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Abstract

Ionospheric outflow supplies nearly all of the heavy ions observed within the magnetosphere, as well as a significant fraction of

the proton density. While much is known about upflow and outflow energization processes, the full global pattern of outflow and

its evolution is only known statistically or through numerical modeling. Because of the dominant role of heavy ions in several key

physical processes, this unknown nature of the full outflow pattern leads to significant uncertainty in understanding geospace

dynamics, especially surrounding storm intervals. That is, global models risk not accurately reproducing the main features of

intense space storms because the amount of ionospheric outflow is poorly specified and thus magnetospheric composition and

mass loading could be ill-defined. This study defines a potential mission to observe ionospheric outflow from several platforms,

allowing for a reasonable and sufficient reconstruction of the full outflow pattern on an orbital cadence. An observing system

simulation experiment is conducted, revealing that four well-placed satellites are sufficient for reasonably accurate outflow

reconstructions. The science scope of this mission could include the following: reveal the global structure of ionospheric outflow;

relate outflow patterns to geomagnetic activity level; and determine the spatial and temporal nature of outflow composition.

The science objectives could be focused to be achieved with minimal instrumentation (only a low-energy ion spectrometer

to obtain outflow reconstructions) or with a larger scientific scope by including contextual instrumentation. Note that the

upcoming Geospace Dynamics Constellation mission will observe upwelling but not ionospheric outflow.
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Key Points: 18 

• A simulation study is conducted to determine the number of spacecraft needed for 19 

accurate reconstruction of 2D ionospheric outflow patterns 20 

• Determining the global pattern of ionospheric outflow is needed to understand the 21 

geospace system, especially during geomagnetic storms 22 

• A potential ionospheric outflow mission concept is defined that could address this 23 

unresolved key issue of space physics and space weather 24 

 25 

AGU Index Terms: 26 

• 2431  Ionosphere/magnetosphere interactions (2736) 27 

• 2736  Magnetosphere/ionosphere interactions (2431) 28 

• 2776 Polar cap phenomena 29 

• 2788 Magnetic storms and substorms (4305, 7954) 30 

• 2794  Instruments and techniques 31 
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Abstract 37 

Ionospheric outflow supplies nearly all of the heavy ions observed within the magnetosphere, as 38 

well as a significant fraction of the proton density. While much is known about upflow and outflow 39 

energization processes, the full global pattern of outflow and its evolution is only known 40 

statistically or through numerical modeling. Because of the dominant role of heavy ions in several 41 

key physical processes, this unknown nature of the full outflow pattern leads to significant 42 

uncertainty in understanding geospace dynamics, especially surrounding storm intervals. That is, 43 

global models risk not accurately reproducing the main features of intense space storms because 44 

the amount of ionospheric outflow is poorly specified and thus magnetospheric composition and 45 

mass loading could be ill-defined. This study defines a potential mission to observe ionospheric 46 

outflow from several platforms, allowing for a reasonable and sufficient reconstruction of the full 47 

outflow pattern on an orbital cadence. An observing system simulation experiment is conducted, 48 

revealing that four well-placed satellites are sufficient for reasonably accurate outflow 49 

reconstructions. The science scope of this mission could include the following: reveal the global 50 

structure of ionospheric outflow; relate outflow patterns to geomagnetic activity level; and 51 

determine the spatial and temporal nature of outflow composition. The science objectives could 52 

be focused to be achieved with minimal instrumentation (only a low-energy ion spectrometer to 53 

obtain outflow reconstructions) or with a larger scientific scope by including contextual 54 

instrumentation. Note that the upcoming Geospace Dynamics Constellation mission will observe 55 

upwelling but not ionospheric outflow. 56 

 57 

Plain Language Summary 58 

Earth’s upper atmosphere above 500 km altitude constantly loses charged particles to outer space 59 

in a process called ionospheric outflow. This outflow is important for the dynamics of the near-60 

Earth space environment (“space weather”) yet is poorly understood on a global scale. A mission 61 

is needed to observe the global patterns of ionospheric outflow and its relation to space weather 62 

driving conditions. The science objectives of such a mission could include not only the 63 

reconstruction of global outflow patterns but also the relation of these patterns to geomagnetic 64 

activity and the spatial and temporal nature of outflow composition. A study is presented to show 65 

that four well-placed spacecraft would be sufficient for reasonable outflow reconstructions. 66 

