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Abstract

Reliable nutrient load estimation of a reservoir is challenging due to inconsistent spatial extent and temporal frequency of

water quality and quantity. This study aims to collect consistent spatial extent and temporal frequency of water depths and

nitrate concentrations of a reservoir in South Korea using uncrewed surface vehicle (USV). In this study, reservoir nitrate loads

were estimated using four methods to examine how spatial variation in water depth and nitrate concentrations affected load

estimates. Based on dual measurements of water depth and nitrate concentration, reservoir nitrate loads across 30 sampling

dates (0.7 million tons of fresh water on average) ranged from one to four tons. Results showed that a point measurement of

water depths and nitrate concentrations can cause up to -17% of underestimation of nitrate loads, particularly after intense

rainfall events. This study highlights potential opportunities and challenges of the USV-based dual monitoring systems for

water quality and quantity.
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 26 

Key Points: 27 

 An uncrewed surface vehicle (USV) was used to map water depth and nitrate 28 

concentration at a 10-meter resolution. 29 

 Nutrient load estimates varied up to 17% when comparing the USV method to a point-30 

measurement method. 31 

 Limitations and challenges of USV-based surveys for water quantity and quality were 32 

discussed.  33 
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Abstract 34 

Reliable nutrient load estimation of a reservoir is challenging due to inconsistent spatial 35 

extent and temporal frequency of water quality and quantity. This study aims to collect 36 

consistent spatial extent and temporal frequency of water depths and nitrate concentrations of a 37 

reservoir in South Korea using uncrewed surface vehicle (USV). In this study, reservoir nitrate 38 

loads were estimated using four methods to examine how spatial variation in water depth and 39 

nitrate concentrations affected load estimates. Based on dual measurements of water depth and 40 

nitrate concentration, reservoir nitrate loads across 30 sampling dates (0.7 million tons of fresh 41 

water on average) ranged from one to four tons. Results showed that a point measurement of 42 

water depths and nitrate concentrations can cause up to 17% of underestimation of nitrate loads, 43 

particularly after intense rainfall events. This study highlights potential opportunities and 44 

challenges of the USV-based dual monitoring systems for water quality and quantity. 45 

 46 

Plain Language Summary 47 

Water quantity and quality are monitored at different spatial extent and temporal 48 

frequency. This study used an uncrewed boat to measure the water depth and nitrate 49 

concentration of a reservoir in the mid-eastern Korean Peninsula at considering the spatial 50 

component and temporal components. This uncrewed boat was equipped with water depth and 51 

nitrate concentration sensors. During the study period (2021–2022), uncrewed boats conducted 52 

30 surveys. We found strong seasonal variations in nitrate load estimates in the reservoir, 53 

particularly during the wet season These results suggest that estimating nitrate loads from depth 54 

measurements at a point measurement in a reservoir can lead to underestimates. This study is a 55 

case study how the cutting-edge technologies like our uncrewed boat equipped with 56 

environmental sensors can be used for the next-generation water monitoring system. 57 

1. Introduction 58 

Nitrate is derived from natural and anthropogenic inputs via nutrient deposition from the 59 

atmosphere (Kim et al., 2011; Kim et al., 2014; Liu et al., 2013). Lakes and reservoirs have been 60 

used to monitor changes in inland nitrate deposition, which can affect their aquatic ecosystems 61 

(Elser et al. 2009). Such a nutrient regime shift in lakes and reservoirs via atmospheric 62 

deposition may change the structure of aquatic ecosystems and threaten the biodiversity (Folke et 63 

al., 2004). The water depth or water storage volume of a reservoir can affect water quality and is 64 

controlled by precipitation and water usage. Water quantity and quality of reservoirs are strongly 65 

associated with each other, particularly during the wet/dry season (Larsen et al., 1999).  66 

Monitoring changes in water depth and nitrate concentration of lakes and reservoirs requires a 67 

holistic monitoring system of hydroclimatological variables including precipitation, temperature, 68 

and biogeochemical transformations (e.g., assimilation and denitrification; Kendall et al., 2007; 69 

Pellerin et al., 2014).  70 

Strong seasonality has been often reported in the water depth, water storage volume, 71 

shape, size, and ecology of a reservoir, which can affect nutrient mixing process and may lead to 72 

harmful algal blooms (Feyisa et al., 2014; Pekel et al., 2016). Hydroclimatic extremes, such as 73 

droughts and floods, can show clear interactions of water quality and quantity. A severe drought 74 

increases the nitrate concentration and the hydraulic residence time in the aquatic system 75 

(Beklioglu et al., 2008). As air temperature increases and long hydraulic residence time, water 76 

temperature also increase enhancing stratification in freshwater systems. (Baldwin et al., 2008). 77 

This may lead to toxic cyanobacterial blooms and lowered dissolved oxygen concentrations 78 
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(Chapra, 1997). Reduced flushing and enhanced productivity also elevate nutrient, turbidity and 79 

algal levels (Mosley, 2015). This environment can trigger eutrophication and cause catastrophic 80 

impacts on the aquatic ecosystem (Zhang et al., 2018). Heavy rainfall increases surface runoff 81 

and non-point pollutant transports from the surrounding areas of the reservoir into the aquatic 82 

systems (Golladay et al., 2002). Furthermore, environmental incidents can degrade significantly 83 

the water quality, causing a lack of available water resources and increasing negative complaints 84 

regardless of the amount of water resources (Liu et al., 2023). While degraded water quality may 85 

restrict availability for certain purposes, such as recreational activities, it may still be suitable for 86 

other critical applications like flood control (Cao et al., 2021). Therefore, both water quality and 87 

quantity indices can help monitor the availability of water resources accurately with spatially and 88 

temporally consistent measurement of water quantity (Yu et al., 2016), which is crucial for 89 

proactive management of water resources (Cao et al., 2021).  90 

Water quantity and quality have been monitored at inconsistent sampling frequencies 91 

and site locations worldwide. For example, the water level of a reservoir is measured hourly, and 92 

the water quality is monitored at weekly or longer. These different sampling frequencies of water 93 

quality and quantity of the reservoir are a potential source of uncertainties in assessing the 94 

availability of water resources (water quantity: Faro et al., 2019; Gosling and Arnell, 2016; Luo 95 

et al., 2020; water quality: Al-Omran et al., 2015; Schoumans et al., 2014; Reynolds et al., 2016; 96 

Cassidy and Jordan., 2011). Over the last decade, new technologies have been implemented for 97 

efficient water quality monitoring and bathymetric surveys. A low-cost probe with multiple 98 

electrochemical sensors can monitor water quality parameters at once in real time. The field 99 

deployment of this multiple parameter probe at a gauge site showed acceptable agreement in 100 

temperature, specific conductance, pH, and DO between the EXO sondes and the site sonde 101 

