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Abstract

Spontaneous imbibition flows within confined geometries are commonly encountered in both natural phenomena and industrial

applications. A profound knowledge of the underlying flow dynamics benefits a broad spectrum of engineering practices.

Nonetheless, within this area, especially concerning complex geometries, there exists a substantial research gap. This work

centers on the cylinder-plane geometry, employing a combined theoretical and numerical approach to investigate the process of

a wetting film wrapping a cylinder corner. It is found that the advance of the liquid front generally follows the Lucas-Washburn

kinetics, i.e., $\thalf$ scaling, but it also depends on the dynamics of the liquid source. Furthermore, we provide a theoretical

estimation of the timescale associated with the imbibition process. Notably, this timescale is highly dependent on the wettability

condition and the properties of the involved liquid. Importantly, the practicability of our theoretical framework is well confirmed

by the numerical experiments.
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Key Points:6

• A combined theoretical and numerical approach is employed to investigate the im-7

bibition dynamics of wetting film wrapping a cylinder corner.8

• The advance of liquid front generally follows the Lucas-Washburn kinetics but also9

depends on the boundary dynamics.10

• A theoretical estimation of time lengths is provided in which wettability and liq-11
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Abstract13

Spontaneous imbibition flows within confined geometries are commonly encountered in14

both natural phenomena and industrial applications. A profound knowledge of the un-15

derlying flow dynamics benefits a broad spectrum of engineering practices. Nonetheless,16

within this area, especially concerning complex geometries, there exists a substantial re-17

search gap. This work centers on the cylinder-plane geometry, employing a combined the-18

oretical and numerical approach to investigate the process of a wetting film wrapping19

a cylinder corner. It is found that the advance of the liquid front generally follows the20

Lucas-Washburn kinetics, i.e., t1/2 scaling, but it also depends on the dynamics of the21

liquid source. Furthermore, we provide a theoretical estimation of the timescale asso-22

ciated with the imbibition process. Notably, this timescale is highly dependent on the23

wettability condition and the properties of the involved liquid. Importantly, the prac-24

ticability of our theoretical framework is well confirmed by the numerical experiments.25

1 Introduction26

Spontaneous imbibition flows, i.e, liquids driven by capillary pressure to wet con-27

fined geometries, such as capillary tubes (Cai et al., 2021), grooves (Tang & Tang, 1994;28

Deng et al., 2014), porous media (Suo et al., 2019; Ha et al., 2018), etc., serves a cru-29

cial role in various natural and industrial processes. The pioneering research dates back30

to the Lucas-Washburn equation (Washburn, 1921), which leads to a scaling law regard-31

ing the evolution of the liquid front h(t) in capillaries, i.e., h = Ct1/2. This type of scal-32

ing law describes a energy balance between the capillary and viscous terms. Specifically,33

the wetting liquid is driven by the capillary force to spread on the surface and tends to34

maximize the coverage over the surface, during which the interfacial energy decreases35

and is consumed by the viscous friction. When the gravity is considered, part of releas-36

ing interfacial energy is transformed to the gravity potential leading to a different t1/337

scaling. Nevertheless, the Lucas-Washburn equation was developed for circular capillar-38

ies. Once the confined geometry is complex, to what extent the t1/2 scaling can predict39

the imbibition dynamics and how to estimate the scaling coefficient C remains unexplored,40

especially when sharp corners come up in a geometry.41

There have been certain works appealing to imbibition in corners. For a open V-42

shape groove, Tang and Tang (1994) theoretically proved that the imbibition dynam-43

ics follow the scaling t1/2 ignoring the gravity or t1/3 considering the gravity; Higuera44

et al. (2008) derived the same scaling law within the framework of the lubrication ap-45

proximation. These scaling laws have been verified against the experimental observations46

(Higuera et al., 2008; Rye et al., 1996; Deng et al., 2014). Very recently, Zhou and Doi47

(2020) developed a theory model for corners with curved walls using the Onsager prin-48

ciple. Surprisingly, they found the above scaling law still works while the scaling coef-49

ficient C slightly depends on the wall shape. In a closed medium, like a square or rect-50

angular tube, if the contact angle θ < 45◦, i.e., the Concus-Finn condition is satisfied51

(Concus & Finn, 1969), the liquid can wet the interior corners and forms ”finger-like”52

films along the corners. The imbibition flows thus become manifold, i.e., the bulk flow53

and corner flows, and the synergistic effect of the corner and bulk flow should be care-54

fully considered (Weislogel, 2012). Imbibition in square tubes have been numerically and55

theoretically investigated (Yu et al., 2018; J. Zhao et al., 2021; Gurumurthy et al., 2018).56

It is found that both flows follow the Lucas-Washburn kinetics and their coupling plays57

an evident role.58

What’s more complex, in a porous medium, especially a natural one, the inter-connected59

angular channels randomly distribute in its solid space, where corner flows are enhanced60

and bulk-corner flows are expected to interplay in a more complicated manner. Cylinder-61

based geometries are commonly used as a surrogate model of real porous media. A quan-62

tity of experimental and numerical works have been reported based on this geometrical63
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Figure 1. Schematics of the theoretical model, including a perspective view (a), a top view

(b) and a sectional profile on the r-z plane of a cylindrical coordinate (c).

settings. B. Zhao et al. (2016) conducted a microfluidic experiment and directly visu-64

alized the process of liquid film spreading among cylinder corners in the strong imbibi-65

tion regime (θ < 30◦). Numerical modelling works on corner flows in cylinder-based66

porous media are ensued (Primkulov et al., 2021; B. Zhao et al., 2019; Cox et al., 2023;67

Hu et al., 2018), and the corner flow is regarded as a specific flui-fluid diplacement pat-68

tern and emerges under certain combining conditions of capillary number, viscosity ra-69

tio and wettability.70

Though a great progress regarding spontaneous imbibition flows within complex71

geometries has been made, answers to the fundamental questions posted in the begin-72

ning are still demanding because they are step stones towards better engineering prac-73

tices. In this work, we shall focus on the cylinder-plane geometry and investigate the pro-74

cess of a liquid film wrapping a cylinder theoretically and numerically.75

2 Theoretical model76

We consider a film-cylinder system, as shown in figure 1(a). In this setting, a wet-
ting film symmetrically spreads along the cylinder-bottom corner from a liquid source
and finally merges at the other end. For describing this problem, a cylindrical coordi-
nate (r-φ-z) is set up, where the liquid source locates at φ = 0 while the liquid front
at φ = φm, as can be seen in figure 1(b). Here, we assume that the characteristic size
of the liquid film is smaller than the capillary length lc =

√
γ/ρg, where ρg is the liq-

uid gravity and γ is the surface tension, so that the effect of gravity can be neglected.
Additionally, we assume that the liquid-gas interface on the z-r plane is an arc, as shown
in figure 1(c). Thus, the wetting height hw and width rw are equal. Provided the wet-
tability condition θ and wetting width rw, the film thickness h as a function of r is ex-
pressed as

h = R cos θ −
√
R2 − (r −R cos θ −R0), (1)

where R0 is the cylinder radius and R = rw/(cos θ − sin θ).77

–3–
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2.1 Time evolution equation78

Using the Onsager principle, we derive the time evolution equation for the menis-
cus profile, which can be characterized by rw(φ, t) for a given θ as per Eq. 1. For the
present problem, it is stated in this principle that the dynamics of the system can be di-
rectly determined by the minimum of the Rayleighian (Doi, 2013),

