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Abstract

This study observed seasonal trends and inferred drivers of CO2 biogeochemistry at the air-water interface of Lake Superior.

Underway carbon dioxide partial pressure pCO2 was measured in surface water during 69 transects spanning ice free seasons of

2019-2022. These data comprise the first multiannual pCO2 time series in the Laurentian Great Lakes. Surface water pCO2 was

closely tied to increasing atmospheric pCO2 by a 100 day CO2 equilibration timescale, while seasonal variability was controlled

equally by thermal and biophysical drivers during the ice-free season. Comparison to previous modeling efforts indicates that

Lake Superior surface pCO2 increased at a similar rate as the atmosphere over the preceding two decades. Spatial heterogeneity

in CO2 dynamics was highlighted by a salinity-based delineation of “riverine” and “pelagic” regimes, each of which displayed a

net CO2 influx over Julian days 100-300 on the order of 30 Gmol C. These findings refine previous estimates of Lake Superior

C fluxes, support predictions of anthropogenic CO2 invasion, point to new observation strategies for large lakes, and highlight

an urgent need for studies of changes to lacustrine C cycling.
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Key Points:7

• Underway pCO2 was measured in Lake Superior from 2019 to 2022 to form the8

first multi-year pCO2 time series in the Laurentian Great Lakes.9

• The seasonal pCO2 cycle illustrated competition of thermal and biophysical10

drivers and spatial heterogeneity associated with riverine influence.11

• Lake Superior maintained atmospheric CO2 equilibrium leading to increasing12

surface water pCO2 on decadal timescales.13
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Abstract14

This study observed seasonal trends and inferred drivers of CO2 biogeochemistry at the15

air-water interface of Lake Superior. Underway carbon dioxide partial pressure (pCO2)16

was measured in surface water during 69 transects spanning ice free seasons of 2019-17

2022. These data comprise the first multiannual pCO2 time series in the Laurentian18

Great Lakes. Surface water pCO2 was closely tied to increasing atmospheric pCO2 by19

a 100 day CO2 equilibration timescale, while seasonal variability was controlled equally20

by thermal and biophysical drivers during the ice-free season. Comparison to previous21

modeling efforts indicates that Lake Superior surface pCO2 increased at a similar22

rate as the atmosphere over the preceding two decades. Spatial heterogeneity in CO223

dynamics was highlighted by a salinity-based delineation of “riverine” and “pelagic”24

regimes, each of which displayed a net CO2 influx over Julian days 100-300 on the25

order of 30 Gmol C. These findings refine previous estimates of Lake Superior C fluxes,26

support predictions of anthropogenic CO2 invasion, point to new observation strategies27

for large lakes, and highlight an urgent need for studies of changes to lacustrine C28

cycling.29

Plain Language Summary30

Carbon dioxide gas concentrations were measured in surface waters of Lake Supe-31

rior for four years, forming the first multi-year dataset of direct observations of carbon32

dioxide gas concentration in the Laurentian Great Lakes. Lake Superior’s surface car-33

bon dioxide concentration was closely tied to that of the atmosphere on time scales34

longer than one year. Seasonal variations in carbon dioxide concentration were driven35

by water temperature, biological activity, river influence, and gas exchange with the36

atmosphere. Lake Superior released and absorbed carbon dioxide cyclically at different37

times of the year, absorbing more than it released from April to November. Mixing sur-38

face waters maintain the same carbon dioxide concentration as the atmosphere (which39

is increasing due to anthropogenic emissions), so the partial pressure of carbon dioxide40

gas in Lake Superior surface waters increased over the past two decades. This work41

improves the scientific understanding of carbon cycling in Lake Superior and advances42

techniques for carbon cycle observation and modeling of other lakes.43
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1 Introduction44

Measurements of carbon cycling in the Earth’s hydrosphere are central to un-45

derstanding global biogeochemical cycling and responses to perturbation (Le Quéré et46

al., 2013). Continuing anthropogenic emissions of carbon dioxide (CO2) are increas-47

ing atmospheric concentrations at an unprecedented rate, which may force changes in48

carbonate equilibria in the oceans (Feely et al., 2001), in soils (Oh & Richter, 2004),49

in rivers (Raymond & Hamilton, 2018), and in lakes (Alin & Johnson, 2007).50

Many studies of the inorganic C system in inland waters collect and analyze dis-51

crete water samples for parameters including pH, dissolved inorganic carbon (DIC),52

total alkalinity (AT), and partial pressure of carbon dioxide (pCO2) (Cole et al., 1994).53

Direct measurements of CO2 flux across the air-water interface are also collected via54

floating chamber or eddy covariance methods (Podgrajsek et al., 2014). Construct-55

ing time series of discrete water chemistry measurements is time- and labor-intensive56

and may not resolve the high spatial and temporal variability of inorganic C cycling57

in many water bodies such as large lakes with high spatial and temporal variability58

(Schilder et al., 2013). Additionally, calculation of one inorganic C parameter from59

two others remains fraught with uncertainty due to ongoing challenges associated with60

measurement and equilibrium calculations in freshwater (Liu et al., 2020; Minor &61

Brinkley, 2022; Young et al., 2022). To bridge these gaps in observational capabilities,62

instruments measuring inorganic C parameters continuously or autonomously have63

been developed and deployed in aquatic systems spanning the lacustrine-marine spec-64

trum (Bushinsky et al., 2019; Lynch et al., 2010). Recent years have seen applications65

of pH and pCO2 underway sensors that perform with uncertainties similar to those of66

discrete sample measurements (Ma et al., 2019; Takeshita et al., 2018).67

Inorganic C chemistry remains less-studied in inland waters than in marine sys-68

tems (Phillips et al., 2015), due in part to high physical, chemical, biological, and69

temporal heterogeneity within and among lakes and rivers. Large lakes may serve70

as stepping-stones for application and further development of oceanographic chemical71

techniques in inland waters. Their great volume and relatively small terrestrial in-72

fluences lend them a more constant chemistry and physics than their smaller peers.73

The largest of lakes share with oceans similar biogeochemical features and relative74

importance to local and global biogeochemical cycling (Sterner et al., 2017). On the75

other hand, large lakes respond more rapidly than the global ocean to perturbation;76

their hydrologic residence times (c. 190 years for Lake Superior) are shorter than that77

of the global ocean (millennia). Holomictic lakes experience full water column mixing78

at least annually, which represents a homogenizing driver not observed in oceans. For79

these reasons, large lakes can act as test systems for investigations of environmental80

variables, with responses occurring on more accessible spatial and temporal scales for81

research (Sterner, 2021).82

The Laurentian Great Lakes lie on the border of the United States of America and83

Canada and within the historical and contemporary lands of Native American and First84

Nations. They constitute the largest contiguous aquatic ecosystem on Earth (Wetzel,85

2001), yet C cycling in the Great Lakes is not well-understood (Minor & Oyler, 2021).86

It remains unclear to what extent the Great Lakes are net sources or sinks of CO2 to the87

atmosphere (McDonald et al., 2013; N. Urban & Desai, 2009). Alin and Johnson (2007)88

concluded that they are annual net CO2 sources, while Bennington et al. (2012) noted89

that studies of CO2 cycling in Lake Superior have been biased by sparse observations90

restricted to the ice-free period, and could not “close the cycle” by modeling all C91

inputs and outputs. These pioneering studies were confounded by observations of92

inorganic C cycling that were sparse, irregular or unrepresentative of the lakes as93

a whole. This situation is similar to that of the Southern Ocean or South Pacific94

Ocean, in which limited observation hindered attempts to constrain biogeochemical95

budgets (Takahashi et al., 2009). Such lakes functioning as “sentinels, integrators, and96
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regulators of climate change” (Williamson et al., 2009) exert significant influence on97

regional and global C budgets (Cole, 2013) and demand more detailed study.98

This research focuses on surface water pCO2 variations over time and space99

to illustrate the C cycle of Lake Superior in unprecedented detail. pCO2 in water100

responds to physical (temperature, pressure, salinity), chemical (pH, DIC, AT, CaCO3101

dissolution/precipitation), and biological (production, respiration) drivers (Zeebe &102

Wolf-Gladrow, 2001), such that a comprehensive understanding of pCO2 variability103

sheds light on a suite of biogeochemical functions. As a direct driver of CO2 flux across104

the air/water interface, pCO2 in surface waters acts as an important parameter of105

atmospheric CO2 accumulation. Accurate predictions of climate change and mitigation106

efforts require an improved understanding of the role of waters bodies as sources and107

sinks of CO2 and other greenhouse gases (Cavallaro et al., 2018).108

Lake Superior has a small surface area-to-catchment ratio of 1.55 (Urban, 2005)109

and is underlain by a weathering-resistant igneous mineralogy leading to exceptionally110

dilute, soft, and carbonate-poor water chemistry. Its water is warming faster than111

the overlying atmosphere (Austin & Colman, 2008), and the concentration of most of112

its major ions is increasing (Chapra et al., 2012). Interannual trends in AT, pH, and113

pCO2 have proven difficult to constrain due to covariation with lake level, influence114

from Dreissenid calcification in tributaries, large measurement uncertainty, and spatial115

heterogeneity (Minor & Brinkley, 2022). These poorly-understood changes contribute116

to the need for a sustained campaign of spatially- and temporally-comprehensive mea-117

surements of the inorganic carbon system in Lake Superior.118

In this work, underway pCO2 measurements gathered by instrumentation aboard119

RV Blue Heron from four consecutive field seasons (April-November 2019-2022) pro-120

vided a survey of unprecedented spatial and temporal scope describing inorganic C121

cycling drivers and variability in a large lake. This information was used to infer122

trends in pCO2 and CO2 flux over space and time and establish the interplay of ther-123

mal and biophysical drivers of pCO2, and compare the relative magnitudes of wind124

velocity and pCO2 saturation as drivers of CO2 flux. The results demonstrate a path-125

way towards comprehensive CO2 budgets for the Laurentian Great Lakes via novel126

observation strategies and improved modeling efforts.127

2 Methods128

Underway instrument datasets from 69 transects of the RV Blue Heron were129

compiled. These efforts included single-day endeavors near the vessel’s home port130

of Duluth Minnesota, as well as multi-week transects across the Laurentian Great131

Lakes (Figure 1). Water was directed from the ship’s water intake line at 2 m depth132

through a suite of sensors measuring parameters including dry molar fraction of carbon133

dioxide (xCO2), sea surface temperature (SST), and sea surface conductivity. These134

were combined with wind velocity, barometric pressure, and air temperature collected135

from an onboard meteorological station. The multi-year span considered in this study136

permits evaluation of interannual variability in inorganic C biogeochemistry despite137

limited cruises in 2020 and 2021 due to challenges associated with the Coronavirus138

pandemic.139

xCO2 was measured in water from the underway system at 2 second intervals140

using a Sunburst Sensors SuperCO2 instrument equipped with a showerhead equili-141

brator. Measurements from four standard gases with CO2 concentrations between 0142

and 1018 ppm were performed every 2 hours (Supplementary Figure S1) and the 60143

seconds before and after calibration removed from the time series to prevent memory144

effects. The slope and intercept values from a type-I linear regression of measured145

vs. standard xCO2 were used to correct surface water xCO2 before conversion to146
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pCO2 (Equation 1) A nearly-identical instrument demonstrated a pCO2 measurement147

uncertainty of ± 5 µatm (M. DeGrandpre et al., 2020). SST and conductivity were ob-148

tained from a SBE21 thermosalinograph every 2 seconds. Conductivity was converted149

to practical salinity using the equations of Hill et al. (1986). Wind velocity was mea-150

sured with a Young 05106 wind monitor on a mast 10 meters from the sea surface. Air151

temperature was obtained from a Young 41372VC thermometer. It was assumed that152

mast-measured windspeed (corrected for travel) approximated neutral wind speed at153

10 meters (U10n) sufficiently well for the parameterization of instantaneous CO2 flux.154

Measured pCO2 and calculated CO2 flux were averaged for each day of each transect155

in 0.01◦ x 0.01◦ boxes (approximately 1.1 x 0.8 km at the latitude of Lake Superior)156

to normalize distributions of pCO2 and CO2 flux on an areal basis and prevent biases157

due to vessel idling.158

pCO2 was calculated as a product of ambient atmospheric pressure (patm) and159

xCO2 both measured by the SuperCO2 instrument and corrected for water vapor160

partial pressure (pH2O) calculated as a function of temperature assuming saturation161

(Dickson et al., 2007):162

pCO2 = xCO2 · (patm − pH2O) (1)163

CO2 flux was parameterized by the difference between aqueous and atmospheric pCO2,164

multiplied by the gas transfer velocity (k), a function of Schmidt number Sc (Ho165

et al., 2006), mean squared neutral wind speed at 10 meters above the sea surface166

