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Abstract

This study presents a novel approach to improving the accuracy of flood forecast models with limited training data.

Flood forecast information is crucial for early evacuation planning.

However, the probability of flooding caused by continuous heavy rainfall is increasing, even in areas where we have not installed

flood forecasts.

New methods exist to provide flood forecasts, but they require long-term observations and regular updating of extensive data

on the basin.

Existing methods of providing new flood forecast information require long-term observations and regular updates of extensive

data on the watershed.

These requirements are related to the construction time and cost of providing flood forecasts.

To address this issue, we propose Informed Neural Networks (INN) that integrate existing domain knowledge of river engineering

to enhance the performance of flood forecasts with a limited amount of training data.

We evaluated the performance of our proposed method with Japanese real-world river water levels and compared it to conven-

tional methods such as artificial neural networks (ANN).

Our results demonstrate that the INN can significantly improve forecasting accuracy with only a small amount of training data,

comparable to conventional methods trained with eight times the amount of flood data.

This study highlights the potential of INN as a novel approach for accurate and efficient flood forecasting with limited training

data.
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Key Points:6

• We developed a methodology to improve the precision of flood forecasting7
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Abstract13

This study presents a novel approach to improving the accuracy of flood forecast14

models even if training data is limited. Flood forecast information is crucial for15

early evacuation planning. However, the probability of flooding caused by continu-16

ous heavy rainfall is increasing, even in areas for which floods have not been antic-17

ipated. While methods exist to provide flood forecasts, they require long-term ob-18

servations, and regular updating of extensive data on the catchment basin. These19

requirements impact the construction time and cost of providing flood forecasts. To20

address this issue, we propose the Informed Neural Network (INN); it draws on ex-21

isting domain knowledge of river engineering to enhance the performance of flood22

forecasts with limited amounts of training data. We evaluate the performance of23

our proposed method by assessing Japanese real-world river water levels and com-24

pare the results to those of conventional methods such as artificial neural networks25

(ANNs). Our results demonstrate that INN can significantly improve forecast accu-26

racy with only a small amount of training data, comparable to conventional methods27

trained with three times the amount of flood data with three hours forecast. This28

study highlights the potential of INN as a novel approach for accurate and efficient29

flood forecasting with limited training data.30

Plain Language Summary31

This study introduces a new method called the informed neural network to en-32

hance the accuracy of flood forecasting models when the training data is limited.33

Accurate flood forecasts are crucial for early evacuations, as the risk of flooding due34

to heavy rainfall is increasing even in areas without existing flood risk. Traditional35

methods for generating flood forecasts require extensive data and continuous up-36

dates, making the process time-consuming and costly. In contrast, the INN approach37

incorporates existing knowledge of river engineering to improve forecasting perfor-38

mance with a just a small amount of training data. We evaluate the INN method39

with real-world river water level data from Japan, and compared it to conventional40

methods such as artificial neural networks. The results demonstrate that the INN41

approach significantly improves forecast accuracy, even with limited training data,42

to match conventional methods trained with eight three more flood data with three43

hours forecast. This study highlights the potential of INN as an innovative and effi-44

cient approach for accurate flood forecasting, particularly in situations with limited45

training data.46

1 Introduction47

Flood forecast information can enable municipalities to plan proactively and48

residents to safely evacuate in the event of a flood. Consequently, accurate flood49

forecasting is crucial in areas susceptible to flooding. Recently, Japan has observed50

an increase in heavy rainfall compared to the past (Kawase et al., 2020; Hirockawa51

et al., 2020) Kawase et al. (2020) showed central and western regions experiencing52

record-breaking total precipitation of 48- and 72-hours at approximately 1,300 pre-53

cipitation stations in 2018. Weather officials continue to observe such unprecedented54

heavy rains. Some studies predict that these changes are due to climate change and55

that the rainfall trend will continue(Kusunoki et al., 2006; Kitoh & Uchiyama, 2006;56

