulations examined303

in this study. To ensure that volumetric fluxes through ridges and subduction zones are304

realistic, simulation run times are increased by a factor of 2; i.e., the 1 Myr long plate305

stages are run for twice their elapsed time (2 Myr), but at half the speed. All times stated306

throughout the rest of this manuscript refer to times re-scaled for real-world compari-307

son; i.e., the actual age of the respective plate stage.308

For the reference case (Model 1), these conditions lead to the density distributions309

shown in Figure 2. Surface layer density anomalies occur only as a result of predicted310

compositional variation, since the surface temperature, Ts, is constant globally. This model311

represents the first of two reference numerical models examined in this contribution. It312

has the radial viscosity structure shown in Figure 3c. Later, we investigate a second nu-313

merical model incorporating temperature-dependent viscosity (Equation 7). In the fol-314

lowing section, we describe two approaches that use output from these models to cal-315

culate instantaneous surface deflections.316

317

3 Numerical and Analytical Calculations of Surface Deflection318

We examine two widely used approaches for calculating radial stress, σrr, and de-319

flections, h, at Earth’s surface (Figure 1). First, we investigate numerical solutions ob-320

tained using the TERRA software. A methodology for representing this data in the spher-321

ical harmonic domain is then described. Secondly, we investigate analytical solutions ob-322

tained in the spherical harmonic domain using propagator matrix techniques.323

3.1 Numerical Solution324

Following Parsons and Daly (1983), surface deformation is estimated from numer-325

ical simulations of mantle convection by making use of the requirement that normal stress326

is continuous across the upper boundary of the solid Earth (see also D. McKenzie, 1977;327
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Ricard, 2015). In other words, radial stresses generated by the solid Earth are required328

to be balanced by stresses generated by the overlying (oceanic or atmospheric) fluid. There329

are three contributions to normal stress at this boundary from the mantle: hydrostatic330

stress that would exist even in the absence of convection, dynamic stress arising from331

convection, and viscous stress which opposes fluid motion (see Equations 2–6). To sat-332

isfy the continuity condition, these stresses must be balanced by those generated by the333

water (or air) column atop this boundary. If the pressure from the overlying column is334

hydrostatic, the resultant condition is335

ρwgRh = ρmgRh+ σrr, (10)

where σrr (defined in Equation 2) incorporates deviatoric viscous stresses generated by336

mantle convection and dynamic pressure (σrr = τrr − p), obtained by solving Equa-337

tion 2. In practice, since values for this term are obtained by subtracting radial litho-338

static stress from the total stress, values of σrr integrate to zero globally. gR is gravi-339

tational acceleration at Earth’s surface, ρm is the mean density for the surficial layer,340

and ρw is the density of the overlying fluid (see Table 1). Figure 3a-b shows normal stresses,341

σrr, calculated at the surface of Model 1, and associated statistics. This model was gen-342

erated using the viscosity structure shown in Figure 3c. By convention, positive stresses343

imply compression and hence downward surface deflection, which could be manifest as344

lithospheric drawdown, i.e., subsidence. Prominent regions of positive stress anomalies345

in this model include locations atop imposed collision zones, where subduction naturally346

results, e.g., along the Pacific margin of South America. Negative stresses imply dila-347

tion and hence positive lithospheric support (i.e., surface uplift). Figure 3a shows dilata-348

tional stresses beneath Southern Africa, for example, and along mid-oceanic ridges in349

the Indian and Atlantic Oceans. Note that we do not impose additional oceanic plate350

cooling, e.g., due to hydrothermal circulation at ridges. Cooling and subsequent subsi-351

dence, as well as passive return flow at ridges, arise naturally from solution of the gov-352

erning equations laid out in Section 2.353

Surface deflection arising in response to predicted mantle convective flow, h, is ap-354

proximated by rearranging Equation 10,355

h ≈ − σrr

(ρm − ρw)gs
, (11)

where gs is gravitational acceleration at the surface, here = 10 m s−2. In this applica-356

tion of TERRA, surface deflections are estimated from radial stresses at times of inter-357

est (e.g., the present-day) by re-running one time-step of the model. During that time,358

a free-slip boundary condition, for which analytical approximations for surface deflec-359

tion exist, is imposed instead of the plate-slip condition prescribed during the main model360

run routine (see Section 3.3; Ricard, 2015). We assess the accuracy of modifying bound-361

ary conditions in this way by converting calculated deflections into the spherical harmonic362

domain and comparing them to predictions generated from the analytical propagator ma-363

trix (Figure 3d–f). The consistent boundary flux (CBF) method provides an alternative364

means to accurately calculate normal stresses (Zhong et al., 1993). Previous benchmark-365

ing with TERRA has shown mean errors of a few percent or less for surface deflection pre-366

dictions at low harmonic degrees, l ≤ 16 (Davies et al., 2013).367

3.2 Spherical Harmonic Representation of Surface Deflection368

Transforming stress, or surface deflections, calculated using numerical approaches
into the frequency domain provides a means of quantifying their spectral power, i.e., the
magnitude of contribution to the total signal from different wavelengths. We do so us-
ing spherical harmonics, since the models that we investigate are global in scope. Any
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real, square-integrable function over the surface of the Earth can be described as a func-
tion of longitude θ and latitude ϕ by a linear combination of spherical harmonics of de-
gree l and order m,

f(θ, ϕ) =

L∑
l=1

l∑
m=−l

flmYlm(θ, ϕ). (12)

The spherical harmonic functions Ylm are the natural orthogonal set of basis functions369

on the sphere, and flm are the spherical harmonic coefficients. As an example, Figure 3d370

shows spherical harmonic expansion of the surface stress field predicted by Model 1 at371

0 Ma (cf. Figure 3a). We call this result Model 1b, and the original, full-resolution nu-372

merical result Model 1a. The fidelity of the spherical harmonic expansion is demonstrated373

by the similarity of the maps and histograms shown in panels a–b and d–e.374

Pl =

l∑
m=−l

f2
lm (13)

gives the total power across all spherical harmonics of a given degree l. Average power375

for each mode m within degree l, P̂l = Pl/(2l + 1), since there are 2l + 1 modes (or-376

ders) per degree—we do not explore this definition of power in this contribution, and present377

only total power per degree (see, e.g., Hoggard et al., 2016; Holdt et al., 2022). Figure 3f378

shows power as a function of degree under that convention from the expansion shown379

in panel d. Using the total power per degree convention, Hoggard et al. (2016) (their Sup-380

porting Information) derived a rule-of-thumb for estimating the power spectrum of dy-381

namic topography, PDT
l , using Kaula (1963)’s approximation for the long-wavelength382

gravity field of Earth as a function of l:383

PDT
l ≈

(
GM

ZR2

)2 (
2

l
− 3

l2
+

1

l4

)
, (14)

where G is the gravitational constant, M = 5.97 × 1024 kg is the mass of the Earth,384

R ≈ 6370 km is Earth’s radius, and long-wavelength admittance between gravity and385

topography Z = 12 mGal km−1, which we make use of in the remainder of the paper386

for reference. Although we acknowledge that the appropriate value of low-degree admit-387

tance varies as a function of Earth’s viscosity profile, and the depth and wavelength of388

its internal density anomalies (Colli et al., 2016), previous studies have found that as-389

suming an average value of 12 mGal km−1 provides a reasonable approximation of ob-390

served residual topographic trends (Hoggard et al., 2016).391

Finally, it is useful to note that Jeans (1923) related spherical harmonic degree to392

wavelength λ on Earth’s surface via,393

λ ≈ 2πR√
l(l + 1)

. (15)

3.3 Analytical Solutions394

The second methodology used to calculate surface deflection in response to man-395

tle convection is the analytical propagator matrix technique (e.g., Craig & McKenzie,396

1987; Gantmacher, 1959; Ghelichkhan et al., 2021; Parsons & Daly, 1983; M. A. Richards397

& Hager, 1984). The approach we take stems from the work of Hager and O’Connell (1981).398

They used Green’s functions to solve the equations of motion in the spherical harmonic399

domain. Those solutions are used to generate sensitivity kernels that straightforwardly400

relate, for example, density or temperature anomalies in the mantle to surface deflections.401
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The kernels are generated in the frequency domain, and constructed such that surface402

deflection sensitivity to mantle (e.g., density) anomalies is calculated as a function of depth403

(or radius) and wavenumber. A global spherical harmonic implementation introduced404

by Hager et al. (1985) has been extended to include compressibility, the effect of warp-405

ing of the gravitational potential by subsurface density distributions, and radial grav-406

ity variations calculated using radial mean density values (Corrieu et al., 1995; Forte &407

Peltier, 1991; Hager & O’Connell, 1981; M. A. Richards & Hager, 1984; Thoraval et al.,408

1994).409

In this study, following Ghelichkhan et al. (2021), surface deflection for each spher-410

ical harmonic coefficient, hlm, is calculated in the spectral domain such that411

hlm =
1

(ρm − ρw)

∫ R

RCMB

Alδρlm(r) · dr. (16)