R [ṙw (φ, t)] = Ḟ [ṙw (φ, t)] + Φ [ṙw (φ, t)] , (2)

where Ḟ is the change rate of the free energy of the film-cylinder system; and Φ is the79

energy dissipation function.80

2.1.1 The change rate of free energy81

The free energy of the system is a superposition of the interfacial energies along
the liquid-cylinder wetting area Als1(rw), the liquid-wall wetting area Als2(rw) and the
liquid-gas area Alg(rw), and is given by

F = γ (−Als1 cos θ −Als2 cos θ +Alg) , (3)

where82

Als1(rw) =

∫ φm

0

hwR0 dφ, (4)

Als2(rw) =

∫ φm

0

∫ R0+rw

R0

r dr dφ, (5)

Alg(rw) =

∫ φm

0

∫ R0+rw

R0

√
h2
r + h2

φ/r
2 + 1 r dr dφ, (6)

and hr and hφ are the derivatives of h concerning r and φ, respectively. The change rate
of the free energy Ḟ is thus obtained as

Ḟ = γṙw
(
−A′

ls1 cos θ −A′
ls2 cos θ +A′

lg

)
. (7)

Here the top dot denotes the time derivative and the prime denotes the derivative with83

respect to rw. Separately, A
′
ls1 and A′

ls2 can be directly derived as84

A′
ls1 =

∫ φm

0

R0 dφ, (8)

A′
ls2 =

∫ φm

0

R0 + rw dφ. (9)

(10)

As for A′
lg, since the size film is much thinner than the cylinder radius, i.e., h ≪ R0,

and moreover h2
φ/r

2 ≪ h2
r ≪ 1, A′

lg can be given as a simplified form

A′
lg =

∫ φm

0

[
(R0 + rw) +

∫ R0+rw

R0

rhrh
′
r dr

]
dφ. (11)

An auxiliary variable a′(rw) is defined as an integrated parts of F for the convenience
of following usages, i.e.,

a′(rw) = −(2R0 + rw) cos θ + (R0 + rw) +

∫ R0+rw

R0

rhrh
′
r dr. (12)

We take the volume flux Q(φ, t) of liquid flowing across the cross-section area, showing
in figure 1 at φ, as an independent variable. Here, Q(φ, t) is related to ṙw(φ, t) by the
conservation equation, which reads

∂Al

∂t
= A′

lṙw = − 1

R0

∂Q

∂φ
, (13)

–4–
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where Al =
∫ R0+rw
R0

h dr is the cross-sectional area. Using the conservation equation
Eq. 13, we can rewrite the change rate of free energy as a function of Q instead of ṙw,

Ḟ =
γ

R0

∫ φm

0

∂a′/A′
l

∂φ
Qdφ. (14)

The definition of Ḟ as Eq. 14 suggests that Ḟ is a measurement of the power of capil-
lary force. Thus, the capillary pressure Pc of the film-cylinder system can be estimated
as

Pc =
γ

R0

∫ φm

0

∂a′/A′
l

∂φ
dφ. (15)

2.1.2 Dissipation function85

Assuming that the liquid imbibes slowly along a cylinder corner, the inertia effect
can be neglected. The flow is almost one-dimensional since uφ is much larger than the
ur and uz. Thus, flow dynamics can be described by the following Stokes equation

η∇2uφ =
∂P

R0∂φ
, (16)

where ∂P/(R0∂φ) is the pressure gradient along the φ-axis. Provided ∂P/(R0∂φ), Eq.16
is solved on the domain shown in figure 1 with no-slip boundary conditions, i.e., uφ =
0 at the solid walls and shear-free boundary conditions, i.e., n · ∇uφ = 0 at the gas-
liquid interface, where n is the normal vector of the interface within the r-z plane. The
volume flux,

Q =

∫∫
Al

uφ dAl, (17)

and according to Darcy’s law,
Q

Al
= −k

η

∂P

R0∂φ
, (18)

where k is the permeability of the planar meniscus with the unit of m2. It is determined
by the characteristic length of the meniscus, naturally taking rw. Thus k shall be in the
form of

k = r2wk̄(θ). (19)

Here, k̄(θ), as a function of wettability, describes the effect of the meniscus shape and
is obtained numerically, see Appendix A for details. The dissipation function is then ex-
pressed as

Φ =
1

2

∫ φm

0

Q
∂P

∂φ
dφ =

1

2

∫ φm

0

Q2

Al

ηR0

k
dφ. (20)

Considering Ḟ and Φ are expressed with respect to Q, the Rayleighian is given as

R = Ḟ +Φ =

∫ φm

0

∂a′/A′
l

∂φ
Q+

1

2

Q2

Al

ηR0

k
dφ. (21)

The governing equation is derived from the Onsager variational principle, δR/δQ = 0,

Q = −2Alk

ηR0

∂a′/A′
l

∂φ
. (22)

Using the conservation equation Eq. 13 again, we express the governing equation con-
cerning rw,

ṙw =
1

A′
l

∂

∂φ

(
2Alk

ηR0

∂a′/A′
l

∂φ

)
. (23)

Substituting h, Al and k in Eq. 23, a dimensionless form of the governing equation is
obtained,

rwṙw =
∂

∂φ

(
r2w

∂rw
∂φ

)
. (24)

–5–



manuscript submitted to Water Resources Research

Its length is scaled by R0 and time is scaled by a characteristic time t∗

t∗ =
2ηR0

γ(cos θ − sin θ)k̄
. (25)

2.2 Theoretical analysis86

The time evolution equation Eq. 24 suggests a scaling relationship,

rw ∼ φ2

t
, (26)

and thus it admits a self-similar solution in the form of

rw(φ, t) = H(χ), χ =
φ2

t
, (27)

where H(·) is a function to be determined. Substituting Eq. 27 into Eq. 24, it gives an
ordinary differential equation,

2HH ′ + (8H ′2 + 4H ′′H +H ′)χ = 0, (28)

where the prime represents the derivative regarding χ. When χ = 0, it corresponds to
the boundary condition at the liquid source (φ = 0), i.e., H(0) = rw|φ=0 > 0, and
from Eq. 28 it leads to

H ′(0) = 0. (29)

Another boundary condition is at the liquid front where H(χ) approaches zero at a cer-
tain value χ = χ0, i.e.,

H(χ0) = 0. (30)

Substituting Eq. 30 in Eq. 28, we obtain

H ′(χ0) = −1

8
. (31)

To satisfy Eq. 30 and 31, H(χ) is assumed to be in form of

H(χ) = Σiai(χ0 − χ)ni +
1

8
(χ0 − χ), (32)

where parameters ni and ai are to be determined. According to Eq. 29, we obtain

Σiainiχ
ni
0 = −1

8
χ0. (33)

We consider a situation with a fixed rw at the liquid source (φ = 0) i.e., rw|φ=0 =
r0w, and it leads to

H(0) = Σiaiχ
ni
0 +

1

8
χ0 = r0w. (34)

Anticipating ni > 1, the upper and lower bounds of Σiaiχ
ni
0 are determined from Eq.