  67 
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1. Introduction 68 

The Earth’s ionosphere constantly loses material to deep space. This “ionospheric 69 

outflow” can be on the order of 1025 to 1026 ions/s, which is about 1-10 kg/s (e.g., Moore et al., 70 

1997). This outflow is not steady but rather reacts to changes in the solar EUV photon flux 71 

striking the upper atmosphere, as well as to the electromagnetic driving from the solar wind after 72 

it has been processed through Earth’s magnetosphere. A pivotal feature of intense space storms 73 

is a change in near-Earth plasma composition from a dominance of protons (e.g., Lui & 74 

Hamilton, 1992; Pulkkinen et al., 2001) to heavy ions like O+ that flows out of Earth’s 75 

ionosphere at these times (e.g., Chappell et al., 1987; Young et al., 1982). The ionosphere 76 

essentially supplies most of the heavy ions that exist in many parts of the magnetosphere (all 77 

except for He2+, which originates in the solar wind), such as to the lobe, the plasma sheet, in the 78 

far tail, and even to the magnetosheath (Hamilton et al., 1988; Christon et al., 2000, 2002; Mall 79 

et al., 2002; Liu et al., 2005; Kistler et al., 2010a, c; Mouikis et al., 2010;). Figure 1 is an artist’s 80 

rendering of ionospheric outflow, shown here as being dominated by outflow from the cusp (as 81 

found by, e.g., Moore et al., 1999a; Lund et al., 2018) with many of the ions escaping into the 82 

magnetotail lobes. Seki et al. (2015) provides an excellent review of the processes leading to 83 

outflow and Welling et al. (2015b) is a comprehensive examination of the fate of this outflow 84 

throughout geospace.  85 

The presence of heavy ionospheric-origin ions in the magnetosphere has multiple 86 

influences including the following: 87 

enhance system inertia; lower the 88 

Alfvén speed; modify plasma 89 

turbulence; control micro-processes 90 

like reconnection; and slow the system 91 

response time to disturbances. Given 92 

the significance of these effects, a 93 

number of global magnetospheric fluid 94 

models (often magnetohydrodynamic, 95 

or MHD, codes) have incorporated 96 

them to some extent (e.g., Winglee et 97 

al., 2002, 2009; Glocer et al., 2009a, b; 98 

 

Figure 1. Artist’s concept of high latitude 

ionospheric outflow.  
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Brambles et al., 2010, 2011; Garcia et al., 2010; Wiltberger et al., 2010; Welling et al., 2011; Ilie 99 

et al., 2013, 2015; Liemohn and Welling, 2016). Results from these multifluid simulations show 100 

that the presence of heavy ions may slow the magnetospheric convection, reduce the cross-cap 101 

potential, influence the dayside reconnection, alter the behavior of the plasma sheet, stimulate 102 

substorms, and magnify the storm time Dst. MHD models with ionospheric outflow as an inner 103 

magnetospheric boundary condition do not include known kinetic physics effects, though, and 104 

such models typically adopt either uniformly distributed outflow or localized (usually near the 105 

cusp) upflowing ion fluxes computed, often, from the Strangeway et al. (2005) model. The 106 

Strangeway relationship, however, is derived from relatively limited observational data and 107 

therefore suffers from several severe drawbacks. For instance, the predicted flux does not depend 108 

on season, solar activity, or local time, or universal time. The solar activity needs to be included 109 

to reproduce the amount of ionization at lower altitudes – that is, the supply of ionospheric ions 110 

available for outflow. Moreover, this model does not include a specification of density, velocity, 111 

and temperature needed as boundary conditions for the MHD simulations; only outflow flux is 112 

provided by the Strangeway relationship.  113 

Global magnetospheric MHD models reveal that this outflow mass loads the 114 

magnetosphere, leading to reactive feedback processes and emergent phenomena not seen during 115 

quiescent times (e.g., Wiltberger et al., 2010). However, such global models do not accurately 116 

reproduce the observed Dst time series during intense space storms because the global dynamics 117 

and amount of ionospheric outflow are only poorly characterized. Figure 2 shows results from 118 

the “Dst challenge” (Rastätter et al., 2013), in which several global models were used to 119 

reproduce Dst for several very different storms (four shown here). Each model produced 120 

dramatically different results, with some codes overestimating the depth of Dst and others barely 121 

registering any Dst signature. While the grid resolutions and numerical solvers play a role in 122 

these differences, a key critical input is the ionospheric outflow setting, as illustrated by the 123 

widely different results even from the same model. 124 
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Modeling alone cannot properly quantify the global outflow patterns. An in situ mission 125 

is needed that would discover how Earth’s ionosphere dynamically and globally feeds plasma to 126 

its magnetosphere by quantifying the ionospheric outflow intensity, composition, and 127 

acceleration variability over both regional and global scales. Some of the ionospheric outflow 128 

escapes directly into deep space, but much of it initially circulates within the magnetosphere. 129 