Products of the sensitivity kernel, Al, and density anomalies, δρlm, of spherical harmonic412

degree, l, and order, m, are integrated with respect to radius, r, between the core-mantle413

boundary and Earth’s surface radii, RCMB and R, respectively. The sensitivity kernel414

is given by415

Al = −
(

η0
RgR

)(
u1 +

ρw
ρ0

u3

)
, (17)

where un(r) represents a set of poloidal variables, which are posed for solution of the set416

of simultaneous equations by matrix manipulation, such that417

u(r) =
[
y1η0 y2η0Λ (y3 + ρ̄(r)y5)r y4rΛ y5rρ0Λ y6r

2ρ0
]T

, (18)

where Λ =
√
l(l + 1), and y1 to y6 represent the spherical harmonic coefficients of ra-418

dial velocity vr, lateral velocity vθ,ϕ, radial stress σrr, lateral stress σrθ,ϕ, gravitational419

potential V , and gravitational potential gradient ∂V/∂r, respectively (Hager & Clayton,420

1989; Panasyuk et al., 1996). ρ̄ is the layer mean (l = 0) density. The kernel Al com-421

prises both u1 and u3, since those are the two terms in the matrix solution to the gov-422

erning equations which affect surface topography, by directly exerting stress on the sur-423

face boundary (u1), and by changing the gravitational potential at the surface (u3).424

The functional forms of calculated sensitivity kernels depend on chosen radial vis-425

cosity profiles and boundary conditions (e.g., free-slip or rigid; Parsons & Daly, 1983).426

Figure 5a and e show examples of sensitivity kernels generated for water- (ρw = 1030427

kg /m3), and air-loaded (ρw = 1 kg /m3) topography, with free-slip conditions imposed428

on both surface and lower boundaries. We investigate alternative slip boundary condi-429

tions for each surface later in the text. The kernels were generated using the radial vis-430

cosity profile shown in Figure 3c. Values of the other parameters used to generate these431

kernels are stated in Table 1. We limit our investigation to l ≤ 50, which corresponds432

to a horizontal wavelength λ of ≈ 792 km at Earth’s surface. Calculated present-day433

water- and air-loaded surface deflections, and their statistical properties, are shown in434

Figure 5b–d and f–h. A comparison of calculated power spectra, expected surface de-435

flection from Kaula’s rule (Equation 14), and spectra generated from observed residual436

ocean age-depth measurements is also included (Kaula, 1963; Hoggard et al., 2016; Holdt437

et al., 2022). In later sections we explore consequences of choosing different radial vis-438

cosity profiles for calculated kernels and thence surface deflections. We call this water-439

loaded analytical solution for surface deflection ‘Model 2’ (see Table 2). It represents the440

closest possible analytical solution for surface deflection predicted numerically by Model441

1 explored in this work.442
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4 Spatial and Spectral Comparison of Model Predictions443

We wish to quantify impacts of modelling assumptions and approaches, used to solve444

the equations of motion, on predicted surface deflections. Thus we compare calculated445

surface deflections (both numeric and analytical) using the following three metrics.446

4.1 Euclidean Comparisons of Amplitudes447

First, we calculate root-mean-squared difference, χ, between predicted surface de-448

flections in the spatial domain,449

χ =

√√√√ 1

N

N∑
n=1

wϕ (ha
n − hb

n)
2
, (19)

where ha
n and hb

n are predicted surface deflections from the two models being compared.450

N = number of points in the 1×1◦ gridded maps being compared (e.g., Figure 5b; N =451

65341). The prefactor wϕ is proportional to cosϕ, where ϕ is latitude, and is included452

to correct biases in cell size with latitude; mean wϕ = 1. This metric is closely asso-453

ciated with the mean vertical distance (L2-norm distance) between predicted and ref-454

erence surfaces, i.e., ∆h̄ = 1/N
∑N

n=1 wϕ|ha
n − hb

n|. These metrics are sensitive to dif-455

ferences in amplitudes and locations of surface deflections.456

4.2 Spectral Correlation Coefficients457

Second, we use pyshtools v4.10 to compute correlation coefficients, rl, between pre-458

dicted surface deflections in the spectral domain (Wieczorek & Meschede, 2018). Cor-459

relation coefficients as a function of degree l, adapted from Forte (2007), are calculated460

such that461

rl =

∑
f∗
1 f2√∑

f∗
1 f1

√∑
f∗
2 f2

, where
∑

=

+l∑
m=−l

, (20)

f1 and f2 are the spherical harmonic coefficients of the two fields (i.e., surface deflections)462

being compared, which vary as a function of m and l; f = fm
l . ∗ indicates complex con-463

jugation (see also Becker & Boschi, 2002; O’Connell, 1971). This metric is a function of464

degree l, i.e. rl = r(l), and is sensitive to the difference between predicted and refer-465

ence surface deflection signals in the frequency domain, but not to their amplitudes. To466

summarize spectral similarity between models concisely, we later refer to the mean value467

of rl over every degree (0–50), as r̄l. We refer to the standard deviation of rl across de-468

grees as sr.469

4.3 Comparing Calculated Power Spectra470

Lastly, to estimate closeness of fit between power spectra of surface deflections pre-471

dicted in this study and independent estimates, we calculate472

χp =

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

K
l

)2
+

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

H
l

)2
, (21)

where L = number of spherical harmonic degrees being compared (L = 50). Pl = power473

of predicted surface deflections generated in this study at degrees 1 ≤ l ≤ L (Equa-474

tion 13). PK
l = power of surface deflections estimated using Kaula’s law (assuming Z =475
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12 mGal km−1; Equation 14). PH
l = power of residual oceanic age-depth measurements476

from Holdt et al. (2022).477

5 Model Parameterizations and Comparison of Predictions478

The models examined in this paper are summarised in Table 2. In terms of assump-479

tions tested there are two families of models, those with viscosity independent of tem-480

perature (Models 1–10), and those with temperature-dependent viscosity (Models 11–481

20). The two approaches used to solve the equations of motion are annotated ‘Numer-482

ical’ and ‘Analytical’ in Table 2, which refers to solutions from the TERRA and prop-483

agator matrix code, respectively. Viscosities and densities calculated using TERRA were484

used as input for the propagator matrix code and thus used to generate analytical es-485

timates of surface deflection. Since analytical solutions are obtained by spherical har-486

monic expansion, surface deflections from TERRA were fit using spherical harmonics be-487

fore predicted deflections were compared (annotated ‘Mixed’ in Table 2; Section 3.2). We488

compare predicted deflections that arise from flow across entire model domains, i.e., from489

the CMB to the surface. We make no lithospheric corrections, unless explicitly stated.490

Thus, amplitudes of calculated surface deflections are not likely to represent actual resid-491

ual topography. However, it simplifies like-for-like comparison of models, and compar-492

isons to increasingly complex models. Comparisons of surface deflections predicted by493

these models are discussed in the following sections, with summary statistics given in Ta-494

ble 3.495

496

5.1 Models 1–10: Viscosity Independent of Temperature497

Models 1–10 show results generated when viscosity is independent of temperature.498

We first compare solutions generated from (reference) numerical and analytical models499

designed to be as similar as possible (Models 1 and 2). We then generate increasingly500

complex models—incorporating radial gravitation, gravitational potential energy, removal501

of shallow structure, and variable surface and CMB slip conditions—and compare pre-502

dicted surface deflections to the reference models.503

Reference Models 1–2504

Models 1 and 2 are the simplest models explored in this paper. They were designed505

to be as similar as possible, with a view to quantifying differences and similarities aris-506

ing solely from the choice of methodology (numerical or analytical) used to solve equa-507

tions of motion and to calculate surface deflections. Viscosity is independent of temper-508

ature in these models.509

Figure 2 shows calculated densities that arise from the numerical solutions (Model510

1). This figure shows the plate motion history from Merdith et al. (2021) used to pro-511

duce this (and subsequent) TERRA output (See Section 2.1). The maps and histograms512

show evolution (100 to 0 Ma) of calculated densities at the model’s surface and within513

its ‘asthenosphere’ in response to flow. This model was parameterized with the radial514

viscosity shown in Figure 3c; radial viscosity used in other geodynamic studies are shown515

alongside for comparison (Ghelichkhan et al., 2021; Mitrovica & Forte, 2004; Steinberger516

& Calderwood, 2006). The impact of varying viscosity on numerical solutions is explored517

later in the paper. Figure 3a shows resultant surface radial stress predicted by this model518

at full (numerical) resolution. Figure 3d–e show the results from fitting radial stresses519

generated by Model 1a with a global spherical harmonic interpolation up to maximum520

degree l = 50, i.e., minimum wavelength of ≈ 800 km (Section 3.2). The resultant power521

spectrum in terms of total power at each degree is shown in Figure 3f. It is approximately522
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Table 2. Summary of mantle convection simulations. Column labeled ‘Method’ indi-

cates surface deflections calculated using either ‘Numerical’ (i.e., from surface normal stresses

calculated using TERRA) or ‘Analytical’ (i.e., propagator matrix) approaches; ‘Mixed’ indicates

spherical harmonic fitting of surface stresses calculated using numerical code, enabling com-

parison with solutions to propagator matrix code. η(r) indicates models with radial viscosity,

independent of temperature (Models 1–10). η(r, T ) indicates models with temperature-dependent

(therefore laterally-varying) viscosity (Models 11–20); note that analytical Models 12–20 incor-

porate radial viscosity calculated using mean radial viscosity from Model 11a. †indicates with

respect to Model 12. See Table 2, Section 5 and figures referred to in column 5 for details.

