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Abstract

Agricultural productivity is sensitive to temperature and precipitation extremes,
which are increasing with climate change. It is well-established that planting and
growing season weather affects crop yields, but conditions in other seasons may
also be important. We generate a county-level dataset that links yields for six major
crops in the US with agriculture-relevant weather variables for four distinct seasons
(planting, growing, harvest, and non-growing) over the years 1983 to 2021. The
data include binned temperature variables, precipitation, and the Palmer Drought
Severity Index (PDSI). We demonstrate that models using weather conditions
from all four crop calendar seasons segments outperform those using only grow-
ing season or yearlong data at predicting yields, highlighting the importance of
considering the impact of non-growing season weather on agricultural productivity.

1 Introduction

In recent years, extreme precipitation and heat have increased in frequency and intensity[1], and this
trend is only expected to worsen with climate change [2, 3, 4]. Agriculture is heavily dependent on
weather, and it is well-established that extreme events negatively impact productivity [5, 6, 7].

A large literature examines the effect of climate variables on agricultural yields, but these studies have
primarily focused on planting and growing season weather. Specifically, many studies estimated the
impact of growing degree days [8, 9, 10], a measure of temperature exposure, and precipitation affect
crop yields. However, these studies largely overlook the effect of weather variability in other seasons
of the crop calendar. This narrow focus may limit our understanding of how weather variability and
climate change could impact yield and when intervention and adaptation measures should be taken.

To address this gap, we compile a dataset that measures temperature exposure, precipitation, and
drought for six major crops in the United States across four distinct segments of the crop calendar year
— planting, growing, harvest, and non-growing season — for the years 1983 to 2021. We aggregate
these data to the county-level, weighting by cropped area, so that they can be linked with yield
outcomes. These data allow us to examine the impact of weather conditions over multiple seasons,
with the aim of developing a more nuanced understanding of how weather variability across the entire
year impacts agricultural yields. Using linear regressions and common machine learning models, we
demonstrate that using weather across all four seasonal segments as predictors of agricultural yields
improves model performance relative to only including mid-season weather or aggregated weather
across the year. We hope these estimates will enable better risk assessment and inform mitigation and
adaptation strategies.

We make publicly available the source code to reproduce the data used in this analysis from the raw
data described below. While not within the scope of this paper, the data could have other applications
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beyond crop yield estimation, such as deepening our understanding of the relationship between
weather and pest outbreaks or weather and soil moisture levels.

2 Literature Review

The projected negative impact of climate change on agriculture is a pressing global challenge,
especially as a rising global population will necessitate increased food production [11]. Least
developed countries tend to be the most reliant on agriculture for incomes and food security, and
the projected population surge in these regions further underscores the urgency to address the
vulnerabilities of the global agricultural system to climate change. Given the U.S.’s role as a major
global food exporter, the resilience and productivity of its agricultural sector is not only crucial for
domestic food security but also has significant implications for the global food supply. Establishing
the linkages between climate and crop yields can help inform strategies to ensure future food security.

The relationship between climate conditions and agricultural yields has been extensively studied. The
integration of crop simulations and future climatic projections produced by general circulation models
consistently predict a decline in agricultural yields due to climate change [12]. Prior work finds that
temperature fluctuations, altered precipitation patterns, and more frequent of extreme weather events
all reduce crop yields [7, 13]. Crops exhibit ideal growth patterns in specific crop-based temperature
ranges. Extreme temperatures, either too cold or too hot, can hinder their physiological processes and
subsequently reduce yields. In the U.S., statistical analyses indicate that the yields of rainfed maize,
soybean, and cotton decrease sharply when temperatures surpass approximately 30°C [14]. Wheat in
the U.S. is adversely affected by frost in the fall or by heat in the spring [15].

Studies investigating the effects of weather on crop yields typically employ one of two main methods:
biological process-based modeling or regression-based statistical methods [16, 17]. Process-based
models [18] simulate the physiological and biological processes governing crop growth, accounting
for various factors like atmospheric CO2 concentrations, temperature, precipitation, and soil moisture.
These models can offer a deep understanding of how plants grow under different conditions at
fine temporal resolutions. However, they require extensive and specific data for calibration and
validation, and can be computationally intensive. In contrast, statistics based methods such as
Schlenker and Roberts [14] establish the causal relationships between weather and yields using
historical obserations. These methods are generally more straightforward, require less computational
effort, and can efficiently capture broad trends.