This extra mass and dissimilar motion (e.g., the vastly different gyroradii of light and heavy ions) 130 

alters the dynamics of the magnetic field, it slows down plasma flow speeds, and it changes the 131 

global interaction of the solar wind with the magnetosphere. It can even influence future 132 

ionospheric outflow rates. As a result, a natural feedback loop exists. Solar wind conditions 133 

govern the outflow, which mass loads the magnetosphere and in return modifies the nature of 134 

how the solar wind regulates outflow. Present knowledge of these processes only reveal the 135 

spatial structure of the high-latitude ionospheric outflow through long-term statistical 136 

compilations of single-spacecraft missions. This is inadequate for describing and fully 137 

understanding the dynamics of this feedback system. A mission to measure global ionospheric 138 

outflow – in conjunction with upstream measurements of solar wind driving conditions from 139 

 

Figure 2. From Rastätter et al. (2013), Dst data-model comparison from several global models of 

4 storm events. One of the reasons that the simulation results are so different from each other, 

even from the same model, is the assumed ionospheric outflow specification.  



Confidential manuscript submitted to replace this text with name of AGU journal 

 

other spacecraft – would examine this nonlinear connection with multi-point observations 140 

leading to large-scale reconstructions of the ionospheric outflow pattern.  141 

 142 

2. The need for additional investigation 143 

The polar wind and energetic ion outflow processes have been studied for more than forty 144 

years via a variety of both experimental and modeling techniques (cf. reviews by Banks & 145 

Holzer, 1968; Moore, 1984; Moore and Delcourt, 1995; Ganguli, 1996; Yau et al., 1997; 146 

Hultqvist et al., 1999; Yau et al., 2007; Moore & Horwitz, 2007; Schunk and Nagy, 2009; Moore 147 

and Horwitz, 2009; Kronberg et al., 2014; Wiltberger, 2015). Past missions – such as the 148 

International Satellites for Ionospheric Studies (ISIS), in particular ISIS-1 (e.g., Brinton et al., 149 

1971; Hoffman & Dodson, 1980), or the Dynamics Explorer satellites, notably DE-1 (e.g., 150 

Gurgiolo & Burch, 1982; Nagai et al., 1984, Chandler et al., 1991), as well as Akebono (e.g., 151 

Abe et al., 1993; Yau et al., 1995), Polar (e.g., Su et al., 1998b; Moore et al., 1999a, b; Liemohn 152 

et al., 2005, 2007), the Defense Meteorological Satellite Program (DMSP) spacecraft (e.g., Coley 153 

et al., 2003); the Fast Auroral SnapShoT (FAST) mission (e.g., Strangeway et al., 2000, 2005), 154 

and the Cluster mission (e.g., Kistler et al., 2010a; Liao et al., 2015; Dandouras, 2021) – have 155 

observed ionospheric outflow with one or two spacecraft. Sometimes these are well-instrumented 156 

to observe energy input and ionospheric outflow response, leading to input-outflow correlations. 157 

Based on this work, the basic physics of outflow of thermal plasma from the terrestrial 158 

ionosphere at high latitudes is well known. Figure 3 shows a schematic that summarizes the 159 

major processes of outflow. Shown here are Joule heating in the thermosphere and ionosphere 160 

(e.g., Foster et al., 1983; Gombosi & Killeen, 1987; Pollock et al., 1990; Liu et al., 1995), 161 

ponderomotive or transverse ion acceleration by plasma waves (e.g., Whalen et al., 1991; Miller 162 

et al., 1995; Lundin & Guglielmi, 2006), acceleration by parallel electric fields (e.g., Cladis, 163 

1986; Schunk, 2000; Chaston et al., 2016), and high-altitude centrifugal energization (e.g., 164 