Model Method Viscosity Parameterizations Figures

1a Numerical η(r) Full resolution numerical model 2–4
1b Mixed η(r) Spherical harmonic fit to 1a 2–4, 6
2 Analytical η(r) Propagator matrix solutions 5–6

3 Analytical η(r) Radial gravitation, g(r) 7
4 Analytical η(r) Gravitational potential terms 8

5 Analytical η(r) Removing upper 50 km of mantle 9a-d
6 Analytical η(r) Removing upper 100 km of mantle 9e-h
7 Analytical η(r) Removing upper 200 km of mantle 9i-l

8 Analytical η(r) Rigid surface, free CMB 10a-d
9 Analytical η(r) Free surface, rigid CMB 10e-h
10 Analytical η(r) Rigid surface, rigid CMB 10i-l

11a Numerical η(r, T ) Full resolution numerical model 11–13, 16a-c
11b Mixed η(r, T ) Spherical harmonic fit to 11a 11–13, 15, 16d-g
12 Analytical η(r) Mean radial η(r, T ) from Model 11a 14–16h-k

13 Analytical η(r) Decrease† radial upper mantle η 17a-d
14 Analytical η(r) Increase† radial upper mantle η 17e-h
15 Analytical η(r) Increase† radial upper mantle η 17i-l
16 Analytical η(r) Constant radial η 17m-p

17 Analytical η(r) Upper mantle densities ×2† 18a-c
18 Analytical η(r) Upper mantle densities ×1/2† 18d-f
19 Analytical η(r) Lower mantle densities ×2† 18g-i
20 Analytical η(r) Lower mantle densities ×1/2† 18j-l
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characterized by red noise, where (aside from the lack of structure at degree 0), ampli-523

tudes of stress variations decrease steadily with increasing spherical harmonic degree (i.e.,524

decreasing wavelength).525

Surface deflections calculated by converting stress into dynamic topography using526

Equation 11, assuming water-loading, are shown in Figure 4a (Model 1a: full numeri-527

cal resolution). Spherical harmonic interpolation up to l = 50 (Model 1b) is shown in528

panel b, the histograms in panels c and d summarise results. Resultant spectral power529

is compared to spectra generated using Kaula’s rule (Equations 13 and 14) and resid-530

uals from ocean age-depth anomalies are shown in panel e (see Section 4; Equation 21).531

Surface deflections calculated assuming air-loading are shown in Figures 4f-j.532

Figure 5a–d shows analytical solutions (Model 2) to the equations of motion gen-533

erated using the propagator matrix approach parameterised to be as similar as possible534

to (the numerical) Model 1. The sensitivity kernel generated using the radial viscosity535

shown in Figure 3c and free-slip surface and CMB boundary conditions is shown in panel536

a. Similar to many previous studies, the kernel indicates that surface deflections will be537

especially sensitive (across all degrees incorporated, l ≤ 50) to density anomalies in the538

upper mantle (Parsons & Daly, 1983; Hager & Clayton, 1989; Ghelichkhan et al., 2021).539

Modifications to sensitivity kernels and resultant surface deflections as a consequence of540

choosing alternative boundary conditions and viscosity profiles are explored later in the541

manuscript. From this point forward we only present water-loaded surface deflections,542

since they scale linearly with air-loaded results.543

Comparisons of surface deflections predicted by Models 1b and 2 are shown in Fig-544

ure 6. Predicted deflections are visually similar (cf. panels a and b). Absolute differences545

in amplitudes are greatest close to subduction zones (e.g., in South America and Asia;546

panel c). Differences are broadly normally distributed and centred on 0 (panel d). Note547

the comparisons shown in panel d are weighted by the cosine of latitude to avoid lati-548

tudinal biases, as described in Section 4.1. Figure 6e shows that the spherical harmonic549

correlation between numerical (strictly ‘Mixed’, i.e., spherical harmonic fit to numerical550

solution) and analytical solutions is high (close to 1 for all degrees; cf. Forte, 2007). Panel551

f shows ratios between predictions, which indicates that analytical solutions tend to be552

damped compared to numerical solutions. This result is emphasised by the histogram553

shown in panel g, which summarises the ratios between predictions. Adjusting surface554

deflections from the propagator matrix solutions by a factor of 1.1 brings them in-line555

with the numerical solutions. In other words, the propagator matrix approach dampens556

solutions by ≈ 10%. We note that power spectral slopes between Model 1b and 2 are557

similar, however (cf. Figures 4e and 5d). This smoothness of analytic solutions, and sub-558

sequent damping of topographic amplitudes, is perhaps surprising, given the fact that559

they are being compared with numerical models expanded into the spherical harmonic560

domain to the same maximum degree, l = 50. However, the surface stresses used to gen-561

erate Model 1a have full horizontal resolution (≈ 45 km) across depths, and only the sur-562

face layer is smoothed by spherical harmonic fitting, to generate Model 1b. Therefore,563

Model 1b inherently contains some contribution from degrees ≥ 50, in the sense that564

finer-resolution density structure at depth could affect longer-wavelength flow nearer the565

surface. In contrast, to generate the analytic solution (Model 2), the density structure566

of each layer of the model is smoothed by expansion to maximum l = 50, before inte-567

gration of their contributions to surface deflection. The analytical solution would pro-568

vide a better match to stress estimates from numerical models if such estimates were cal-569

culated using density structure smoothed to the same maximum l across all depths.570

We now have reference models with which we can quantify the consequences of in-571

corporating alternative assumptions for calculated surface deflections. We start by in-572

corporating more complex parameterization of gravitation.573
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Model 3: Radial Gravitation574

Figure 7a shows solutions for the analytical Model 3, which was parameterized in575

the same way as Model 2 with the addition of radial gravitation (following Hager & Clay-576

ton, 1989; Panasyuk et al., 1996, see Equation 17). The solid curve in panel b shows the577

radial gravity function used to calculate surface deflections. It was generated using the578

density distribution produced by (the numerical) Model 1a (see Figure 2), using579

g(r) =
4πG

r2

[∫ r

RCMB

ρ̄(r′) r′
2
dr′

]
+ Fcore (22)

where ρ̄(r) is layer mean density and F is a factor chosen to account for core mass, and580

such that g = 9.8 m s−2 at the surface. This formulation is derived from Gauss’s law581

assuming spherically symmetric density, combined with Newton’s law of universal grav-582

itation (Turcotte & Schubert, 2002).583

The differences between Model 2 (Figure 7c), which assumes constant g = 10 m584

s−2 across all radii, and this model (Model 3) are shown in Figure 7d–e. We interpret585

the broadly hemispherical, uniformly distributed, differences in calculated deflections as586

a consequence of deviations in g between the two models being greatest in the mid-mantle587

(∼ 500 − 2000 km depth; see panel b). Note that the sensitivity kernel calculated for588

the viscosity structure used in these models indicates that changing g in this way is likely589

to impact surface deflections at low degrees l ≲ 10 most, i.e., where the amplitudes of590

the sensitivity kernel in the mid-mantle are highest (see Figures 3c & 5a). Note that the591

amplitudes of deviations in predicted surface topography due to radial variations in g592

are relatively low, at most of the order ∼ 10% of maximum surface deflection amplitudes,593

for the instantaneous analytical solution (see Table 3). Differences in predicted surface594

deflection are likely to be larger between Model 2 and a numerical model which was run595

using g(r) calculated at each time-step, since in that case radially-varying gravitation596

would affect the mantle flow field across the entire model run time and differences would597

compound. Without additional numerical tests it is somewhat unclear whether the dif-598

ferences between that model and Model 2 would match the results for Model 3 (as a func-599

tion of degree). However, the results are consistent with the rule of thumb outlined in600

Section 7.02.2.5.2 of Ricard (2015), whereby magnitudes of differences incurred by in-601

clusion of full self-gravitation, i.e., g(θ, ϕ, r), decay as a function of spherical harmonic602

degree, proportionately to 3/(2l + 1).603

Model 4: Gravitational Potential Field Deflection604

Figure 8 compares analytical solutions for the reference Model 2, and a model that605

incorporates stress perturbations induced by deflections of the gravitational potential606

field, Model 4. Both of these models assume g = 10 m s−2 everywhere, even within the607

deflected surface layer, as was the case for Models 1–2. Following Hager and Clayton (1989)608

and Panasyuk et al. (1996), when solving for surface deflection using propagator matri-609

ces, the effect on flow of perturbation of gravitational potential is included via the u3610

term in Equation 18 (see also Ribe, 2007; Ricard, 2015). TERRA simulations do not in-611

clude this component in flow calculations (see Section 2–2.1). As expected, differences612

in surface displacement predictions are much lower than when radial gravitation is in-613

corporated (cf. Figures 7d and 8c); they are of the same order of magnitude as the geoid614

height anomalies predicted by these models. The mean Euclidean distance between the615

two predicted surfaces is only ∼110 m, and the spherical harmonic correlation is very616

high across all degrees (see Table 3). Similar to the result for Model 3, the differences617

are concentrated at low spherical harmonic degree l. Again, this test investigates the ef-618

fect of the u3 term on instantaneous solution for surface deflection. It cannot be ruled619

out from this test that inclusion of the effect of gravitational potential field perturba-620
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tion would result in greater differences across the entire model run time, although that621

is unlikely (Zhong et al., 2008).622

Models 5–7: Removal of Shallow Structure623

Disentangling contributions to Earth’s surface topography from asthenospheric con-624

vection and the lithosphere is not trivial (see, e.g., Fernandes & Roberts, 2020; Hoggard625

et al., 2021; Steinberger, 2016; Stephenson et al., 2021). Previous studies that simulate626

mantle convection have addressed this issue by discarding density anomalies in radial627