(Snazelle, 2015). This probe has been used to construct a real-time water quality monitoring 102 

system with the Internet of Things (IoT) technology over estuarine and urban areas, employing a 103 

combination of stationary and mobile sensors installed in multiple locations (Demetillo et al., 104 

2019; Méndez-Barroso et al., 2020; Irvine et al., 2022). 105 

A bathymetric sensor, Acoustic Doppler Current Profiler (ADCP), has implemented for 106 

measurement of water quantity and speed along streams and over lakes and oceans. The ADCP 107 

measures the water depth and absolute current speed along the water column up to one-kilometer 108 

depth at the hyper spatial resolution (vertical: up to 0.2 meters; Fong et al., 2006; Brown et al., 109 

2011; Li et al., 2018). The ADCP transmits "pings" of sound at a constant frequency into the 110 

water. A high frequency pings of the ADCP yields more precise data, but it runs out of batteries 111 

rapidly, and accuracy degradation of the ADPC is caused by attenuation of the signal noise ratio 112 

between water and transducer due to air entrainment (Fujii et al., 2022). Water quality sensors 113 

have been mounted on a boat to map horizontal variation of water quality (Gruberts et al., 2012; 114 

Crawford et al., 2015). Potential opportunities of high-resolution mapping through a remotely 115 

operated vehicle of water quality along rivers were explored in early 2010s (Casper et al., 2012). 116 

Recently, uncrewed underwater and surface vehicles have been used for water quality mapping, 117 

particularly for mixing processes of water (Amran et al., 2020; Honek et al., 2020; Griffiths et 118 

al., 2022). Surveys of these vehicles are cost efficient to maintain and measure water quality and 119 

quantity regularly (e.g., sub-weekly and weekly intervals). These uncrewed vehicles with water 120 

quality sensors and ADCP offer a new opportunity to understand interactions of water quality 121 

and quantity in aquatic environments. However, applications of these cutting-edge technologies 122 

to dual monitoring of water quality and quantity along river streams and in reservoirs remains 123 

limited. 124 
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Recently, the government of South Korea government enacted the Framework Act on 125 

Water Management (FAWM). The FAWM aimed to develop the national dual monitoring 126 

system of water quantity and quality. The FAWM system can monitor water quantity and quality 127 

along river streams or at lakes and reservoirs at the consistent sampling time and frequency. 128 

Despite such administrative efforts, the application of dual monitoring techniques for water 129 

quantity and quality along rivers and in reservoirs remains lacking and this study is an attempt to 130 

fill this gap. 131 

This study uses an uncrewed surface vehicle (USV) with water quality sensor and depth 132 

finder to conduct 30 surveys over a year for dual monitoring of water quality and quantity of a 133 

small reservoir named Daljeon near the Southeastern coastline of South Korea. This study aims 134 

to investigate the importance of the high-resolution mapping of water quality and depth on 135 

changes in nitrate load estimates stored in the study reservoir. The USV-based dual monitoring 136 

system used in this study is described in the next section. This study attempts to answer the 137 

following research questions: 1) To what extent can high-resolution mapping of water quantity 138 

and quality improve nutrient load estimates in the Daljeon reservoir? 2) When are the 139 

uncertainties in nitrate load estimates large or small over time? 3) What are the key sources of 140 

uncertainties in nitrate load estimates? This study was carried out locally; however, the findings 141 

of this study will provide an insight of potential opportunities and challenges for application of 142 

the current cutting-edge technologies to dual monitoring water quality and quantity, illuminating 143 

the potential value of USV-based surveys for the next-generation water resources monitoring 144 

system. 145 

2. Study site and data 146 

The Daljeon reservoir is used for irrigation in Pohang, South Korea (36.029 ºN, 129.293 147 

ºE; Figure 1a). This reservoir was built in 1968 to supply water resources only for agriculture 148 

during the crop planting and growing seasons (April–August) and has been managed by the 149 

Korea Rural Community Corporation (KRCC). The flood water level, average water level, and 150 

dead storage level of this reservoir are 47, 44 and 36 elevation meters above sea level, 151 

respectively. That is, the maximum and average water depth of the reservoir is 11 and 8 meters. 152 

The maximum water storage volume is 698,300 m
3
 (https://rawris.ekr.or.kr/). The maximum 153 

water surface area of the study reservoir is 0.15 km
2
, which is in Level 2 (> 0.1 km

2
) of the 154 

Global Lakes and Wetlands Database (GLWD-2; https://www.worldwildlife.org/pages/global-155 

lakes-and-wetlands-database). According to the KRCC website, the upstream land use sources 156 

include 54% paddy fields, 18% forest, and 30% residential (households). In this study, 30 USV-157 

based surveys for water depth and nitrate concentration have been conducted in the Daljoen 158 

reservoir for accessibility to various launching points.  159 

To examine air-water interactions over the reservoir and how environmental factors may 160 

affect water quality and quantity, daily precipitation and temperature data (July 2021– August 161 

2022) over Pohang, South Korea are compared with our dual monitoring data for water quality 162 

and quantity. The meteorological data are publicly accessible from the Korea Meteorological 163 

Administration (KMA) stations (https://www.kma.go.kr/). In addition, the KRCC provided daily 164 

measured water levels of the reservoir. We aggregated monthly nitrate concentrations of 19 165 

reservoirs and 4 lakes within 100 km from the Daljeon reservoir that were retrieved from the 166 

Water Environment Information System (https://water.nier.go.kr/). These data were used as a 167 

reference for our USV measurements because of their similar land use types (e.g. paddy and 168 

forest). 169 

https://rawris.ekr.or.kr/
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 170 

3. Materials and Methods 171 

3.1. USV equipped with water quantity and water quality sensors 172 

In this study, SonTek’s rQPOD remote control surveying package was used to mobilize 173 

the water depth and water quality sensors (Figure 1). The rQPOD modular remote surveying 174 

package is an uncrewed surface vehicle (USV), consisting of rQPOD and a floating platform 175 