Horwitz et al., 1994; Demars et al., 1996; Winglee, 2000). Various populations of energetic 165 

electrons are also possible channels for heating or accelerating ions to escape velocities, such as 166 

atmospheric photoelectrons (e.g., Lemaire, 1971; Khazanov et al., 1997; Tam et al., 2007; Glocer 167 

et al., 2017), polar rain (e.g., Waite et al., 1985; Wilson et al., 1997; Su et al., 1998a), and soft 168 

electrons in the dayside cusp (e.g., Nilsson et al., 1994; Valek et al., 2002; Fuselier et al., 2003; 169 
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Yizengaw et al., 2006; Wiltberger et al., 2010) or nightside auroral zone (e.g., Wahlund et al., 170 

1992; Richards, 1995; Barakat et al., 1998; Wu et al., 1999; Lynch et al., 2007; Zeng & Horwitz, 171 

2007).  172 

As the outflowing ions drift through the different regions (e.g., Elliott et al., 2007), the 173 

plasma is energized by mechanisms that operate with different levels of intensity at different 174 

altitudes and in different high-latitude regions. Most of the outflow comes from the dayside cusp 175 

and nightside auroral zones. A particularly difficult confounding element, however, is the transit 176 

of upflowing ions from the topside ionosphere to higher altitudes where additional acceleration 177 

converts these populations into outflow. That is, observed outflow can be related to energization 178 

processes, but the spatial distribution of outflow is only known statistically or from numerical 179 

modeling. The inherent time delay in the outflow process obscures correlations between driving 180 

factor and outflow intensity. 181 

Figure 4 shows two ionospheric outflow patterns (of ion radial velocity), from Akebono 182 

measurements (Abe et al., 2004) and from numerical modeling (Glocer et al., 2012). The 183 

 

Figure 3. Schematic of physical processes contributing to ionospheric outflow. 
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observed pattern was assembled from many years of data, yet it still reveals significant meso-184 

scale structure in the outflow pattern. This is most likely due to statistical noise as the radial 185 

velocity changes considerably from pass to pass. The modeled pattern has several features in 186 

common with the statistical pattern, including meso-scale patches of intense outflow speeds, but 187 

other aspects are not the same. For a global modeling simulation of a particular event, it is not 188 

fully adequate to use either of these approaches for the outflow specification, leading to 189 

uncertainty in the magnetospheric fate and consequences, introducing a large caveat to any large-190 

scale geospace simulation study and the analysis and prediction of space weather. 191 

Importantly, the current statistically-known spatial structure does not reveal the dynamics 192 

of outflow. While in situ measurements have revealed important statistical properties of ion 193 

outflow, measurements are made at a given magnetic local time (MLT) and altitude. Since they 194 

are taken over some period of time (a few minutes), it does not allow the determination of the 195 

temporal and spatial variation of ion outflow in response to variable solar wind and 196 

interplanetary magnetic field (IMF) conditions during the progression of geomagnetic storms. As 197 

argued by Liemohn et al. (2022), it is important to understand event-specific spatial and temporal 198 

variability in order to quantify the impact of outflow on the geospace system. The community 199 

lacks this capability with respect to the structure of outflow for any particular disturbed time. 200 

All of this uncertainty about the spatial pattern of outflow consolidates in our estimates of 201 

fluence, or the global outflow rate from the ionosphere into the magnetosphere. Currently, 202 

 

Figure 4. Examples of the spatial complexity inherent in O+ outflow velocity in the polar 

(>60 invariant latitude) ionosphere. The left frame is constructed from nearly a decade of 

Akebono satellite observations (Abe et al., 2004), yet still shows a highly structured outflow 

pattern. The right frame is constructed from Polar Wind Outflow Model (adapted from the 

results of Glocer et al., 2012) when 392 flux tubes are simulated under moderate solar driving. 