Duan et al., 2015; Osakada & Nakakita, 2018; Takemi & Unuma, 2020). As a result,57

such an increase in unexperienced heavy rain cause the risk of flooding in areas pre-58

viously unaffected by it. There are 30,000 rivers in Japan, of which only 393 provide59

forecast information. Climate change has increased the risk of thousands of rivers60

for which flood forecasts are not provided. Therefore, it is necessary to provide flood61
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forecasts at more new locations. The cost of the forecasting system is essential when62

providing flood forecast information to many new locations.63

There are two approaches for flood forecasting: rainfall-runoff-based approach64

and data-driven-based approach. The rainfall-runoff-based approach requires various65

data types, such as basin characteristics distribution. However, these data require66

high quality(Hapuarachchi et al., 2011), making it challenging to acquire and contin-67

uously update the data. In contrast, the data-driven approach requires only rainfall68

and river water level data but the need for measurements over a more extended pe-69

riod. Based on existing literature, a training dataset spanning at least five years and70

containing at least 15 flood events for data-driven methods (Mukerji et al., 2009;71

Noymanee & Theeramunkong, 2019). Such requirements for long-term data mea-72

surements make providing flood forecast information for new sites difficult. There-73

fore, a method to achieve flood forecasting with a few types and a limited amount of74

training data is an essential issue for flood forecasting.75

In the field of data-driven methods, one potential solution to address the issue76

of limited training data is to incorporate prior information into the learning process77

of NN. This approach is known as Informed Machine Learning (IML), and many78

groups have applied IML to various domains(Von Rueden et al., 2021). IML can79

improve model performance by applying various types of prior knowledge, such as80

knowledge graphs and equations, to the learning process. Many IMLs use NNs as a81

building block, especially called Informed Neural Networks (INN). INN has achieved82

improved model performance in many areas. Despite these advancements, identify-83

ing practical prior knowledge and corresponding Informed Machine Learning meth-84

ods for flood forecasting remains challenging.85

This study introduces a novel method to implement INN for flood forecast-86

ing, suitable for limited training data scenarios. The proposed approach incorporates87

prior knowledge about the ”rainfall-runoff-river water level relationship” and ”tank88

model” derived from river engineering knowledge into a NN. We evaluated the per-89

formance of INN, To evaluate the INN’s performance, We conducted a comparative90

analysis between the proposed and conventional methods using flood data from a91

river in the Kyushu region of southwestern Japan. The results indicated that the92

proposed INN method performed as well as the conventional method when sufficient93

training data was available. Moreover, the proposed method retained its accuracy94

even when the training data was limited. In contrast, when training data was lim-95

ited, the conventional ANN showed a more significant Root Mean Squared Error96

(RMSE) up to 8 times higher than the proposed INN method. These results suggest97

that the INN approach is a promising alternative for accurate flood forecasting when98

limited training data is available. Overall, the proposed method offers an effective99

solution for improving the accuracy of flood forecasting with limited training data,100

and its potential applicability to other domains where data availability is restricted101

warrants further exploration.102

2 Related works103

There are two kinds of approaches to flood forecasting. One is a rainfall-runoff-104

based approach, and another is a data-driven approach. Methods based on the rainfall-105

runoff approach determine the amount of water runoff from the basin and then de-106

termine river water levels. Methods based on the data-driven approach often predict107

river water levels directly.108

Many methods were proposed related to the rainfall-runoff-based approach.109

This method has some parameters, such as precipitation, discharge, and basin char-110

acteristics. Especially, to account for the spatial bias of rainfall and the distribu-111
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tion of land features, the rainfall-runoff method often requires dividing the basin into112

subregions, and it has been called the distributed rainfall-runoff approach (Brocca113

et al., 2011). Rainfall-runoff approach has parameters related to catchment char-114

acteristics. Basin characteristics include terrain, soil, geology, land cover, and more115

(Cole et al., 2006). Such parameters are not always available, and even when they116

are, they are often of poor quality and require improvement (Hapuarachchi et al.,117