(Figure 1b). The rQPOD is installed on a floating platform and transforms it into a motorized 176 

vehicle for remote operation. The rQPOD is controlled by a transmitter, Futaba T6K, at a 177 

frequency of 2.4 GHz, range 500 meters (Figure 1f). The USV is equipped with a pair of trolling 178 

motors, which are located on the bottom edge of both sides (Figure 1c). Our YSI EXO2 was 179 

fixed at 10 centimeters depth, and ADCP was fixed at the water surface. The maximum speed of 180 

the trolling motors is 1.5 m/s and the minimum depth required for the USV to collect accurate 181 

data is approximately one meter.The weight of the floating platform is 4.7 kilograms. The 182 

maximum payload capacity of the rQPOD is 28 kilograms. Two DJI Phantom 3 LiPO batteries 183 

are used for the rQPOD operation. In this study, a floating platform with rQPOD, batteries, GPS 184 

system, telemetry system, ADCP and water quality sensors are approximately 25 kilograms. 185 

Detailed specifications of the rQPOD remote control surveying package is found from the 186 

SonTek’s website (https://www.ysi.com/rqpod).  187 

For bathymetric measurement (water depth and velocity), the SonTek HydroSurveyor-188 

M9 Acoustic Doppler Current Profiler (ADCP), the Power/Communication Module (PCM), and 189 

the SonTek Real Time Kinematic positioning GPS (RTK GPS) were mounted on the floating 190 

platform. The 0.5 MHz vertical beam has an eight-degrees beam angle, which can measure from 191 

0.2 up to 80 m below the water surface (Figure 1e). The 1 MHz and 3 MHz doppler beams 192 

(bottom tracking method) are operated with a beam angle of three-degrees, which can measure 193 

from 0.2 up to 40 meters below the water surface. The ADCP depth accuracy is 2 cm ± 1% of the 194 

measured depth with the highest resolution of 2 centimeters. RTK GPS provides the geo-195 

positioning data (longitude, latitude, and altitude) of the USV with a horizontal accuracy of less 196 

than 0.03 m (Figure 1g). PCM supports power for ADCP and RTK GPS, using 16 units of 197 

double-A batteries. It can transmit the measured data from ADCP and RTK GPS to the home 198 

station laptop using telemetry operated at a frequency of 2.4 GHz. The range of the PCM 199 

telemetry system is up to 500 meters. During the site surveys, the telemetry system for data 200 

transmission was 200-300 meters  201 

In addition, the YSI EXO2 multi-parameter sonde (EXO2) was mounted on the USV to 202 

measure multiple water quality variables every second (Figure 1d). The EXO2 was installed with 203 

sensors for in situ monitoring such as water temperature (T), pH, electro conductivity (EC), 204 

dissolved oxygen (DO), and nitrate (NO3
-
) concentration. The YSI EXO nitrate smart sensor 205 

ranges from 0 to 200 mg/L, and the precision is ± 10% of reading or 2 mg/L. The sensor is able 206 

to detect 63% of the change in the nitrate concentration level within less than 30 seconds 207 

(Response time: T63<30 sec; https://www.ysi.com/product/id-599709/exo-nitrate-smart-sensor). 208 

The monitoring data can be logged internally on the YSI handle for on-site monitoring. The 209 

nitrate concentration is measured using ion selective electrodes (ISE). Silver/silver chloride 210 

(Ag/AgCl) wire electrodes are used in the nitrate ISE sensor, which is filled with a filling 211 

solution. A polymer membrane separates the filling solution from the sample medium, and this 212 

membrane interacts with nitrate ions. The ratio of nitrate in the sample to the internal filling 213 
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solution affects the electrical potential created across the membrane when the nitrate sensor is 214 

placed in water. This potential difference is then measured using a pH reference electrode. 215 

(Capelo et al., 2007) 216 

3.2. Sampling Survey Schedules 217 

Thirty sampling surveys were conducted in the Daljoen reservoir from July 2021 218 

through August 2022 (Figure 2). Survey paths were determined by the meteorological conditions 219 

of the sampling date and spatial coverage was prioritized, and we allowed for inconsistent 220 

sampling paths because of limitations of the battery power of the trolling motors. The USV used 221 

in this study is recommended to navigate when the wind speed is less than 8 m/s. The limitations 222 

of our USV are addressed in more detail in the discussion section. These sampling survey dates 223 

and IDs are shown in Table 1. We conducted the surveys between 12:00 and 15:00 on each 224 

survey date to minimize potential variations of environmental conditions. The USV was 225 

launched from a location in the southwest part of the reservoir. However, vegetation near this 226 

launching point often blocked the view and the connectivity between the boat and remote 227 

controller. After October, 1, 2021 (ID 6−30), the USV was launched at the docking spot of the 228 

eastern part of the reservoir, which allowed us to survey the water quantity and quality over a 229 

broader region than before. While the official battery duration of rQPOD was four to six hours 230 

without instruments (nine kilograms), our USV’s battery lifetime was 20−30 minutes because the 231 

weight of our USV was almost three times higher than the floating platform with rQPOD. The 232 

official battery duration of rQPOD was four to six hours without instruments (nine kilograms). 233 

The weight of our USV was almost three times higher than the floating platform with rQPOD. 234 

The USV’s battery lifetime was 20−30 minutes during the early survey dates (ID1-10) when the 235 

two units of the batteries were used. Since November 5, 2021 (ID 11), the power system was 236 

changed with the six units of the batteries of the rQPOD to conduct a one hour-long sampling 237 

survey. The remaining 20 % of the northern and western parts of the reservoir were not surveyed 238 

because they were shallow (less than one meter). While the official specification of the PCM 239 

connection range is 200−300 meters, the connection range of our USV varied, depending on the 240 

meteorological conditions.  241 

In the winter of 2021/22 (January 14 and February 11, 2022), the northern and southern 242 

parts of the surface in the Daljeon reservoir were frozen. The USV surveyed water depth and 243 

quality only over the middle part of the reservoir (ID 16 & 17 in Figure 2). Specific sampling 244 

survey schedules and corresponding sampling ID numbers (ID 1−30) were shown in Table 1. 245 

3.3. Sensor Calibration 246 

Data logged internally on the YSI handle. According to the EXO2 manual, two-point 247 

calibration (1 mg/L and 100 mg/L) was recommended for nitrate concentration calibration. 248 

However, this range was too wide to apply in freshwater. In this study, four-point calibration (1, 249 

2, 3, and 4 mg/L) were used. Four-level standard solutions were measured using the YSI EXO2 250 

nitrate sensor over 60 minutes (Figure 3a). The corresponding potentials of 1 mg/L, 2 mg/L, 3 251 

mg/L, and 4 mg/L were 141.0 ± 1.8 mV, 123.7 ± 1.4 mV, 113.0 ± 1.1 mV, and 104.5 ± 0.9 mV, 252 

respectively (Fig 3). The potential difference was unstable over 10 minutes after starting 253 

measurement. Low variance was observed after 10 minutes (reaching stable conditions). It is 254 

worth noting that potential differences before and after stabilization were not large enough 255 