shells shallower than specified depths, before calculating surface stresses (e.g., Spasoje-628

vic & Gurnis, 2012; Flament et al., 2013; Molnar et al., 2015). Similarly, analytical ap-629

proaches have isolated contributions from the convecting mantle by only incorporating630

information from deep shells (e.g., Colli et al., 2018). This method has the advantage631

of effectively removing the effect of lithospheric cooling through time from surface de-632

flection estimates. It also avoids the need to incorporate, say, realistic crustal or depleted633

lithospheric layers within the viscous flow parameterization. However, uncertain oceanic634

and continental lithospheric thicknesses mean that choosing appropriate cut-off depths635

is not trivial. Moreover, doing so creates two obvious challenges.636

First, if the chosen depth is shallower than the lithosphere-asthenosphere bound-637

ary in places, plate and sub-plate contributions to topography will be entangled. Sec-638

ond, discarding deeper layers to ensure that all plate contribution is definitely avoided639

means that some contributions from asthenospheric flow will be missed. Calculated sen-640

sitivity kernels indicate that shallow asthenospheric density anomalies make significant641

contributions to surface topography (Figure 5). Thus, such a step is unlikely to be de-642

sirable if mantle flow models are to be used to understand, say, lithospheric vertical mo-643

tions, or vice versa (see e.g., Figure 5a, e; Davies et al., 2019; Hoggard et al., 2016). Given644

the calculated sensitivity kernels, excising layers in the upper few 100 km is likely to re-645

sult in predictions of surface deflections that are especially fraught at short wavelengths,646

i.e., high spherical harmonic degree. An alternative approach, which avoids some of these647

issues, is removal of structure based on appropriately calibrated plate models, or globally-648

averaged age-dependent density trends (e.g., F. D. Richards et al., 2020, 2023).649

To quantify the impact of discarding shallow structure, we examine differences in650

calculated surface deflection in the spatial and spherical harmonic domains. We present651

three tests, resulting in Models 5, 6 and 7, where progressively deeper structure is re-652

moved from Model 2. Figure 9 shows the results of removing contributions to surface653

deflection from density anomalies at depths shallower than 50, 100 and 200 km. As ex-654

pected from examination of surface topographic sensitivity kernels (e.g., Figure 5a, e),655

removal of these layers results in significantly reduced surface topographic amplitudes.656

Doing so results in power spectra that more closely align with independent estimates (Fig-657

ure 9b, f, j). The reduction in differences between amplitudes of calculated and observed658

spectral power is largely due to the fact that the reference model (i.e., Model 2) over-659

estimates dynamic topographic power across all degrees. We note that power spectral660

slopes for predicted surface deflection from Model 2 are close to those generated from661

Kaula’s rule, and observed oceanic residual depths (Figure 4 and 5). However, remov-662

ing shallow structure steepens spectral slopes (i.e., reduces power at high degrees) be-663

yond those expected from theoretical considerations (i.e., Kaula’s rule) or observed (i.e.,664

from oceanic residual depths), akin to results from other work that excised shallow struc-665

ture (e.g., Flament et al., 2013; Moucha et al., 2008; Steinberger, 2007). This result is666

emphasized by the slope of calculated spectral coherence, rl, between deflections with667

and without shallow structure removed (Figure 9d, h, l). While degree 1 and 2 struc-668

ture remains coherent, coherence across degrees ≳ 20 decreases from ∼ 0.9 to as low669

as 0.5, which are the largest discrepancies between any models examined in this study.670
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Models 8–10: Adjusted Slip Boundary Conditions671

Up to now, we have only considered instantaneous analytical and numerical solu-672

tions for surface deflection where both the surface and CMB have free-slip conditions im-673

posed (i.e., vertical component of flow velocity ur = 0, horizontal components are al-674

lowed to freely vary). No gradient/Neumann constraint (e.g., on ∂u/∂z) is imposed. This675

condition is generally deemed appropriate for the surface of the convecting mantle, and676

CMB, since at both boundaries, cohesion within convecting mantle is thought to be much677

stronger than adhesion to the boundary. Analytical solutions for sensitivity kernels for678

propagator matrices also exist for rigid boundaries, i.e., no-slip Dirichlet conditions, where679

horizontal components of u = 0, which may be more appropriate when the Earth’s litho-680

sphere is implicitly included in mantle convection models, as is the case here (Parsons681

& Daly, 1983; Thoraval & Richards, 1997). Therefore, we test the effect on predicted sur-682

face deflections of changing the surface boundary condition to no-slip. Although there683

is little reason to believe the adhesion of the CMB would be strong, we also test a rigid684

CMB for completeness. The numerical models themselves are driven by a quasi-rigid con-685

dition, whereby flow is driven by estimates of real plate velocities from (Merdith et al.,686

2021), and so the surface layers behave as a series of rigid, laterally mobile plates rather687

than a single rigid shell. This approach may be appropriate for driving near-surface (litho-688

spheric) flow throughout the main model run time, but it less clear whether no- or free-689

slip boundary conditions are most appropriate for calculating instantaneous dynamic to-690

pography (see, e.g., Forte & Peltier, 1994; Thoraval & Richards, 1997).691

Figure 10a, e and i show predicted sensitivity kernels as a function of depth and692

degree (l), for no-slip/free-slip, free-slip/no-slip and no-slip/no-slip boundaries respec-693

tively, where the first condition is the surface slip condition, and the second the CMB694

slip condition. Differences to the original sensitivity kernel for Model 2 (Figure 5a) are695

shown in panels c, g and k. Those panels demonstrate that when the surface boundary696

condition is rigid, there is decreased sensitivity to short wavelength shallow structure,697

and increased sensitivity to long-wavelength (low degree) structure across all depths. Fig-698

ure 10d, h and l reveal that induced misfit in the spatial domain is impacted to a greater699

degree than in tests of gravitation (Models 3 & 4), but not necessarily more severely than700

for removal of, say the upper 200 km of density structure from surface deflection calcu-701

lations. Spectral correlation is most severely impacted when both surface and CMB bound-702

aries are rigid (Model 7; see Table 3).703

5.2 Reference Models 11–12: Temperature-Dependent Viscosity704

In this section, we investigate the impact of including the temperature dependence705

of viscosity, η(r, T ), on predicted global mantle flow in numerical models, and on sub-706

sequent estimates of surface deflection. We do so by first presenting results for the nu-707

merical Model 11, which is identical to Model 1 in terms of all boundary conditions, ini-708

tialization, and physical parameters, except for the fact that viscosity depends on tem-709

perature in the manner described by Equation 7. The analytical propagator matrix ap-710

proaches used in this study require that viscosity varies only as a function of radius. In711

other words, they cannot incorporate temperature-dependent viscosity directly. So, in-712

stead we insert layer mean viscosity from the present-day 3D temperature-dependent vis-713

cosity structure predicted by numerical models (Figure 11), and use it to generate the714

analytical Model 12. The role of upper and lower mantle viscosity and density anoma-715

lies in determining surface deflections are then examined. For tests resulting in Models716

3–10, analytical instantaneous solutions for surface deflection with adjusted parameters717

and boundary conditions were simply compared with Model 2, and no new numerical718

models were generated using TERRA. In contrast, this section corresponds to a new model719

generated using TERRA, where temperature dependence of viscosity affected global man-720

tle flow across the entire run time (Model 11).721
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Figure 11 shows maps of calculated viscosity in the upper and lower mantle for Model722

11. Results, at full horizontal resolution, from the numerical Model 11a are shown in pan-723

els a, e, i, m. A slice through this three-dimensional viscosity structure is shown in Fig-724

ure 1c. Spherical harmonic interpolation of these results, up to maximum degree l =725

50, are shown in panels d, h, l and p (Model 11b). Viscosity variation shown in these maps726

is expressed as percentage deviation from layer mean. Histograms summarising the dis-727

tribution of viscosity in Model 11a are also shown, alongside radial mean values and ex-728

trema. Figure 12 shows the spatio-temporal (100 to 0 Ma) evolution of calculated den-729

sities in Model 11a at the surface of the model and within its ‘asthenosphere’, alongside730

summary statistics. Density anomalies are more localised (‘sharper’) than in Model 1,731

which is unsurprising since temperature-dependent viscosity provides stronger mechan-732

ical constrasts between cooler subducting regions and surrounding asthenosphere, when733

compared to models that do not include temperature-dependent viscosity (cf. Figure 2734

Zhong et al., 2000).735

Figure 13a-b shows calculated radial normal stresses from Model 11a and their spher-736

ical harmonic representation (Model 11b). Summary statistics and calculated power spec-737

tra are shown in panels c-d. Panels f-g show calculated water-loaded surface deflections738

for the full resolution numerical model and for the ‘Mixed’ spherical harmonic represen-739

tation (Equation 11). Panels h-j show summary statistics and power spectra as a func-740

tion of degree, alongside Kaula’s rule and an independent estimate of sub-plate support741

from residual oceanic age-depth measurements (see Section 4). Figure 14 shows surface742

deflections calculated analytically (Model 12) using layer-mean (radial) viscosity shown743

in Figure 11c, which was extracted from the numerical Model 11a. Panels a-d show the744

resultant sensitivity kernel, water-loaded deflections and summary statistics (cf. Figure745

5a-d). Air-loaded predictions are shown for Model 12 for reference, in Figure 14e–h, but746

not included in any summary statistics or future figures, for consistency with previous747

sections.748

Figure 15 compares predictions from the numerical (Model 11b) and analytical (Model749