2011). Therefore, they cannot always be the best approach to provide flood forecast-118

ing for many rivers in a short period and maintain it in the future.119

A typical model in the data-driven approach is the statistical model. The au-120

toregressive moving average (ARMA) (Valipour et al., 2012) and autoregressive in-121

tegrated moving average (ARIMA) (Valipour et al., 2013) are representative and122

basic models in this area. A statistical model related to ARMA and ARIMA is re-123

ported to be more efficient regarding computational cost and generalization com-124

pared to the rainfall-runoff approach (Aziz et al., 2014). In the statistical model,125

several methods treat floods as stochastic processes and predict probability distribu-126

tions from historical data(Kroll & Vogel, 2002). However, even the more advanced127

models need improvement in terms of the accuracy of short-term forecasts and the128

complexity of their applicationa(Mosavi et al., 2018). The machine learning (ML)129

model is another data-driven approach. ML models for flood forecasting include a130

variety of algorithms such as neural networks (NN) (Le et al., 2019; Elsafi, 2014; F.-131

J. Chang et al., 2007), neuro-fuzzy(Mukerji et al., 2009; Chen et al., 2006; Roodsari132

et al., 2019), and support vector machines(Han et al., 2007; Yan et al., 2018). ML133

models also include algorithms such as NNs that can deal with nonlinearities in the134

rainfall-runoff process. ML models are reported to have better performance and less135

complexity than physical models (Abbot & Marohasy, 2014). The issue with these136

data-driven approaches is the long-term measurement data. Several literatures have137

reported 15 to 45 flood data events or 5 to 20 years of measurements to build ML138

models (Song et al., 2019; Mukerji et al., 2009; Nguyen & Chen, 2020; Noymanee &139

Theeramunkong, 2019) .140

To address the issue of long-term measurement data, Researchers attempt to141

integrate prior knowledge into the ML models pipeline that has been made in the142

fields of physical and natural phenomena. These attempts are called informed ma-143

chine learning (IML) The main goal of this endeavor is to improve accuracy and144

challenge the problem of limited training data volume. These efforts are based on145

the taxonomy proposed by Von Rueden et al. (2021) and are divided into several146

methods depending on the representation of prior knowledge. In particular, for prob-147

lems involving natural phenomena and physical systems, the type of existing knowl-148

edge that describes the system includes algebraic equations. One idea in an attempt149

to integrate this algebraic equation into the machine learning pipeline is loss func-150

tion modification. Karpatne et al. (2017) achieved accuracy beyond conventional151

techniques by adding the equation relating water temperature and density to the152

loss function for the lake temperature modeling using NNs. Loss function modifica-153

tion by differential equations, another option, is also a subset of Algebraic equations.154

Zhu et al. (2019) has achieved higher accuracy than conventional methods for the155

problem of surrogate modeling of systems described by differential equations using156

NNs, without using training data, by using the equation as a loss function. These157

improvements show the possibility of INN for a limited amount of data by chang-158

ing the loss function based on the algebraic equation. The next category of possible159

prior knowledge is knowledge graphs, which represent the relationships among the160

elements of the system. M. B. Chang et al. (2016) applies a network structure of161

NNs that dynamically changes from scene to scene to predict the motion of multi-162

ple rigid bodies that affect each other. It achieves improved accuracy over conven-163

tional static network structures. This result indicates the possibility of a network164

structure of NNs suitable for the target system. In flood forecasting by IML, Qian165
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et al. (2019) use simulation results by the finite volume method as training data to166

speed up the two-dimensional flood simulation by the shallow water wave equation167

and train the neural network. As a result, they achieved 50,000 times faster than the168

simulation. Accelerating prediction using such existing simulation results is called169

surrogation and is one of the applications of IML. Bhasme et al. (2021) used IML170

to improve annual water balance prediction accuracy. In this research, they define171

the relationship between the variables of the physical model that predicts runoff by172

learning with ML models. Mahesh et al. (2022) used IML to predict spatiotemporal173

floods on one-dimensional channels. IML was realized by setting the loss function of174

NNs based on the Saint Venant equation. When compared with ML models, IML175

showed higher performance. In IML, although there are many studies on physics and176

natural phenomena, there are still few studies on hydrology, and there needs to be177

knowledge about the problem of a limited amount of training data for flood forecast-178

ing. Therefore, we set the following questions to obtain new knowledge about the179

applicability of IML, especially INN, in flood forecasting. The overall research ques-180

tion this paper tries to answer is, ”Can INN be applied to flood forecasting when181

flood data are limited?” Consequently, the following two questions about INN is182

needed to be answered.183

1. Can INNs perform as other conventional flood forecasting methods in the con-184

dition of a sufficient amount of training data?185

2. Can INN maintain the performance rather than conventional methods in the186

condition of a limited amount of training data?187

3 Materials and Methods188

3.1 Study Area and Data Acquisition189

The study area in this study is shown in 1. Oyodo River is located in the Kyushu190

region of southwestern Japan, with a basin area of 2, 230 km2 and a length of 107 km.191