(approximately 3-5%) to cross the standard solutions. Using the four-point calibration, three 256 

empirical models were applied to find the best-fit model for the relationship of potential 257 
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difference and nitrate concentration: linear, logarithm, and exponential (Figure 3c). Based on the 258 

R-squared values (Table 2), the exponential model was selected to convert potential difference 259 

[mV] to nitrate concentration [mg/L].  260 

Electrochemical sensor measurements are recommended to validate against discrete 261 

analytical chemical samples because ion chromatography of standard solutions does not account 262 

for the in-situ inferences that are always possible. Cross-validation with discrete analytical 263 

chemical samples makes electrochemical sensor measurements reliable, at least in the initial 264 

stages of qualifying an autonomous/unscrewed surface vehicles-electrochemical sensor 265 

measurement. Discrete analytical chemical samples were not collected during the study period. 266 

Instead, the USV-based nitrate concentration measurements were compared with nitrate 267 

concentrations from discrete analytical chemical samples near our reservoir, which confirmed 268 

that the YSI sensor-based measurements within the nitrate concentration ranges observed in 269 

neighboring reservoirs (Figure 7d). Traditional discrete analytical chemical samples at the study 270 

site provide a more reliable reference for further studies. 271 

For electrochemical sensor equilibration and ADCP compass calibration, we used 272 

measured nitrate concentration and water depth data 10 minutes after launching the USV during 273 

each sampling survey. An ADCP compass calibration was performed over the first 10 minutes of 274 

each sampling survey to have an accurate track reference. Prior to all ADCP measurements, 275 

calibrating the internal magnetic compass of instruments with an external compass is mandatory 276 

when using GPS as the navigation reference, to ensure alignment with external compass readings 277 

(Mueller and Wagner., 2009). ADCP compass calibrations aim to calibrate out erroneous 278 

compass headings caused by sources near the ADCP and the local area.  279 

3.4. Nutrient load calculations 280 

The one-second water depth and nitrate data from the USV were used to create 10-meter 281 

resolution maps. To quantify the uncertainty of our sampling data from spatial variations, the 282 

coefficient of variance (CV) of the nitrate concentration data from each survey is calculated 283 

(White et al., 2008). The CV is calculated as the standard deviation divided by the mean of 284 

nitrate concentration during each sampling survey. To create the 10-meter filled map, the kriging 285 

interpolation method was used to interpolate the measured water depths and nitrate 286 

concentrations via the R software “gstat” package (Pebesma and Wesseling, 1998; Gräler et al., 287 

2016). For variogram fitting, we utilized the ‘autofitVariogram’ function from the ‘automap’ 288 

package in R, which selected the Matern model with M. Stein's parameterization (Hiemstra et al., 289 

2009). The typical distance between two points is approximately 1.1 meters since the sampling 290 

frequency is one second and the average USV speed is 1.1 meters per second. It is worth noting 291 

that the distance between two measurement points vary slightly from run to run due to various 292 

USV speeds during the survey due to meteorological and water surface conditions. 293 

 We tested the sensitivity of volume estimation to spatial variations of water depth and 294 

water quality. First, we compared volume estimates using interpolated depths (iD, Eqn. 1) and 295 

the mean of depths (aD, Eqn. 2).  296 

iD = w × ∑ Ai × di

N

i=1

 (Eqn. 1) 

, where w is a weighting parameter for considering unmeasured surface of reservoir (w =297 
Amax (t)

∑ Ai
n
i

, Amax(t) = Amax ∗
Wlmax(t)

Wlmax
 , where Amax is actual maximum area of Daljeon reservoir 298 
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(151,000 m
2
), Wlmax  is the maximum water level of the study reservoir and Wlmax(t) is the 299 

maximum water level during the sample date.), Ai is the area of the i-th grid (constant (100 300 

squared meters))), n is the number of the 10-meter by 10-meter grids we measured (n=1, ..., N).   301 

aD = w × d̅ ×  ∑ Ai

N

i=1

(Eqn. 2) 

We also calculated nitrate loads using four different equations. The first equation uses 302 

interpolated water depth and interpolated nitrate concentration of a reservoir (iDN, Eqn. 3).  303 

iDN = w × ∑(NO3)i

N

i=1

× Ai × di (Eqn. 3) 

, where (NO3)i and di were nitrate concentration, and water depth at the i
th

 grid, respectively.  304 

The second, third, and fourth equations uses spatial averages of water depths and nitrate 305 

concentrations (aDN, Eqn. 4), the interpolated water depths and the spatial averages of nitrate 306 

concentrations (iDaN, Eqn. 5), and the spatial averages of water depths and interpolated nitrate 307 

concentrations (aDiN, Eqn. 6), respectively. 308 

aDN = d̅ × NO3
̅̅ ̅̅ ̅̅ × ∑ Ai

N

i=1

 (Eqn. 4) 

iDaN = w × NO3
̅̅ ̅̅ ̅̅ × ∑ Ai × di

N

i=1

 (Eqn. 5) 

aDiN = w × d̅ × ∑(NO3)i

N

i=1

× Ai(Eqn. 6) 

  309 

∆D =
aD − iD

iD
× 100 (Eqn. 7) 

∆DNj =
dDNj

iDN
× 100 (Eqn. 8) 

,where j depicts the index of the difference of other nitrate load calculation methods from the 310 

"iDN" method (aDN, iDaN, aDiN−iDN for j =1, 2, and 3, respectively). 311 

 312 

3.5. Comparison spatial resolutions 313 

In this study, a 10-meter spatial resolution was initially selected. The manufacturer 314 

recommended USV speed is 1.5 m/s, and the response time of YSI nitrate smart sensor (T63) is 315 

less than 30 seconds. Taking these specifications in accounts, 30- and 50-meter resolutions were 316 

chosen because the average of the USV speed was around 1.11 m/s, ranging from 0.52 m/s (ID 317 

5) to 1.62 m/s (ID 16). Given the range of USV's speed, a 30-meter resolution is suitable for the 318 

most consistent sampling surveys (1.11m/s × 30 seconds). For the sensitivity test, we compared 319 

nitrate concentration maps at 10, 30, and 50-meter resolutions. 320 
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4. Results 321 

4.1. Spatial variation of water depth and nitrate concentration 322 

The CV of nitrate concentration was calculated over the sampling survey dates (Figure 323 