12) schemes incorporating temperature-dependent viscosity, as discussed in the preced-750

ing sections. Similar to the results obtained for models without temperature-dependent751

viscosity (Figure 6), surface deflections calculated using the analytical approach are damped752

relative to numerical solutions (in their spherical harmonic form; see Figure 15f). The753

best fit amplification factor to align propagator matrix and numerical solutions is 1.24754

(24%), larger than the adjustment required to align reference Models 1b and 2 (1.1; 10%).755

Similar to our interpretation of those previous results, we attribute this discrepancy to756

smoothing inherent to the propagator matrix methodology. The effect is amplified com-757

pared with comparison between Models 1b and 2 because of increased short wavelength758

structure in Model 11 (as discussed above, see Section 5.1; Zhong et al., 2000). Nonethe-759

less, spherical harmonic correlation, rl, is > 0.75 for all degrees examined (l ≤ 50), and760

> 0.85 for most degrees. Cell-to-cell differences in surface deflections are broadly nor-761

mally distributed and centred on zero (Figure 15d).762

Figure 16 shows comparisons between surface deflections predicted by models with763

and without temperature-dependent viscosity. Panels a-c compare the full resolution nu-764

merical solutions (Models 1a and 11a), including summary statistics. Panels d-g com-765

pare spherical harmonic interpolations of the numerical solutions (Models 1b and 11b).766

Finally, panels h-k compare propagator matrix solutions for Models 2 and 12, where Model767

12 incorporates radial (layer-mean) viscosity extracted from solutions to the numerical768

Model 11a (incorporating temperature-dependent viscosity; Figure 11c). Unsurprisingly,769

discrepancy is greatest between the full resolution models. However, discrepancies in cell-770

to-cell deflections are again, broadly normally distributed and centred on zero, cluster-771

ing along the 1:1 relationship with χ = 1.51 (panels b-c; see Table 3). Similar results772

are obtained for both comparisons of spherical harmonically fitted results, and analyt-773

ical results, albeit with less discrepancy, which is emphasised by tighter normal distri-774
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butions and lower χ values. Correlation coefficients are > 0.75 for nearly all degrees for775

both comparisons.776

5.3 Upper and Lower Mantle Viscosity and Density Anomalies777

Models 13–16: Adjusted Sub-Plate Viscosity778

The radial distribution of viscosity, but not its absolute value, plays a crucial role779

in determining sensitivity of instantaneous solutions for surface deflections to density (and780

thermal) anomalies in the mantle (e.g., Parsons & Daly, 1983; Hager, 1984). Consequently,781

we performed a suite of analytical tests in which distributions of upper and lower man-782

tle (radial) temperature-dependent viscosity was varied within propagator matrix solu-783

tions. The resulting impact on calculated surface deflections was quantified by compar-784

ison with results generated using reference Model 12 (Figure 14). The radial component785

of viscosity, η(r), in each test was modified from that used to generate Model 12 (see solid786

black curve in Figure 17). Figure 17a-d show results generated by decreasing upper man-787

tle viscosity by an order of magnitude. Panels e–n show the results of decreasing upper788

mantle viscosity by an order of magnitude. Panels j–p show the impact of using increas-789

ingly simple radial viscosity. Calculated sensitivity kernels for the adjusted viscosity pro-790

files demonstrate that decreasing upper mantle viscosity (relative to the reference case)791

further reduces sensitivity of surface deflections to long-wavelength density structure, es-792

pecially in the lower mantle (Figure 17b, f, j, n). However, in general, results are sim-793

ilar to the reference model even when η(r) is drastically varied, with average χ misfit in-794

curred of only 0.17–0.38 km, and rl > 0.97 across all degrees for all tests. This result795

emphasizes the fact that viscosity only exerts a relatively minor control on sensitivity796

of surface deflection to mantle density structure, in terms of instantaneous flow (Table 3,797

see, e.g., Ghosh et al., 2010; Moucha et al., 2007; Lu et al., 2020).798

Models 17–20: Adjusted Density Anomalies799

Figure 18 shows results from tests in which the amplitudes of density anomalies800

in the upper and lower mantle were systematically increased or decreased. Similar to the801

tests shown in Figure 17, densities are amplified relative to Model 12. Radial viscosity802

is constant for each of these tests (black curve in Figure 18a; i.e., same as that used to803

generate Model 12). The reference sensitivity kernel for Model 12 is shown in Figure 14a.804

Figure 18a-d and g-i show results generated by amplifying respective upper and lower805

mantle densities by a factor of 2. Panels d-f and j-l show results when amplitudes of den-806

sity anomalies are decreased by 1/2. Table 3 summarizes the differences incurred to Model807

12; although spherical harmonic correlation between models is approximately as good808

as for the radial viscosity tests (Models 13–16), that is to be expected since we do not809

vary locations of density anomalies here, only their amplitudes, and rl is insensitive to810

amplitudes of the two results being compared. Significant is the fact that mean verti-811

cal differences between Models 17–20 and 12 (i.e., χ and ∆h̄) are higher than those cal-812

culated for Models 13–16. These results emphasize the relative sensitivity of surface de-813

flections to upper mantle density anomalies, and that even quite large uncertainties in814

lower mantle density anomalies have relatively little impact on surface deflections. Our815

conclusion is that accurately constraining and accounting for upper-mantle density struc-816

ture is of primary concern when estimating surface deflection, and dynamic topography,817

from mantle convection simulations.818

819
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Table 3. Inter-model comparison of predicted surface deflections. Models being

compared are summarised in Table 2. Metrics: root-mean-squared difference (χ, km), mean

Euclidean (L2-norm) difference in predicted deflection (∆h̄, km), and mean spherical harmonic

correlation between models (r̄l). Standard deviation of rl distribution across degrees (sr) is also

stated: note that rl ≤ 1. All spherical harmonic representations of output from numerical code

and generated by the propagator matrix code are expanded up to maximum degree, l = 50. See

body text, figures referred to in column 6, and Table 2 for details.

Models χ ∆h̄ r̄l sr Figures

1b & 2 0.95 0.69 0.97 0.02 5–6

2 & 3 0.57 0.47 0.99 4× 10−4 7
2 & 4 0.13 0.11 0.99 2× 10−5 8

2 & 5 0.67 0.48 0.93 0.04 9a-d
2 & 6 1.03 0.74 0.87 0.06 9e-h
2 & 7 1.57 1.12 0.63 0.15 9i-l

2 & 8 1.26 1.04 0.99 1× 10−3 10a-d
2 & 9 1.09 0.97 0.99 0.04 10e-h
2 & 10 1.00 0.74 0.96 0.28 10i-l

1a & 11a 1.51 1.04 — — 11–13, 16a-c
1b & 11b 1.44 0.98 0.79 0.26 11–13, 16d-g
11b & 12 1.20 0.80 0.95 0.02 15
2 & 12 0.92 0.64 0.85 0.27 14, 16h-k

12 & 13 0.31 0.20 0.99 9× 10−3 17a-d
12 & 14 0.17 0.10 0.99 3× 10−3 17e-h
12 & 15 0.32 0.20 0.98 0.01 17i-l
12 & 16 0.38 0.23 0.98 0.01 17m-p

12 & 17 0.97 0.64 0.98 7× 10−3 18a-c
12 & 18 0.48 0.32 0.98 6× 10−3 18d-f
12 & 19 0.43 0.29 0.99 3× 10−3 18g-i
12 & 20 0.22 0.14 0.99 1× 10−3 18j-l
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6 Discussion820

An important goal is to understand how geological and geomorphological obser-821

vations at (or close to) Earth’s surface can be used to determine the history of mantle822

convection during, say, the last 100 million years. Various observations now exist that823

can be used to constrain mantle convection (e.g., Hoggard et al., 2021; Holdt et al., 2022;824

Davies et al., 2023, see Section 1.1). An obvious approach is to use them to test exist-825

ing simulations of mantle convection. We start by comparing numerical and analytical826

predictions of instantaneous surface deflections generated by mantle convection simu-827

lations.828

Numerical approaches to solving the equations of motion are very flexible, and can829

incorporate a variety of assumptions and parameterizations that are not amenable to an-830

alytical attack (e.g., temperature-dependent viscosity; Section 2.1). However, ensuring831

accuracy and stability means that the computational burden is often considerable and832

hence systematic exploration of parameter space remains challenging. In contrast, an-833

alytical approaches can yield calculated surface deflections that are (mathematically) ac-834

curate for relatively little computational cost, and may include features such as radial835

gravitation with much less computational cost (Section 3.3). Consequently, it is straight-836

forward to explore parameter space, examine benchmarks, reproduce results, and inves-837

tigate sensitivity of solutions to different parameterizations. There are, however, impor-838

tant limitations to consider. First, analytical solutions are only known to exist in the spher-839

ical domain for fluid bodies with radial viscosity (i.e., no lateral variability in viscosity).840