One widely used climate variable in the agronomic literature is growing degree days [8, 9, 10]. Degree
days represent the cumulative measure of heat accumulation used to predict plant development stages.
Many studies focus predominantly on the effects of growing season weather. While this approach
captures the direct effects of temperature and precipitation during the crop’s most active growth phase,
it does not capture how weather variability throughout the entire year affects agricultural productivity.
Papers studying soil chemistry [19, 20] demonstrate how early-season weather patterns can influence
factors that subsequently impact crop productivity. These studies underscore the need for a holistic
approach to understanding crop-weather interactions, spanning from parts of the year outside the
growing season.

3 Methodology

We produce a county-level panel dataset that links high resolution weather data with yield data across
the entire U.S. for the years 1983-2021. Weather data include temperature and precipitation measures
from the PRISM Climate Group [21] and a drought indicator from the Gridded Surface Meteorological
Dataset (gridMET) [22]. Both of these datasets are gridded products with approximately 4km
resolution. Yield data come from USDA’s National Agricultural Statistics Service [23]. We include
six major US crops: soy, corn, sorghum, cotton, spring wheat, and winter wheat. Each crop has three
or four different crop seasons with the timeframe defined by the USDA crop calendar [24]. Except
for winter wheat, each crop has a non-growing season and three distinct growing seasons: planting
season, mid season, and harvest season.

To capture temperature exposure, we construct growing degree days in increments of 1◦C from 0◦C
to 40◦C. Temperatures below 0◦C are binned together, as are temperatures above 40◦C. We construct
these measures using daily minimum and maximum temperature from PRISM and the sine method
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described in Zalom et al. [9] which closely approximates the daily temperature cycle. This method
models the temperature exposure over a day using a function:

y(t) = A · cos(2π(t− h)) + k (1)

A is the amplitude of the cosine wave, defined as half the absolute difference between the daily
maximum and minimum temperatures. h is the horizontal shift of the cosine function, set to 0.5. k is
the vertical shift of the cosine function, which is the average of the daily maximum and minimum
temperatures. This shifts the cosine function to have its minimum values at the start and end of the
day. We estimate the temperature for a series of time values t ranging from 0 to 1 in increments of
0.01, representing roughly 15 minute intervals from the start to the end of the day:

ti ∈ {0, 0.01, 0.02, . . . , 1} (2)

We calculate the proportion of the day that the temperature remains within the bounds of the binned
intervals [lower_temp, upper_temp] using the equation:

portion_in =
Number of ti where lower_temp ≤ y(ti) ≤ upper_temp

Total number of ti
(3)

We also obtain daily precipitation estimates from PRISM to construct two measures of rainfall for
each season: total precipitation and precipitation squared. Data on drought come from gridMET. In
particular, we use the Palmer Drought Severity Index (PDSI), which is widely used in the agronomic
literature to summarize abnormal dryness and wetness. PDSI is based on a water balance model,
which takes into account factors like precipitation, soil moisture, and evapotranspiration. It is a
continuous index ranging from +10 to -10, where positive values indicate wet conditions and negative
values indicate dry conditions, with values closer to 0 being closer to normal conditions. We calculate
the mean and median of daily PDSI for each crop season. Additionally, we separate the PDSI variable
into dry and wet variables with the break point at 0 to capture differential effects of wet and dry
conditions on crop yields.

All weather variables are constructed at the native resolution of the data (∼4km) and then aggregated
to the county by year by crop by season level, a procedure that allows us to recover local non-linear
effects of weather on yields [25]. When spatially aggregating weather variables to the county level,
we weight by crop-specific area from the USDA’s Cropland Data Layer [26]. In particular, we first
assign each 4km weather grid cell to a county using its centroid. Then, we calculate the area of the
grid cell covered by each crop. Weights are constructed as the cropped area of the grid cell divided
by its county’s total cropped area. This process yielded a dataset with county-level, crop-specific
weather measures for each growing season and year.