4). The values of CV ranged between 0.02 (ID 30) and 0.18 (ID 11). The mean of CV values in 324 

entire period were calculated 0.09 ± 0.04 (mean ± standard deviation). In ID 18 and 30, CV 325 

values were less than other surveys (CV of ID 18: 0.03, CV of ID 30: 0.02). During these 326 

sampling survey dates, the survey time was short (ID 18: 13 minutes, ID 30: 22 minutes) than 327 

other sampling survey dates (the sampling survey time average: 47.95 minutes). CVs were 328 

higher in the first part of the sampling period (prior to January 2022). Furthermore, the 329 

correlation analysis is conducted to examine the relationship between the CV of nitrate 330 

concentration and other environmental and survey parameters, such as water temperature, one-331 

week accumulated precipitation, sampling time, travel distance (not shown). The variable with a 332 

marginal correlation is water temperature (r = −0.31, p = 0.08). This result indicates that the CV 333 

of nitrate concentration is independent with environmental and sampling parameters. 334 

Spatial variations of water depths of the reservoir resembled the bathymetry of the 335 

bottom of the reservoir (Figure 5). The northern and western part of this reservoir were shallower 336 

than the middle part of the reservoir. The edges of reservoir were too shallow for the USV to 337 

survey the water depth and nitrate concentration. In addition, aquatic plants and debris in the 338 

edges made USV difficult to navigate. Moreover, vegetation and debris in the edges of the 339 

reservoir made USV difficult to navigate. The spatial variance of nitrate concentrations was 340 

relatively weak compared with those of water depths (Figure 6). It is worth noting that the 341 

vertical gradient of temperature and nitrate concentration was not measured since this study 342 

aimed to investigate the impact of horizontal resolution of the mapping of water quality and 343 

quantity. These results indicate temporal changes of spatial variance of nitrate concentrations 344 

across the seasons (Figure 6).  345 

4.2. Seasonal variations of water temperature, water depth, and nitrate concentration 346 

Pohang has strong seasonal variability of precipitation and temperature (Figure 7). 347 

During the study period (July 2021–August 2022), the total precipitation was 1,430.2 348 

millimeters. While the accumulated precipitation was 650.4 millimeters (47%) in July and 349 

August of 2021, the total precipitation was 202.1 millimeters from June through August, 2022.  350 

The mean water depth ranged between 3.4 meters (ID 29) and 7.8 meters (ID 3) (Figure 351 

7c). The surveys in the late August and September, 2021 (ID 3-5) covered a larger area in the 352 

southern part of the reservoir compared to the surveys in July and early August (ID 1 and 2). The 353 

water levels of the Daljeon reservoir were well matched with our measured maximum water 354 

depth, particularly during the sampling surveys on August 27, 2021 (ID 3) and January 14, 2022 355 

(ID 15). From ID 1 to ID 3, the mean of water depth increased because of antecedent rainfall 356 

events. After the summer of 2021 (ID 3), the mean water depth declined monotonically until the 357 

winter of 2021/22 (ID 22), following the decreased patterns of precipitation and air temperature. 358 

After ID 22 (May 2022), the water depth decreased gradually, possibly to meet an increasing 359 

water demand for agriculture due to lack of rainfall in the spring of 2022.  360 

4.3 Sensitivity test of water volume estimation and nitrate storage estimation 361 

The water volume estimates in the reservoir followed the patterns of water depths 362 

(Figure 8 (a)). The mean and standard deviations of water volumes from the iD method were 363 
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696,037 and 200,614 m
3
, respectively. The estimated water volumes from the iD method ranged 364 

between 249,788 m
3
 (ID 30) and 1,017,161 m

3
 (ID 8). The mean and standard deviations of 365 

water volumes from the aD method were 656,958 and 189,394 m
3
, respectively, with a range 366 

between 255,144 m
3
 (ID 29) and 1,004,085 m3 (ID 3). The difference between estimated water 367 

volumes of iD and aD (∆D) ranged between −17 % (ID 9) and +2 % (ID 30), confirming that the 368 

impact of using the spatially varying data on the water volume estimate of the reservoir. We also 369 

found that the one-site measurement of water depth can underestimate the water volume of the 370 

reservoir (Figure 8b). 371 

Before the survey on October 29, 2021 (ID 10), the differences of estimated water 372 

volumes from the ∆D ranged from −17.07 % and −0.13 % with the average difference, −8.10 %. 373 

After the survey ID 10, the differences of estimated water volumes from the ∆D method ranged 374 

−7.66 % to +2.65 % with the averaged difference, −3.95 %. For example, the mean of sampling 375 

time is 1,465 and 2,981 seconds before and after the ID 10 survey, respectively. The average 376 

estimated areas are 32,000 and 49,500 m
2
, respectively before and after the ID 10 survey (the 377 

surveyed grid numbers are 11 and 20). 378 

The estimated nitrate loads in the water reservoir had similar pattern with estimated 379 

water volumes (Figure 8c). The estimated nitrate loads from the iDN method ranged from 0.32 380 

(ID 30) to 3.83 tons (ID 19) with the average 2.09 ± 1.01 tons (mean ± standard deviation, n = 381 

30, ton is metric ton). The estimated nutrients from the aDiN method ranged from 0.31 (ID 30) to 382 

3.57 (ID 19) tons with the average, 1.97 ± 0.96 ton (n = 30). The estimated nitrate loads from the 383 

iDaN method ranged between 0.32 (ID 30) and 3.84 tons (ID 19) with the average, 2.09 ± 1.02 384 

tons (n = 30). The estimated water volumes from the aDN method ranged between 0.31 (ID 29) 385 

and 3.58 tons (ID 19) with the average,1.98 ± 0.97 tons (n = 30).  386 

The difference between estimated nitrate loads of iDN and iDaN (∆DN2) ranged from 387 

−6.51 % (ID 1) to +2.65 % (ID 15) with and the average difference, −0.23 % (Figure 8d). The 388 

∆DN3 ranged from −16.80 (ID 9) % to +2.79 (ID 30) % with the average difference of −5.93 %. 389 

The ∆DN1 was calculated in the range of −17.11 (ID 5) % to 3.23 (ID 30) %, and the mean of 390 

∆DN1 was −5.64 %. The difference between ∆DN2 was smaller than other differences. 391 

5. Discussion 392 

5.1 Drivers of nitrate variation 393 

This study found a temporal regime shift in the spatial variance of nitrate concentrations 394 

between December and January (Figure 6). After January, 2022 (ID 16), CVs in the nitrate 395 

concentration estimates declined, and the nitrate concentration estimates showed a low spatial 396 

variance over the rest of the sampling survey dates. In November and December of 2021 (ID 10 397 

to ID 15), the CVs increased. In this study, the vertical gradient of nitrate concentrations was not 398 

measured, which might induce uncertainties in nitrate load estimation. However, the proposed 399 

near surface concentration-based nitrate load calculation in this study were likely a conservative 400 

estimate (a lower boundary estimate) because it was previously found that the deep-water nitrate 401 

concentration in a reservoir is higher than surface water nitrate concentration (Paerl et al., 1975; 402 