(< U2
10 n >), and Ko, the solubility of CO2 in water (Weiss, 1974). Positive values of167

CO2 flux indicate efflux.168

CO2 Flux = kKo (pCO2 aq − pCO2 atm) (2)169

170

k = 0.266 < U2
10 >

(
Sc

600

)−0.5

(3)171

We compared two sources of atmospheric CO2 concentrations for calculation172

of CO2 flux: underway-measured atmospheric pCO2 measured every 2 hours by the173

SuperCO2 instrument and atmospheric pCO2 as measured at the WLEF/Park Falls174

Wisconsin tower (A. Desai, 2022). The WLEF/Park Falls time series was chosen for175

flux calculations, as detailed in the Results.176

There is considerable disagreement among gas flux parameterizations applied to177

lakes. Previous studies have assumed no wind dependence (Cole & Caraco, 1998) or178

different values of the empirical coefficient of the gas transfer velocity equation (Atilla179

et al., 2011). The parameterization in this study (Ho et al., 2006) was chosen on the180

grounds that Lake Superior can be understood similarly to marine environments, with181

a high range of wind speeds and large fetch which merit the quadratic wind dependence182

discussed by Wanninkhof (1992) (D. Ho, personal communication).183

Calculations were completed with Python 3.8, using Pandas (Reback et al.,184

2022) for data structure manipulation, SciPy (Virtanen et al., 2020) and Statsmodels185

(Seabold & Perktold, 2010) for regression and statistical analysis, Numpy (Harris et186

al., 2020) for array computation, PyCO2SYS (Humphreys et al., 2020) for CO2 system187

calculations, GSW-Python (Firing et al., 2021) for salinity conversions, and Matplotlib188

(Hunter, 2007) and Seaborn (Waskom, 2021) for visualization.189

3 Results190

More than 6 x 106 measurements of xCO2 in Lake Superior surface waters were191

assembled into a pCO2 and CO2 flux timeseries. These data spanned the lake’s most192

significant hydrological regions, including shallow coastal zones, deep (maximum 406193
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Figure 1. Underway measurement density transects 2019-2022, visualized as the number of

occupations of approximately 5 km squares. The number of days of observation ranged from 0 to

nearly 600. The cities of Duluth and Sault Ste. Marie, between which multi-lake transects tra-

verse, are indicated by red triangles. The Park Falls/WLEF tower is denoted by a black square.

m) waters, riverine outlets, and regions bordering significant human development (Fig-194

ure 1). The most heavily-observed regions included the far western arm of Lake Su-195

perior and a cross-lake transect from Duluth to Sault Ste. Marie. Binning of pCO2196

and CO2 flux data by grouping observations by date and 0.01° boxes yielded 1.3 x 104197

observations.198

3.1 Underway Timeseries Overview199

Mean observed SST was 11.4 ◦C with a median of 12.7 ◦C. SST varied widely200

among and within cruises, ranging from a maximum of 23.5 ◦C in July 2019 near the201

center of the Far Western Arm to a minimum of 0.45 ◦C in April 2022 in the plume202

of the St. Louis River Estuary. Practical salinity calculated from conductivity ranged203

from a near-constant 0.0446 in unstratified offshore waters to values exceeding 0.09204

in the plume of the St. Louis River Estuary, displaying a mean of 0.0455, a median205

of 0.0454, and a standard deviation of 0.0015. The timing of thermal stratification206

in Lake Superior varied widely among locations and years (Austin et al., 2022), so207

observations within 0.5 ◦C of the temperature of maximum density of freshwater (3.98208

◦C) were designated as unstratified. Stratification occurred between late June and209

August, depending on year and location (Figure 2a); interannual weather variabil-210

ity exerted considerable influence on stratification development, as indicated by the211

historically late stratification of Lake Superior in August 2022 (J. Austin, personal212

communication).213

Surface-water DIC and pH (free scale) were calculated from measured pCO2,214

SST, and an assumed AT of 840 µmol kg-1 (Figure 2d-e) with PyCO2SYS, using215

the carbonate constants of Waters et al. (2014). AT is largely invariant in Lake216
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Superior (Minor and Brinkley 2022, Sandborn et al. 2023) except in regions with217

significant terrestrial influence; no AT-conductivity relationship for Lake Superior has218

been published, so AT was not parameterized by underway data. Calculated pHfree219

exhibited a mean of 8.075 and standard deviation of 0.093, while calculated DIC220

exhibited a mean of 855.0 µmol kg-1 and standard deviation of 8.8 µmol kg-1. This221

pHfree distribution fell within the range of values given in Minor and Brinkley (2022),222

while the mean calculated DIC was 10-40 µmol kg-1 higher than observations given223

in Zigah et al. (2011) and Sandborn et al. (2023). The discrepancy may be due to224

interannual DIC increases, sampling bias in the latter two studies favoring regions or225

periods of lower DIC, interferences due to organic alkalinity, or uncertainty associated226

with equilibrium calculation, all of which remain active areas of research (Minor &227

Brinkley, 2022; Sandborn et al., 2023). Seasonal variation in DIC was evident as a228

summertime decrease on the order of 20 µmol kg-1, followed by an autumn increase of229

c. 10 µmol kg-1.230

3.2 Atmospheric CO2231

The daily mean shipboard atmospheric xCO2 varied seasonally in concert with232

the CO2 timeseries observed at the Park Falls/WLEF tower (Desai, 2022) (Figure233

S5), approximately 80 km south of Chequamegon Bay, Wisconsin. Both series dis-234

played a larger annual variability and a phase shift from the Mauna Loa CO2 time235

series (Keeling & Keeling, 2017). No systematic biases in atmospheric CO2 concen-236

tration were observed between the underway and Park Falls/WLEF time series within237

years, yet the underway atmospheric signal displayed a much larger variability. Several238

anomalies emerged in the underway atmospheric data. Atmospheric xCO2 measure-239

ments in several cruises were consistently higher than expected despite nominal mea-240

surements of standard gases and sea surface xCO2. These cruises included extended241

periods of idling, and presumably detection of exhaust CO2 by the underway system.242

In another two cruises in September 2022, atmospheric (but not sea surface) xCO2243

was depressed over a period of weeks for reasons related to a filter on the air inlet.244

Due to these discrepancies, we chose to use daily means of nearby Park Falls/WLEF245

tower hourly measurements of atmospheric xCO2 with the expectation of a well-mixed246

atmosphere over these scales. The occurrence of most atmospheric underway xCO2247

measurements within a close approximation of the Park Falls/WLEF timeseries vali-248

dated this expectation.249

3.3 Wind Speed250

Wind speed observed on Lake Superior (corrected for direction of travel) ex-251

hibited a skewed unimodal distribution with a peak at 4.5 m s-1 (Supporting Figure252

S2a). Some bias may have been incurred by intentional planning of transects around253

inclement weather and targeting the ice-free season, so it was unclear how well these254

transects represented the true distribution of wind velocity above Lake Superior. The255

underway-observed wind speed distribution in 2020 stood out from other years with a256

lower and irregular distribution; these transects were limited in time and space (Fig-257

ure S1) and are less likely to represent the true distribution of wind speed over Lake258

Superior. Comparison of the underway wind speed distributions with those measured259

offshore at the Stannard Rock Lighthouse over the same periods (Figure S2b) indicates260

that the underway-observed wind speed distribution closely approximated that of the261

whole season.262

The wind speed distribution peaks observed from either source were lower than263

the global U10n distribution peak of approximately 7 m s-1 in Yang et al. (2022), which264

may imply an underestimation of CO2 flux as parameterized by dual-tracer models as265

in this research. The present scarcity of research on gas flux parameterization validity266

in large lake systems for which size, morphometry, and variable winds greatly influence267
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Figure 2. Sea surface temperature, pCO2, calculated CO2 flux, calculated DIC, and calcu-

lated pHfree observed in 0.01◦ boxes on transects of Lake Superior, 2019-2022. Median values for

each day of observation are connected by a grey line. a. The 3.98 ◦C temperature of maximum

density is indicated by a dotted line, along which lie unstratified conditions, highlighted in red.

Depressed springtime surface temperatures of 2022 are visible as a delayed warming trend. b.

The Park Falls/WLEF time series is displayed as a dotted line separating observations of CO2

supersaturation and undersaturation. c. The division of CO2 efflux vs. influx is indicated by

a dotted line. d. DIC as calculated from pCO2 and assumed AT = 840 µmol kg-1. e. pH (free

scale) as calculated from pCO2 and assumed AT = 840 µmol kg-1.
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gas flux magnitude and timing (Perolo et al., 2021; Schilder et al., 2013) does not yet268

allow exploration of similar biases in this research.269

Gas transfer velocities (k) calculated from the underway wind distribution dis-270

played a mean of 1.6 m d-1, about half the mean ocean value of 3.3 m d-1 given by271

Broecker and Peng (1982) and supported by revised gas transfer velocity parameteri-272

zations (e.g. Ho et al., 2006; Wanninkhof, 2014). Given this information, along with273

the 147 m mean depth of Lake Superior (Fuller & Shear, 1995), its Revelle Factor274

(RF ), DIC, and aqueous CO2 concentration [CO∗
2] (from equilibrium calculations),275

the characteristic timescale, or e-folding time, of CO2 equilibration in Lake Superior276

(τCO2
) can be estimated (Zeebe & Wolf-Gladrow, 2001):277

τCO2
=

mixing depth

k
· DIC

[CO∗
2]

· 1

RF
(4)278

During unstratified periods, mean RF was 26.9 ± 0.6, mean DIC was 867.0 ±279

0.9 µmol kg-1, and mean [CO2*] was 29.6 ± 0.8 µmol kg-1 (all ± s.d.). The resulting280

τCO2 during the unstratified period was 100. ± 4 days; this period is much smaller281

than that of most of the surface ocean mixed layer, indicating relatively fast CO2282

equilibrium despite Superior’s deeper mixed layer. This period is similar in magnitude283

to the duration of the twice-annual unstratified periods in December-January and May-284

July (though stratification phenology varies among years; Austin and Colman (2008);285

Woolway et al. (2021)), so it is reasonable to expect that on multiannual timescales,286

Lake Superior maintains near-atmospheric CO2 equilibrium. This inference depends on287

lake stratification and wind velocity, both of which may shift with the changing climate288

(Xue et al., 2022). Climate change effects on lake thermal state and atmospheric289

circulation are likely to have complex effects on lake biogeochemistry which extend to290

CO2 flux behavior changes (A. R. Desai et al., 2009).291

3.4 pCO2 Variability292

A continuous multiannual cycle of observed pCO2 could not be constructed due293

to large gaps in the time series, so a synthesized cycle was constructed by combining294

four years of observations into one based on Julian day of year (DOY). Least-squares295

regression of observations grouped by 0.01◦ boxes and date of observation to an equa-296

tion of the form297

pCO2 = a · sin
(
b · c− DOY

365.25

)
+ d (5)298

(where a, b, c, and d are regression coefficients) exhibited an amplitude (a) of299

58.50 ± 0.14 µatm and a baseline pCO2 (d) of 381.197 ± 0.063 µatm (uncertainty as300

standard errors of regression coefficients) (Figure 3a)301

Spatial heterogeneity was visible in the range of pCO2 values observed on a given302

date, with super- and under-saturated conditions observed throughout the year. This303

high degree of spatial heterogeneity obscured the seasonal cycle of pCO2 in the lake304

as a whole. Additionally, the high concentration of transects in the riverine-influenced305

Western Arm of Lake Superior may not have represented open-water conditions pre-306

vailing in the remainder of the lake. Diel variability was examined as a potential source307

of bias, but no significant difference between daytime and nighttime pCO2 was found308

(see Supporting Information).309

Confounded spatial and seasonal variabilities were partly separated by salinity310

into “riverine” and “pelagic” regimes in order to isolate open-water seasonal variabil-311

ity. A cutoff salinity value was defined by statistically significant departure from the312

surface salinity distribution observed in unstratified periods. In every year of observa-313

tion, springtime unstratified surface salinity observations formed a narrow distribution314
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Figure 3. pCO2 observations grouped by 0.01◦ squares and date during transects of Lake

Superior for a synthetic annual time series 2019-2022. Black dashed lines represent sinusoidal

regressions of each time series.
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manuscript submitted to JGR: Biogeosciences

with a mean of 0.04455 and a standard deviation of 0.00044. This value was taken315

to represent the mean salinity of the well-mixed lake. Observations with salinity 3316

standard deviations greater than the unstratified period mean were considered river-317

influenced. This scheme decreased the noise around the seasonal trend of surface318

water pCO2 in pelagic observations (Figure 3b) and highlighted spatial heterogeneity319

in riverine-influenced observations (Figure 3c). Potential interferences with this clas-320

sification included evaporation and precipitation, which would be expected to increase321

and decrease surface salinity, respectively. For this reason, we elected not to construct322

any quantitative mixing relationship based on underway-measured surface salinity and323

merely used it as a rough proxy for riverine influence. In pelagic waters of Lake Supe-324

rior during April-November the mean observed pCO2 was 380 µatm with a standard325

deviation of 53 µatm, while in river-influenced waters, the mean observed pCO2 was326