Note that the two colorscales are different. 
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fluence is estimated only to order-of-magnitude accuracy (Yau et al., 1988; Cully et al., 2003; 203 

Lennartsson et al., 2004). All estimations are based on statistical studies from single-spacecraft 204 

missions. Estimates from models vary wildly (e.g., Welling et al., 2016), providing limited 205 

insight on the true value. After decades of investigations, we still cannot confidently state the 206 

spatial distribution and amount of ionospheric plasma that enters the magnetosphere. 207 

Note that the upcoming Geospace Dynamics Constellation (GDC) mission is not 208 

designed to achieve the objective considered here of a global map of ionospheric outflow. While 209 

the payload of its six spacecraft includes a low-energy ion instrument, its target altitude below 210 

400 km is significantly too low for the task proposed here. That is, it might see ionospheric 211 

upwelling, but does not distinguish the portion that becomes ionospheric outflow. Much of the 212 

acceleration for heavy ions to reach escape velocity occurs at higher altitude than where GDC 213 

will be located. To observe outflow, the satellite should be, at a minimum, above 1000 km, and 214 

2000 km would be even better to ensure that most of the ions have reached escape velocity and 215 

are therefore actually leaving the atmosphere. 216 

3. Potential science objectives of this mission 217 

There are three main science objectives that should be targeted for a mission devoted to 218 

observing the pattern of high-latitude ionospheric outflow: 219 

• Reveal the global structure of ionospheric outflow 220 

• Relate outflow patterns to solar wind driving and geomagnetic activity 221 

• Determine the spatial and temporal nature of outflow composition 222 

An ancillary modeling task that should be associated with this mission is mapping the 223 

outflow through the magnetosphere and connecting the outflow patterns to any available relevant 224 

measurements elsewhere in geospace. 225 

3.1. Reveal the global structure of ionopsheric outflow 226 

Ionospheric outflow is a time-varying source of plasma for the near-Earth space 227 

environment. Outflow forms complex and spatially detailed patterns. The composition, 228 

magnitude, and spatial distribution of outflowing fluxes vary strongly as a function of solar and 229 

magnetospheric activity. Outflowing plasma feeds the magnetosphere, playing a role in almost 230 
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all global processes. In order to understand magnetospheric dynamics, it is critical to understand 231 

the complicated and non-linear dynamics of outflow. Ionospheric outflow is a mosaic of many 232 

different populations, creating a complicated spatial structure that cannot be captured by single-233 

spacecraft missions.  234 

Ionospheric outflow organizes into distinct regions, including polar cap, auroral zone, and 235 

cusp outflow. Nested within these regions are distinct populations, such as bulk cold outflows 236 

with temperatures below 1 eV and suprathermal flows (10 eV up to low keV), such as ion beams 237 

and conics. The distributions are highly non-Maxwellian, forming pancake, conic, toroid, bi-238 

Maxwellian, double-peaked, counter-streaming, and elongated-tail distributions (Andre and Yau, 239 

1997; Schunk and Nagy, 2009). These flows contain both light and heavy ions: H+, He+, N+, and 240 

O+. While outflow regions can be expansive (e.g., the polar cap), they are often localized and 241 

overlapping (Giles et al., 1994; Abe et al., 2004). Of particular interest is the cusp, which is 242 

limited in area (typically a few hundred kilometers in any direction at ionospheric altitudes, as 243 

found by Newell and Meng (1994)), but yields strong outflowing fluxes to the magnetosphere 244 

(Lockwood et al., 1988; Kistler et al., 2010b). Meso-scale outflow “hotspots” also exist, with 245 

spatial scales of several hundred kilometers. Figure 4 shows different illustrations of the complex 246 

spatial pattern, both statistically observed (left panel) and simulated (right panel). Both large and 247 

meso-scale outflow features are apparent in both panels of Figure 4. The characteristics of each 248 

outflow population, including energy, pitch angle, and source location, all determine how that 249 

population will be transported into and throughout the magnetosphere (Delcourt et al., 1989; 250 

Cully et al., 2003; Huddleston et al., 2005). 251 

Beyond an understanding that this complexity exists, we know little concerning the 252 

global distribution of specific ionospheric outflow populations. Coarse maps are constructed 253 

statistically using single-spacecraft observations aggregated over long periods (Abe et al., 2004; 254 

Peterson et al., 2006). These studies yield only an initial idea of flux distributions. When 255 

segregated by energy or distribution shape, the available statistics are too low to be useful. 256 

Though strong east-west oriented IMF can drive pronounced interhemispheric asymmetries in 257 

ionospheric dynamics (e.g., Weimer, 2001a, b), such asymmetries are rarely considered in 258 

outflow because of observation limitations, particularly in the southern hemisphere.  259 
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3.2. Relate outflow patterns to geomagnetic activity level 260 

Compounding the spatial complexity of outflow is its temporal nature. Outflow regions 261 

follow the magnetospheric geometry: as the cusp (e.g., Farrell and Van Allen, 1990; Fung et al., 262 

