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Abstract

Agriculture is increasingly threatened by climate change impacts, especially in lower-income nations where traditional paper

survey-based data collection for detailed agricultural reporting can be impractical. Leveraging advancements in remote sensing

and machine learning, we propose a Convolutional Neural Network-Long Short-Term Memory model designed to infer farm-

level crop yields from one year of high-resolution weather data. We also propose assessing the potential of predicting based

on forecasted weather data and implementing transfer learning to predict crop yield in regions outside the US with sparse

data collection. If successful, this approach would offer a detailed and adaptive tool for countries with all levels of monitoring

resources.
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Abstract

Agriculture is increasingly threatened by climate change impacts, especially in
lower-income nations where traditional paper survey-based data collection for
detailed agricultural reporting can be impractical. Leveraging advancements in
remote sensing and machine learning, we propose a Convolutional Neural Network-
Long Short-Term Memory model designed to infer farm-level crop yields from one
year of high-resolution weather data. We also propose assessing the potential of
predicting based on forecasted weather data and implementing transfer learning
to predict crop yield in regions outside the US with sparse data collection. If
successful, this approach would offer a detailed and adaptive tool for countries
with all levels of monitoring resources.

1 Introduction

Agriculture is vital to sustaining the planet’s growing population and the global economy. However,
the increasing frequency and intensity of extreme weather events, changing precipitation patterns, and
rising temperatures all present unprecedented conditions for farmers and pressure agricultural systems
and food supply. Climate change challenges are more pronounced in lower-income countries, which
often lack resources for active monitoring and risk management of crop yields. Recent advances
in technology, specifically remote sensing and machine learning, offer new ways to address these
challenges. This paper proposes training a deep learning model to infer farm-level crop yield based
on high resolution weather data, which captures the effects of condition variation throughout the
year preceding harvest. Furthermore, we discuss the possibility of leveraging US investments in
agricultural statistical reporting by training models on USDA data and using transfer learning to
predict yield in other countries.

2 Literature Review

The increasing application of machine learning and remote sensing in agricultural monitoring is well
documented [1, 2, 3, 4, 5, 6]. Machine learning algorithms have shown promise in mapping soil
organic carbon content [1] and identifying crop types [3, 5]. They leverage large datasets, offering
potential for detailed and high-resolution agricultural monitoring. In some scenarios, machine
learning combined with remote sensing has been able to replace on-site inspections entirely [7]. These
technologies have found applications in complex tasks such as predicting crop yields [8, 9, 10, 11]
or predicting the impacts of climate change on crops [12, 13, 14, 15]. Neural networks have been
used to predict the impact of climate change on crop yield [16, 13]. They can also help in detecting
diseased crop trees, thus preventing potential losses [17].

However, existing agricultural monitoring systems do not yet fully leverage these recent developments
in remote sensing and machine learning. For instance, the USDA’s National Agricultural Statistics
Service (NASS) [18] still relies on mailed questionnaire surveys as the main method of data collection,
with annual surveys as well as a Census of Agriculture once every five years. The integration of
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machine learning with remote sensing into this process offers a possibility for cheaper and more
frequent census-level estimations by inferring agricultural data from other regularly collected data
that impact agriculture outcomes.

3 Methodology

We propose three tasks: (1) evaluate the potential of deep learning on observed weather data to infer
farm-level crop yield to complement current USDA NASS surveys, (2) assess whether replacing
observed weather data with long-range weather forecasts in test data can produce predictions with
comparable accuracy, and (3) assess the possibility of transfer learning with the NASS-trained model
for inference in other regions.

Weather data for training will come from the PRISM Climate Group [19], and yield data will come
from USDA NASS Census of Agriculture and annual surveys [18]. PRISM data will provide daily
observations of precipitation, temperature, dew point temperature, vapor pressure, solar radiation, and
cloudiness at 4 km resolution starting in 1981 for the conterminous 48 states. PRISM uses information
from both remote sensing and ground stations. USDA NASS Census and survey microdata will
provide yield data for corn, wheat, and soybean at the farm level at five year intervals for census and
yearly for survey, which will be used as the ground truth labels.

Agriculture literature demonstrates weather variation throughout the year has effect on yield [20,
21, 22], and high resolution weather data from PRISM allows weather conditions to be mapped to
specific farms. USDA NASS records the address and cropland area for each farm, which can be used
together to approximate the area to which to map the weather data. In contrast, typical county level
calculations may lose details through aggregation that could be leveraged by a deep learning model to
produce more accurate yield estimates by accounting for differences between farms within counties.

Data from these sources will be pre-processed to ensure consistent units and to associate the appropri-
ate weather and yield data for each farm in the conterminous 48 states that produces corn, wheat, or
soybean found in NASS records since 1981. Thus, each element of the prepared dataset will include
information for one farm over one year for one crop. Then, data from the most recent five years will
be reserved for testing, and all earlier years will be used for training.