343 µatm with a standard deviation of 38 µatm; the depression of riverine regime mean327

pCO2 may have been due to promotion of primary production and CO2 drawdown in328

nutrient-rich riverine-influenced Lake Superior waters (Minor et al., 2014; Sterner et329

al., 2020).330

The pelagic pCO2 cycle displayed a greater seasonal variability than the simu-331

lated time series of Bennington et al. (2012) (Figure 4). Annual pCO2 summer minima332

and spring maxima were approximately 330 and 400 µatm in Model 1 of that work,333

compared to 322 and 440 µatm in this study’s synthetic annual time series of pelagic334

observations. Bennington et al. modeled surface water equilibrium with an atmo-335

spheric pCO2 of 360 µatm at the end of a mixing period spanning late April-late June336

1997-2001. At the end of destratification in this (2019-2022) study, a mean surface337

water pCO2 of 430 ± 30 µatm (±s.d.) was observed, which was indistinguishable from338

contemporaneous atmospheric pCO2. The two models presented by Bennington et339

al. differed in their treatment of primary production limitation, which resulted in the340

greatest differences after spring mixing, when this study’s observations also displayed341

high spatial variability.342

The observed increase in spring mixing period pCO2 was consistent with the343

magnitude of atmospheric CO2 concentration increase (c. 2 ppm yr-1, Keeling and344

Keeling (2017)) over the 23 years separating the modeled period of Bennington et al.345

and these observations, as well as the direction of increase in Lake Superior surface346

water pCO2 calculated from pH and AT over the period 1992-2019 by Minor and347

Brinkley (2022). The precise rate of increase of Lake Superior surface water pCO2 over348

decadal timescales remains difficult to constrain, but its continuing near-atmospheric349

equilibrium state, along with radiocarbon measurements indicating rapid (<3 years)350

recycling of the DIC pool (Zigah et al., 2011), indicates that it mirrors atmospheric351

pCO2 during mixing periods and will continue to do so.352

The magnitude of seasonal variability in Lake Superior pCO2 was comparable353

to that of subtropical ocean regions (Bates, 2001), but shifted in the year. In terms354

of pCO2 phenology, Lake Superior resembled the Arctic ocean most closely, despite355

exhibiting a much larger amplitude (Orr et al., 2022). Scarcity of data from November-356

April prevented great confidence in extrapolation to those periods, but models indicate357

that Lake Superior pCO2 likely remains supersaturated or near-atmospheric equilib-358

rium throughout that period (Bennington et al., 2012). Interannually-variable winter-359

time ice cover (White et al., 2012) may modify the expected CO2 efflux.360

3.5 Competing Drivers of pCO2361

Deconvoluting the pelagic pCO2 cycle (Figure 3b) into inferred drivers shed light362

on biogeochemical cycling in Lake Superior. The method of Takahashi et al. (1993) was363

used to separate measured pCO2 into thermal (pCO2 T) and biophysical (pCO2 BP)364
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Figure 4. Median daily observations of pelagic surface water pCO2 observed during 2019-

2022 compared with Models 1 and 2 from Bennington et al. (2012), which described mean lake

surface pCO2 1997-2001. A 46 µatm translation of Model 1 to account for 23 years’ atmospheric

CO2 increase (assuming 2 µatm yr-1) aligned spring and mixing season modeled results with

contemporary observations.
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signals365

pCO2 T = pCO2 · e
(

∂ln(pCO2)
∂T [T−T ]

)
(6)366

367

pCO2 BP = pCO2 · e
(

∂ln(pCO2)
∂T [T−T ]

)
(7)368

Seasonal warming was expected to increase pCO2 and thus promote CO2 efflux.369

The remaining variation was ascribed to biophysical processes including production,370

respiration, gas flux, and river inputs. CaCO3 dissolution and precipitation were371

neglected in this analysis of greatly-undersaturated Lake Superior. Overbars indicated372

arithmetic mean values in the literature source, but this study analyzed an incomplete373

annual time series of pCO2, so mean temperature (T ) and mean pCO2 (pCO2) were374

adjusted to 1 ◦C and 400 µatm to ensure convergence of the driver signals at the375

beginning of the observed period. The temperature partial derivative of ln(pCO2) was376

calculated via PyCO2SYS, yielding an average value of 0.03606 ◦C-1 for Lake Superior377

over the temperature range 0-20 ◦C (code in Supporting Text S2). This temperature378

dependence is in good agreement with values used in previous studies (0.038 ◦C-1 Atilla379

et al. (2011); 0.0384 ◦C-1 Lynch et al. (2010)).380

Plotting the measured, thermal, and biophysical pCO2 signals illustrated the381

interplay of these competing drivers of pCO2 in Lake Superior (Figure 5). Seasonal382

temperature effects were visible as the springtime increase and autumn decrease in383

pCO2 T, opposed by the summertime dip in pCO2 BP. Measured pCO2 lay suspended384

between the curves. The degree to which thermal vs. biophysical drivers control385

pCO2 can be conceptualized as the vertical distance between the measured curve and386

its two drivers; in spring, measured pCO2 was closely tied to pCO2 T, indicating that387

most of the spring trend in pCO2 was driven by seasonal warming. pCO2 moved388

equidistant between drivers before dipping with the biophysical curve through the389

summer. Quantitatively, the ratio of thermal to biophysical control of pCO2 can be390

calculated (Fassbender et al., 2018; Takahashi et al., 2002) as391

RT BP−1 =
max(pCO2 T) − min(pCO2 T )

max(pCO2 BP) − min(pCO2 BP)
(8)392

which yielded a value of 1.1 using the regressions in Figure 5, indicating roughly equal393

thermal and biophysical driver magnitudes over the ice-free period. Interestingly, this394

value aligns with that of the Atlantic Ocean at the approximate latitude of Lake395

Superior (Fassbender et al., 2018), which raises questions about latitudinal gradients396

in RT BP−1 in inland waters compared to marine systems. Minor et al. (2019) found397

majority biophysical control of calculated pCO2 from discrete samples of Lake Superior398

surface water in 2014-2016, and the degree of dominance varied year-to-year.399

3.6 CO2 Flux Variability400

CO2 flux displayed sinusoidal behavior similar to that of pCO2, but with a greater401

degree of variability within individual cruises (Figure 6). Sinusoidal regression of402

observations of CO2 flux (grouped by 0.01◦ box and date) over Julian day indicated403

similar seasonality to the pCO2 annual cycle. For pelagic observations, there was404

a baseline value of -1.88 mmol m-2 d-1 (negative values indicating influx) and an405

amplitude of 4.11 mmol m-2 d-1. The most extreme values were observed in mid-406

summer, when high wind speeds coupled with CO2-undersaturated surface waters to407

create high instantaneous rates of CO2 drawdown exceeding 70 mmol m-2 d-1.408

3.7 Competing Drivers of CO2 Flux409

This research parameterized CO2 flux from CO2 saturation and wind velocity,410

so discussion of the drivers of CO2 flux over Lake Superior is limited to the relative411
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Figure 5. Deconvolution of median daily measured sea surface pCO2 (circles/dashed line)

into Biophysical (squares/dash-dot line) and Thermal (triangles/dotted line) drivers. Septic

power function regressions are shown as visual aids, and their equations are given in the Support-

ing Information.
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Figure 6. Parameterized CO2 flux grouped by 0.01◦ squares and date during transects of

Lake Superior for a synthetic annual time series 2019-2022. Black dashed lines represent sinu-

soidal regressions of each time series.
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dominance of these two factors over various timescales. The degree to which either412

predictor explains flux magnitude can be quantified using linear regression of the ab-413

solute value of flux against the absolute values of k or ∆pCO2, log-transformed to414

approach normality. R2 values then indicate the fraction of variation predicted by415

each variable: 59.2% of CO2 flux variability was predicted by k and 43.4% by ∆pCO2,416

indicating that k predicted CO2 flux better than ∆pCO2 in Lake Superior on mul-417

tiannual timescales. This result also explains some CO2 flux variability driven by k418

variability in any given transect visible as departures from the sub-annual cycle in419

Figure 6. This result contrasted with the conclusions of Natchimuthu et al. (2017)420

that ∆pCO2 variability dominated over k variability over long (days to weeks) periods421

in small hemiboreal lakes. This may be due to the relatively wider range in pCO2422

observed by Natchimuthu et al. (714-12961 µatm) which overwhelmed k variability,423

as well as the smaller fetch associated with their sites.424

A similar pattern emerged when individual cruises were considered. 52 of 69425

cruises demonstrated superior predicting ability of CO2 flux by k relative to ∆pCO2, as426

quantified by higher R2 values resulting from a type-I linear regression. The prediction427

capacity of k diminished in cruises with a high interquartile range of pCO2. Linear428

regressions of cruise-level R2 values over log-transformed pCO2 interquartile range429

indicated significant relationships for both k R2 values (p = 0.02) and ∆pCO2 R2
430

values (p = 0.005) (Figure 7).431

These results illustrate the importance of capturing observations representing a432

full and continuous distribution of pCO2 and wind velocities for a study system. The433

relative importance of k and ∆pCO2 depended on their ranges over a timescale of434

interest, but in a system like Lake Superior with limited variability in pCO2 (com-435

pared to small inland lakes), k dominated CO2 flux variability across all timescales,436

demonstrating a crucial difference between this large lake and its smaller peers. Ob-437

servations and models of CO2 flux in large lakes miss the full picture if they neglect to438

fully characterize both ∆pCO2 and k, especially in systems where these values exhibit439

wide distributions.440

3.8 Total CO2 Flux Estimation441

Net CO2 air-sea flux over the observed seasons was obtained via integration of442

the sinusoidal regressions of instantaneous CO2 flux (Figure 6) across the observed443

time domain: Julian day 100 (April 9 or 10) through 300 (November 26 or 27). The444

resulting values (Table 1) were multiplied by the total area of Lake Superior (8.21 x445

1010 m2) to yield total fluxes, but it was not clear what fraction of the lake is considered446

“pelagic” vs. “riverine”. We suggest that these values serve as bounds for the net CO2447

flux of Lake Superior throughout the ice-free season. Uncertainty in integrated fluxes448

was determined by bootstrap random resampling with replacement of data underlying449

the sinusoidal regressions of CO2 flux for 100 repetitions and given as the standard450

deviation of the repetition net fluxes. .451

The resulting CO2 influx on the order of 30 Gmol C (360 Gg C) was similar in452

magnitude but opposite in sign to the only fully-annual modeled CO2 flux: an mean453

net annual efflux of 16 Gmol C yr-1 (190 Gg C yr-1) over the period 1997-2001 (Ben-454

nington et al. 2012). The discrepancy is accounted for by winter supersaturation of455

surface pCO2. Assuming the veracity and comparability of the above values, an efflux456

of 46 Gmol C (550 Gg C) during Julian days 301-99 is implied. The rough approxima-457

tions of carbon budgets allowed by available annual CO2 fluxes continues to prohibit458

integration of Lake Superior into regional and global C budgets. There remains the459

possibility that the modeled annual CO2 flux and this study’s observed sub-annual flux460

are not comparable due to two intervening decades of ecological and climate change, an461

under-constrained modeled pCO2 cycle, and ongoing uncertainty about comparisons462
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Figure 7. Cruise-level R2 values for the prediction of CO2 flux by k (gas transfer velocity)

and ∆pCO2, separated by interquartile ranges of the distribution of pCO2 observed in each

cruise. Shaded intervals around type-I linear regressions indicate 95% confidence intervals. Larger

interquartile ranges of pCO2 within cruises are associated with poorer prediction of CO2 flux by

k relative to ∆pCO2. Type-I linear regressions indicate significant slopes (indicated by p-values)

for n = 69 cruises.

Table 1. Time-integrated fluxes of CO2 over the air-water interface of Lake Superior ascribed

to Pelagic and Riverine chemical regimes for Julian Days 100-300. Uncertainties are given as

standard deviations propagated via bootstrap resampling with replacement for 100 repetitions.

Negative signs indicate influx.