We establish baseline benchmarks of yield predictions using these weather data by applying OLS
regression and ensemble methods such as Random Forest, XGBoost, LightGBM, and CatBoost.
For the ensemble methods, we use 100 estimators, 12 max depth for Random Forest, and 0.06
learning rate for the gradient boost models determined through hyperparameter tuning. We evaluate
model performance using Mean Squared Error, Root Mean Squared Error, Mean Absolute Error,
and R-squared. We exclude winter wheat due to the fact that non growing season is absent, and the
categorical crop column was one-hot encoded to create dummy variables. The data was split with an
80-20 training-testing ratio by year with the last 20% of years in the series as the test set. This split
was designed to evaluate out-of-sample model performance for predicting yields in future years.

4 Results

Table 1 presents a comparison of four scenarios: training only on all growing season, only on the mid
season, on all four segments, and on both planting and mid season. We find that the models using
weather data across all four seasons of the crop calendar achieve the highest performance by MSE,
RMSE and R-squared. For the best performing model (CatBoost), using all four seasons increases
performance by R-squared = 0.02 relative to using growing seasons only, the standard in this literature.
This differentiation likely captures the impact of weather across different segments of plant growth
on crop yield as well as effects of non growing season weather on factors such as soil chemistry and
pest abundance. The results demonstrate the importance of considering non-growing season weather
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Table 1: Benchmark performance comparison evaluated across all crops by scenarios

All four season segments Mid season
Model MSE RMSE MAE R-squared MSE RMSE MAE R-squared

OLS 11418.38 106.86 49.29 0.813 11566.40 107.55 47.58 0.810
Random Forest 6318.58 79.49 36.43 0.896 6473.66 80.46 36.60 0.894
XGBoost 5175.47 71.94 33.96 0.915 5698.22 75.49 34.97 0.907
LightGBM 5322.05 72.95 34.99 0.913 6014.28 77.55 35.92 0.901
CatBoost 5111.62 71.50 33.81 0.916 5407.12 73.53 33.74 0.911

Planting & mid season All growing season
Model MSE RMSE MAE R-squared MSE RMSE MAE R-squared

OLS 11516.50 107.31 48.06 0.811 12146.70 110.21 48.68 0.810
Random Forest 6282.53 79.26 36.07 0.897 9407.24 96.99 45.00 0.846
XGBoost 5248.92 72.45 33.97 0.914 7786.25 88.24 41.38 0.872
LightGBM 5548.24 74.49 35.26 0.909 7037.41 83.89 40.14 0.885
CatBoost 5190.71 72.05 33.77 0.915 6416.72 80.10 39.57 0.895

data in yield prediction, which has previously been neglected in the agricultural statistics modeling
literature.

We examine which weather variables in which seasons have the greatest importance using a leave-
one-out approach. We combine weather variables into five categories: cold temperatures (< 10◦C),
moderate temperatures (10 to 30◦C) hot temperatures (> 30◦C), precipitation measures, and PDSI
measures by segments of the crop calendar year. Table 2 shows the difference in the MSE between
the baseline scenario with all variables from all four segments and the leave-one-out scenario where
one set of variables (corresponding to the table cell) are omitted. Negative values indicate that the
omitted category adds predictive power, while positive ones suggest over-specification. Our results
demonstrate that precipitation and PDSI variables as well as moderate temperature exposure in the
non growing season are important predictors of yields.

Table 2: Leave-one-out test MSE difference by season-variable group

Variable Group Cold Moderate Hot Precipitation PDSI

Non-growing season 42.60 -1.83 40.04 -25.04 -30.48
Harvest season 28.92 55.04 26.25 -27.83 -184.38
Mid season 46.04 -299.26 -133.06 -167.57 -39.69
Planting season -51.34 44.75 -65.77 -52.41 -30.48

This study presents a more comprehensive approach and data for understanding the impact of weather
variability across different crop calendar seasons on agricultural productivity. The baseline benchmark
illustrates the importance and improved performance of considering non-growing season weather
data in yield prediction, which has previously been neglected in the literature. The benchmark results
support better understanding of crop-weather interactions and highlights the value of examining
weather across the year in seasonal segments.
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