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Abstract

Accurate forest inventory data are essential for tracking carbon sequestration, estimating carbon emissions from deforestation,

assessing plant and animal habitats for biodiversity, and predicting environmental risks such as wildfires. Traditional methods of

data collection have faced challenges in either scale or precision. The advent of terrestrial laser scanners addressed some of these

issues but faced limitations in cost and mobility. This paper proposes a new approach using mobile LIDAR for forest inventory

data collection. By integrating advancements in computer vision, the methodology aims to provide comprehensive individual

tree data, including parameters like diameter at breast height, volume estimations, species identification, and temporal tracking

of individual trees. This proposed research direction addresses current gaps in the use of LIDAR and camera inference for

forestry data where existing work does not generate domain context-aware data by narrowly focusing collection on isolated tree

attributes.
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Abstract

Accurate forest inventory data are essential for tracking carbon sequestration, esti-
mating carbon emissions from deforestation, assessing plant and animal habitats
for biodiversity, and predicting environmental risks such as wildfires. Traditional
methods of data collection have faced challenges in either scale or precision. The
advent of terrestrial laser scanners addressed some of these issues but faced lim-
itations in cost and mobility. This paper proposes a new approach using mobile
LIDAR for forest inventory data collection. By integrating advancements in com-
puter vision, the methodology aims to provide comprehensive individual tree data,
including parameters like diameter at breast height, volume estimations, species
identification, and temporal tracking of individual trees. This proposed research
direction addresses current gaps in the use of LIDAR and camera inference for
forestry data where existing work does not generate domain context-aware data by
narrowly focusing collection on isolated tree attributes.

1 Introduction

Understanding forests and their interactions with the carbon cycle is integral to addressing anthro-
pogenic climate change. Forests are essential to human societies, with 20% of the world population
being dependent on forests for livelihoods [31]. Furthermore, forests account for ~45% of the
accumulated carbon in the terrestrial biosphere [5] and ~12% of accumulated anthropogenic carbon
emissions through forest degradation and land use change releasing stored carbon [32]. So far,
woodland surveys have largely relied on either remote sensing by satellite or aerial imagery or manual
sampling efforts from foresters. Recently, terrestrial laser scanners have been used to acquire data at
individual tree level resolution without manually measuring each tree individually; however cost and
mobility of scanner equipment remains as an obstacle for large scale viability.

Mobile LIDAR is compact, low cost and has the potential to enable fast tree level information retrieval
across a wide geographical area. Recent papers [21, 12] explored the possibility of using mobile
LIDAR and camera towards environmental sensing in forests with initial success in estimation of tree
trunk diameters at breast height (DBH) in field tests. This paper proposes work to develop further
capabilities of computer vision to characterize trees in a way that is compatible with current domain
applications of tree-level data. Where existing studies have focused only on the inference of one or
two attributes of trees, it makes the resulting data impractical for domain applications. This work will
expand the utility of the resulting data for uses such as carbon pool estimation, growth tracking and
projection, and ecological monitoring [19]. Novel forestry inventory capacity that enables accurate
carbon accounting for forest degradation and reforestation sequestration has major implications for
the possibility of decarbonization policies such as carbon credits trading or emissions taxing; this can
also enable better assessments of environmental risk in forests such as wildfire risk prediction [17].

Preprint. Under review.



2 Literature Review

In climate change literature, afforestation [27] and degradation prevention [31] have often been
discussed as a part of possible nature-based solutions toward adaptation and mitigation of climate
change impacts. In order to understand the viability of reforestation for carbon sequestration, or to
conduct better estimates of deforestation impacts, it is necessary to understand the actual emissions
or sequestration of changes in forestation [24]. However, doing so requires forest inventory data that
provides the basis of carbon, ecological, and land use modeling [9], which is often constrained in either
geographical availability or data resolution due to surveying difficulties. Due to the impracticalities
of scaling manual measurements to large areas, survey programs usually make use of sampling sites
and inferring the population data [2], or remote sensing via aerial photography or satellite imagery.
The resulting forest inventory data imprecision limits efforts in forest carbon modeling [9].

Studies [22, 30] have utilized terrestrial laser scanners for environmental sensing, which improves
field surveys by generating point clouds where post-processing can extract properties of interest. This
method is much more precise than manual measurements, but the drawback comes in the form of low
mobility and high cost. Mobile LIDARs have emerged as a low cost alternative to terrestrial scanners
with aerial [25] or ground [11] implementations. There seems to be no existing mobile LIDAR
based approaches that collects all of the proposed measurements on an individual tree basis in forest
environments, which covers the conventional measurements made in conventional surveying practices
[1]. This gap in the current application of remote sensing and computer vision to environmental
monitoring is preventing the current body of work from generating practical impact in applications
and fields where existing conventional tree data are used.