33,

− 1

8nmin
i

= Σiai
ni

nmin
i

χni
0 ≤ Σiaiχ

ni
0 ≤ Σiai

ni

nmax
i

χni
0 = − 1

8nmax
i

, (35)

where nmax
i and nmin

i are the maximum and minimum value of ni. Thus, Σiaiχ
ni
0 can

be estimated as

Σiaiχ
ni
0 = − 1

8n̄
, (36)

where nmax
i ≤ n̄ ≤ nmax

i . Furthermore, substituting it into Eq. 34, an asymptotic so-
lution of the liquid front φm is obtained,

φm =

√
8n̄

n̄− 1
r0wt. (37)

–6–
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It suggests φm ∼ t1/2 which aligns with the liquid imbibition in a capillary tube or a
homogeneous porous media described by the Lucas-Washburn equation (Cai et al., 2022).
Furthermore, the merging time tmerge, at which two liquid fronts from both sides touch
each other can be estimated. Here, we only consider the contribution of the linear term
in Eq. 32, and by letting φm = π,

tmerge ≈
π2

8r0w
. (38)

2.3 Numerical solution87

We now numerically solve the time-evolution equation Eq. 24 for validating our pro-
posed law φm ∼ t1/2. Besides the boundary condition at the liquid source (φ = 0),
the one at the merging point (φ = π) is set as rw|φ=π = rmin

w . Then, the capillary pres-
sure is calculated as per Eq. 15,

Pc = γ

(
1

r0w
− 1

rmin
w

)
cos θ − sin θ

k̄
. (39)

Since the liquid front is regarded as a point, rmin
w should be zero. However, the capillary88

pressure would be an infinite value if rmin
w = 0 as per Eq. 39, resulting in a convergence89

issue. Therefore, we take a finitely small value as rmin
w , and rw is initialized with rmin

w ,90

i.e., rw|t=0 = rmin
w . The Eq. 24 with the boundary conditions is solved on a domain φ ∈91

[0, π] using the finite element method.92

We first investigate the effect of rmin
w . As shown in figure 2, cases with rmin

w rang-93

ing from 3e−5 to 1e−3 are almost overlapped regarding the time evolution of the liq-94

uid front position in figure 2(a) and the rw profiles in figure 2(b). A difference is observed95

in the zoom-in plot around the liquid front in figure 2(b), suggesting that the value of96

rmin
w only influences the local region in the vicinity of the liquid front. More importantly,97

the measured log-log slope of curves φm vs. t, as shown in figure 2(a), confirms φm ∼98

t1/2 at late times.99

Another scaling law that φm ∼
√

r0w, suggested by Eq. 37, is rationalized and ver-100

ified. From Eq.39, it suggests that the larger r0w is, the stronger Pc is and thus the faster101

the wetting film spreads along the corner. Furthermore, as shown in figure 3(a), cases102

with various r0w ranging from 0.03 to 0.12 collapsed as one line on the φm/
√

r0w-t space.103

In addition, the merging time tmerge for each case is directly measured from the numer-104

ical result and compared against the theoretical estimation from Eq. 38. Figure 3(b) shows105

that both numerical solutions and theoretical estimations have the same trend, but Eq.106

38 underestimates tmerge as per the comparison. This inconsistency should be attributed107

to the transition period at the early time, as can be seen in figure 3(a). During the tran-108

sition period, the interfacial profile is relaxed and self-adjusted to progressively follow109

the law φm ∼ t1/2. Nevertheless, predicting the transition period is out of the scope110

of the theoretical model.111

3 Volume-of-Fluid simulation112

Given that our theoretical model is developed on the foundational assumption of113

the ”arc-shape interface”, it is necessary to gauge the practical applicability of our the-114

oretical model and further test the proposed scaling law. In this section, we will conduct115

numerical simulations using the Volume-of-Fluid (VoF) method. Not only for the ver-116

ification, we also investigate the film wrapping problems under diverse conditions.117

–7–
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Figure 2. (a) The evolution of φm of cases with r0w = 0.03 and various rmin
w ∈

[1e−3, 3e−4, 1e−4, 3e−5]. (b) The corresponding rw profiles at different times which are marked

by black triangles in (a), and the insert is a zoom-in plot of liquid fronts.

Figure 3. (a) The evolution of scaled φm of cases with rmin
w = 3e − 4 and various

r0w ∈ [0.03, 0.06, 0.09, 0.12]. (b) The comparison of tmerge obtained from the numerical solution

and theoretical estimation (Eq. 38) under various r0w.

–8–
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3.1 Governing equations118

We consider the imbibition as a laminar, incompressible, and immiscible two-phase119

flow, which is governed by the Navier-Stokes equations,120

∇ · v = 0, (40)

ρ∂v/∂t+ ρ∇ · (vv) = −∇p+ µ∇2v + F γ , (41)

where v denotes the velocity vector; p, ρ, µ are respectively the fluid pressure, density
and viscosity; F γ is the surface tension force per unit volume. The interface between two
phases is tracked by the volume-of-fluid (Vof) method, wherein a scalar transport equa-
tion regarding volume fraction α is introduced,

∂α/∂t+∇ · (vα) = 0. (42)

The interface is reconstructed based on α-field and related geometric features including
interface normal nα and curvature κ are obtained. Then, F γ is calculated as (Brackbill
et al., 1992)

F γ = γκ∇α, (43)

Wetting conditions are implemented by correcting the nα in the vicinity of the solid walls
(Saha & Mitra, 2009),

nα = ns cos θ + ts sin θ, (44)

where ns and ts are the unit normal and tangent vectors to solid walls, respectively. Eq.121

40-42 with the following boundary conditions are solved using OpenFOAM (Roenby et122

al., 2016; Scheufler & Roenby, 2019).123

3.2 Numerical model124

We build up a three-dimensional numerical model, as shown in figure 4(a). Con-125

sidering this problem is a symmetric one, a half-cylinder zone is adopted as the compu-126

tation domain. The symmetry plane, as marked by dash-dot lines in figure 4(b), is di-127

vided by the cylinder wall into two face boundaries, i.e., the left and right face. At the128

right face, where the liquid fronts from both sides will touch, symmetric boundary con-129

ditions are imposed for the flow field and the α field. At the left face, we control the α130

field to simulate different types of the liquid source, including the ”fixed boundary” mim-131

icking the situation where rw is fixed at the liquid source and the ”free boundary” where132

rw can freely grow at the liquid source as described in detail in the following. Wetting133

wall boundary conditions are set on the cylinder wall and the bottom wall, as marked134

in figure 4(a), following Eq. 44. Other boundaries connect to the environment and thus135

a zero-pressure condition and a zero-gradient α field are imposed.136

The radius of the domain is 3R0 and its height is 2R0. The upper limit of mesh137

size is set as R0/100, which has passed the mesh-sensitive test. We set the viscosity ra-138

tio as 100 which is large enough to represent a gas-liquid situation. The quantities in-139

cluding rw, hw, φm are directly measured from the reconstructed interface. For the con-140

venience of comparing with the theoretical model, all lengths and times presented in the141

following have been scaled by R0 and t∗ separately.142

3.2.1 Fixed boundary143

We firstly simulate the situation with fixed α field at the left face, which is expected144

to agree with the theoretical predictions in Section 2.2. Specifically, provided r0w and θ,145

the interface position at the left face is calculated as per Eq. 1, and then the liquid and146

gas phase separated by the interface are mapped on the α field at the left face.147

We conduct simulations over a range of r0w ∈ [0.3, 0.5] and θ ∈ [15◦, 20◦, 25◦, 30◦].
Figure 5(a) shows the evolution of φm scaled by

√
r0w in the log-log space. For the group

–9–
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Figure 4. Geometrical settings of the numerical model in a perspective (a), front (b), and top

view (c).

of cases with the same r0w, simulation results from various-θ cases are overlapped, sug-
gesting that the effect of wettability is well considered in t∗. Moreover, the scaling law
φm ∼

√
r0w is also verified to a good extent, since the two groups are significantly close

to each other and almost collapse as one line, though a small gap is observed. To bet-
ter provide insights into the evolution of φm, we calculate the secant slopes of φm-t curves
in the log-log space, as defined as