Second, generating solutions in the spherical harmonic domain places practical limits on841

spatial resolution of solutions. Consider that the number of spherical harmonic coeffi-842

cients per degree = 2l + 1, where l is degree, so for a given maximum degree L, there843

are (L+1)2 coefficients derived in total. For our results, where L = 50, there are there-844

fore 2, 601 coefficients altogether, for each model. Consider also that spatial resolution845

increases approximately with the reciprocal of l (see Section 3.2). Incorporating full res-846

olution (60 km at the surface) output from the numerical models used in this study would847

therefore require L ≈ 880, with 776, 161 coefficients. Clearly, computational constraints848

limit our investigation to l ≲ 50. Furthermore, observational constraints on mantle-related849

surface deflection are unlikely to be finer than the flexural wavelength of the overlying850

lithosphere, l ≈ 50 (e.g., Holdt et al., 2022). With these limitations in mind, we com-851

pared surface deflections predicted using different approaches at the same resolution (up852

to l = 50; Sections 2.1 and 3.3). We then quantified the impact of incorporating increas-853

ingly complex physics into models used to predict surface deflections (Section 5; Tables854

2–3).855

First, we simply compared predictions from numerical and analytical approaches856

parameterised to be as similar as possible. In this test, the models were purposefully sim-857

ple: viscosity is radial, models are incompressible, and do not include self-gravitation,858

or radial variation in g. Numerical solutions were transformed into the frequency (spher-859

ical harmonic) domain so that they could be compared with analytical solutions, and so860

that power spectra could be directly compared at appropriate scales. The results show861

that, for as-similar-as-possible parameterizations, amplitudes of analytical solutions are862

≈ 10% lower than numerical solutions (Figure 6). If the numerical model incorporates863

temperature-dependent viscosity, this discrepancy increases to 25% (Figure 15). We in-864

terpret these results in two ways. First, once armed with viscosity and density fields, nu-865

merical and analytical approaches broadly yield similar estimates of surface deflections.866

Second, the relatively damped analytical solutions are a consequence of smoothing steps867

in the propagator matrix approach.868

The similarity of results indicates that the relatively low-cost propagator matrix869

approach can be used to explore consequences of including additional model complex-870

ity. A systematic sweep of parameters, including radial gravitation (Figure 7) and grav-871

itational potential field effects (Figure 8) indicates that their effects on surface deflec-872
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tion are relatively modest. A useful rule of thumb is that self-gravitation perturbs in-873

stantaneous surface deflections by O(1–10)% when compared to models with constant874

gravitational acceleration, and even less difference is observed at high degree (e.g., Ri-875

card, 2015, their Section 7.02.2.5.2). Full 3-D self-gravitation may affect the flow field876

over time, but modelling such effects numerically is currently challenging. Incorporat-877

ing the effect of deflections of gravitational potential field on flow has a modest impact878

on amplitudes of surface deflections at degrees 1–2, but overall it contributes even less879

than radial variation in g to surface deflections across the scales of interest (Figure 7).880

In contrast, removing shallow structure has a very large impact on predictions. It mod-881

ifies amplitudes of surface deflections, locations of uplift and subsidence, and degrees over882

which they are resolved, and hence it modifies power spectral scalings (Table 3, Figure883

9). In contrast, viscosity variations do not have much impact on surface deflections com-884

pared to other effects, even if they are decreased or increased by an order of magnitude885

(Figure 17). The distribution of density anomalies, especially in the upper mantle, does886

however play a very significant role in deflecting the surface (Figure 18). Calculated sum-887

mary statistics suggest that systematically increasing or decreasing mantle densities sig-888

nificantly impacts amplitudes of surface deflections. Conversely, spherical harmonic cor-889

relation coefficients between models with and without density anomalies were largely un-890

affected, as locations of anomalies were not varied.891

These results emphasise the importance of considering sensitivities of surface de-892

flections to the location and scale of flow in the mantle. Taking inspiration from Hager893

and O’Connell (1981) and Parsons and Daly (1983), we calculate the net contributions894

from density anomaly structure to surface deflections, as a function of radius, latitude895

and longitude across all spherical harmonic degrees considered (i.e., l = 1 to 50). Con-896

tributions to surface deflections from densities at particular radii r, across all spherical897

harmonic degrees and orders, for each latitude and longitude, he(θ, ϕ), are calculated such898

that899

he(θ, ϕ, r) =

L∑
l=1

m=l∑
m=−l

[Ylm(θ, ϕ) · δρlm(r) ·Al(r) ·∆r] , (23)

where ∆r is the layer spacing ≈ 45 km, Ylm, δρlm and Al are spherical harmonic co-900

efficients, density anomalies and sensitivities as defined in Section 3.3. Contributions from901

specific locations and depths to surface deflections as a function of latitude and longi-902

tude are shown in Figure 19 for Model 12, for all degrees 1 ≤ l ≤ 50. Results for lower903

maximum l are shown in Supporting Information. Panels a-d show slices through effec-904

tive density in the upper (at 45, 135, 360 km) and lower mantle (1445 km). A 180◦ cross-905

section showing effective densities from the core-mantle-boundary to the surface beneath906

the Pacific to the Indian Ocean encompassing South America and southern Africa (the907

same transect as shown in Figure 1) is shown in panel e. Calculated total net surface de-908

flections along the transect from Model 12, which incorporates temperature-dependent909

viscosity, and Model 2, which does not, are both shown in panel f. A Cartesian version910

of the cross-section with the same horizontal scale is shown in panel g. The adjacent panel911

h shows mean density anomaly amplitudes as a function of radius for Model 12 (dashed912

grey curve), alongside mean effective densities for the two models, and for the case where913

Model 12 was only expanded to maximum l = 10. These panels again emphasize the914

contribution of density anomalies in the upper mantle to surface displacements, and the915

risks associated with discarding shallow structure when predicting dynamic topography.916

In other words, instantaneous surface deflections are most sensitive to the distribution917

of density anomalies in the upper mantle.918

Encouragingly, surface deflections are sensitive to simulated mantle convection pat-919

terns and resulting density distributions, and appear to be relatively insensitive to the920

methodologies used to calculate deflections when parameterizations (assumptions) are921

–23–



manuscript submitted to Geochemistry, Geophysics, Geosystems

consistent. The next step is to make use of independent geological observations to iden-922

tify optimal simulations and associated parameterizations. In this study, we compared923

power spectra (strictly, spherical harmonic coefficients) from calculated surface deflec-924

tions and oceanic age-depth residuals (e.g., Figure 4; Holdt et al., 2022). The simula-925

tions examined have spectral slopes consistent with observations if the entire modelling926

domain (core-mantle boundary to surface) is incorporated, however amplitudes are over-927

predicted by 1–2 orders of magnitude. The uppermost 100–450 km of the mantle is of-928

ten excised in geodynamic studies prior to estimating surface deflections. We demonstrate929

that removing the upper 200 km can generate surface deflections with amplitudes that930

more closely match observations, especially at spherical harmonic degrees > 10. How-931

ever, the spectral slopes of predicted deflections are redder than for the oceanic resid-932

uals, which implies that a different approach to removing the contribution of upper man-933

tle/lithospheric structure is required. An obvious avenue for future work is to incorpo-934

rate information about lithospheric structure into these predictions.935

The body of geologic and geomorphologic observations that could be used to test936

the predicted history of surface deflections from mantle convection simulations has grown937

substantially in the last decade (e.g., uplift and subsidence histories; Section 1.1; see, e.g.,938

Hoggard et al., 2021). A suite of other geological and geophysical observables are also939

predicted by, or can be derived from, such simulations (e.g., mantle temperatures, heat940

flux, geoid, seismic velocities, true polar wander). Using them alongside histories of sur-941

face deflections to identify optimal simulations is an obvious avenue for future work (e.g.,942

Ball et al., 2021; Lau et al., 2017; Panton et al., 2023; F. D. Richards et al., 2023). Us-943

ing such data and the methodologies explored in this paper may be a fruitful way of iden-944

tifying optimal simulations from the considerable inventory that already exists.945

7 Conclusions946

This study is concerned with quantifying sensitivities and uncertainties of Earth’s947

surface deflections that arise in simulations of mantle convection. Calculated sensitiv-948

ities of instantaneous deflection of Earth’s surface to mantle density structure empha-949

sise the importance of accurate mapping of the upper mantle. Surface deflections are some-950

what sensitive to the distribution of viscosity throughout the mantle, but especially to951

the locations and scales of density anomalies in the upper mantle. The largest discrep-952

ancies between predicted deflections seen in this study are generated when upper man-953

tle structure is excised or altered. Doing so changes both the amplitude and distribu-954

tion of calculated deflections, modifying their power spectral slopes. These results em-955

phasise the importance of incorporating accurate models of lithospheric structure into956

calculation of sub-plate support of topography, and also the need to accurately deter-957

mine plate contributions to topography. In contrast, the choice of methodology to es-958

timate surface deflections—analytical or numerical—or boundary conditions are relatively959

small sources of uncertainty. Similarly, assumed gravitational profiles and temperature960

dependence of viscosity are relatively minor contributors to uncertainty given reason-961

able, Earth-like, parameterizations. Nonetheless, these parameterizations may impact962

surface deflections through their role in determining how upper mantle flow evolves through963

geologic time. A fruitful next step could be to use the approaches developed in this pa-964

per, in combination with careful isolation of plate cooling signatures from surface deflec-965

tion predictions, to test mantle convection simulations using the existing and growing966

body of geologic, geomorphologic and geophysical observations.967

Open Research Section968

TERRA models are archived [here]. The propagator matrix code is archived [here].969

Parameterization files are archived [here]. [TO ED: this section will be completed upon970
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final submission, when confirmation of the precise models published is obtained after re-971

view.]972
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Figure 1. Examples of mantle densities and viscosity used to calculate stresses and

dynamic topography numerically and analytically. (a) Great-circle slice (180°) through
full-resolution, present-day, density ρ, predicted by TERRA model with temperature dependent

viscosity (Model 11a; see Table 2 and body text); see globe to left for location. White circles

= 20° intervals; filled black circle indicates orientation of cross section; dashed line = 660 km

depth contour; dotted line = 1038 km depth contour, at which depth ρ is plotted on globe; white-

black curve = numerical prediction of surface normal stress σrr from Model 11a. (b) As (a) but

slice is through spherical harmonic expansion of density structure, to maximum degree l = 50

(λ ≈ 792 km; Model 11b); black-white curve = surface deflection h, calculated using (analytic)

propagator matrix approach (Model 12). (c) As (a) but for slice through full-resolution viscosity

structure of numerical model. (d) As (c) but for mean (radial) viscosity structure, used along

with the density structure shown in (b) to generate analytical solution for surface deflection

shown by black-white curve atop (b). (e–f) As (c–d) but viscosity is expressed as a percentage

anomaly with respect to the layer (radial) mean.