The source of the Oyodo River is Nakadake, and the river’s main channel passes192

through the Miyakonojo Basin, mountainous areas, and the Miyazaki Plain. The193

river has caused damage from flooding 12 times between 1936 and 2005 due to rain-194

fall during the rainy season. The predicted flood site, Hiwatashi, is located in the195

middle reaches of the Oyodo River, 52 km from the source, and has a basin area196

of 861 km2. At Hiwatashi, the government set the river water level of 6 m as the197

flood warning level and 9.2 m as the flood hazard level to warn of flooding. We con-198

structed the data used for study validation from the river water level history of the199

Oyodo River, following the work of (Hitokoto et al., 2017). Extract flood events ex-200

ceeding 6 m from the river water level and precipitation data. One event should201

be from 72 hours before to 48 hours after the river water level peak. From 1990 to202

2014, we have constructed 23 flood events, of which four flood events (1990, 1993,203

2004, and 2005) had river water levels exceeding 9.2 m. We use fourteen rainfall sta-204

tions and four river water level stations around and upstream of the basin to obtain205

data for the same period. We obtained all data from the Water Information Sys-206

tem database of the Ministry of Land, Infrastructure, Transport, and Tourism in207

Japan(Ministory of Land, Infrastructure, Transport, and Tourism in Japan, 2021).208

3.2 Conventional ANN for flood forecasting209

This section describes the conventional ANN based on the work of Hitokoto et210

al. (2017). A schematic diagram illustrating flood forecasting with an ANN is pre-211

sented in Figure 2. The model takes three kinds of input data: river water levels at212

the forecast location, the river water level at the upstream location, precipitation in213

the basin, and outputs predicted river water levels. The river water level data for in-214
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Elevation [m]
1800

180

10

0

river

Precipitation  station

River water level
gauging station

Figure 1. Location of the Hiwatashi gauging station,related rivers and near by stations.This

map uses the data from standard elevation map published by Geospatial Information Authority

of Japan and edited by NTT Advanced Technology Corporation.

put is hourly data for a certain period for the location of the flood forecast and its215

upstream locations. The input rainfall is the observed and predicted rainfall at mul-216

tiple locations in the basin. The ANN model comprises three fully connected layers,217

with ReLu activation functions applied to the first and second layers. We trained218

the ANN in two stages. As a pre-training step, the middle layers are optimized as219

denoising autoencoders. The denoising autoencoders have the same number of out-220

put variables as inputs, and it is trained to regenerate input from noise-added input.221

Next, the learning process is performed using the parameters optimized as denois-222

ing autoencoders as the initial values. In this learning process, the river water level223

and rainfall data are used as input data and river water level data are used as train-224

ing data. The river water level data is hourly data for a certain period at the flood225

forecasting location and upstream. The precipitation data are also hourly for a cer-226

tain period at multiple locations around the basin. This ANN is optimized to min-227

imize the mean squared error between the predicted and actual river water levels.228

Adam optimizer was used to update parameters. Dropouts were applied to avoid229

over-fitting. Learning stops after a predetermined number of epochs. The number of230

neurons in the middle layer, batch size, learning rate, dropout rate, and number of231

epochs are subject to hyperparameter tuning.232

3.3 Prior knowledge and proposed INN architecture233

We propose an INN integrating two prior knowledge into an ANN to prevent234

performance degradation on limited training data. The first knowledge is the rainfall-235

runoff and water level relationship. The rainfall refers to precipitation, especially236

in the basin to be forecasted, and runoff refers to the water moving over and un-237
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Basin
Water 
level
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Upstream
flowrate 

River
+

Runoff Flowrate

Figure 3. A block diagram showing the relationship between rainfall-runoff and water levels.