Region CO2 Areal Flux (mol C m-2) CO2 Total Flux (Gmol C)

Pelagic −0.3744 ± 0.0068 −30.78 ± 0.56
Riverine −0.324 ± 0.023 −26.5 ± 1.9
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of measured versus calculated pCO2 in Lake Superior. An updated observation-based463

and/or process model constrained by spatially- and temporally- comprehensive direct464

observations of pCO2 and CO2 flux is required for substantive comparisons of observed465

and modeled C cycling.466

A rough estimate of net community production (NCP) can be inferred from the467

net CO2 air-sea flux and the calculated DIC time series as468

NCP =

∫ 300

t=100

(
δDIC

δt
· MLDt − CO2 Flux

)
(9)469

Assuming a constant MLD of 20 m (Bennington et al., 2010), a surface DIC470

drawdown (Figure 2d) around 10 µmol kg-1 between Julian days 100-300, and a CO2471

air-sea flux of 30 Gmol C yields an NCP of 46 Gmol C for the observed period. Spatial472

variability of MLD and weaker thermal structure before summer stratification likely473

makes this an underestimate and biases this estimate of NCP. Our estimated ice-free474

season surface water NCP is more than 200x smaller than the 9.73 Tg y-1 whole-lake475

annual primary production reported by Sterner (2010), in agreement with previous476

inferences of high organic C turnover rates in Lake Superior (N. R. Urban, 2005).477

Future studies should establish an annual NCP to compare with previously-reported478

values (e.g. N. R. Urban, 2005) which don’t constrain the sign of NCP.479

4 Discussion480

Four years of surface pCO2 measurements gathered on transects across Lake Su-481

perior were used to elucidate inorganic carbon system variability across temporal and482

spatial scales. Ice-free season (April-November) observations yielded a detailed ac-483

count of the seasonal pCO2 cycle, driven by thermal and biophysical drivers acting in484

opposition to perturb surface pCO2 from its interannual baseline state of atmospheric485

equilibrium, resulting in sustained periods of CO2 influx and efflux. Spatial variability486

in the inorganic C system effected by riverine influence was highlighted by separating487

the lake into pelagic and riverine regimes. Integration of instantaneous CO2 fluxes488

over the ice-free period resulted in April-November CO2 influxes of 32.80 ± 0.61 Gmol489

C (pelagic) and 26.5 ± 2.1 Gmol C (riverine), which are considered bounding values490

for the whole-lake mean CO2 flux during observed periods of 2019-2022; annual net491

CO2 flux remains uncertain. These results point towards a significant role of Lake492

Superior to interact with global and regional C cycling and climate change. Increases493

in surface pCO2 over the last two decades illustrate that Lake Superior is undergoing494

CO2 invasion in agreement with Phillips et al. (2015). Variability in CO2 flux, pa-495

rameterized by ∆pCO2 and gas transfer velocity k, was dominated by k over all time496

scales, though this effect diminished over periods of larger spatial variability in pCO2.497

A paucity of early Spring and late Fall data hindered analysis of periods at the498

extremes of the ice-free season, which could shed light on the effects of ice-off as a499

driver of CO2 flux (cf. Ahmed et al., 2019). As previously noted, there may be500

some bias in wind-parameterized gas transfer velocities associated with dual-tracer501

experiments (Yang et al., 2022), such that the gas transfer velocities calculated here502

may be underestimates by as much as 20%. Future studies should seek to explore wind503

speed gas flux parameterization applications in large lakes.504

4.1 Consequences of Increasing pCO2505

Among the most impactful findings of this research is the observation that Lake506

Superior surface pCO2 maintains near-equilibrium with the overlying atmosphere over507

multi-year periods. Temperature variability and biogeochemical processes drive sea-508
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sonal departures of pCO2 from atmospheric equilibrium (effecting the expected net509

annual CO2 efflux), yet surface water pCO2 returns to a baseline state of atmospheric510

equilibrium on timescales shorter than a year. This fact has several significant conse-511

quences in a world of increasing atmospheric CO2 concentration:512

First, the solubility pump of Lake Superior acts as a partial CO2 sink which can513

be approximated by an equilibrium calculation: Assuming AT = 840 µmol kg-1, T =514

3.98 ◦C (temperature of maximum density during destratification), an initial pCO2515

= 400 µatm, and an atmospheric ∆pCO2 ∆t-1 = 2.50 µatm yr-1, then a CO2SYS516

calculation indicates ∆DIC ∆t-1 = 0.184 µmol kg-1 yr-1, which is multiplied by the517

approximate mass of Lake Superior (1.21 x 1017 kg) to give a CO2 storage of 22.3518

Gmol C yr-1 (267 Gg C yr-1) due to increasing atmospheric CO2 alone. This storage519

is characteristic of any body of water maintaining CO2 equilibrium with a non-steady-520

state atmosphere. It acts alongside C sources (e.g. DIC loading) and sinks (e.g.521

C burial) to compose the net annual C budget of Lake Superior. Development of522

an annual net CO2 flux using expanded observational and modeling capabilities may523

yield insights on all of these contributors. If atmospheric pCO2 were stable, then524

Superior’s annual net CO2 efflux could be larger than it is today, mirroring the case525

of the pre-industrial global ocean, which likely acted as a CO2 source instead of a sink526

(Cartapanis et al., 2018).527

Second, Lake Superior’s water chemistry will undergo changes as a result of528

consistently-higher pCO2. Its weak CO2 buffer (Revelle factor 25-30 in calculations in529

this work, compared to marine values 8-16 (Sarmiento & Gruber, 2006)) and absence530

of sediment carbonate buffer (unlike neighboring Lake Michigan) result in relatively531

high sensitivity to atmospheric CO2 acidification. The outcomes of hypothesized lake532

acidification mirror those in the ocean: decreasing pH and CaCO3 saturation states,533

impacts on primary producer communities, changes to metal ion activities, and other534

phenomena with potentially detrimental ecosystem effects (Doney et al., 2009). Trends535

in AT and temperature may modify the speciation (e.g. [CO2−
3 ], pH) of the inorganic536

carbon system as well as the seasonal and spatial expression of the surface water pCO2537

cycle, but not the surface pCO2 of a system at equilibrium with the atmosphere.538

Third, efforts to observe Lake Superior’s inorganic C system must capture a539

greater fraction of the annual cycle and spatial variability to constrain these changes.540

The twice-annual time series of chemical parameters (including glass electrode pH and541

Gran titration alkalinity) collected by US EPA Great Lakes National Program Office542

includes samples over a broad spatial scale, during periods of mean CO2 efflux (April-543

May) and influx (August-September) but fails to observe intervening periods which544

provide context for interannual variability of the annual pCO2 cycle. Undersampling545

a complex signal like inorganic C chemistry delays detection of climate change effects546

(Carter et al., 2019). A more complete picture of biogeochemical parameters is sorely547

needed during the current period of climate change and ecological disruption. This548

gap in observational capabilities can be addressed by a sustained campaign of higher-549

quality, higher-frequency measurements of inorganic C parameters in the Laurentian550

Great Lakes.551

4.2 Observational Challenges and Opportunities552

Environmental and instrumental challenges limit deployment of underway pCO2553

systems as tools for biogeochemical observation on large lakes like Superior. These554

instruments describe only a small fraction of a water body at any given time, which555

complicates efforts to generalize results to the system as a whole. A network of simi-556

lar sensors equipped on moorings, vessels of opportunity, and other vehicles (drifters,557

saildrones, wavegliders) may be suited for more synoptic observation. Seasonal ice558

cover limits winter deployment of autonomous sensors, and has long acted as a blinder559
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focusing scientific attention on more accessible seasons. Novel observation platforms560

designed to observe under-ice pCO2 (M. D. DeGrandpre et al., 2019; Lee et al., 2022)561

demonstrate the potential to expand the horizons of inorganic C observation in sea-562

sonally ice-covered lakes. Direct measurements of gas flux may also be obtained by563

eddy covariance towers in the vicinity of the Great Lakes (Shao et al., 2015).564

This research grappled with problems of bias in transect data due to overrepre-565

sentation of certain regions in space (the far western lake) and time (summer). Al-566

though these problems were partially addressed by regression analysis and separation567

of pelagic and riverine regimes, future work should consider other drivers of spatial568

and temporal heterogeneity, for example: dissolved organic matter and chlorophyll569

measured by in-situ instruments or remote sensing (e.g. Lohrenz et al., 2018; Sims570

et al., 2023). Expanded monitoring of pCO2 and related chemical properties in the571

Laurentian Great Lakes provides a fruitful avenue for observation and modeling of572

CO2 budgets in the world’s largest surface freshwater resource.573

4.3 Conclusions574

This study provided the most comprehensive observations to date of surface575

pCO2 variability in Earth’s largest freshwater lake by area and demonstrated tech-576

niques for inferring C cycling drivers in an understudied system. As the present per-577

turbation of Earth’s C cycle continues, the need for such knowledge to inform water578

and climate policy will grow apace, requiring continuing innovation of observational579

and modeling capabilities. This is as true for the Laurentian Great Lakes as for the580

African Rift Lakes and other understudied surface waters of the world.581

A spatially-comprehensive, fully annual CO2 flux budget is not achievable with582

the data presented here because of spatial and temporal gaps in the time series pre-583

sented. Future work must perform more observation of neglected regions in space584

and time, extrapolation to unobserved domains, and generalization of observed fluxes585

and drivers by modeling efforts. To this end, we recommend further development of586

observational strategies such as underway data collection, moored and autonomous587

instrumentation, remote sensing, and winter limnology techniques to better constrain588

CO2 flux in Superior and other large lake systems. Efforts to resolve the modeled C589

budgets of the Great Lakes will benefit from a greater number of CO2 measurements590

to constrain and correct models (cf. Gloege et al., 2022). Insights into the balance591

of productivity and respiration may result from pairing a large pCO2 survey with592

measurements of other biogeochemical tracers such as dissolved oxygen (Evans et al.,593

2022) or primary productivity (Sterner, 2010). As ice cover of temperate lakes declines594

with climate change, the period amenable to transects of seasonally ice-covered lakes595

will grow. This disappearance of the ice cover regime is among driving forces of the596

sub-discipline of winter limnology, which studies a vanishing environment (Ozersky et597

al., 2021). It is unclear how changes in ice cover will affect annual pCO2 fluxes in these598

changing lakes systems. Spatially- and temporally- comprehensive observations of el-599

ement cycling in these large lakes hint at the depth and complexity of biogeochemical600

functions responding and feeding back to a changing planet.601

Open Research Section602

Underway data generated by transects of the RV Blue Heron is freely available at603

its Rolling Deck to Repository site: https://www.rvdata.us/search/vessel/Blue%20Heron.604
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Underway pCO2 surveys unravel CO2 invasion of Lake1
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Key Points:7

• Underway pCO2 was measured in Lake Superior from 2019 to 2022 to form the8

first multi-year pCO2 time series in the Laurentian Great Lakes.9

• The seasonal pCO2 cycle illustrated competition of thermal and biophysical10

drivers and spatial heterogeneity associated with riverine influence.11

• Lake Superior maintained atmospheric CO2 equilibrium leading to increasing12

surface water pCO2 on decadal timescales.13
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Abstract14

This study observed seasonal trends and inferred drivers of CO2 biogeochemistry at the15

air-water interface of Lake Superior. Underway carbon dioxide partial pressure (pCO2)16

was measured in surface water during 69 transects spanning ice free seasons of 2019-17

2022. These data comprise the first multiannual pCO2 time series in the Laurentian18

Great Lakes. Surface water pCO2 was closely tied to increasing atmospheric pCO2 by19

a 100 day CO2 equilibration timescale, while seasonal variability was controlled equally20

by thermal and biophysical drivers during the ice-free season. Comparison to previous21

modeling efforts indicates that Lake Superior surface pCO2 increased at a similar22

rate as the atmosphere over the preceding two decades. Spatial heterogeneity in CO223

dynamics was highlighted by a salinity-based delineation of “riverine” and “pelagic”24

regimes, each of which displayed a net CO2 influx over Julian days 100-300 on the25

order of 30 Gmol C. These findings refine previous estimates of Lake Superior C fluxes,26

support predictions of anthropogenic CO2 invasion, point to new observation strategies27

for large lakes, and highlight an urgent need for studies of changes to lacustrine C28

cycling.29

Plain Language Summary30

Carbon dioxide gas concentrations were measured in surface waters of Lake Supe-31

rior for four years, forming the first multi-year dataset of direct observations of carbon32

dioxide gas concentration in the Laurentian Great Lakes. Lake Superior’s surface car-33

bon dioxide concentration was closely tied to that of the atmosphere on time scales34

longer than one year. Seasonal variations in carbon dioxide concentration were driven35

by water temperature, biological activity, river influence, and gas exchange with the36

atmosphere. Lake Superior released and absorbed carbon dioxide cyclically at different37

times of the year, absorbing more than it released from April to November. Mixing sur-38

face waters maintain the same carbon dioxide concentration as the atmosphere (which39

is increasing due to anthropogenic emissions), so the partial pressure of carbon dioxide40

gas in Lake Superior surface waters increased over the past two decades. This work41

improves the scientific understanding of carbon cycling in Lake Superior and advances42

techniques for carbon cycle observation and modeling of other lakes.43
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1 Introduction44