∆logφm

∆log t
=

log φm(t+dt)
φm(t−dt)

log t+dt
t−dt

, (45)

where dt is the scaled time interval. As shown in figure 5(b), each case has a transition148

period at the early time, during which the secant slope sharply decreases from a large149

value and then becomes flattened. The length of such a transition period depends on r0w150

and θ, but it generally takes around 2t∗ before the evolution reaches the steady state.151

The steady slope, though floating over a range of [0.47, 0.55], is close to 0.5, indicating152

that the proposed law φm ∼ t1/2 effectively governs the imbibition dynamics. Besides,153

tmerge measured from simulation results is compared with the theoretical estimation from154

Eq. 38, as presented in figure 5(c). The scaled tmerge seems a function of θ, while it should155

be independent of θ according to the theoretical model where the impacts of θ have been156

considered in t∗. This is owing to the transition period which is θ-dependent and involved157

in the measured tmerge. Although deviations between predicted and measured tmerge are158

observed, the theoretical model provides a reasonable lower-bound estimation of tmerge.159

What’s more, to further confirm the practicability of our theoretical model, we test160

the foundational assumption that the interface on the r-z plane maintains arc-shape. Fig-161

ure 5(d) shows the evolution of hw-rw at φ = π/2 of each case. With imbibition on-162

going, the wetting film expands within the r-z plane and hw should increase at the same163

rate with rw as per the assumption, i.e., rw = hw as marked by the dashed line in fig-164

ure 5(d). It is observed that the measured rw-hw aligns well with the assumption, es-165

pecially at the early time when rw is small. With rw increasing, though a slight devi-166

ation occurs, i.e., hw becomes smaller than rw, the assumption is still acceptable. Note-167

worthily, this deviation is only determined by the relative size of the wetting film to the168

cylinder radius. In our theoretical model, only the curvature within the r-z plane is con-169

sidered for calculating the capillary pressure. However, with the wetting film expand-170

ing and rw increasing to close to 1, the contribution of the other principle curvature to171

–10–



manuscript submitted to Water Resources Research

Figure 5. Simulation results of the fixed-boundary situation with r0w ∈ [0.3, 0.5] and

θ ∈ [15◦, 20◦, 25◦, 30◦]. The evolution of (a) the scaled φm and (b) the corresponding secant

slope. (c) The comparison of tmerge against the theoretical prediction. (d) The wetting height hw

vs. the wetting width rw at φ = π/2.

the capillary pressure may not be neglected. Thus, the effective scope of our theoreti-172

cal model should be limited to the ”small-film-size” regime. Additionally, the deviation173

from the ”arc-shape interface” assumption could be another source of the failure in pre-174

cisely predicting tmerge.175

3.2.2 Free boundary176

We then extend our focus to another situation where the size of the wetting film177

at the liquid source can freely grow. Correspondingly, the zero-gradient boundary con-178

dition for α field is imposed at the left face.179

The simulation cases cover various θ ∈ [15◦, 20◦, 25◦, 30◦]. Initially, a small arc-
shape patch (around 0.05R0) is set as a liquid phase at the corner of the left face. It re-
laxes and evolves to form a meniscus after one recording time step dt. We regard the size
of such formed meniscus as a initial value r0w at the liquid source, which depends on θ,
as shown in figure 6(a). However, since growth curves under various θ are observed par-
alleled, the growths of rw at the liquid source are in a similar track, approximately fol-
lowing a power law. The average power is measured as 0.23, which is marked in figure
6(b). Equivalently, as for the theoretical model, the boundary at the liquid source rw|φ=0

is time-dependent, i.e.,

rw|φ=0 ≈ r0wt
0.23. (46)

–11–
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The analysis in Section 2.2 maintains effective but an adaption is needed. Considering
the transient formation of rw|φ=0, Eq. 37 is modified as

φm ≈
√

8n̄

n̄− 1
r0wt

1.23. (47)

Thus, we obtain an approximate scaling law φm ∼ t0.615 adapted to the free-boundary
situation. The liquid front position is measured from our simulation results, and its evo-
lution and secant slopes are demonstrated in figure 6(c) and (d). Similarly, after a tran-
sition period, liquid front advancing reaches a steady state. The steady slope of each case
tends to be around 0.6, as marked in figure 6(d), which is comparable to the theoreti-
cally predicted value 0.615. Moreover, based on the Eq. 47, we can estimate tmerge as

tmerge ≈
(

π2

8r0w

) 1
1.23

. (48)

This estimation still serves as a lower bound of tmerge, as observed in figure 6(e). Again,180

we test the foundational assumption of the ”arc-shape interface” in the free-boundary181

situation using hw-rw on the φ = π/2 plane. As shown in figure 6(f), the deviation is182

linearly enlarged with rw, and the relative error (rw−hw)/rw is larger than 10% when183

rw = 0.8, probably suggesting that the contribution of the secondary principle curva-184

ture has to be considered if rw further increases.185

We now shift our focus to imbibition dynamics after merging. Though post-merging186

behaviours are beyond the scope of the theoretical model, our simulation results provide187

insights into them. After the two fronts merge at the right face, the film continues to ex-188

pand in the free-boundary situation. We show the evolution of rw at the right face in189

figure 7(a) and the secant slopes in figure 7(b). The expanding rate of rw decreases at190

the beginning and gradually tends to be a constant value, i.e., 1.11 as marked in figure191

7(b). In another word, rw increases with time approximately in a linear mode, which is192

significantly faster compared to the one at the liquid source, see figure 6(b).193

4 Conclusion194

In this work, We have theoretically and numerically investigated the spontaneous195

imbibition of a liquid wetting a cylinder corner. Using the Onsager variational princi-196

ple, a time evolution equation for the meniscus profile was built up. Based on the time197

evolution equation, we derived an asymptotic solution of the liquid front φm ∼
√
r0wt.198

It suggests that the advance of the liquid front follows the Lucas-Washburn kinetics, i.e.,199

the t1/2 scaling, if the boundary r0w is time-independent; otherwise, the effect of the dy-200

namic boundary should be included and the scaling accordingly changes. Then, the im-201

bibition process was numerically simulated using VoF method, and the simulation re-202

sults can be well rationalized by our proposed scaling law to a large extent. Furthermore,203

we provide a theoretical prediction of tmerge, which is demonstrated as a lower bound204

of the real one.205

Our theoretical model is extensible. More complex geometries, such as tapered, el-206

lipse, or even any arbitrary-shape symmetric cylinders, can be modelled by modifying207

the expression of the free energy. We can expect the scaling coefficient C and charac-208

teristic time t∗ varies with the geometry while the scaling t1/2 maintains effective. More-209

over, another demanding aspect for future works is to investigate the imbibtion flows in210

a cylinder group, and model how the liquid front spreads among neighboring cylinders.211

Appendix A Determination of k̄(θ)212

We determine the relative permeability k̄(θ) using numerical experiments. Eq. 16213

is solved on a axisymmetric meniscus domain, as shown in figure A1, whose geometry214
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Figure 6. Simulation results of the free-boundary situation with θ ∈ [15◦, 20◦, 25◦, 30◦].

The evolution of (a) rw at the liquid source and (b) the corresponding secant slope. The evolu-

tion of (c) φm and (d) the corresponding secant slope. (e) The comparison of tmerge against the

theoretical prediction. (f) The wetting height hw vs. the wetting width rw at φ = π/2.
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Figure 7. The post-merging dynamics of the free-boundary situation including (a) the evolu-

tion of rw at the right face and (b) the corresponding secant slope.

Figure A1. The computation model for determining the relative permeability k̄(θ)
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Figure A2. The permeability k vs. r2w for various θ.