Andersen, 1982). Thus, changes in the vertical distribution of nitrate, with depth playing a 403 

significant role, could be a factor influencing the observed CV dynamics. 404 

The USV-based sampling data showed temporal changes of spatial variance of nitrate 405 

concentrations across the seasons. After heavy rainfall (ID 3), the nitrate concentration increased 406 

dramatically (from 1.07 to 3.53 mg/L). The result indicates potential non-point nutrient inflows 407 
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from surrounding areas after heavy rainfall events (Uttormark et al., 1974; Zhao et al., 2022). 408 

The highest recorded precipitation rate during these storms was 43.1 mm/hour on August 24, 409 

2021. In the summer of 2022, however precipitation was not intense to increase nitrate 410 

concentration in the reservoir through non-point nutrient inflows. Assessment of the threshold 411 

precipitation value for triggering non-point nitrate inflows still remains limited, which can 412 

provide an actionable information for an effective water and land management, particularly the 413 

control of nutrient inflows.  414 

The nitrate concentration estimates a high-to-low seasonal regime shift between 415 

December and January because horizontal and vertical mixing of lake and reservoir were 416 

accelerated by wind speed and air temperature in the winter and spring (Woolway et al., 2020). 417 

From sampling surveys during the spring months (ID 17 through ID 19; February to March 418 

2022), the nitrate concentration was high, which is in line with the finding of other sites 419 

(Domogalla et al., 1926; Seike et al., 1990). After ID 19, the nitrate concentration began to 420 

decrease. Potential causes of the decreased nitrate concentrations are a denitrification and 421 

biological removal of nitrate concentration during the spring and summer months. In the Daljeon 422 

reservoir, algal blooms were observed visually in summer 2021 and spring 2022, and nutrient 423 

concentration were related with algal biomass (Smith, 1982; Paerl et al., 2001). It is known that 424 

the biological removal rate of nitrate concentration is also affected by water temperature 425 

(Hamilton and Scdhladow, 1997). Another possible cause is the sinking of nutrient to the bottom 426 

sediment (Chapra, 1982). In July and August of 2021, intense rainfall events visually increased 427 

the turbidity from suspended sediment and increased nitrate concentration by measurement. 428 

However, in the summer of 2022, precipitation was not enough to increase nitrate concentration 429 

in the reservoir (average daily precipitation in summer 2021: 10.84 mm/day, in summer 2022: 430 

2.25 mm/day). These results confirmed the importance of precipitation intensity on non-point 431 

nitrate transports. 432 

This study found that the disparity in ∆DN2 was notably less pronounced than other 433 

variations. It implied that more accurate water volumes at the high spatial resolution play a 434 

dominant role in nitrate storage estimation than high-resolution nitrate concentration 435 

measurement. However, the resolution of nitrate concentration sampling is significant, 436 

depending on the season and the characteristic of a reservoir and surrounding environments. The 437 

Daljeon reservoir is relatively small and has the spatially homogeneous spatial distribution of 438 

nitrate concentration (Figure 6), resulting in a dominant role of water depth in nitrate load 439 

estimation. 440 

5.2 Limiations of the USV approach 441 

Our USV has encountered several fundamental limitations. The first limitation is the 442 

limited spatial coverage due to the battery lifespan (< 1.5 hours) and floating debris. Given the 443 

average navigation speed (1.1 m/s), the USV can travel over the lake up to around six kilometers 444 

of the survey path. Intense rainfalls bring a significant amount of floating debris into the lake, 445 

which is various, depending on the season and precipitation intensity (Anderson and Sitar, 1995; 446 

Yuan et al., 2005). For example, the ID 29 and 30 surveys measured the water quality and depth 447 

over relatively small areas of the lake mainly due to floating debris from antecedent significant 448 

precipitation and runoff. We faced challenges in collecting accurate data from ID 1 to ID 10, 449 

resulting in low confidence in our interpolations. This limitation arose because the battery life of 450 

our USV was shorter than specified by the manufacturer. To overcome this issue, we added four 451 

additional batteries for sampling after ID 10. Instead of discarding the data prior to ID 10, we 452 
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chose to report it with low confidence to share our experiences and the progress made with this 453 

technology. Another limitation we encountered was the inability to collect homogeneous and 454 

regular data. The manufacturer of the rQPOD, our USV, provides an auto-navigation technology. 455 

We attempted to utilize this feature for sampling. However, we faced challenges such as having 456 

to replace batteries midway due to their short life, as well as issues with the USV's movement 457 

caused by wind and debris (minor environmental problems). As a result, we relied on a remote 458 

controller for data collection and made efforts to maintain a consistent and regular path for the 459 

boat. Overall, we acknowledge the technical limitations we faced with our USV and have made 460 

various adjustments and adaptations to address these challenges. 461 

The interpolation-based spatial maps have uncertainties related to the estimation of the 462 

actual water surface area of the study reservoir on the sampling date. In this study, the actual 463 

water surface area on the was calculated by multiplying the ratio of the maximum water surface 464 

area to the maximum water level by the maximum water level during the sampling date. The 465 

proposed method might not capture a complex bathymetry of the reservoirs (see Figure 5). To 466 

reduce these uncertainties, combining USV-based surveys with other new technologies, such as 467 

drones and remotely operated vehicles, is required (Song et al., 2023). Recently, three 468 

dimensional (3-D) lake topography modeling and deep learning techniques with UAV-captured 469 

imagery data have been applied to estimate the water surface area and water volume in a 470 

reservoir/pond (Fang et al., 2023; He et al., 2023). Our results showed that there were low CV 471 

values and weak spatial nitrate variations over the entire study period, except for the fall, 472 

indicating that the reservoir undergoes a strong mixing event once a year, suggesting a 473 

monomictic lake. To understand mixing processes, the vertical measurement of nitrate 474 

concentrations is required, which can be measured by autonomous underwater vehicles 475 

(Merrifield et al., 2023). 476 

The YSI nitrate smart sensor, while effective, has certain inherent limitations regarding 477 

accuracy and response time. To address these challenges, we have developed an innovative 478 

approach to sensor calibration and validation. Traditionally, using these sensors in the field has 479 

been problematic when it comes to verifying measured concentrations (Aubert et al., 2014; Rode 480 

et al., 2016a; Rode et al., 2016b). Previous research has attempted to validate the sensors through 481 

lab experiments (Capelo et al., 2007; Bowling et al., 2016). However, this conventional approach 482 

requires additional equipment and techniques to measure chemical concentrations (Beaton et al., 483 