Measurements of carbon cycling in the Earth’s hydrosphere are central to un-45

derstanding global biogeochemical cycling and responses to perturbation (Le Quéré et46

al., 2013). Continuing anthropogenic emissions of carbon dioxide (CO2) are increas-47

ing atmospheric concentrations at an unprecedented rate, which may force changes in48

carbonate equilibria in the oceans (Feely et al., 2001), in soils (Oh & Richter, 2004),49

in rivers (Raymond & Hamilton, 2018), and in lakes (Alin & Johnson, 2007).50

Many studies of the inorganic C system in inland waters collect and analyze dis-51

crete water samples for parameters including pH, dissolved inorganic carbon (DIC),52

total alkalinity (AT), and partial pressure of carbon dioxide (pCO2) (Cole et al., 1994).53

Direct measurements of CO2 flux across the air-water interface are also collected via54

floating chamber or eddy covariance methods (Podgrajsek et al., 2014). Construct-55

ing time series of discrete water chemistry measurements is time- and labor-intensive56

and may not resolve the high spatial and temporal variability of inorganic C cycling57

in many water bodies such as large lakes with high spatial and temporal variability58

(Schilder et al., 2013). Additionally, calculation of one inorganic C parameter from59

two others remains fraught with uncertainty due to ongoing challenges associated with60

measurement and equilibrium calculations in freshwater (Liu et al., 2020; Minor &61

Brinkley, 2022; Young et al., 2022). To bridge these gaps in observational capabilities,62

instruments measuring inorganic C parameters continuously or autonomously have63

been developed and deployed in aquatic systems spanning the lacustrine-marine spec-64

trum (Bushinsky et al., 2019; Lynch et al., 2010). Recent years have seen applications65

of pH and pCO2 underway sensors that perform with uncertainties similar to those of66

discrete sample measurements (Ma et al., 2019; Takeshita et al., 2018).67

Inorganic C chemistry remains less-studied in inland waters than in marine sys-68

tems (Phillips et al., 2015), due in part to high physical, chemical, biological, and69

temporal heterogeneity within and among lakes and rivers. Large lakes may serve70

as stepping-stones for application and further development of oceanographic chemical71

techniques in inland waters. Their great volume and relatively small terrestrial in-72

fluences lend them a more constant chemistry and physics than their smaller peers.73

The largest of lakes share with oceans similar biogeochemical features and relative74

importance to local and global biogeochemical cycling (Sterner et al., 2017). On the75

other hand, large lakes respond more rapidly than the global ocean to perturbation;76

their hydrologic residence times (c. 190 years for Lake Superior) are shorter than that77

of the global ocean (millennia). Holomictic lakes experience full water column mixing78

at least annually, which represents a homogenizing driver not observed in oceans. For79

these reasons, large lakes can act as test systems for investigations of environmental80

variables, with responses occurring on more accessible spatial and temporal scales for81

research (Sterner, 2021).82

The Laurentian Great Lakes lie on the border of the United States of America and83

Canada and within the historical and contemporary lands of Native American and First84

Nations. They constitute the largest contiguous aquatic ecosystem on Earth (Wetzel,85

2001), yet C cycling in the Great Lakes is not well-understood (Minor & Oyler, 2021).86

It remains unclear to what extent the Great Lakes are net sources or sinks of CO2 to the87

atmosphere (McDonald et al., 2013; N. Urban & Desai, 2009). Alin and Johnson (2007)88

concluded that they are annual net CO2 sources, while Bennington et al. (2012) noted89

that studies of CO2 cycling in Lake Superior have been biased by sparse observations90

restricted to the ice-free period, and could not “close the cycle” by modeling all C91

inputs and outputs. These pioneering studies were confounded by observations of92

inorganic C cycling that were sparse, irregular or unrepresentative of the lakes as93

a whole. This situation is similar to that of the Southern Ocean or South Pacific94

Ocean, in which limited observation hindered attempts to constrain biogeochemical95

budgets (Takahashi et al., 2009). Such lakes functioning as “sentinels, integrators, and96
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regulators of climate change” (Williamson et al., 2009) exert significant influence on97

regional and global C budgets (Cole, 2013) and demand more detailed study.98

This research focuses on surface water pCO2 variations over time and space99

to illustrate the C cycle of Lake Superior in unprecedented detail. pCO2 in water100

responds to physical (temperature, pressure, salinity), chemical (pH, DIC, AT, CaCO3101

dissolution/precipitation), and biological (production, respiration) drivers (Zeebe &102

Wolf-Gladrow, 2001), such that a comprehensive understanding of pCO2 variability103

sheds light on a suite of biogeochemical functions. As a direct driver of CO2 flux across104

the air/water interface, pCO2 in surface waters acts as an important parameter of105

atmospheric CO2 accumulation. Accurate predictions of climate change and mitigation106

efforts require an improved understanding of the role of waters bodies as sources and107

sinks of CO2 and other greenhouse gases (Cavallaro et al., 2018).108

Lake Superior has a small surface area-to-catchment ratio of 1.55 (Urban, 2005)109

and is underlain by a weathering-resistant igneous mineralogy leading to exceptionally110

dilute, soft, and carbonate-poor water chemistry. Its water is warming faster than111

the overlying atmosphere (Austin & Colman, 2008), and the concentration of most of112

its major ions is increasing (Chapra et al., 2012). Interannual trends in AT, pH, and113

pCO2 have proven difficult to constrain due to covariation with lake level, influence114

from Dreissenid calcification in tributaries, large measurement uncertainty, and spatial115

heterogeneity (Minor & Brinkley, 2022). These poorly-understood changes contribute116

to the need for a sustained campaign of spatially- and temporally-comprehensive mea-117

surements of the inorganic carbon system in Lake Superior.118

In this work, underway pCO2 measurements gathered by instrumentation aboard119

RV Blue Heron from four consecutive field seasons (April-November 2019-2022) pro-120

vided a survey of unprecedented spatial and temporal scope describing inorganic C121

cycling drivers and variability in a large lake. This information was used to infer122

trends in pCO2 and CO2 flux over space and time and establish the interplay of ther-123

mal and biophysical drivers of pCO2, and compare the relative magnitudes of wind124

velocity and pCO2 saturation as drivers of CO2 flux. The results demonstrate a path-125

way towards comprehensive CO2 budgets for the Laurentian Great Lakes via novel126

observation strategies and improved modeling efforts.127

2 Methods128

Underway instrument datasets from 69 transects of the RV Blue Heron were129

compiled. These efforts included single-day endeavors near the vessel’s home port130

of Duluth Minnesota, as well as multi-week transects across the Laurentian Great131

Lakes (Figure 1). Water was directed from the ship’s water intake line at 2 m depth132

through a suite of sensors measuring parameters including dry molar fraction of carbon133

dioxide (xCO2), sea surface temperature (SST), and sea surface conductivity. These134

were combined with wind velocity, barometric pressure, and air temperature collected135

from an onboard meteorological station. The multi-year span considered in this study136

permits evaluation of interannual variability in inorganic C biogeochemistry despite137

limited cruises in 2020 and 2021 due to challenges associated with the Coronavirus138

pandemic.139

xCO2 was measured in water from the underway system at 2 second intervals140

using a Sunburst Sensors SuperCO2 instrument equipped with a showerhead equili-141

brator. Measurements from four standard gases with CO2 concentrations between 0142

and 1018 ppm were performed every 2 hours (Supplementary Figure S1) and the 60143

seconds before and after calibration removed from the time series to prevent memory144

effects. The slope and intercept values from a type-I linear regression of measured145

vs. standard xCO2 were used to correct surface water xCO2 before conversion to146
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pCO2 (Equation 1) A nearly-identical instrument demonstrated a pCO2 measurement147

uncertainty of ± 5 µatm (M. DeGrandpre et al., 2020). SST and conductivity were ob-148

tained from a SBE21 thermosalinograph every 2 seconds. Conductivity was converted149

to practical salinity using the equations of Hill et al. (1986). Wind velocity was mea-150

sured with a Young 05106 wind monitor on a mast 10 meters from the sea surface. Air151

temperature was obtained from a Young 41372VC thermometer. It was assumed that152

mast-measured windspeed (corrected for travel) approximated neutral wind speed at153

10 meters (U10n) sufficiently well for the parameterization of instantaneous CO2 flux.154

Measured pCO2 and calculated CO2 flux were averaged for each day of each transect155

in 0.01◦ x 0.01◦ boxes (approximately 1.1 x 0.8 km at the latitude of Lake Superior)156

to normalize distributions of pCO2 and CO2 flux on an areal basis and prevent biases157

due to vessel idling.158

pCO2 was calculated as a product of ambient atmospheric pressure (patm) and159

xCO2 both measured by the SuperCO2 instrument and corrected for water vapor160

partial pressure (pH2O) calculated as a function of temperature assuming saturation161

(Dickson et al., 2007):162

pCO2 = xCO2 · (patm − pH2O) (1)163

CO2 flux was parameterized by the difference between aqueous and atmospheric pCO2,164

multiplied by the gas transfer velocity (k), a function of Schmidt number Sc (Ho165

et al., 2006), mean squared neutral wind speed at 10 meters above the sea surface166

(< U2
10 n >), and Ko, the solubility of CO2 in water (Weiss, 1974). Positive values of167

CO2 flux indicate efflux.168

CO2 Flux = kKo (pCO2 aq − pCO2 atm) (2)169

170

k = 0.266 < U2
10 >

(
Sc

600

)−0.5

(3)171

We compared two sources of atmospheric CO2 concentrations for calculation172

of CO2 flux: underway-measured atmospheric pCO2 measured every 2 hours by the173

SuperCO2 instrument and atmospheric pCO2 as measured at the WLEF/Park Falls174

Wisconsin tower (A. Desai, 2022). The WLEF/Park Falls time series was chosen for175

flux calculations, as detailed in the Results.176

There is considerable disagreement among gas flux parameterizations applied to177

lakes. Previous studies have assumed no wind dependence (Cole & Caraco, 1998) or178

different values of the empirical coefficient of the gas transfer velocity equation (Atilla179

et al., 2011). The parameterization in this study (Ho et al., 2006) was chosen on the180

grounds that Lake Superior can be understood similarly to marine environments, with181

a high range of wind speeds and large fetch which merit the quadratic wind dependence182

discussed by Wanninkhof (1992) (D. Ho, personal communication).183

Calculations were completed with Python 3.8, using Pandas (Reback et al.,184

2022) for data structure manipulation, SciPy (Virtanen et al., 2020) and Statsmodels185

(Seabold & Perktold, 2010) for regression and statistical analysis, Numpy (Harris et186

al., 2020) for array computation, PyCO2SYS (Humphreys et al., 2020) for CO2 system187

calculations, GSW-Python (Firing et al., 2021) for salinity conversions, and Matplotlib188

(Hunter, 2007) and Seaborn (Waskom, 2021) for visualization.189

3 Results190

More than 6 x 106 measurements of xCO2 in Lake Superior surface waters were191

assembled into a pCO2 and CO2 flux timeseries. These data spanned the lake’s most192

significant hydrological regions, including shallow coastal zones, deep (maximum 406193
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Figure 1. Underway measurement density transects 2019-2022, visualized as the number of

occupations of approximately 5 km squares. The number of days of observation ranged from 0 to

nearly 600. The cities of Duluth and Sault Ste. Marie, between which multi-lake transects tra-

verse, are indicated by red triangles. The Park Falls/WLEF tower is denoted by a black square.

m) waters, riverine outlets, and regions bordering significant human development (Fig-194

ure 1). The most heavily-observed regions included the far western arm of Lake Su-195

perior and a cross-lake transect from Duluth to Sault Ste. Marie. Binning of pCO2196

and CO2 flux data by grouping observations by date and 0.01° boxes yielded 1.3 x 104197

observations.198

3.1 Underway Timeseries Overview199

Mean observed SST was 11.4 ◦C with a median of 12.7 ◦C. SST varied widely200

among and within cruises, ranging from a maximum of 23.5 ◦C in July 2019 near the201

center of the Far Western Arm to a minimum of 0.45 ◦C in April 2022 in the plume202

of the St. Louis River Estuary. Practical salinity calculated from conductivity ranged203

from a near-constant 0.0446 in unstratified offshore waters to values exceeding 0.09204

in the plume of the St. Louis River Estuary, displaying a mean of 0.0455, a median205

of 0.0454, and a standard deviation of 0.0015. The timing of thermal stratification206

in Lake Superior varied widely among locations and years (Austin et al., 2022), so207

observations within 0.5 ◦C of the temperature of maximum density of freshwater (3.98208