Table A1. Relative permeability k̄(θ)

15◦ 20◦ 25◦ 30◦

0.01772 0.02032 0.02305 0.02591

is dependent on θ and rw. We sweep the parameter combinations of θ ∈ [15◦, 20◦, 25◦, 30◦]215

and rw ∈ [0.10, 0.15, 0.20, 0.25, 0.30], and calculate the permeability k according to Eq.216

18. Figure A2 shows that the permeability k is proportional to r2w for any θ. Thus, the217

relative permeability k̄(θ) can be obtained by measuring the slope of k-r2w lines, which218

are summarized in table A1.219
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Key Points:6

• A combined theoretical and numerical approach is employed to investigate the im-7

bibition dynamics of wetting film wrapping a cylinder corner.8

• The advance of liquid front generally follows the Lucas-Washburn kinetics but also9

depends on the boundary dynamics.10

• A theoretical estimation of time lengths is provided in which wettability and liq-11

uid properties are well considered.12
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Abstract13

Spontaneous imbibition flows within confined geometries are commonly encountered in14

both natural phenomena and industrial applications. A profound knowledge of the un-15

derlying flow dynamics benefits a broad spectrum of engineering practices. Nonetheless,16

within this area, especially concerning complex geometries, there exists a substantial re-17

search gap. This work centers on the cylinder-plane geometry, employing a combined the-18

oretical and numerical approach to investigate the process of a wetting film wrapping19

a cylinder corner. It is found that the advance of the liquid front generally follows the20

Lucas-Washburn kinetics, i.e., t1/2 scaling, but it also depends on the dynamics of the21

liquid source. Furthermore, we provide a theoretical estimation of the timescale asso-22

ciated with the imbibition process. Notably, this timescale is highly dependent on the23

wettability condition and the properties of the involved liquid. Importantly, the prac-24

ticability of our theoretical framework is well confirmed by the numerical experiments.25

1 Introduction26

Spontaneous imbibition flows, i.e, liquids driven by capillary pressure to wet con-27

fined geometries, such as capillary tubes (Cai et al., 2021), grooves (Tang & Tang, 1994;28

Deng et al., 2014), porous media (Suo et al., 2019; Ha et al., 2018), etc., serves a cru-29

cial role in various natural and industrial processes. The pioneering research dates back30

to the Lucas-Washburn equation (Washburn, 1921), which leads to a scaling law regard-31

ing the evolution of the liquid front h(t) in capillaries, i.e., h = Ct1/2. This type of scal-32

ing law describes a energy balance between the capillary and viscous terms. Specifically,33

the wetting liquid is driven by the capillary force to spread on the surface and tends to34

maximize the coverage over the surface, during which the interfacial energy decreases35

and is consumed by the viscous friction. When the gravity is considered, part of releas-36

ing interfacial energy is transformed to the gravity potential leading to a different t1/337

scaling. Nevertheless, the Lucas-Washburn equation was developed for circular capillar-38

ies. Once the confined geometry is complex, to what extent the t1/2 scaling can predict39

the imbibition dynamics and how to estimate the scaling coefficient C remains unexplored,40

especially when sharp corners come up in a geometry.41

There have been certain works appealing to imbibition in corners. For a open V-42

shape groove, Tang and Tang (1994) theoretically proved that the imbibition dynam-43

ics follow the scaling t1/2 ignoring the gravity or t1/3 considering the gravity; Higuera44

et al. (2008) derived the same scaling law within the framework of the lubrication ap-45

proximation. These scaling laws have been verified against the experimental observations46

(Higuera et al., 2008; Rye et al., 1996; Deng et al., 2014). Very recently, Zhou and Doi47

(2020) developed a theory model for corners with curved walls using the Onsager prin-48

ciple. Surprisingly, they found the above scaling law still works while the scaling coef-49

ficient C slightly depends on the wall shape. In a closed medium, like a square or rect-50

angular tube, if the contact angle θ < 45◦, i.e., the Concus-Finn condition is satisfied51

(Concus & Finn, 1969), the liquid can wet the interior corners and forms ”finger-like”52

films along the corners. The imbibition flows thus become manifold, i.e., the bulk flow53

and corner flows, and the synergistic effect of the corner and bulk flow should be care-54

fully considered (Weislogel, 2012). Imbibition in square tubes have been numerically and55

theoretically investigated (Yu et al., 2018; J. Zhao et al., 2021; Gurumurthy et al., 2018).56

It is found that both flows follow the Lucas-Washburn kinetics and their coupling plays57

an evident role.58

What’s more complex, in a porous medium, especially a natural one, the inter-connected59

angular channels randomly distribute in its solid space, where corner flows are enhanced60

and bulk-corner flows are expected to interplay in a more complicated manner. Cylinder-61

based geometries are commonly used as a surrogate model of real porous media. A quan-62

tity of experimental and numerical works have been reported based on this geometrical63
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Figure 1. Schematics of the theoretical model, including a perspective view (a), a top view

(b) and a sectional profile on the r-z plane of a cylindrical coordinate (c).

settings. B. Zhao et al. (2016) conducted a microfluidic experiment and directly visu-64

alized the process of liquid film spreading among cylinder corners in the strong imbibi-65

tion regime (θ < 30◦). Numerical modelling works on corner flows in cylinder-based66

porous media are ensued (Primkulov et al., 2021; B. Zhao et al., 2019; Cox et al., 2023;67

Hu et al., 2018), and the corner flow is regarded as a specific flui-fluid diplacement pat-68

tern and emerges under certain combining conditions of capillary number, viscosity ra-69

tio and wettability.70

Though a great progress regarding spontaneous imbibition flows within complex71

geometries has been made, answers to the fundamental questions posted in the begin-72

ning are still demanding because they are step stones towards better engineering prac-73

tices. In this work, we shall focus on the cylinder-plane geometry and investigate the pro-74

cess of a liquid film wrapping a cylinder theoretically and numerically.75

2 Theoretical model76

We consider a film-cylinder system, as shown in figure 1(a). In this setting, a wet-
ting film symmetrically spreads along the cylinder-bottom corner from a liquid source
and finally merges at the other end. For describing this problem, a cylindrical coordi-
nate (r-φ-z) is set up, where the liquid source locates at φ = 0 while the liquid front
at φ = φm, as can be seen in figure 1(b). Here, we assume that the characteristic size
of the liquid film is smaller than the capillary length lc =

√
γ/ρg, where ρg is the liq-

uid gravity and γ is the surface tension, so that the effect of gravity can be neglected.
Additionally, we assume that the liquid-gas interface on the z-r plane is an arc, as shown
in figure 1(c). Thus, the wetting height hw and width rw are equal. Provided the wet-
tability condition θ and wetting width rw, the film thickness h as a function of r is ex-
pressed as

h = R cos θ −
√
R2 − (r −R cos θ −R0), (1)

where R0 is the cylinder radius and R = rw/(cos θ − sin θ).77
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2.1 Time evolution equation78

Using the Onsager principle, we derive the time evolution equation for the menis-
cus profile, which can be characterized by rw(φ, t) for a given θ as per Eq. 1. For the
present problem, it is stated in this principle that the dynamics of the system can be di-
rectly determined by the minimum of the Rayleighian (Doi, 2013),

R [ṙw (φ, t)] = Ḟ [ṙw (φ, t)] + Φ [ṙw (φ, t)] , (2)

where Ḟ is the change rate of the free energy of the film-cylinder system; and Φ is the79

energy dissipation function.80

2.1.1 The change rate of free energy81

The free energy of the system is a superposition of the interfacial energies along
the liquid-cylinder wetting area Als1(rw), the liquid-wall wetting area Als2(rw) and the
liquid-gas area Alg(rw), and is given by