Rainfall flows into the basin, merges with the upstream flow of the river, and affects water levels.

der the surface of the land in the basin area. Understanding this relationship and238

deriving flow rate into rivers is one of the significant interests of river engineering.239

Then, the rainfall-runoff and water level relationship can be understood as shown240

in the block diagram in Figure 3. First, rain falls on the basin, and the water flows241

upstream through various pathways. Next, the volume of water from the river up-242

stream is combined to form the river. This flow rate and physical shape define the243

water level at a point of the river. Integrating this prior knowledge into the ANN is244

performed by modifying the structure of the NN as shown in figure 4 to mimic the245

block diagram in figure 3. First, the network is divided into two parts. Part 1 is a246

NN that converts rainfall in a watershed to river flow. Part 2 is a NN that converts247

the amount of water from the basin to the river and the flow rate from upstream248

to the predicted water level. The inputs are the precipitation in the basin to Part 1249

and the river level upstream to Part 2. Part1 outputs three kinds of vector named250

∆S, R, Q, and ∆S is the input to Part2. This network architecture modification251

aims to create a model that suits the task of flood forecasting.252

The second piece of prior knowledge is the tank model. As mentioned above,253

the rainfall-runoff relationship is a significant issue in river engineering, and many254

models have been proposed to explain its behavior. The tank model simulates a255

basin as a tank and models the relationship between rainfall, basin storage, and256

runoff. In the tank model, rainfall is fed into the tank, some of it accumulates, and257

some water flows out as runoff. This model is one of the simplest rainfall-runoff258

models, and this tank model was chosen for its simplicity of integration into the259

INN. The tank model is composed of three variables, as follows:260

∆S(t) = R(t− τ) +Q(t) (1)261

t is the time each value was observed. τ is the time delay between rainfall-runoff.262

∆S(t) is water strage change in the tank(basin). R(t − τ) is precipitation with time263

delay. Q is the runoff flow rate. Equation 1 represents the relationship between rain-264

fall with time delay and conservation of tank storage and runoff. The integration265

of the tank model into the ANN is done in the following procedure. The output of266

Part 1, which is responsible for rainfall-runoff, is divided into the tank model vari-267

ables: rainfall R, tank storage change ∆S, and runoff Q. Next, add the penalty term268

losspenalty shown below to the loss function.269

losspenalty =
∑
i∈n

|∆Si(t)−Ri(t− τ)−Qi(t)| (2)270

n is a predefined number of elements in each vector output from part 1. This is the271

just transition of the term R(t− τ) and Q(t) in Equation 1 and when losspenalty = 0272

Equation 2 is equivalent to Equation 1. And each outputs ∆S, R, Q in 4 are cor-273

resoponding to ∆Si(t), Ri(t − τ), Qi(t) in Equation 2. Since this penalty term is274
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precipitation input, and Part2 has Part1 output and water level input.
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optimized to be zero during the learning process, it is expected that Part 1 will be275

optimized to mimic the behavior of the tank model. Moreover, since ∆S(t) is de-276

fined as having a linear relationship with the amount of runoff to the river, ∆S(t)277

of Part 1 in Figure 4 is input to Part 2. Note that these two changes are not math-278

ematically complete constraints that satisfy the tank model and rainfall-runoff rela-279

tionship. Thus the output of Part 1 need not match the values of each variable when280

the tank model is built for the same basin. Same as conventional ANN, the number281

of neurons in the middle layer, batch size, learning rate, dropout rate, and number282

of epochs are subject to hyperparameter tuning.283

3.4 Model Development284

The same gauging and perception data are used for the ANN and the devel-285

opment of the proposed INN. ANN and INN were optimized to minimize the mean286

squared error of training data. The model is trained with the water level at time287

t + n, n hours ahead of the Hiwatashi gauging station at time t, as the objective288

value. The inputs to the model are the water level at Hiwatashi gauging station at289

time t and one hour ahead at time t−1, the water level upstream at time t, t−1, t−2290

and the hourly rainfall from t + n − 1 to t + n − 5 at the precipitation gauging291

location. Note that the actual rainfall values are used to train and test even if the292

rainfall values are in the future from time t. The Adam optimizer was used in the293

training process for each model. Hyperparameter tuning is performed by grid search294

for the number of training epochs, the number of neurons in the middle layer, the295

learning rate, and the dropout rate. The data used for development is divided into296

training data and validation data for hyperparameter tuning, which are separated297

from test data.298

4 Result299

Two comparisons were conducted to compare the INN and some conventional300

methods. The results were evaluated in terms of RMSE. The RMSE is obtained by301

the following,302

RMSE =

√
1

N
Σt (L(t)− Lprediction(t))