◦C) were designated as unstratified. Stratification occurred between late June and209

August, depending on year and location (Figure 2a); interannual weather variabil-210

ity exerted considerable influence on stratification development, as indicated by the211

historically late stratification of Lake Superior in August 2022 (J. Austin, personal212

communication).213

Surface-water DIC and pH (free scale) were calculated from measured pCO2,214

SST, and an assumed AT of 840 µmol kg-1 (Figure 2d-e) with PyCO2SYS, using215

the carbonate constants of Waters et al. (2014). AT is largely invariant in Lake216
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Superior (Minor and Brinkley 2022, Sandborn et al. 2023) except in regions with217

significant terrestrial influence; no AT-conductivity relationship for Lake Superior has218

been published, so AT was not parameterized by underway data. Calculated pHfree219

exhibited a mean of 8.075 and standard deviation of 0.093, while calculated DIC220

exhibited a mean of 855.0 µmol kg-1 and standard deviation of 8.8 µmol kg-1. This221

pHfree distribution fell within the range of values given in Minor and Brinkley (2022),222

while the mean calculated DIC was 10-40 µmol kg-1 higher than observations given223

in Zigah et al. (2011) and Sandborn et al. (2023). The discrepancy may be due to224

interannual DIC increases, sampling bias in the latter two studies favoring regions or225

periods of lower DIC, interferences due to organic alkalinity, or uncertainty associated226

with equilibrium calculation, all of which remain active areas of research (Minor &227

Brinkley, 2022; Sandborn et al., 2023). Seasonal variation in DIC was evident as a228

summertime decrease on the order of 20 µmol kg-1, followed by an autumn increase of229

c. 10 µmol kg-1.230

3.2 Atmospheric CO2231

The daily mean shipboard atmospheric xCO2 varied seasonally in concert with232

the CO2 timeseries observed at the Park Falls/WLEF tower (Desai, 2022) (Figure233

S5), approximately 80 km south of Chequamegon Bay, Wisconsin. Both series dis-234

played a larger annual variability and a phase shift from the Mauna Loa CO2 time235

series (Keeling & Keeling, 2017). No systematic biases in atmospheric CO2 concen-236

tration were observed between the underway and Park Falls/WLEF time series within237

years, yet the underway atmospheric signal displayed a much larger variability. Several238

anomalies emerged in the underway atmospheric data. Atmospheric xCO2 measure-239

ments in several cruises were consistently higher than expected despite nominal mea-240

surements of standard gases and sea surface xCO2. These cruises included extended241

periods of idling, and presumably detection of exhaust CO2 by the underway system.242

In another two cruises in September 2022, atmospheric (but not sea surface) xCO2243

was depressed over a period of weeks for reasons related to a filter on the air inlet.244

Due to these discrepancies, we chose to use daily means of nearby Park Falls/WLEF245

tower hourly measurements of atmospheric xCO2 with the expectation of a well-mixed246

atmosphere over these scales. The occurrence of most atmospheric underway xCO2247

measurements within a close approximation of the Park Falls/WLEF timeseries vali-248

dated this expectation.249

3.3 Wind Speed250

Wind speed observed on Lake Superior (corrected for direction of travel) ex-251

hibited a skewed unimodal distribution with a peak at 4.5 m s-1 (Supporting Figure252

S2a). Some bias may have been incurred by intentional planning of transects around253

inclement weather and targeting the ice-free season, so it was unclear how well these254

transects represented the true distribution of wind velocity above Lake Superior. The255

underway-observed wind speed distribution in 2020 stood out from other years with a256

lower and irregular distribution; these transects were limited in time and space (Fig-257

ure S1) and are less likely to represent the true distribution of wind speed over Lake258

Superior. Comparison of the underway wind speed distributions with those measured259

offshore at the Stannard Rock Lighthouse over the same periods (Figure S2b) indicates260

that the underway-observed wind speed distribution closely approximated that of the261

whole season.262

The wind speed distribution peaks observed from either source were lower than263

the global U10n distribution peak of approximately 7 m s-1 in Yang et al. (2022), which264

may imply an underestimation of CO2 flux as parameterized by dual-tracer models as265

in this research. The present scarcity of research on gas flux parameterization validity266

in large lake systems for which size, morphometry, and variable winds greatly influence267
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Figure 2. Sea surface temperature, pCO2, calculated CO2 flux, calculated DIC, and calcu-

lated pHfree observed in 0.01◦ boxes on transects of Lake Superior, 2019-2022. Median values for

each day of observation are connected by a grey line. a. The 3.98 ◦C temperature of maximum

density is indicated by a dotted line, along which lie unstratified conditions, highlighted in red.

Depressed springtime surface temperatures of 2022 are visible as a delayed warming trend. b.

The Park Falls/WLEF time series is displayed as a dotted line separating observations of CO2

supersaturation and undersaturation. c. The division of CO2 efflux vs. influx is indicated by

a dotted line. d. DIC as calculated from pCO2 and assumed AT = 840 µmol kg-1. e. pH (free

scale) as calculated from pCO2 and assumed AT = 840 µmol kg-1.
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gas flux magnitude and timing (Perolo et al., 2021; Schilder et al., 2013) does not yet268

allow exploration of similar biases in this research.269

Gas transfer velocities (k) calculated from the underway wind distribution dis-270

played a mean of 1.6 m d-1, about half the mean ocean value of 3.3 m d-1 given by271

Broecker and Peng (1982) and supported by revised gas transfer velocity parameteri-272

zations (e.g. Ho et al., 2006; Wanninkhof, 2014). Given this information, along with273

the 147 m mean depth of Lake Superior (Fuller & Shear, 1995), its Revelle Factor274

(RF ), DIC, and aqueous CO2 concentration [CO∗
2] (from equilibrium calculations),275

the characteristic timescale, or e-folding time, of CO2 equilibration in Lake Superior276

(τCO2
) can be estimated (Zeebe & Wolf-Gladrow, 2001):277

τCO2
=

mixing depth

k
· DIC

[CO∗
2]

· 1

RF
(4)278

During unstratified periods, mean RF was 26.9 ± 0.6, mean DIC was 867.0 ±279

0.9 µmol kg-1, and mean [CO2*] was 29.6 ± 0.8 µmol kg-1 (all ± s.d.). The resulting280

τCO2 during the unstratified period was 100. ± 4 days; this period is much smaller281

than that of most of the surface ocean mixed layer, indicating relatively fast CO2282

equilibrium despite Superior’s deeper mixed layer. This period is similar in magnitude283

to the duration of the twice-annual unstratified periods in December-January and May-284

July (though stratification phenology varies among years; Austin and Colman (2008);285

Woolway et al. (2021)), so it is reasonable to expect that on multiannual timescales,286

Lake Superior maintains near-atmospheric CO2 equilibrium. This inference depends on287

lake stratification and wind velocity, both of which may shift with the changing climate288

(Xue et al., 2022). Climate change effects on lake thermal state and atmospheric289

circulation are likely to have complex effects on lake biogeochemistry which extend to290

CO2 flux behavior changes (A. R. Desai et al., 2009).291

3.4 pCO2 Variability292

A continuous multiannual cycle of observed pCO2 could not be constructed due293

to large gaps in the time series, so a synthesized cycle was constructed by combining294

four years of observations into one based on Julian day of year (DOY). Least-squares295

regression of observations grouped by 0.01◦ boxes and date of observation to an equa-296

tion of the form297

pCO2 = a · sin
(
b · c− DOY

365.25

)
+ d (5)298

(where a, b, c, and d are regression coefficients) exhibited an amplitude (a) of299

58.50 ± 0.14 µatm and a baseline pCO2 (d) of 381.197 ± 0.063 µatm (uncertainty as300

standard errors of regression coefficients) (Figure 3a)301

Spatial heterogeneity was visible in the range of pCO2 values observed on a given302

date, with super- and under-saturated conditions observed throughout the year. This303

high degree of spatial heterogeneity obscured the seasonal cycle of pCO2 in the lake304

as a whole. Additionally, the high concentration of transects in the riverine-influenced305

Western Arm of Lake Superior may not have represented open-water conditions pre-306

vailing in the remainder of the lake. Diel variability was examined as a potential source307

of bias, but no significant difference between daytime and nighttime pCO2 was found308

(see Supporting Information).309

Confounded spatial and seasonal variabilities were partly separated by salinity310

into “riverine” and “pelagic” regimes in order to isolate open-water seasonal variabil-311

ity. A cutoff salinity value was defined by statistically significant departure from the312

surface salinity distribution observed in unstratified periods. In every year of observa-313

tion, springtime unstratified surface salinity observations formed a narrow distribution314
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Figure 3. pCO2 observations grouped by 0.01◦ squares and date during transects of Lake

Superior for a synthetic annual time series 2019-2022. Black dashed lines represent sinusoidal

regressions of each time series.
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with a mean of 0.04455 and a standard deviation of 0.00044. This value was taken315

to represent the mean salinity of the well-mixed lake. Observations with salinity 3316

standard deviations greater than the unstratified period mean were considered river-317

influenced. This scheme decreased the noise around the seasonal trend of surface318

water pCO2 in pelagic observations (Figure 3b) and highlighted spatial heterogeneity319

in riverine-influenced observations (Figure 3c). Potential interferences with this clas-320

sification included evaporation and precipitation, which would be expected to increase321

and decrease surface salinity, respectively. For this reason, we elected not to construct322

any quantitative mixing relationship based on underway-measured surface salinity and323

merely used it as a rough proxy for riverine influence. In pelagic waters of Lake Supe-324

rior during April-November the mean observed pCO2 was 380 µatm with a standard325

deviation of 53 µatm, while in river-influenced waters, the mean observed pCO2 was326

343 µatm with a standard deviation of 38 µatm; the depression of riverine regime mean327

pCO2 may have been due to promotion of primary production and CO2 drawdown in328

nutrient-rich riverine-influenced Lake Superior waters (Minor et al., 2014; Sterner et329

al., 2020).330

The pelagic pCO2 cycle displayed a greater seasonal variability than the simu-331

lated time series of Bennington et al. (2012) (Figure 4). Annual pCO2 summer minima332

and spring maxima were approximately 330 and 400 µatm in Model 1 of that work,333

compared to 322 and 440 µatm in this study’s synthetic annual time series of pelagic334

observations. Bennington et al. modeled surface water equilibrium with an atmo-335

spheric pCO2 of 360 µatm at the end of a mixing period spanning late April-late June336

1997-2001. At the end of destratification in this (2019-2022) study, a mean surface337

water pCO2 of 430 ± 30 µatm (±s.d.) was observed, which was indistinguishable from338

contemporaneous atmospheric pCO2. The two models presented by Bennington et339

al. differed in their treatment of primary production limitation, which resulted in the340

greatest differences after spring mixing, when this study’s observations also displayed341

high spatial variability.342

The observed increase in spring mixing period pCO2 was consistent with the343

magnitude of atmospheric CO2 concentration increase (c. 2 ppm yr-1, Keeling and344

Keeling (2017)) over the 23 years separating the modeled period of Bennington et al.345

and these observations, as well as the direction of increase in Lake Superior surface346

water pCO2 calculated from pH and AT over the period 1992-2019 by Minor and347

Brinkley (2022). The precise rate of increase of Lake Superior surface water pCO2 over348

decadal timescales remains difficult to constrain, but its continuing near-atmospheric349

equilibrium state, along with radiocarbon measurements indicating rapid (<3 years)350

recycling of the DIC pool (Zigah et al., 2011), indicates that it mirrors atmospheric351

pCO2 during mixing periods and will continue to do so.352

The magnitude of seasonal variability in Lake Superior pCO2 was comparable353

to that of subtropical ocean regions (Bates, 2001), but shifted in the year. In terms354

of pCO2 phenology, Lake Superior resembled the Arctic ocean most closely, despite355

exhibiting a much larger amplitude (Orr et al., 2022). Scarcity of data from November-356

April prevented great confidence in extrapolation to those periods, but models indicate357

that Lake Superior pCO2 likely remains supersaturated or near-atmospheric equilib-358

rium throughout that period (Bennington et al., 2012). Interannually-variable winter-359

time ice cover (White et al., 2012) may modify the expected CO2 efflux.360

3.5 Competing Drivers of pCO2361

Deconvoluting the pelagic pCO2 cycle (Figure 3b) into inferred drivers shed light362

on biogeochemical cycling in Lake Superior. The method of Takahashi et al. (1993) was363

used to separate measured pCO2 into thermal (pCO2 T) and biophysical (pCO2 BP)364
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Figure 4. Median daily observations of pelagic surface water pCO2 observed during 2019-

2022 compared with Models 1 and 2 from Bennington et al. (2012), which described mean lake

surface pCO2 1997-2001. A 46 µatm translation of Model 1 to account for 23 years’ atmospheric