F = γ (−Als1 cos θ −Als2 cos θ +Alg) , (3)

where82

Als1(rw) =

∫ φm

0

hwR0 dφ, (4)

Als2(rw) =

∫ φm

0

∫ R0+rw

R0

r dr dφ, (5)

Alg(rw) =

∫ φm

0

∫ R0+rw

R0

√
h2
r + h2

φ/r
2 + 1 r dr dφ, (6)

and hr and hφ are the derivatives of h concerning r and φ, respectively. The change rate
of the free energy Ḟ is thus obtained as

Ḟ = γṙw
(
−A′

ls1 cos θ −A′
ls2 cos θ +A′

lg

)
. (7)

Here the top dot denotes the time derivative and the prime denotes the derivative with83

respect to rw. Separately, A
′
ls1 and A′

ls2 can be directly derived as84

A′
ls1 =

∫ φm

0

R0 dφ, (8)

A′
ls2 =

∫ φm

0

R0 + rw dφ. (9)

(10)

As for A′
lg, since the size film is much thinner than the cylinder radius, i.e., h ≪ R0,

and moreover h2
φ/r

2 ≪ h2
r ≪ 1, A′

lg can be given as a simplified form

A′
lg =

∫ φm

0

[
(R0 + rw) +

∫ R0+rw

R0

rhrh
′
r dr

]
dφ. (11)

An auxiliary variable a′(rw) is defined as an integrated parts of F for the convenience
of following usages, i.e.,

a′(rw) = −(2R0 + rw) cos θ + (R0 + rw) +

∫ R0+rw

R0

rhrh
′
r dr. (12)

We take the volume flux Q(φ, t) of liquid flowing across the cross-section area, showing
in figure 1 at φ, as an independent variable. Here, Q(φ, t) is related to ṙw(φ, t) by the
conservation equation, which reads

∂Al

∂t
= A′

lṙw = − 1

R0

∂Q

∂φ
, (13)
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where Al =
∫ R0+rw
R0

h dr is the cross-sectional area. Using the conservation equation
Eq. 13, we can rewrite the change rate of free energy as a function of Q instead of ṙw,

Ḟ =
γ

R0

∫ φm

0

∂a′/A′
l

∂φ
Qdφ. (14)

The definition of Ḟ as Eq. 14 suggests that Ḟ is a measurement of the power of capil-
lary force. Thus, the capillary pressure Pc of the film-cylinder system can be estimated
as

Pc =
γ

R0

∫ φm

0

∂a′/A′
l

∂φ
dφ. (15)

2.1.2 Dissipation function85

Assuming that the liquid imbibes slowly along a cylinder corner, the inertia effect
can be neglected. The flow is almost one-dimensional since uφ is much larger than the
ur and uz. Thus, flow dynamics can be described by the following Stokes equation

η∇2uφ =
∂P

R0∂φ
, (16)

where ∂P/(R0∂φ) is the pressure gradient along the φ-axis. Provided ∂P/(R0∂φ), Eq.16
is solved on the domain shown in figure 1 with no-slip boundary conditions, i.e., uφ =
0 at the solid walls and shear-free boundary conditions, i.e., n · ∇uφ = 0 at the gas-
liquid interface, where n is the normal vector of the interface within the r-z plane. The
volume flux,

Q =

∫∫
Al

uφ dAl, (17)

and according to Darcy’s law,
Q

Al
= −k

η

∂P

R0∂φ
, (18)

where k is the permeability of the planar meniscus with the unit of m2. It is determined
by the characteristic length of the meniscus, naturally taking rw. Thus k shall be in the
form of

k = r2wk̄(θ). (19)

Here, k̄(θ), as a function of wettability, describes the effect of the meniscus shape and
is obtained numerically, see Appendix A for details. The dissipation function is then ex-
pressed as

Φ =
1

2

∫ φm

0

Q
∂P

∂φ
dφ =

1

2

∫ φm

0

Q2

Al

ηR0

k
dφ. (20)

Considering Ḟ and Φ are expressed with respect to Q, the Rayleighian is given as

R = Ḟ +Φ =

∫ φm

0

∂a′/A′
l

∂φ
Q+

1

2

Q2

Al

ηR0

k
dφ. (21)

The governing equation is derived from the Onsager variational principle, δR/δQ = 0,

Q = −2Alk

ηR0

∂a′/A′
l

∂φ
. (22)

Using the conservation equation Eq. 13 again, we express the governing equation con-
cerning rw,

ṙw =
1

A′
l

∂

∂φ

(
2Alk

ηR0

∂a′/A′
l

∂φ

)
. (23)

Substituting h, Al and k in Eq. 23, a dimensionless form of the governing equation is
obtained,

rwṙw =
∂

∂φ

(
r2w

∂rw
∂φ

)
. (24)
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Its length is scaled by R0 and time is scaled by a characteristic time t∗

t∗ =
2ηR0

γ(cos θ − sin θ)k̄
. (25)

2.2 Theoretical analysis86

The time evolution equation Eq. 24 suggests a scaling relationship,

rw ∼ φ2

t
, (26)

and thus it admits a self-similar solution in the form of

rw(φ, t) = H(χ), χ =
φ2

t
, (27)

where H(·) is a function to be determined. Substituting Eq. 27 into Eq. 24, it gives an
ordinary differential equation,

2HH ′ + (8H ′2 + 4H ′′H +H ′)χ = 0, (28)

where the prime represents the derivative regarding χ. When χ = 0, it corresponds to
the boundary condition at the liquid source (φ = 0), i.e., H(0) = rw|φ=0 > 0, and
from Eq. 28 it leads to

H ′(0) = 0. (29)

Another boundary condition is at the liquid front where H(χ) approaches zero at a cer-
tain value χ = χ0, i.e.,

H(χ0) = 0. (30)

Substituting Eq. 30 in Eq. 28, we obtain

H ′(χ0) = −1

8
. (31)

To satisfy Eq. 30 and 31, H(χ) is assumed to be in form of

H(χ) = Σiai(χ0 − χ)ni +
1

8
(χ0 − χ), (32)

where parameters ni and ai are to be determined. According to Eq. 29, we obtain

Σiainiχ
ni
0 = −1

8
χ0. (33)

We consider a situation with a fixed rw at the liquid source (φ = 0) i.e., rw|φ=0 =
r0w, and it leads to

H(0) = Σiaiχ
ni
0 +

1

8
χ0 = r0w. (34)

Anticipating ni > 1, the upper and lower bounds of Σiaiχ
ni
0 are determined from Eq.

33,

− 1

8nmin
i

= Σiai
ni

nmin
i

χni
0 ≤ Σiaiχ

ni
0 ≤ Σiai

ni

nmax
i

χni
0 = − 1

8nmax
i

, (35)

where nmax
i and nmin

i are the maximum and minimum value of ni. Thus, Σiaiχ
ni
0 can

be estimated as

Σiaiχ
ni
0 = − 1

8n̄
, (36)

where nmax
i ≤ n̄ ≤ nmax

i . Furthermore, substituting it into Eq. 34, an asymptotic so-
lution of the liquid front φm is obtained,

φm =

√
8n̄

n̄− 1
r0wt. (37)
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It suggests φm ∼ t1/2 which aligns with the liquid imbibition in a capillary tube or a
homogeneous porous media described by the Lucas-Washburn equation (Cai et al., 2022).
Furthermore, the merging time tmerge, at which two liquid fronts from both sides touch
each other can be estimated. Here, we only consider the contribution of the linear term
in Eq. 32, and by letting φm = π,

tmerge ≈
π2

8r0w
. (38)