The ability to collect tree-level information also has important implications for evaluating wildfire risk
in the context of fuel management. Information such as fuel density, the distribution of crown height
and species of trees are important for inferring characteristics of wildfires [18, 6]. The proposed
method in this paper can be utilized to measure current density and predict growth trends. By
systematically studying the forest structures and fire dynamics after a fire, we can gain a better
understanding of wildfire dynamics, particularly by analyzing the attributes of trees that were either
affected or unaffected by the fire. Anomaly detection for disease and pests also have important
implications for wildfires. There is evidence that bark beetles [4, 26] or mass tree death [15] from
diseases significantly alter the fire risk and dynamic of an area. Hence, the proposed methodology on
forest inventory collection can result in application potential in several different domains.

3 Methodology

The proposed contributions to the existing literature will be to integrate and expand the current
methods to enable collection of forest inventory data that is ecologically useful as drop-in improve-
ments to current data. The outcome of this research will be the capacity to extract the proposed
properties of trees from LIDAR point clouds and camera data and integration of the data into a
longitudinal database. This research addresses gaps in current literature by attempting to infer a set of
ecologically relevant physical measurements of individual trees instead of just one or two parameters,
thus connecting current research in environmental sensing with the overall conventional context
of forest inventory methodology in order to generate relevant datasets for scientific use. Mobile
phones present an opportunity to improve data collection with built in camera and LIDAR capacity
without incurring high equipment costs in more sophisticated equipment. The mobility advantage is
very important for field applications, where traversal of landscape can be a major obstacle for larger
devices like terrestrial laser scanners.

To achieve the stated goals, this paper proposes several methods to extend the capabilities of current
methods in literature beyond the primary focus of DBH estimation to infer and integrate additional
measurements. In conventional forest inventory methods, other measurements are made that are
essential for scientific and commercial usages, which needs to be implemented before mobile LIDAR
becomes a viable alternative to current methods. There are also possible improvements on current
volume estimation methods that can be enabled by LIDAR data. For example, in order to estimate
the carbon content of a tree, conventional methods assume the carbon content is a fraction of the dry
volume of the tree, with the factor being species dependent [28, 29]. With LIDAR point cloud data,
it is possible to account for trunk irregularities and branches with segmentation and conic volume
estimation methods [7, 20].
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Carbon content of tree species factors vary significantly [14], along with growth trajectory and
age inference [19]. To address this problem, deep learning methods such as convolutional neural
networks [13] or vision transformers [36] can be used to identify tree species, and existing cameras
on mobile phones can be leveraged towards achieving this function. If processing power is limited,
an alternative method [34] where functional morphologies of trees are used infer clades instead
of species can be considered, or alternatively post-processing can be considered after initial data
collection. Additionally, features such as burls and branch structure can also be identified and labeled,
alongside anomaly detection such as disease or insect infestation.

Current gaps in the capacity to track trees longitudinally at scale can be addressed by creating unique
identifiers for each surveyed tree based on identified features. Tree skeletons can be generated
[16] and be used with coordinate records for matching algorithms [23]. With a digital method
that can be applied to all trees in a forest consistently, it becomes feasible to conduct periodical
surveys for longitudinal analysis. One foreseen challenge associated with building spatial-temporal
records for trees is the implementation of simultaneous localization and mapping (SLAM) which
is typically complex and expensive computationally, and dense forests may prove to be a challenge
that cause issues like drift errors. However, previous research [8] has indicated that SLAM could be
implemented on mobile phones in a forest environment. Alternatively, non-spatial temporal tracking
may be possible with the phenotyping method described in Schunck et al. [23].

In order to implement and verify the proposed methodology, the functions described above will
be trained with and validated against known datasets. These datasets which have been previously
collected and validated serve as a benchmark, which enables model training without manually
producing tagged data where appropriate as well as comparison of results. Existing tagged tree-level
RGB photo [3, 10] and point cloud [33, 35] data will be used as references for methodology, training,
and evaluation where possible. By comparing the outcomes derived from the proposed approach with
these established datasets, discrepancies can be identified and addressed. Depending on the results of
a more comprehensive literature review, the work plan may include the construction of small ground
truth samples for validation if no existing datasets are close by for this purpose.

4 Pathways to Climate Impact

The existing research into mobile LIDAR, despite its high mobility, adequate precision, and af-
fordability, has yet to fully exploit its potential in forest ecology applications. By leveraging the
advantages of mobile LIDAR with context-informed objectives, the proposed work has the potential
to massively constrain empirical uncertainties or enable advancements in methodology in scientific
studies that use forest inventory data by providing the capacity to collect individual tree level data
across large geographical areas across time.

The climate impact of this proposed research will extend across multiple applications. Greater
accuracy can be achieved in forest carbon accounting, which aids in climate change mitigation and
adaptation efforts and facilitates sustainable precision forestry management. The detailed, tree-level
data will enable enhanced wildfire risk modeling, making it possible to predict future risks and
develop effective strategies for prevention and mitigation. Accurate, tree-level data will help with
better understanding of composition and health of forest ecosystems, which is crucial for biodiversity
conservation.
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