Figure 2. Model 1: Densities predicted from numerical simulation of mantle con-

vection. (a) Predicted present-day density ρ, at surface (z=0), from TERRA model with vis-

cosity independent of temperature (Table 2: Model 1a), plotted at grid resolution of 1 degree.

(b) Histogram of values shown in (a), weighted by latitude to correct to equal-area. (c–d) As

(a–b) but for densities at a depth of 270 km. (e–h) As (a–d) but for time slice at 10 Ma; paleo-

coastlines generated from Phanerozoic plate rotation history of Merdith et al. (2021). (i–l) As

(a–d) but for time slice at 100 Ma.

Figure 3. Model 1: Surface stresses from numerical simulation of mantle con-

vection and spherical harmonic expansion up to degree 50. (a) Predicted present-day

surface radial stress, σrr from numerical TERRA model (Model 1a), plotted at grid resolution

of 1 degree. (b) Histogram of values shown in (a), weighted by latitude to correct to equal-area.

(c) Black line = radial viscosity structure used to drive Model 1a and thus produce grid shown

in panel (a). Gray dashed lines = alternative viscosity profiles of (from darkest to lightest),

Mitrovica and Forte (2004), Steinberger and Calderwood (2006), and µ1, µ2 from Ghelichkhan

et al. (2021). (d) Model 1b: Global interpolation of spherical harmonic expansion of Model 1a

(panel a), up to maximum degree l = 50 (i.e., minimum wavelength λ ≈ 792 km; Model 1b),

calculated using inversion approach of Hoggard et al. (2016). (e) Histogram of values shown in

(d), weighted by latitude to correct to equal-area. (f) Power spectrum, in terms of total power

per degree, of stress field shown in (d), as a function of spherical harmonic degree l.
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Figure 4. Model 1: Predicted water- and air-loaded dynamic topography. (a)

Water-loaded, present day, surface deflection predicted by Model 1a. Figure 3a shows normal

stress, σ, used with Equation 11 to calculate dynamic topography, h; ρw = 1030 kg m−3. (b)

Spherical harmonic fit (Model 1b) up to degree l = 50 of grid shown in (a), calculated using the

approach of Hoggard et al. (2016). (c–d) Histogram of values shown in (a) and (b) respectively,

weighted by latitude to correct to equal-area. (e) Black line = power spectrum in terms of total

power per degree, from spherical harmonic expansion shown in (b); gray line and band = ex-

pected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal km−1 (Kaula,

1963). Orange dashed line = expected power spectrum for water-loaded residual topography from

Holdt et al. (2022), via analytical solution of special case of Equation 16. χp = total root-mean-

squared difference between distribution of modeled and theoretical surface deflection power (see

Equation 21. (f–j) As (a–e) but for air-loaded surface deflection; ρw = 1 kg m−3.

Figure 5. Model 2: Propagator matrix solution for surface deflection with as-

sociated sensitivity kernels. (a) Surface deflection sensitivity kernel Al, as a function of

spherical harmonic degree, l, and depth, calculated for the radial viscosity structure (and other

parameters) which were used to generate Model 1; see Equation 17. (b) Present-day predicted

water-loaded surface deflection, calculated using propagator matrix method, from spherical har-

monic expansion (to maximum degree l = 50) of density structure (e.g., Figure 2a, c) and radial

viscosity structure (e.g., Figure 3c; Corrieu et al., 1995; Hager et al., 1985; Parsons & Daly,

1983). Note that for comparison with numeric calculations shown in Figure 4, no terms related

to flow-related perturbation of gravitational potential terms are included (see Equations 17 and

18), and gravitational acceleration g = 10 m s−2 everywhere. (c) Histogram of values shown in

(b), weighted by latitude to correct to equal-area. (d) Black line = power spectrum in terms of

total power per degree, from surface deflection prediction shown in (a); gray line and band = ex-

pected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal km−1 (Kaula,

1963). Orange dashed line = power spectrum of water-loaded residual topography from Holdt et

al. (2022), via analytical solution of special case of Equation 16. χp = total root-mean-squared

difference between distribution of modeled and theoretical surface deflection power (see Equa-

tion 21. (e–h) As (a–d) but for air-loaded surface deflection; ρw = 1 kg m−3.

Figure 6. Comparison of numeric and analytic estimation of dynamic topogra-

phy (Models 1b & 2). (a) Model 1b: Spherical harmonic expansion of predicted present-

day water-loaded surface deflection converted from stress output from TERRA (Model 1a), to

maximum degree l = 50, as in Figure 4f. (b) Model 2: As (a) but for prediction made using

propagator matrix method, as in Figure 5b. (c) Difference, ∆h, between Models 1b and 2 (pan-

els a and b). (d) Histogram of difference values shown in (c), weighted by latitude to correct

to equal-area. (e) Spectral correlation coefficient, rl, between predictions shown in (a) and (b);

Equation 20. (f) Numeric (Model 1b) versus analytic (Model 2) predictions of surface deflection;

χ = root-mean-squared difference between predictions, Equation 19; gray dashed line = 1:1 ratio.

(g) Black bars = histogram of ratios between analytic:numeric solutions for surface deflection as

in (f), weighted by latitude. Gray dashed line = 1 (i.e., identical values). Gray bars = as black

bars, but for propagator matrix solution amplitudes scaled up by optimal factor to fit numerical

solution (10%).
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Figure 7. Model 3: Predicted surface deflection from mantle convection in pres-

ence of radial gravitation. (a) Predicted present-day water-loaded surface deflection calcu-

lated using propagator matrix method, incorporating radial gravitation i.e., g(r), black curve in

(b). (b) Black curve = profile of gravitational acceleration as a function of radius, given density

distribution predicted by Model 1a; gray dashed line = constant value of g = 10 m s−2 used

within TERRA model runs and in previous figures. (c) As (a) but calculated using g = 10 m s−2

everywhere, i.e., same as Figure 5a (dashed line in panel b). (d) Difference between surface de-

flections predicted by Models 3 and 2 (panels a and c). (e) Histogram of values in (d), weighted

by latitude to correct to equal-area.

Figure 8. Model 4: Comparing predicted surface deflections with and without

stress perturbations induced by gravitational potential of deflected surface. (a) Pre-

dicted present-day water-loaded surface deflection calculated using propagator matrix method,

with g = 10 m s−2 everywhere, including terms describing stress perturbation due to change

in gravitational potential (i.e., u3 term in Equation 17). (b) As (a) but calculated excluding u3

term, i.e., same as Figure 5a. (c) Difference between Models 4 and 2 (panels a and b). Note same

colour scales are used as in Figure 7. (d) Histogram of values in (d), weighted by latitude to cor-

rect to equal-area.

Figure 9. Models 5–7: Effect of removing shallow structure from analytic surface

deflection calculations. (a) Model 5: Predicted water-loaded surface deflection from propa-

gator matrix solution for Model 2, i.e., as Figure 5b, but with effect of upper 50 km of density

anomaly structure ignored in calculation. (b) Black line = power spectrum of surface deflection

shown in (a); gray line and band = expected dynamic topography from Kaula’s rule using admit-

tance Z = 12 ± 3 mGal km−1 (Kaula, 1963). Orange dashed line = expected power spectrum for

water-loaded residual topography from Holdt et al. (2022), via analytical solution of special case

of Equation 16. χp = total root-mean-squared difference between distribution of modeled and

theoretical surface deflection power (see Equation 21). (c) Difference between Models 5 and 2,

i.e., between panel (a) and original propagator matrix solution, Model 2, shown in Figure 5b. (d)

Spectral correlation coefficient, rl, between Model 5 and 2; Equation 20. (e–h) and (i–l) as (a–d)

but for depth cut-offs of 100 (Model 6) and 200 km (Model 7), respectively.

Figure 10. Models 8–10: Testing free-slip vs. no-slip (“rigid”) surface and CMB

boundary conditions. (a) Water-loaded surface deflection sensitivity kernel Al, for Model

8, which has a no-slip surface boundary condition, but otherwise is parameterised the same as

Model 2. (b) Sensitivity kernel of Model 8 minus sensitivity kernel of Model 2 (see Figure 5a).