2.3 Numerical solution87

We now numerically solve the time-evolution equation Eq. 24 for validating our pro-
posed law φm ∼ t1/2. Besides the boundary condition at the liquid source (φ = 0),
the one at the merging point (φ = π) is set as rw|φ=π = rmin

w . Then, the capillary pres-
sure is calculated as per Eq. 15,

Pc = γ

(
1

r0w
− 1

rmin
w

)
cos θ − sin θ

k̄
. (39)

Since the liquid front is regarded as a point, rmin
w should be zero. However, the capillary88

pressure would be an infinite value if rmin
w = 0 as per Eq. 39, resulting in a convergence89

issue. Therefore, we take a finitely small value as rmin
w , and rw is initialized with rmin

w ,90

i.e., rw|t=0 = rmin
w . The Eq. 24 with the boundary conditions is solved on a domain φ ∈91

[0, π] using the finite element method.92

We first investigate the effect of rmin
w . As shown in figure 2, cases with rmin

w rang-93

ing from 3e−5 to 1e−3 are almost overlapped regarding the time evolution of the liq-94

uid front position in figure 2(a) and the rw profiles in figure 2(b). A difference is observed95

in the zoom-in plot around the liquid front in figure 2(b), suggesting that the value of96

rmin
w only influences the local region in the vicinity of the liquid front. More importantly,97

the measured log-log slope of curves φm vs. t, as shown in figure 2(a), confirms φm ∼98

t1/2 at late times.99

Another scaling law that φm ∼
√

r0w, suggested by Eq. 37, is rationalized and ver-100

ified. From Eq.39, it suggests that the larger r0w is, the stronger Pc is and thus the faster101

the wetting film spreads along the corner. Furthermore, as shown in figure 3(a), cases102

with various r0w ranging from 0.03 to 0.12 collapsed as one line on the φm/
√

r0w-t space.103

In addition, the merging time tmerge for each case is directly measured from the numer-104

ical result and compared against the theoretical estimation from Eq. 38. Figure 3(b) shows105

that both numerical solutions and theoretical estimations have the same trend, but Eq.106

38 underestimates tmerge as per the comparison. This inconsistency should be attributed107

to the transition period at the early time, as can be seen in figure 3(a). During the tran-108

sition period, the interfacial profile is relaxed and self-adjusted to progressively follow109

the law φm ∼ t1/2. Nevertheless, predicting the transition period is out of the scope110

of the theoretical model.111

3 Volume-of-Fluid simulation112

Given that our theoretical model is developed on the foundational assumption of113

the ”arc-shape interface”, it is necessary to gauge the practical applicability of our the-114

oretical model and further test the proposed scaling law. In this section, we will conduct115

numerical simulations using the Volume-of-Fluid (VoF) method. Not only for the ver-116

ification, we also investigate the film wrapping problems under diverse conditions.117
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Figure 2. (a) The evolution of φm of cases with r0w = 0.03 and various rmin
w ∈

[1e−3, 3e−4, 1e−4, 3e−5]. (b) The corresponding rw profiles at different times which are marked

by black triangles in (a), and the insert is a zoom-in plot of liquid fronts.

Figure 3. (a) The evolution of scaled φm of cases with rmin
w = 3e − 4 and various

r0w ∈ [0.03, 0.06, 0.09, 0.12]. (b) The comparison of tmerge obtained from the numerical solution

and theoretical estimation (Eq. 38) under various r0w.

–8–
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3.1 Governing equations118

We consider the imbibition as a laminar, incompressible, and immiscible two-phase119

flow, which is governed by the Navier-Stokes equations,120

∇ · v = 0, (40)

ρ∂v/∂t+ ρ∇ · (vv) = −∇p+ µ∇2v + F γ , (41)

where v denotes the velocity vector; p, ρ, µ are respectively the fluid pressure, density
and viscosity; F γ is the surface tension force per unit volume. The interface between two
phases is tracked by the volume-of-fluid (Vof) method, wherein a scalar transport equa-
tion regarding volume fraction α is introduced,

∂α/∂t+∇ · (vα) = 0. (42)

The interface is reconstructed based on α-field and related geometric features including
interface normal nα and curvature κ are obtained. Then, F γ is calculated as (Brackbill
et al., 1992)

F γ = γκ∇α, (43)

Wetting conditions are implemented by correcting the nα in the vicinity of the solid walls
(Saha & Mitra, 2009),

nα = ns cos θ + ts sin θ, (44)

where ns and ts are the unit normal and tangent vectors to solid walls, respectively. Eq.121

40-42 with the following boundary conditions are solved using OpenFOAM (Roenby et122

al., 2016; Scheufler & Roenby, 2019).123

3.2 Numerical model124

We build up a three-dimensional numerical model, as shown in figure 4(a). Con-125

sidering this problem is a symmetric one, a half-cylinder zone is adopted as the compu-126

tation domain. The symmetry plane, as marked by dash-dot lines in figure 4(b), is di-127

vided by the cylinder wall into two face boundaries, i.e., the left and right face. At the128

right face, where the liquid fronts from both sides will touch, symmetric boundary con-129

ditions are imposed for the flow field and the α field. At the left face, we control the α130

field to simulate different types of the liquid source, including the ”fixed boundary” mim-131

icking the situation where rw is fixed at the liquid source and the ”free boundary” where132

rw can freely grow at the liquid source as described in detail in the following. Wetting133

wall boundary conditions are set on the cylinder wall and the bottom wall, as marked134

in figure 4(a), following Eq. 44. Other boundaries connect to the environment and thus135

a zero-pressure condition and a zero-gradient α field are imposed.136

The radius of the domain is 3R0 and its height is 2R0. The upper limit of mesh137

size is set as R0/100, which has passed the mesh-sensitive test. We set the viscosity ra-138

tio as 100 which is large enough to represent a gas-liquid situation. The quantities in-139

cluding rw, hw, φm are directly measured from the reconstructed interface. For the con-140

venience of comparing with the theoretical model, all lengths and times presented in the141

following have been scaled by R0 and t∗ separately.142

3.2.1 Fixed boundary143

We firstly simulate the situation with fixed α field at the left face, which is expected144

to agree with the theoretical predictions in Section 2.2. Specifically, provided r0w and θ,145

the interface position at the left face is calculated as per Eq. 1, and then the liquid and146

gas phase separated by the interface are mapped on the α field at the left face.147

We conduct simulations over a range of r0w ∈ [0.3, 0.5] and θ ∈ [15◦, 20◦, 25◦, 30◦].
Figure 5(a) shows the evolution of φm scaled by

√
r0w in the log-log space. For the group

–9–
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Figure 4. Geometrical settings of the numerical model in a perspective (a), front (b), and top

view (c).

of cases with the same r0w, simulation results from various-θ cases are overlapped, sug-
gesting that the effect of wettability is well considered in t∗. Moreover, the scaling law
φm ∼

√
r0w is also verified to a good extent, since the two groups are significantly close

to each other and almost collapse as one line, though a small gap is observed. To bet-
ter provide insights into the evolution of φm, we calculate the secant slopes of φm-t curves
in the log-log space, as defined as

∆logφm

∆log t
=

log φm(t+dt)
φm(t−dt)

log t+dt
t−dt

, (45)

where dt is the scaled time interval. As shown in figure 5(b), each case has a transition148

period at the early time, during which the secant slope sharply decreases from a large149

value and then becomes flattened. The length of such a transition period depends on r0w150

and θ, but it generally takes around 2t∗ before the evolution reaches the steady state.151

The steady slope, though floating over a range of [0.47, 0.55], is close to 0.5, indicating152

that the proposed law φm ∼ t1/2 effectively governs the imbibition dynamics. Besides,153

tmerge measured from simulation results is compared with the theoretical estimation from154