CO2 increase (assuming 2 µatm yr-1) aligned spring and mixing season modeled results with

contemporary observations.
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signals365

pCO2 T = pCO2 · e
(

∂ln(pCO2)
∂T [T−T ]

)
(6)366

367

pCO2 BP = pCO2 · e
(

∂ln(pCO2)
∂T [T−T ]

)
(7)368

Seasonal warming was expected to increase pCO2 and thus promote CO2 efflux.369

The remaining variation was ascribed to biophysical processes including production,370

respiration, gas flux, and river inputs. CaCO3 dissolution and precipitation were371

neglected in this analysis of greatly-undersaturated Lake Superior. Overbars indicated372

arithmetic mean values in the literature source, but this study analyzed an incomplete373

annual time series of pCO2, so mean temperature (T ) and mean pCO2 (pCO2) were374

adjusted to 1 ◦C and 400 µatm to ensure convergence of the driver signals at the375

beginning of the observed period. The temperature partial derivative of ln(pCO2) was376

calculated via PyCO2SYS, yielding an average value of 0.03606 ◦C-1 for Lake Superior377

over the temperature range 0-20 ◦C (code in Supporting Text S2). This temperature378

dependence is in good agreement with values used in previous studies (0.038 ◦C-1 Atilla379

et al. (2011); 0.0384 ◦C-1 Lynch et al. (2010)).380

Plotting the measured, thermal, and biophysical pCO2 signals illustrated the381

interplay of these competing drivers of pCO2 in Lake Superior (Figure 5). Seasonal382

temperature effects were visible as the springtime increase and autumn decrease in383

pCO2 T, opposed by the summertime dip in pCO2 BP. Measured pCO2 lay suspended384

between the curves. The degree to which thermal vs. biophysical drivers control385

pCO2 can be conceptualized as the vertical distance between the measured curve and386

its two drivers; in spring, measured pCO2 was closely tied to pCO2 T, indicating that387

most of the spring trend in pCO2 was driven by seasonal warming. pCO2 moved388

equidistant between drivers before dipping with the biophysical curve through the389

summer. Quantitatively, the ratio of thermal to biophysical control of pCO2 can be390

calculated (Fassbender et al., 2018; Takahashi et al., 2002) as391

RT BP−1 =
max(pCO2 T) − min(pCO2 T )

max(pCO2 BP) − min(pCO2 BP)
(8)392

which yielded a value of 1.1 using the regressions in Figure 5, indicating roughly equal393

thermal and biophysical driver magnitudes over the ice-free period. Interestingly, this394

value aligns with that of the Atlantic Ocean at the approximate latitude of Lake395

Superior (Fassbender et al., 2018), which raises questions about latitudinal gradients396

in RT BP−1 in inland waters compared to marine systems. Minor et al. (2019) found397

majority biophysical control of calculated pCO2 from discrete samples of Lake Superior398

surface water in 2014-2016, and the degree of dominance varied year-to-year.399

3.6 CO2 Flux Variability400

CO2 flux displayed sinusoidal behavior similar to that of pCO2, but with a greater401

degree of variability within individual cruises (Figure 6). Sinusoidal regression of402

observations of CO2 flux (grouped by 0.01◦ box and date) over Julian day indicated403

similar seasonality to the pCO2 annual cycle. For pelagic observations, there was404

a baseline value of -1.88 mmol m-2 d-1 (negative values indicating influx) and an405

amplitude of 4.11 mmol m-2 d-1. The most extreme values were observed in mid-406

summer, when high wind speeds coupled with CO2-undersaturated surface waters to407

create high instantaneous rates of CO2 drawdown exceeding 70 mmol m-2 d-1.408

3.7 Competing Drivers of CO2 Flux409

This research parameterized CO2 flux from CO2 saturation and wind velocity,410

so discussion of the drivers of CO2 flux over Lake Superior is limited to the relative411
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Figure 5. Deconvolution of median daily measured sea surface pCO2 (circles/dashed line)

into Biophysical (squares/dash-dot line) and Thermal (triangles/dotted line) drivers. Septic

power function regressions are shown as visual aids, and their equations are given in the Support-

ing Information.
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Figure 6. Parameterized CO2 flux grouped by 0.01◦ squares and date during transects of

Lake Superior for a synthetic annual time series 2019-2022. Black dashed lines represent sinu-

soidal regressions of each time series.
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dominance of these two factors over various timescales. The degree to which either412

predictor explains flux magnitude can be quantified using linear regression of the ab-413

solute value of flux against the absolute values of k or ∆pCO2, log-transformed to414

approach normality. R2 values then indicate the fraction of variation predicted by415

each variable: 59.2% of CO2 flux variability was predicted by k and 43.4% by ∆pCO2,416

indicating that k predicted CO2 flux better than ∆pCO2 in Lake Superior on mul-417

tiannual timescales. This result also explains some CO2 flux variability driven by k418

variability in any given transect visible as departures from the sub-annual cycle in419

Figure 6. This result contrasted with the conclusions of Natchimuthu et al. (2017)420

that ∆pCO2 variability dominated over k variability over long (days to weeks) periods421

in small hemiboreal lakes. This may be due to the relatively wider range in pCO2422

observed by Natchimuthu et al. (714-12961 µatm) which overwhelmed k variability,423

as well as the smaller fetch associated with their sites.424

A similar pattern emerged when individual cruises were considered. 52 of 69425

cruises demonstrated superior predicting ability of CO2 flux by k relative to ∆pCO2, as426

quantified by higher R2 values resulting from a type-I linear regression. The prediction427

capacity of k diminished in cruises with a high interquartile range of pCO2. Linear428

regressions of cruise-level R2 values over log-transformed pCO2 interquartile range429

indicated significant relationships for both k R2 values (p = 0.02) and ∆pCO2 R2
430

values (p = 0.005) (Figure 7).431

These results illustrate the importance of capturing observations representing a432

full and continuous distribution of pCO2 and wind velocities for a study system. The433

relative importance of k and ∆pCO2 depended on their ranges over a timescale of434

interest, but in a system like Lake Superior with limited variability in pCO2 (com-435

pared to small inland lakes), k dominated CO2 flux variability across all timescales,436

demonstrating a crucial difference between this large lake and its smaller peers. Ob-437

servations and models of CO2 flux in large lakes miss the full picture if they neglect to438

fully characterize both ∆pCO2 and k, especially in systems where these values exhibit439

wide distributions.440

3.8 Total CO2 Flux Estimation441

Net CO2 air-sea flux over the observed seasons was obtained via integration of442

the sinusoidal regressions of instantaneous CO2 flux (Figure 6) across the observed443

time domain: Julian day 100 (April 9 or 10) through 300 (November 26 or 27). The444

resulting values (Table 1) were multiplied by the total area of Lake Superior (8.21 x445

1010 m2) to yield total fluxes, but it was not clear what fraction of the lake is considered446

“pelagic” vs. “riverine”. We suggest that these values serve as bounds for the net CO2447

flux of Lake Superior throughout the ice-free season. Uncertainty in integrated fluxes448

was determined by bootstrap random resampling with replacement of data underlying449

the sinusoidal regressions of CO2 flux for 100 repetitions and given as the standard450

deviation of the repetition net fluxes. .451

The resulting CO2 influx on the order of 30 Gmol C (360 Gg C) was similar in452

magnitude but opposite in sign to the only fully-annual modeled CO2 flux: an mean453

net annual efflux of 16 Gmol C yr-1 (190 Gg C yr-1) over the period 1997-2001 (Ben-454

nington et al. 2012). The discrepancy is accounted for by winter supersaturation of455

surface pCO2. Assuming the veracity and comparability of the above values, an efflux456

of 46 Gmol C (550 Gg C) during Julian days 301-99 is implied. The rough approxima-457

tions of carbon budgets allowed by available annual CO2 fluxes continues to prohibit458

integration of Lake Superior into regional and global C budgets. There remains the459

possibility that the modeled annual CO2 flux and this study’s observed sub-annual flux460

are not comparable due to two intervening decades of ecological and climate change, an461

under-constrained modeled pCO2 cycle, and ongoing uncertainty about comparisons462
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Figure 7. Cruise-level R2 values for the prediction of CO2 flux by k (gas transfer velocity)

and ∆pCO2, separated by interquartile ranges of the distribution of pCO2 observed in each

cruise. Shaded intervals around type-I linear regressions indicate 95% confidence intervals. Larger

interquartile ranges of pCO2 within cruises are associated with poorer prediction of CO2 flux by

k relative to ∆pCO2. Type-I linear regressions indicate significant slopes (indicated by p-values)

for n = 69 cruises.

Table 1. Time-integrated fluxes of CO2 over the air-water interface of Lake Superior ascribed

to Pelagic and Riverine chemical regimes for Julian Days 100-300. Uncertainties are given as

standard deviations propagated via bootstrap resampling with replacement for 100 repetitions.

Negative signs indicate influx.

Region CO2 Areal Flux (mol C m-2) CO2 Total Flux (Gmol C)

Pelagic −0.3744 ± 0.0068 −30.78 ± 0.56
Riverine −0.324 ± 0.023 −26.5 ± 1.9
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of measured versus calculated pCO2 in Lake Superior. An updated observation-based463

and/or process model constrained by spatially- and temporally- comprehensive direct464

observations of pCO2 and CO2 flux is required for substantive comparisons of observed465

and modeled C cycling.466

A rough estimate of net community production (NCP) can be inferred from the467

net CO2 air-sea flux and the calculated DIC time series as468

NCP =

∫ 300

t=100

(
δDIC

δt
· MLDt − CO2 Flux

)
(9)469

Assuming a constant MLD of 20 m (Bennington et al., 2010), a surface DIC470

drawdown (Figure 2d) around 10 µmol kg-1 between Julian days 100-300, and a CO2471

air-sea flux of 30 Gmol C yields an NCP of 46 Gmol C for the observed period. Spatial472

variability of MLD and weaker thermal structure before summer stratification likely473

makes this an underestimate and biases this estimate of NCP. Our estimated ice-free474

season surface water NCP is more than 200x smaller than the 9.73 Tg y-1 whole-lake475

annual primary production reported by Sterner (2010), in agreement with previous476

inferences of high organic C turnover rates in Lake Superior (N. R. Urban, 2005).477

Future studies should establish an annual NCP to compare with previously-reported478

values (e.g. N. R. Urban, 2005) which don’t constrain the sign of NCP.479

4 Discussion480

Four years of surface pCO2 measurements gathered on transects across Lake Su-481

perior were used to elucidate inorganic carbon system variability across temporal and482

spatial scales. Ice-free season (April-November) observations yielded a detailed ac-483

count of the seasonal pCO2 cycle, driven by thermal and biophysical drivers acting in484

opposition to perturb surface pCO2 from its interannual baseline state of atmospheric485

equilibrium, resulting in sustained periods of CO2 influx and efflux. Spatial variability486

in the inorganic C system effected by riverine influence was highlighted by separating487

the lake into pelagic and riverine regimes. Integration of instantaneous CO2 fluxes488

over the ice-free period resulted in April-November CO2 influxes of 32.80 ± 0.61 Gmol489

C (pelagic) and 26.5 ± 2.1 Gmol C (riverine), which are considered bounding values490

for the whole-lake mean CO2 flux during observed periods of 2019-2022; annual net491

CO2 flux remains uncertain. These results point towards a significant role of Lake492

Superior to interact with global and regional C cycling and climate change. Increases493

in surface pCO2 over the last two decades illustrate that Lake Superior is undergoing494

CO2 invasion in agreement with Phillips et al. (2015). Variability in CO2 flux, pa-495

rameterized by ∆pCO2 and gas transfer velocity k, was dominated by k over all time496

scales, though this effect diminished over periods of larger spatial variability in pCO2.497

A paucity of early Spring and late Fall data hindered analysis of periods at the498

extremes of the ice-free season, which could shed light on the effects of ice-off as a499

driver of CO2 flux (cf. Ahmed et al., 2019). As previously noted, there may be500

some bias in wind-parameterized gas transfer velocities associated with dual-tracer501

experiments (Yang et al., 2022), such that the gas transfer velocities calculated here502

may be underestimates by as much as 20%. Future studies should seek to explore wind503

speed gas flux parameterization applications in large lakes.504

4.1 Consequences of Increasing pCO2505

Among the most impactful findings of this research is the observation that Lake506

Superior surface pCO2 maintains near-equilibrium with the overlying atmosphere over507

multi-year periods. Temperature variability and biogeochemical processes drive sea-508
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sonal departures of pCO2 from atmospheric equilibrium (effecting the expected net509

annual CO2 efflux), yet surface water pCO2 returns to a baseline state of atmospheric510

equilibrium on timescales shorter than a year. This fact has several significant conse-511

quences in a world of increasing atmospheric CO2 concentration:512

First, the solubility pump of Lake Superior acts as a partial CO2 sink which can513

be approximated by an equilibrium calculation: Assuming AT = 840 µmol kg-1, T =514