Given the nature of crop yield predictions, both spatial and temporal patterns can significantly
influence the outcome [23]. Thus, we propose a combined spatio-temporal splitting strategy. This
method will divide the dataset temporally, ensuring that the training set only consists of data from
years preceding the validation/test years. This respects the forward-looking nature of predictions to
predict future yields based on past and present data. Within each temporal split, we can further divide
the data spatially. Since the USDA ERS defines farm resource regions (FRR) [24] based on similar
regional agricultural patterns, it may be beneficial to group data by FRRs to capture effects that are
homogeneous within but diverse across regions. Comparing model performance with and without
including FRR information for each farm can help evaluate the relevance of FRR for this task.

For the first task, we propose training a Convolutional Neural Network-Long Short-Term Memory
model (CNN-LSTM), which is well-suited for scenarios involving sequences of spatial and time-
varying data, such as weather observations and forecasts, by combining the spatial feature extraction
capabilities of CNNs with the temporal sequence processing strengths of LSTMs [25, 26]. The CNN
will be applied to each time step’s data to extract spatial features from gridded data, resulting in a
sequence of feature vectors. Then, this sequence will be passed through an LSTM network to capture
the temporal variation present in the data throughout the year. The LSTM’s final output will be
connected to a dense layer to predict the annual yield.

The model’s performance can be assessed through comparing predicted yield against the reported
ground truth yield by calculating the root mean square error (RMSE), mean average error (MAE), and
R-squared. These values can be calculated for each crop type and for each farm region (if included)
to identify whether the performance differs significantly across these categories. Also, as a simple
benchmark, those metrics can also be calculated for multiple linear regression, gradient boosting, or
random forest models that uses the same test and training data. Additionally, the importance of using
farm-level rather than county-level data can be assessed by training another CNN-LSTM model on
county-wide weather averages and yields to predict county-level yield totals and then comparing the
results against adding up predicted farm-level yields within each county.
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For the second task, we will assess the difference in yield prediction performance between testing the
model on empirical weather observations from PRISM and testing on historical long-range weather
forecast data from ECMWF [27]. If the differences are reasonably small, then the model can be used
to predict yields in a year where the harvest has not occurred by using observed weather up to the
point of prediction in conjunction with long-range forecasts to stand in for the rest of that year.

For the third task, the model will be evaluated for the potential of transfer learning. Transfer learning
is a machine learning technique where a model developed for one task is repurposed for another
related task. Transfer learning can be powerful in compensating for gaps in data. Instead of training a
model from scratch, which requires substantial data, transfer learning leverages existing knowledge
from the USDA NASS dataset, to enhance predictions in new environments. Thus, by using the
model pre-trained on USDA NASS microdata, it may be possible to either infer on agricultural yields
in other regions directly or use additional training data to calibrate further where data is available.

Foreseeable challenges include the difficulty of obtaining special permission from USDA for micro-
data access. Furthermore, weather forecasts may also prove to be too different from observed weather
data for the model to predict well. Additionally, the model may be too specific to the USDA data,
leading to overfitting and poor suitability for transfer learning. Differences in agricultural practices,
soil types, climatic conditions, and other regional factors between the USDA data region and target
regions may limit the generalizability of the model.

4 Pathway to Climate Impact

The proposed method holds significant promise for improving agricultural monitoring practices.
Building a successful model as described in the first task above would decrease the barrier of entry
for data collection for agricultural monitoring as weather data is already commonly collected and
forecasted around the world. Also, providing detailed crop yield estimations at a lower investment
than a nationwide paper census would enable more effective risk mitigation and adaptation strategies,
strengthening resilience against climate change impacts. If transfer learning is feasible, as listed in the
third task, this model would enable lesser-developed countries, which frequently lack the necessary
resources for thorough agricultural monitoring [28, 29], to improve monitoring by leveraging the
investments made in agricultural statistics reporting in the US.

A released pre-trained model enables predictions that require only publicly available remote sensing
data, which reduces dependency on comprehensive physical surveys which may be prohibitive in
areas with low infrastructure investments. Access to comprehensive and reliable predicted crop
yield data empowers a diverse set of stakeholders, including policymakers, global organizations,
and farmers. Policymakers and global organizations can leverage the improved data to design more
targeted agricultural policies and interventions. Farmers can utilize the data to make more strategic
decisions about planting and harvesting times and other farm management practices. As described in
task two above, ideally, a farmer could predict crop yield early in the season by inputting forecasted
local weather conditions for the year before scheduled harvest and adjust plans accordingly. Overall,
enhanced data inference facilitated by this method will enable stakeholders to make better informed
decisions, contributing to more effective climate risk mitigation and adaptation strategies.
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