Eq. 38, as presented in figure 5(c). The scaled tmerge seems a function of θ, while it should155

be independent of θ according to the theoretical model where the impacts of θ have been156

considered in t∗. This is owing to the transition period which is θ-dependent and involved157

in the measured tmerge. Although deviations between predicted and measured tmerge are158

observed, the theoretical model provides a reasonable lower-bound estimation of tmerge.159

What’s more, to further confirm the practicability of our theoretical model, we test160

the foundational assumption that the interface on the r-z plane maintains arc-shape. Fig-161

ure 5(d) shows the evolution of hw-rw at φ = π/2 of each case. With imbibition on-162

going, the wetting film expands within the r-z plane and hw should increase at the same163

rate with rw as per the assumption, i.e., rw = hw as marked by the dashed line in fig-164

ure 5(d). It is observed that the measured rw-hw aligns well with the assumption, es-165

pecially at the early time when rw is small. With rw increasing, though a slight devi-166

ation occurs, i.e., hw becomes smaller than rw, the assumption is still acceptable. Note-167

worthily, this deviation is only determined by the relative size of the wetting film to the168

cylinder radius. In our theoretical model, only the curvature within the r-z plane is con-169

sidered for calculating the capillary pressure. However, with the wetting film expand-170

ing and rw increasing to close to 1, the contribution of the other principle curvature to171

–10–
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Figure 5. Simulation results of the fixed-boundary situation with r0w ∈ [0.3, 0.5] and

θ ∈ [15◦, 20◦, 25◦, 30◦]. The evolution of (a) the scaled φm and (b) the corresponding secant

slope. (c) The comparison of tmerge against the theoretical prediction. (d) The wetting height hw

vs. the wetting width rw at φ = π/2.

the capillary pressure may not be neglected. Thus, the effective scope of our theoreti-172

cal model should be limited to the ”small-film-size” regime. Additionally, the deviation173

from the ”arc-shape interface” assumption could be another source of the failure in pre-174

cisely predicting tmerge.175

3.2.2 Free boundary176

We then extend our focus to another situation where the size of the wetting film177

at the liquid source can freely grow. Correspondingly, the zero-gradient boundary con-178

dition for α field is imposed at the left face.179

The simulation cases cover various θ ∈ [15◦, 20◦, 25◦, 30◦]. Initially, a small arc-
shape patch (around 0.05R0) is set as a liquid phase at the corner of the left face. It re-
laxes and evolves to form a meniscus after one recording time step dt. We regard the size
of such formed meniscus as a initial value r0w at the liquid source, which depends on θ,
as shown in figure 6(a). However, since growth curves under various θ are observed par-
alleled, the growths of rw at the liquid source are in a similar track, approximately fol-
lowing a power law. The average power is measured as 0.23, which is marked in figure
6(b). Equivalently, as for the theoretical model, the boundary at the liquid source rw|φ=0

is time-dependent, i.e.,

rw|φ=0 ≈ r0wt
0.23. (46)

–11–



manuscript submitted to Water Resources Research

The analysis in Section 2.2 maintains effective but an adaption is needed. Considering
the transient formation of rw|φ=0, Eq. 37 is modified as

φm ≈
√

8n̄

n̄− 1
r0wt

1.23. (47)

Thus, we obtain an approximate scaling law φm ∼ t0.615 adapted to the free-boundary
situation. The liquid front position is measured from our simulation results, and its evo-
lution and secant slopes are demonstrated in figure 6(c) and (d). Similarly, after a tran-
sition period, liquid front advancing reaches a steady state. The steady slope of each case
tends to be around 0.6, as marked in figure 6(d), which is comparable to the theoreti-
cally predicted value 0.615. Moreover, based on the Eq. 47, we can estimate tmerge as

tmerge ≈
(

π2

8r0w

) 1
1.23

. (48)

This estimation still serves as a lower bound of tmerge, as observed in figure 6(e). Again,180

we test the foundational assumption of the ”arc-shape interface” in the free-boundary181

situation using hw-rw on the φ = π/2 plane. As shown in figure 6(f), the deviation is182

linearly enlarged with rw, and the relative error (rw−hw)/rw is larger than 10% when183

rw = 0.8, probably suggesting that the contribution of the secondary principle curva-184

ture has to be considered if rw further increases.185

We now shift our focus to imbibition dynamics after merging. Though post-merging186

behaviours are beyond the scope of the theoretical model, our simulation results provide187

insights into them. After the two fronts merge at the right face, the film continues to ex-188

pand in the free-boundary situation. We show the evolution of rw at the right face in189

figure 7(a) and the secant slopes in figure 7(b). The expanding rate of rw decreases at190

the beginning and gradually tends to be a constant value, i.e., 1.11 as marked in figure191

7(b). In another word, rw increases with time approximately in a linear mode, which is192

significantly faster compared to the one at the liquid source, see figure 6(b).193

4 Conclusion194

In this work, We have theoretically and numerically investigated the spontaneous195

imbibition of a liquid wetting a cylinder corner. Using the Onsager variational princi-196

ple, a time evolution equation for the meniscus profile was built up. Based on the time197

evolution equation, we derived an asymptotic solution of the liquid front φm ∼
√
r0wt.198

It suggests that the advance of the liquid front follows the Lucas-Washburn kinetics, i.e.,199

the t1/2 scaling, if the boundary r0w is time-independent; otherwise, the effect of the dy-200

namic boundary should be included and the scaling accordingly changes. Then, the im-201

bibition process was numerically simulated using VoF method, and the simulation re-202

sults can be well rationalized by our proposed scaling law to a large extent. Furthermore,203

we provide a theoretical prediction of tmerge, which is demonstrated as a lower bound204

of the real one.205

Our theoretical model is extensible. More complex geometries, such as tapered, el-206

lipse, or even any arbitrary-shape symmetric cylinders, can be modelled by modifying207

the expression of the free energy. We can expect the scaling coefficient C and charac-208

teristic time t∗ varies with the geometry while the scaling t1/2 maintains effective. More-209

over, another demanding aspect for future works is to investigate the imbibtion flows in210

a cylinder group, and model how the liquid front spreads among neighboring cylinders.211

Appendix A Determination of k̄(θ)212

We determine the relative permeability k̄(θ) using numerical experiments. Eq. 16213

is solved on a axisymmetric meniscus domain, as shown in figure A1, whose geometry214
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Figure 6. Simulation results of the free-boundary situation with θ ∈ [15◦, 20◦, 25◦, 30◦].

The evolution of (a) rw at the liquid source and (b) the corresponding secant slope. The evolu-

tion of (c) φm and (d) the corresponding secant slope. (e) The comparison of tmerge against the

theoretical prediction. (f) The wetting height hw vs. the wetting width rw at φ = π/2.
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Figure 7. The post-merging dynamics of the free-boundary situation including (a) the evolu-

tion of rw at the right face and (b) the corresponding secant slope.

Figure A1. The computation model for determining the relative permeability k̄(θ)
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Figure A2. The permeability k vs. r2w for various θ.

Table A1. Relative permeability k̄(θ)

15◦ 20◦ 25◦ 30◦

0.01772 0.02032 0.02305 0.02591

is dependent on θ and rw. We sweep the parameter combinations of θ ∈ [15◦, 20◦, 25◦, 30◦]215

and rw ∈ [0.10, 0.15, 0.20, 0.25, 0.30], and calculate the permeability k according to Eq.216

18. Figure A2 shows that the permeability k is proportional to r2w for any θ. Thus, the217

relative permeability k̄(θ) can be obtained by measuring the slope of k-r2w lines, which218

are summarized in table A1.219
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