2
(3)303

N is the number of water level samples. L(t) is the water level at time t, Lprediction304

is the predicted water level at time t.305

4.1 Comparison with conventional methods for a sufficient amount306

of training data307

The result of the conventional ANN and the proposed method forecast for the308

Hiwatashi gauging station is shown in Figure 5 and Figure 6 The prediction results309

follow the transition of the ground truth. During periods of water level over three310

meters (between two gray dashed lines), the predictions are more consistent with311

the ground truth than the results of ANN in case of the year 2004 and 2005. Both312

the ANN and the INN predictions are unstable in the year 1990 and 1993. These313

unstable predictions may be due to noise in the input observed variables in these314

test sets.315

The RMSE of the flood forecast results at the Hiwatashi gauging station is316

shown in Figure 7. Conventional methods are ANN, a hybrid of ANN and distributed317

runoff model (hybrid), distributed runoff model (runoff), embedding, and the pro-318

posed method. In addition, ANN1 is the result traced from Hitokoto et al. (2017),319

and ANN2 is the result of in-house code. The difference between ANN1 and ANN2320

–10–
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Figure 5. Forecast for the Hiwatashi gauging station in the year 1990, 1993, 2004, and 2005

by conventional ANN2 model. The black points with black lines denote the observed river level

as ground truth, and the red solid line shows the forecast river level up to 6 hours ahead. The

area between the two gray dotted lines displays the range of data over which the RMSE was

evaluated.

is that it uses a framework for implementation, and hyperparameter tuning is per-321

formed on a test set and a separate validation set. Figure 7 -(a), (b), (c), and (d)322

show the results for 1990, 1993, 2004, and 2005. The RMSE for ANN1, hybrid, runoff,323

and embedding is traced from Hitokoto et al. (2017) and Okuno et al. (2021). Each324

figure shows the RMSE of the predicted and actual values for the 1 to 6 hourly fore-325

cast horizons. Each method’s RMSE is distributed in the 0.04 m to 1.2 m range. In326

the case of the proposed method, the values are distributed in the range of 0.038 m327

to 0.85 m, and it was never the worst accuracy in all cases. In case (a)Year 1990,328

the RMSE proposed becomes large when forecasting 5 hours, but in all other years,329

the RMSE is about the same compared to other methods. Unlike other results, the330

proposed method and ANN2 are hyperparameter-tuned with a test set and a com-331

pletely isolated validation set. Considering this difference in experimental conditions,332

the proposed method has sufficient performance. Based on this result, the domain333

knowledge which was combined with INN does not cause performance degradation334

even in the condition of not limited training data.335

4.2 Sensitivity analysis about the number on the flood data in the336

training data337

The proposed method should maintain high performance even under condi-338

tions where there is not a sufficient amount of data. To verify the performance of339

INN under such conditions, we performed a sensitivity analysis. The RMSE at the340

Hiwatashi gauging station with different test data is shown in Figure 8 and Figure341

9. We compared the conventional method (ANN2) and the proposed method in this342

study. Each figure shows the result for 1993 and 2004. In Figure 8, for (a)1 hour343

forecast and (b)3 hours forecast, the RMSE of INN does not increase as the number344

of flood events in the training data decreases. On the other hand, in conventional345

ANN2, the RMSE tends to rise rapidly as the number of flood data becomes smaller.346

The RMSE value of Proposed is smaller than that of ANN2 when the training set347

has less number of flood data (6 >). In the (c)6 hours forecast, the magnitude of348
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Figure 6. Forecast for the Hiwatashi gauging station in the year 1990, 1993, 2004, and 2005

by proposed INN model. The black points with black lines denote the observed river level as

ground truth, and the red solid line shows the forecast river level up to 6 hours ahead. The area

between the two gray dotted lines displays the range of data over which the RMSE was evalu-

ated.