2012). Recently, Samuelsson et al. (2023) highlighted that excessive reliance on laboratory 484 

measurements can introduce uncertainties due to the nature of laboratory experiments. They 485 

found that more consistent calibration can improve accuracy. In our study, we employed ion 486 

chromatography to measure standard solutions, and the results aligned well with the intended 487 

concentrations of nitrate standard solutions (1, 2, 3, and 4 mg/L). Subsequently, we proposed a 488 

sensor calibration and validation method to measure water depths and nitrate concentrations in 489 

the Daljeon reservoir. Most of the nitrate concentration measurements were close to the upper 490 

bound of the nitrate concentration range among 23 neighboring lakes/reservoirs. These high 491 

nitrate concentrations might be caused by multiple sources including more are of paddy in the 492 

watershed, more intense farming of the paddy fields, and more accurate estimate of nitrate 493 

concentration estimates from high-resolution mapping. To investigate a true cause of these high 494 

nitrate concentration estimates, an inter-comparison study with measurements from neighboring 495 

lake/reservoirs is necessary. Furthermore, we observed that the concentrations reported by the 496 

YSI device were overestimated for standard solution concentrations of 2, 3, and 4 mg/L (Figure 497 

3c). This observation suggests that the two-point sensor calibration (1 and 100 mg/L) 498 
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recommended by YSI was not as accurate within lower concentration ranges. Therefore, we 499 

propose that our sensor calibration and validation method could be a viable approach to enhance 500 

the accuracy of the YSI nitrate smart sensor and other similar ISE sensors. 501 

In this study, the the response time of the YSI nitrate sensor (T63<30sec) was a crucial 502 

factor influencing the decision of an appropriate spatial resolution of water depth and nitrate 503 

maps. We conducted a sensitivity test to the horizontal spatial resolution of interpolation of water 504 

depths and nitrate concentrations on November, 26 2021 (ID 13) and April 22, 2022 (ID 21) 505 

when the CVs were higher and lower than the average (0.09 of CV), respectively (0.16 and 0.08 506 

for ID 13 & 21, respectively). The differences of the nitrate load estimates among the 10, 30, and 507 

50-meter resolution maps were clearer on the ID 13 survey compared to the ID 21 survey (Figure 508 

9). For the ID 13 survey, the nitrate load estimates were 2.44, 2.51, and 2.57 tons from the 10, 509 

30, and 50-meter resolution maps, respectively. The 50-meter resolution map overestimated +5% 510 

of nitrate load compared to the 10-meter resolution map. On the other hand, the ID 21 survey 511 

date with a low CV value showed no significant impact of the horizontal spatial resolution for 512 

nitrate load mapping. These results underscore the importance of high spatial resolution mapping 513 

on reducing the nitrate load estimate in a reservoir/lake. 514 

5.3 Challenges of the USV approach 515 

This study found that USV-based water volume estimates of the Daljeon reservoir was 516 

696,037 m
3
 on average over the study period. The maximum water volume estimate was 517 

1,017,161m
3
 in October, 2021 (ID 8), which was larger than the design maximum capacity 518 

(698,300 m
3
) by 57%. This discrepancy may be attributed to rehabilitation and upgrade of the 519 

reservoir. The Daljeon reservoir has been rehabilitated with two maintenance projects in 2015 520 

and 2022. The KRCC local authority confirmed that the 2015 and 2022 projects included the 521 

construction of waterways for paddy fields and the construction of an emergency water gate, 522 

respectively. Other than these two projects, the KRCC irregularly conducted dredging to manage 523 

the reservoirs, but no official records were available before 2012. The findings of this study 524 

implied that other reservoirs constructed in the 1960s and 1970s like the Daljeon reservoir might 525 

have significant uncertainties in the designed maximum capacity, which requires a regular 526 

inspection program for bathymetry survey.  527 

In this study, we monitored water volume and nitrate concentration simultaneously via 528 

the USV equipped water depth and quality sensors. Marcé et al. (2016) reported the importance 529 

of simultaneous management of water quality variables (chemical) and ecosystem compounds 530 

(biological) in lake and reservoir management. Furthermore, Pomati et al, (2016) emphasized the 531 

importance of water quantity and biological compounds for lake water managements. Mounting 532 

sensors for chlorophyll a or fluorescent dissolved organic matter concentrations on the USV will 533 

provide important information of interactions between water quantity and quality and their 534 

ecological impacts (Bowling et al., 2016; Liu and Georgakakos, 2021). 535 

Recently, the Surface Water and Ocean Topogrpahy (SWOT) satellite was lauched in 536 

December 2022 (https://swot.jpl.nasa.gov/). Capabilities of the SWOT mission for terrestrial 537 

hydrology were introduced as a global-scale monitoring system of surface water storage change 538 

and fluxes at the hyper-resolution (about 50−200 meters) (Biancamaria et al., 2015). While the 539 

capability of the SWOT to detect extreme U.S. flood events was reported based on SWOT's orbit 540 

ephemeris (Frasson et al., 2019), the SWOT satellite data are required for site-specific validation 541 

over not only U.S. but also other countries. It also has uneven temporal sampling of surface 542 

water storage change, which requires a combination of in situ data from other sources. This study 543 
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hinted how the SWOT satellite data can be facilitated by combining the USV-based 544 

measurement as a reference and complementary data source.    545 

6. Conclusions 546 

This study succeeded to conduct a one-year long surveys of dual monitoring of water 547 

quality and quantity in a small-size monomictic artificial lake in South Korea at a 548 

spatiotemporally consistent scale using an uncrewed surface vehicle with ADCP and a probe 549 

with multiple environmental electrochemical sensors. This study demonstrated that the nutrient 550 

load estimates from a one-site monitoring site can be underestimated compared to those from 551 

spatially varying measurements of water quality and depths. This study found that water depth 552 

appears to be more important than nitrate concentration in the load estimates. Moreover, this 553 

study found that the relative importance of water depth and nitrate concentration on the nitrate 554 

load estimation vary temporally when the spatial variability of nitrate concentration is strong, 555 

particularly during the winter months when the wind speed is high. 556 

 This study examined the applicability and practicability of USV to dual monitoring of 557 

water quality and quantity. The one year-long dual monitoring data of water quality and quantity 558 

of the Daljeon reservoir proved that the USV with ADCP and electrochemical sensors was a 559 

costly efficient tool and a step in the development of future technologies. This study also 560 

discussed some limitations and challenges of the dual monitoring system via the USV, ADCP, 561 

and YSI electrochemical sensors used in this study.  Particularly, the USV technology used in 562 

this study had the limited sampling survey time and spatial coverage. This USV employment is 563 

one step in the development of future technologies. Combining the USV-based approach with 564 

other techniques, such as stationary sensors and uncrewed aerial vehicles, uncertainties in 565 

measuring the water surface extent can be reduced.  566 

This study emphasized the importance of an initiative effort to apply cutting-edge 567 

technologies on developing the next-generating water monitoring system for nitrate load and 568 

further environmental implications. More reliable technologies might be available but high-569 

priced. Research and development budgets should support research opportunities to develop the 570 

next-generation water monitoring system, which eventually will provide new challenges and 571 

opportunities to investigate the coupled dynamics of water quantity and quality and help develop 572 

a more efficient and effective water resources monitoring and management system for 573 

sustainable development of our communities. 574 
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 830 