3.98 ◦C (temperature of maximum density during destratification), an initial pCO2515

= 400 µatm, and an atmospheric ∆pCO2 ∆t-1 = 2.50 µatm yr-1, then a CO2SYS516

calculation indicates ∆DIC ∆t-1 = 0.184 µmol kg-1 yr-1, which is multiplied by the517

approximate mass of Lake Superior (1.21 x 1017 kg) to give a CO2 storage of 22.3518

Gmol C yr-1 (267 Gg C yr-1) due to increasing atmospheric CO2 alone. This storage519

is characteristic of any body of water maintaining CO2 equilibrium with a non-steady-520

state atmosphere. It acts alongside C sources (e.g. DIC loading) and sinks (e.g.521

C burial) to compose the net annual C budget of Lake Superior. Development of522

an annual net CO2 flux using expanded observational and modeling capabilities may523

yield insights on all of these contributors. If atmospheric pCO2 were stable, then524

Superior’s annual net CO2 efflux could be larger than it is today, mirroring the case525

of the pre-industrial global ocean, which likely acted as a CO2 source instead of a sink526

(Cartapanis et al., 2018).527

Second, Lake Superior’s water chemistry will undergo changes as a result of528

consistently-higher pCO2. Its weak CO2 buffer (Revelle factor 25-30 in calculations in529

this work, compared to marine values 8-16 (Sarmiento & Gruber, 2006)) and absence530

of sediment carbonate buffer (unlike neighboring Lake Michigan) result in relatively531

high sensitivity to atmospheric CO2 acidification. The outcomes of hypothesized lake532

acidification mirror those in the ocean: decreasing pH and CaCO3 saturation states,533

impacts on primary producer communities, changes to metal ion activities, and other534

phenomena with potentially detrimental ecosystem effects (Doney et al., 2009). Trends535

in AT and temperature may modify the speciation (e.g. [CO2−
3 ], pH) of the inorganic536

carbon system as well as the seasonal and spatial expression of the surface water pCO2537

cycle, but not the surface pCO2 of a system at equilibrium with the atmosphere.538

Third, efforts to observe Lake Superior’s inorganic C system must capture a539

greater fraction of the annual cycle and spatial variability to constrain these changes.540

The twice-annual time series of chemical parameters (including glass electrode pH and541

Gran titration alkalinity) collected by US EPA Great Lakes National Program Office542

includes samples over a broad spatial scale, during periods of mean CO2 efflux (April-543

May) and influx (August-September) but fails to observe intervening periods which544

provide context for interannual variability of the annual pCO2 cycle. Undersampling545

a complex signal like inorganic C chemistry delays detection of climate change effects546

(Carter et al., 2019). A more complete picture of biogeochemical parameters is sorely547

needed during the current period of climate change and ecological disruption. This548

gap in observational capabilities can be addressed by a sustained campaign of higher-549

quality, higher-frequency measurements of inorganic C parameters in the Laurentian550

Great Lakes.551

4.2 Observational Challenges and Opportunities552

Environmental and instrumental challenges limit deployment of underway pCO2553

systems as tools for biogeochemical observation on large lakes like Superior. These554

instruments describe only a small fraction of a water body at any given time, which555

complicates efforts to generalize results to the system as a whole. A network of simi-556

lar sensors equipped on moorings, vessels of opportunity, and other vehicles (drifters,557

saildrones, wavegliders) may be suited for more synoptic observation. Seasonal ice558

cover limits winter deployment of autonomous sensors, and has long acted as a blinder559
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focusing scientific attention on more accessible seasons. Novel observation platforms560

designed to observe under-ice pCO2 (M. D. DeGrandpre et al., 2019; Lee et al., 2022)561

demonstrate the potential to expand the horizons of inorganic C observation in sea-562

sonally ice-covered lakes. Direct measurements of gas flux may also be obtained by563

eddy covariance towers in the vicinity of the Great Lakes (Shao et al., 2015).564

This research grappled with problems of bias in transect data due to overrepre-565

sentation of certain regions in space (the far western lake) and time (summer). Al-566

though these problems were partially addressed by regression analysis and separation567

of pelagic and riverine regimes, future work should consider other drivers of spatial568

and temporal heterogeneity, for example: dissolved organic matter and chlorophyll569

measured by in-situ instruments or remote sensing (e.g. Lohrenz et al., 2018; Sims570

et al., 2023). Expanded monitoring of pCO2 and related chemical properties in the571

Laurentian Great Lakes provides a fruitful avenue for observation and modeling of572

CO2 budgets in the world’s largest surface freshwater resource.573

4.3 Conclusions574

This study provided the most comprehensive observations to date of surface575

pCO2 variability in Earth’s largest freshwater lake by area and demonstrated tech-576

niques for inferring C cycling drivers in an understudied system. As the present per-577

turbation of Earth’s C cycle continues, the need for such knowledge to inform water578

and climate policy will grow apace, requiring continuing innovation of observational579

and modeling capabilities. This is as true for the Laurentian Great Lakes as for the580

African Rift Lakes and other understudied surface waters of the world.581

A spatially-comprehensive, fully annual CO2 flux budget is not achievable with582

the data presented here because of spatial and temporal gaps in the time series pre-583

sented. Future work must perform more observation of neglected regions in space584

and time, extrapolation to unobserved domains, and generalization of observed fluxes585

and drivers by modeling efforts. To this end, we recommend further development of586

observational strategies such as underway data collection, moored and autonomous587

instrumentation, remote sensing, and winter limnology techniques to better constrain588

CO2 flux in Superior and other large lake systems. Efforts to resolve the modeled C589

budgets of the Great Lakes will benefit from a greater number of CO2 measurements590

to constrain and correct models (cf. Gloege et al., 2022). Insights into the balance591

of productivity and respiration may result from pairing a large pCO2 survey with592

measurements of other biogeochemical tracers such as dissolved oxygen (Evans et al.,593

2022) or primary productivity (Sterner, 2010). As ice cover of temperate lakes declines594

with climate change, the period amenable to transects of seasonally ice-covered lakes595

will grow. This disappearance of the ice cover regime is among driving forces of the596

sub-discipline of winter limnology, which studies a vanishing environment (Ozersky et597

al., 2021). It is unclear how changes in ice cover will affect annual pCO2 fluxes in these598

changing lakes systems. Spatially- and temporally- comprehensive observations of el-599

ement cycling in these large lakes hint at the depth and complexity of biogeochemical600

functions responding and feeding back to a changing planet.601

Open Research Section602

Underway data generated by transects of the RV Blue Heron is freely available at603

its Rolling Deck to Repository site: https://www.rvdata.us/search/vessel/Blue%20Heron.604
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to aid replication of our work. Figures S1-S4 provide extra context for statements given

in our publication.
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Text S1: Diel variability

To test the potential effect of diel variability on observed surface water pCO2, observa-

tions were separated into “light” and “dark” categories determined by sunrise and sunset

times on the 15th day of each month at the approximate center of Lake Superior. 41 of

69 cruises included only daylight observations. For 28 cruises with both light and dark

observations compared with a t-test, 26 (93%) had significantly (p<0.01) different dis-

tributions of pCO2 under dark and light conditions, with 18 of those 26 cruises (69%)

indicating increased pCO2 associated with dark conditions. No apparent seasonal or spa-

tial pattern was observed in the differences between light and dark pCO2. These equivocal

results point to no significant diel differences in sea surface pCO2, which is supported by

a repeated measures ANOVA (Python package Statsmodels) performed on pCO2 values

separated by cruise and light and dark conditions, which indicated no significant difference

between the pCO2 values observed during light and dark conditions for the whole dataset

(F = 1.1, p = 0.3); similar results were obtained for the pelagic (F = 0.55, p = 0.5) and

riverine (F = 0.62, p = 0.4) subsets. These results are insufficient in temporal coverage to

pick out drivers such as diurnal heating, primary production, and respiration at the diel

scale. The majority (65%) of observations in the underway dataset are in daytime, but

there is no basis for suggesting that the pCO2 values reported in this study are biased by

time of measurement.
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Equations S1-S3: Regression of pCO2 driver deconvolutions

Power regressions (seventh order) of measured pCO2 and its thermal and biophysical

drivers were produced as visual aids and rough approximations of relative driver domi-

nance. They are reproduced below.

pCO2 = −1.45x10−12xDOY7 + 1.89x10−9xDOY6 − 1.01x10−6xDOY5 + 2.91x10−4DOY4

–4.82x10−2xDOY3 + 4.63xDOY2–2.37x102xDOY + 5.42x103 (1)

pCO2 T = 1.57x10−13xDOY7–2.59x10−10xDOY6 + 1.90x10−7xDOY5–7.85x10−5DOY4

+1.90x10−2xDOY3–2.64xDOY2 + 1.92x102xDOY − 5.24x103 (2)

pCO2 BP = −1.05x10−12xDOY7 + 1.45x10−9xDOY6–8.37x10−7xDOY5 + 2.64x10−4DOY4

–4.93x10−2xDOY3 + 5.42xDOY2–3.24x102xDOY + 8.51x103 (3)
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Text S2: pCO2 thermal sensitivity calculation

import PyCO2SYS as pyco2

import numpy as np

from scipy import stats

from sklearn.linear_model import LinearRegression

PAR1 = 840 #Assume average total alkalinity of 840 micromol/kg

PAR2 = 400 #Assume pCO2 near atmospheric equilibrium

PAR1TYPE = 1 # 1=TA microM, 2=DIC microM, 3=pH, 4=pCO2 microatm, 5=fCO2 microatm, 6=CO32-

PAR2TYPE = 4

kwargs = {

’salinity’: 0.05, # practical

’temperature’: 10, # degC

’pressure’: 0, # dbar

’pressure_out’: 0, # dbar

’total_silicate’: 10, # silicate microM

’total_phosphate’: 0, # microM

’total_calcium’: 13.62/40.078/1000*1000000,

’total_sulfate’: 3.85/1000/96.06*1000000,

’opt_pH_scale’: 3, # 1=Total, 2=Seawater, 3=Free, 4=NBS

’opt_k_carbonic’: 15, # WMW14

’opt_k_bisulfate’: 3

}
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results = pyco2.sys(par1=PAR1, par2=PAR2, par1_type=PAR1TYPE,

par2_type=PAR2TYPE, temperature_out=10, **kwargs)

print("pH at 10 °C: " + str(round(results["pH_out"], 3)))

# %%

TEMP = np.linspace(0, 20)

pCO2array = np.zeros(len(TEMP))

lnpCO2 = np.zeros(len(TEMP))

for i in range(len(TEMP)):

results = pyco2.sys(par1=PAR1, par2=PAR2, par1_type=PAR1TYPE,

par2_type=PAR2TYPE, temperature_out=TEMP[i], **kwargs)

new = results["pCO2_out"]

pCO2array[i] = new

lnpCO2[i] = np.log(new)

Y = lnpCO2.reshape(-1, 1)

X = TEMP.reshape(-1, 1)

linear_regressor = LinearRegression() # create object for the class

regression = linear_regressor.fit(X, Y)

dlnpCO2dT = regression.coef_

print("dlnpCO2dT = " + str(round(dlnpCO2dT[0][0], 8)) + "/°C")
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Figure S1. Transects across Lake Superior during 2019-2022.

Figure S2. Wind speed distributions observed during transects of RV Blue Heron on Lake

Superior, 2019-2022
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Figure S3. Wind speed distributions observed April-November (inclusive) at Stannard Rock

Lighthouse via NOAA-NDBC instrumentation.
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Figure S4. xCO2 measurements of atmosphere and standard gases performed by SuperCO2

instrumentation during 69 transects of Lake Superior, 2019-2022. a. Pre- and post- standard

correction atmospheric xCO2 measurements demonstrate large biases from reliable atmospheric

time series. b. Standard gas xCO2 indicated by horizontal lines, measured concentrations by

points. Several periods of bias from known standard gas xCO2 are visible, demonstrating the

need for cruise-level standard curve correction of surface water xCO2 measurements. Standard

gases were changed between the 2019 and 2020 field seasons, as indicated by breaks in the known

standard concentrations.

October 26, 2023, 12:02pm



X - 10 SANDBORN & MINOR: LAKE SUPERIOR PCO2 INCREASES

Figure S5. Daily mean atmospheric xCO2 from the underway system (red dots), the Mauna

Loa time series (green dotted line) and the Park Falls/WLEF tower (blue dash-dotted line).

Anomalously depressed atmospheric xCO2 values in September 2022 not shown.
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