Proposed RMSE changes more than in (a) and (b) for the number of flood data.349

Under conditions where the number of flood data is five or less, three-quarters of the350

cases have a smaller RMSE than ANN2. The result in Figure 9 has the same trend351

as in Figure 8. The RMSE value of Proposed is smaller than that of ANN2 when the352

training set has less number of flood data (5 >). In the (c)6 hours forecast, the mag-353

nitude of Proposed RMSE changes more than in (a) and (b) for the number of flood354

data. Same as Figure 8, under conditions where the number of flood data is five or355

less, three-quarters of the cases have a smaller RMSE than ANN2.356

5 Disscusion and Conclusion357

In this study, we proposed a novel approach to flood forecasting methods with358

NNs. The proposed method is an INN that integrates existing knowledge of rainfall-359

runoff, river-level relationships, and the tank model in river engineering with con-360

ventional ANNs. Integrating the existing knowledge into the INN was performed by361

modifying the network architecture and adding a penalty term. These two changes362

aim to improve the initial conditions and the learning process of NNs. We applied363

the proposed INN to a real-world river in Japan to test its performance. Under con-364

ditions where there was sufficient training data, the proposed INN was performed,365

as well as several critical conventional methods. When the training data was lim-366

ited, it significantly outperformed the conventional ANN. This difference tended to367

increase as the forecast horizon became small. The improvement in results is due to368

changes in the network architecture based on existing knowledge and the addition of369

a penalty term. This change is assumed to be due to the initial learning conditions370

and the optimizer’s contribution to improving the learning process. These results are371

a new contribution that shows a practical way to improve the accuracy of INNs with372

a limited amount of training data. The proposed INN will enable the provision of373

flood forecasting systems with a short development time in areas where flood fore-374

casting has not been installed, thereby reducing the risk to life during floods. INN375
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Figure 7. RMSEs of 1 to 6-hour forecasts for 4 test cases (a)year 1990,(b) year 1993,(c)year

2004, and (d)year 2005. We compared the performance of the proposed method with that of

ANNs from the literature (ANN1), the distributed runoff-rainfall model (runoff), the hybrid

model of ANN and runoff (hybrid), predictions based on dynamical system theory ( embedding),

and the performance of ANNs based on in-house experimental codes (ANN2). Note that the

results for ANN1, runoff, hybrid, and embedding were scanned for values from Hitokoto et al.

(2017) and Okuno et al. (2021)
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Figure 8. RMSE for 1993 test data versus the number of flood data in the training data set.

The red line is the proposed method, and the black line is the conventional ANN with in house

implementation (ANN2).

Figure 9. RMSE for 2004 test data versus the number of flood data in the training data set.

The red line is the proposed method, and the black line is the conventional ANN with in house

implementation (ANN2).
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will help to cope with heavy rainfall in unprecedented areas due to recent climate376

change. Overall, we obtained favorable results for the questions set in section 2.377

The future work of this research is the following two. First, the INN proposed378

in this study was designed to integrate two simple pieces of existing knowledge for379

ease of implementation. Therefore, the performance when other existing knowledge380

is integrated has yet to be discovered, and what kind of existing knowledge is more381

suitable for integration is an important question. Second, the river tested in this382

study is the only one in Japan, and its performance in other Japanese rivers and383

rivers around the world with larger basins is still being determined. So, evaluation of384

the proposed INN on more diverse rivers is necessary. In addition, the performance385

of the proposed technology for more complex phenomena where factors other than386

rainfall affect floods is also the subject of future research.387

6 Open Research Section388

The rainfall and river water level data used in this study are freely available at389

(Ministory of Land, Infrastructure, Transport, and Tourism in Japan, 2021)(http://www1.river.go.jp/).390

The data is freely accessible, but you must select a location and time period. Re-391

lated metadata (location name and time period) is listed in (Hitokoto et al., 2017).392

The elevation map data is freely available at (Geospatial Information Authority of393

Japan, 2020)(https://maps.gsi.go.jp/vector/#7).394
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