Table 1. Sampling survey schedules and corresponding sampling ID numbers (ID 1−30). An 831 

asterick depicts the first survey when the power system is changed for increase sampling time of 832 

the USV.  833 

 834 

Table 2. Estimated parameters of three empirical models for the potential difference-nitrate 835 

concentration relation using four-level standard solutions. 836 

 837 

List of Figure Captions 838 

 839 

Figure 1. Maps of the Daljeon reservoir in Pohang in South Korea (a) and USV-based survey 840 

systems: Uncrewed surface vehicle ((b) & (c): top and bottom view, respectively), multi-841 

parameter sonde (YSI-EXO2) (d), ADCP (e), remote controller (f), and GPS receiver (g). Red 842 

and blue circles in (a) depict the launching point of the USV before and after ID 6, respectively. 843 

 844 

Figure 2. Maps of the paths of the 30 USV-based surveys in the Daljeon reservoir with 10m x 845 

10m grids.  846 

 847 

Figure 3. Measured potential difference of nitrate standard solutions using the YSI nitrate sensor 848 

over time a), relationship nitrate concentration with potential difference (b). In (a), red, green, 849 

blue, and purple lines depict measured potential difference of the standard solutions at 1, 2, 3, 850 

and 4 mg/L of nitrate concentration, respectively. In (b), black solid, gray dash and gray solid 851 

lines depict exponential, linear, and logarithm functions, respectively. Measured concentration of 852 

nitrate standard solution (x-axis) and from the YSI (y-axis) (c).  853 

 854 

Figure 4. Coefficient of variances of nitrate concentration during 30 USV-based surveys. Shaded 855 

area colored in gray depict the period of the launching point at the southwestern part of reservoir. 856 

 857 

Figure 5. 10-meter resolution maps of water depths of the Daljeon reservoir during 30 USV-858 

based surveys. 859 

 860 

Figure 6. 10-meter resolution maps of nitrate concentrations of the Daljeon reservoir during 30 861 

USV-based surveys. 862 

 863 

Figure 7. Seasonal variations of meteorological and water surface conditions: air and water 864 

temperature in Pohang region and Daljeon reservoir, respectively (a), precipitation in Pohang 865 

region (b), water depths (c) and nitrate concentration (d) in the Daljeon reservoir. In (a), red, 866 

black, and blue lines depict daily maximum, average, and minimum air temperatures, 867 

respectively, and open circles depict measured water temperature. In (c), a red line depicts the 868 

maximum water depths measured by KRCC and circle markers and error bars depicts water 869 

depth averages and standard deviations measured by USV. In (d), circle markers and error bars 870 

depict nitrate concentration averages and the minimum-maximum range measured by USV. Red 871 

box plots in (d) depict nitrate concentration of the 23 neighboring lakes. 872 

 873 
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Figure 8. Temporal variation of water volume and nitrate storage estimation by calculating 874 

method (a, c, respectively); (a) circle: water volume estimation using interpolated water depth, 875 

grey circle: water volume estimation using mean of water depth (iD), (b) the difference of water 876 

volume using interpolated water depth between using mean of water depth (ΔD), (c) nitrate loads 877 

using interpolated water depths and nitrate concentrations (iDN), and (d) the difference of nitrate 878 

storage using interpolated water depth and interpolated nitrate concentration between other 879 

methods (aDN, iDaN, and aDiN−iDN for j =1, 2, and 3, respectively). Gray box is period of 880 

when we docked the boat on the SW part of reservoir. 881 

 882 

Figure 9. Nitrate concentration maps ((a)-(f)) and nitrate load estimates ((g) and (h)) of the ID13 883 

and 21 sampling survey at 10-, 30-, and 50-meter resolutions. 884 

  885 
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Table 1. Sampling survey schedules and corresponding sampling ID numbers (ID 1−30). An 886 

asterick depicts the first survey when the power system is changed for increase sampling time of 887 

the USV.  888 

ID Sampling date Sampling time [min] Travel distance [m] 

1 July 23, 2021 45.93 1.95 

2 July 29, 2021 20.95 1.44 

3 August 27, 2021 15.30 1.08 

4 September 01, 2021 17.18 1.29 

5 September 10, 2021 18.02 0.57 

6 October 01, 2021 15.50 1.25 

7 October 08, 2021 20.80 1.46 

8 October 15, 2021 17.68 1.41 

9 October 22, 2021 12.50 0.94 

10 October 29, 2021 16.87 1.29 

11* November 05, 2021 63.13 3.77 

12 November 19, 2021 67.55 4.61 

13 November 26, 2021 46.90 3.80 

14 December 10, 2021 37.52 2.79 

15 December 24, 2021 59.25 4.77 

16 January 14, 2022 15.60 1.52 

17 February 11, 2022 39.78 3.25 

18 March 11, 2022 13.40 1.02 

19 March 25, 2022 70.92 3.98 

20 April 15, 2022 49.67 3.54 

21 April 22, 2022 60.43 4.49 

22 May 06, 2022 60.80 4.40 

23 May 20, 2022 88.55 4.03 

24 June 03, 2022 29.27 2.21 

25 June 17, 2022 47.83 3.60 

26 July 01, 2022 55.20 4.20 

27 July 19, 2022 58.40 4.51 

28 August 12, 2022 38.70 2.95 

29 August 25, 2022 68.58 3.45 

30 August 26, 2022 22.35 0.83 

 889 

  890 
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Table 2. Estimated parameters of three empirical models for the potential difference-nitrate 891 

concentration relation using four-level standard solutions. 892 

Line types Empirical model equation R
2
 

Linear y = −0.08 x + 12.26 0.972 

Logarithm y = −9.96 ln(x) + 50.17 0.985 

Exponential y = 221.05 exp(−0.038x) 0.998 

 893 
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