Note, positive difference implies reduced sensitivity compared to Model 2, and vice versa, since

Al is negative. (c) Predicted water-loaded surface deflection for Model 8. (d) Difference between

surface deflection predictions for Model 8 and Model 2 (see Figure 5b). (e–h) as (a–d) but for

Model 9: free-slip surface boundary, no-slip CMB. (i–l) as (a–d) but for Model 10: no-slip surface

and CMB boundaries.
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Figure 11. Model 11: Numerical simulation of mantle convection with tempera-

ture dependent viscosity, η, and spherical harmonic representation. (a) Present-day

viscosity at surface from Model 11a, expressed as percentage deviation from layer mean, δη, plot-

ted at grid resolution of 1 degree. (b) Histogram of values shown in (a), weighted by latitude to

correct to equal-area. (c) Black line and gray band = global mean and extreme viscosity values

as a function of depth; pink band = depth slice shown in (a). (d) Model 11b: Spherical harmonic

fit up to degree l = 50 of grid shown in (a), using inverse approach of Hoggard et al. (2016). (e–

h) As (a–d) but for depth slice at 271 km below surface. (i–l) and (m–p) 587 km and 2032 km

depth slices.

Figure 12. Model 11: Densities predicted by numerical simulation with

temperature-dependent viscosity. (a) Predicted present-day density ρ, at surface (z=0),

from TERRA model. (b) Histogram of values shown in (a), weighted by latitude. (c–d) As panels

(a–b) but for densities at 270 km depth. (e–h) and (i–l) As panels (a–d) for time slices at 10

and 100 Ma (see caption of Figure 2 for expanded description; Figure 11 for viscosity structure;

Equation 7).

Figure 13. Model 11: Predictions of surface stresses and deflections from simu-

lations with temperature dependent viscosity. (a) Predicted present-day surface radial

stress, σrr from numerical TERRA model (Model 11a), plotted at grid resolution of 1 degree. (b)

Model 11b: Spherical harmonic representation of Model 11a up to degree l = 50. (c) Histogram

of values shown in (a), weighted by latitude to correct to equal-area. (d) Histogram of values

shown in panel (b). (e) Power spectrum of surface stresses. (f–i) Calculated water-loaded surface

deflections and associated histograms for full resolution numerical solutions (f, h) and spherical

harmonic representation (g, i). (j) Power spectrum (black) of water-loaded surface deflection

(panel g), Kaula’s rule (grey curve and band), and water-loaded residual topography (orange);

see Figure 4 for expanded description.

Figure 14. Model 12: Analytical (propagator matrix) predictions of surface de-

flections from simulations with temperature dependent viscosity. Radial viscosity is

calculated using mean (radial) values from numerical model with temperature-dependent viscos-

ity (i.e., Model 11a; Figure 13). (a–d) Present-day, water-loaded, surface deflection calculated

analytically using propagator matrix solution; see Figure 5 for expanded description of panels.

(e–h) Air-loaded deflection and associated metrics.
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Figure 15. Models 11b & 12: Comparison of surface deflections calculated numer-

ically and analytically using results from simulation with temperature dependent

viscosity. (a) Model 11b: Spherical harmonic expansion of predicted present-day water-loaded

surface deflection converted from stress output from TERRA (Model 11a), to maximum de-

gree l = 50. (b) Model 12: As (a) but for prediction made using propagator matrix method.

(c) Difference, ∆h, between Models 11b and 12 (panels a and b). (d) Histogram of difference

values shown in (c), weighted by latitude to correct to equal-area. (e) Spectral correlation co-

efficient, rl, between predictions shown in (a) and (b); Equation 20. (f) Numeric (Model 11b)

versus analytic (Model 12) predictions of surface deflection; χ = root-mean-squared difference

between predictions, Equation 19; gray dashed line = 1:1 ratio. (g) Histogram of ratios between

analytic:numeric solutions for surface deflection as in (f), weighted by latitude. Gray dashed line

= 1 (i.e., identical values). Gray bars = as black bars, but for propagator matrix solution ampli-

tudes scaled up by optimal factor to fit numerical solution (24%).

Figure 16. Comparing surface deflections calculated using normal stresses from

numeric simulations (Models 1 and 11) and analytic estimates (Models 2 and 12)

with and without temperature dependent viscosity. (a) Difference in predicted sur-

face deflection, ∆h, between numerical simulations with (Model 11a) and without (Model 1a)

temperature-dependent viscosity. Full-resolution surface radial stresses are converted into surface

deflections, h, using Equation 11. (b) Histogram of values shown in (a). (c) Pixel-wise compar-

ison of predicted surface deflection between the two models; χ = root-mean-squared difference

between predictions, see Equation 19; gray dashed line = 1:1 ratio. (d–f) as (a–c) but for surface

deflection calculated using spherical harmonic expansion of surface radial stresses (Model 1b

vs. 11b). (g) Spectral correlation coefficient, rl, between model predictions (with and without

temperature dependent viscosity; see Equation 20). (h–k) as (d–g) but for surface deflections

calculated for each model using the propagator matrix approach (Model 2 vs. 12).

Figure 17. Models 13–16: Sensitivity of calculated analytic surface deflection to

adjusted radial viscosity. (a) Model 13: Black curve = prediction of present-day radial mean

viscosity from Model 11; red line = adjusted radial profile with viscosity decreased by a factor of

10 between depths of ∼ 300–500 km; gray dashed lines = viscosity profiles used in other studies

(see Figure 3). (b) Sensitivity kernel generated using adjusted viscosity shown in (a). (c) Surface

deflection calculated using propagator matrix approach parameterised using adjusted viscosity

profile (red curve in panel a), and resulting sensitivity kernel shown in panel (b). (d) Difference

between propagator matrix solutions generated using adjusted and un-adjusted viscosity pro-

files, i.e., panel (c) minus Figure 15b (Model 13 vs. 12). Value of root-mean-squared difference,

χ, (between calculated surface deflections for un-adjusted and adjusted viscosity) is stated (see

Equation 19). (e–h) Model 14: As (a–d) but applying an increase in viscosity of a factor of 10

between ∼ 300–500 km. (i–l) Model 15: As (a–d) but applying an increase in viscosity of a factor

of 100 between ∼ 300–500 km. (m–p) Model 16: As (a–d) but applying an constant viscosity of

≈ 7.5× 1022 Pa s (i.e., the mean value of the reference profile) across all depths.
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Figure 18. Models 17–20: Sensitivity of calculated analytic surface deflection to

adjusted density anomalies. Annotation is as for Figure 17 but for adjusted density anoma-

lies (red lines in left panels), by directly scaling spherical harmonic coefficients (l > 0) up or down

by a factor of 2 (Models 17 & 19, panels a–c & g–i, respectively) or 1
2
(Models 18 & 20: d–f &

j–l ). Viscosity structure applied in each case is same as that used to generate Figure 15b. Sensi-

tivity kernels for surface deflection are not shown since they are invariant with respect to density

anomalies, ∆ρ, depending only on viscosity structure.

Figure 19. Effective density. Contributions from density anomalies to surface deflection.

(a–d) Maps of net contribution to present-day water-loaded surface deflection calculated using

propagator matrix approach (Model 12; see body text for details). Depth slices at 45, 135, 360

and 1445 km depth incorporating all spherical harmonic degrees l and orders m, up to l = 50. (e)

Great-circle slice (180°) showing contributions to surface deflection; globe to right shows transect

location and calculated surface deflection (same as Figure 14b). White circles = 20° intervals;
note filled black circle for orientation; dashed line = 660 km depth contour. (f) White-black

curve = total surface deflection along transect shown atop globe in panel (e); abscissa aligned

with panel g; orange dashed line = same but for maximum l = 10 (see Supporting Information

Figure S4); red dashed curve = surface deflection from Model 2. (g) Cartesian version of panel

(e); ordinate aligned with panel (h). (h) Grey dashed curve = mean absolute value of density

anomalies in Model 12—see top axis for values. Black curve = global mean amplitude (modulus)

of contribution from density structure in Model 12 to total surface deflection h, across all l and

m; orange line = same but for maximum l = 10; red dashed line = results for Model 2.
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to a maximum spherical harmonic degree l = 50. Here, results are presented for maximum

degrees 40, 30, 20, 10 and 5. The results demonstrate the importance of contributions

from short wavelength (high degree) density structure to surface deflections, especially at

shallow depths.
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Figure S1. Surface deflections and effective densities up to maximum degree 40.

(a–d) Net contribution to present-day water-loaded surface deflection calculated using analytical

approach with maximum l = 40. Depth slices at 45, 135, 360 and 1445 km depth. (e) Great-circle

slice (180°) showing contributions to surface deflection; globe to right shows transect location

and calculated surface deflection, up to maximum l = 40. White circles = 20° intervals; filled

black circle is for orientation; dashed line = 660 km depth contour. (f) White-black curve =

surface deflection along transect shown atop globe in panel (e); red dashed curve = surface

deflection from Model 2. (g) Cartesian version of panel (e). (h) Grey dashed curve = mean

absolute value of density anomalies in Model 12—see top axis for values. Black curve = global

mean amplitude (modulus) of contribution from density structure up to maximum l = 40 to total

surface deflection h.
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Figure S2. Surface deflections and effective densities up to maximum degree 30.

As Figure S1, but for maximum spherical harmonic degree l = 30.
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Figure S3. Surface deflections and effective densities up to maximum degree 20.

As Figure S1, but for maximum spherical harmonic degree l = 20.
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Figure S4. Surface deflections and effective densities up to maximum degree 10.

As Figure S1, but for maximum spherical harmonic degree l = 10.
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Figure S5. Surface deflections and effective densities up to maximum degree 5. As

Figure S1, but for maximum spherical harmonic degree l = 5.
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