1997; Zhou et al., 2000; Pitout et al., 2006) and auroral oval move as a function of solar driving 263 

and magnetospheric activity, and corresponding ionospheric plasma sources. Many acceleration 264 

processes are also the result of energy inputs from the solar wind and magnetosphere. This 265 

results in outflow patterns that are tied not only to the solar cycle (e.g., Yau et al., 1985, 1998; 266 

Abe et al., 2004), but also to specific solar wind conditions (Lennartsson et al., 2004; Elliott et 267 

al., 2001; Cully et al., 2003), geomagnetic storm phase (Nosé, et al., 2003; Moore et al., 1999; 268 

Kitamura et al., 2010), and magnetospheric transients, such as substorms (Øieroset et al., 1999; 269 

Wilson et al., 2004; Kistler et al., 2006). The resultant outflowing fluxes at 2000 km altitude vary 270 

from 1 × 105 cm−2s−1 to 5 × 108 cm−2s−1 as a function of season, species, and geomagnetic and 271 

solar activity (Yau et al., 2007).  272 

Single satellite missions have not been able to resolve time dynamics of outflow. 273 

Statistical studies can only quantify outflow variability via total fluence as a function of simple 274 

indices (Yau et al., 1988) or binned by average solar wind conditions (Cully et al., 2003). Such 275 

studies cannot illustrate important details across storm timescales. What outflow regions and 276 

populations are most prominent during different storm phases? How does outflow compare 277 

between different types of storms, such as coronal mass ejection (CME) or corotating interaction 278 

region (CIR) driven events? How does the occurrence, size, and intensity of outflow hotspots 279 

depend on storm phase and intensity? These questions cannot be answered with traditional, 280 

single-point measurements, limiting our understanding of how dynamic outflow affects the 281 

active magnetosphere.  282 

Researchers cannot understand the highly time dynamic nature of ionospheric outflow 283 

without frequent, distributed observations. This mission concept would provide these 284 

measurements and solve the question about how outflow evolves over the course of a 285 

geomagnetic storm.  286 
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3.3. Determine the spatial and temporal nature of outflow composition 287 

The proposed mission should have the capability to separately measure the outflowing 288 

plasma population and identify its major constituents. Measuring composition provides an 289 

avenue to distinguish between energization and transport mechanisms (e.g., Ilie and Liemohn, 290 

2016). For instance, in spite of only 12% mass difference, nitrogen and oxygen have different 291 

ionization energies (15.6 eV and 12.1 eV respectively) as well as different scale heights 292 

(Chappell et al., 1982). The cross section for charge transfer between atomic hydrogen and 293 

nitrogen ions is significantly different than the cross section for charge transfer between atomic 294 

hydrogen and oxygen ions (Stebbings et al., 1960). Because the peak production rates for those 295 

two ionospheric heavy ions usually happen at different altitudes, their abundance in the outflow 296 

serves as a tracer for the altitude dependent energization processes. Theoretical studies predict 297 

significant densities of N+ (e.g., Schunk and Raitt, 1980; Sojka et al., 1982; Lin et al., 2020; Lin 298 

and Ilie, 2022), showing a strong dependence on diurnal, seasonal, and geomagnetic activity as 299 

well as universal time. 300 

Since the production of N+ increases with increased energy input, it is expected that it is 301 

more prevalent in the auroral regions. Observation of enhanced N+ fluxes outside the auroral 302 

region would reveal new insight into latitudinal transport of heavy ions and consequently the 303 

overall ionospheric dynamics. Because the mass distribution of accelerated ionospheric ions 304 

reflects the source region of the low altitude ion composition, any measurement of a minor ion 305 

constituent of the accelerated plasma serves as a tracer of ionospheric and energization processes 306 

(e.g., Winningham & Gurgiolo, 1982; Glocer & Daldorff, 2022). Ion velocity space 307 

measurements alone reveal the basic breakdown of these processes, separating classic polar wind 308 

(heating only, allowing the high-energy tail to escape) from potential-driven outflow (various E|| 309 

contributions) and wave heating (transversely accelerated ions and conics). 310 

Enhancement of ion outflow is also associated with an increase in the solar wind dynamic 311 

pressure (Moore et al., 1999a; Elliott et al., 2001; Cully et al., 2003; Ogawa et al., 2009) and in 312 

the solar wind electric field (Lennartsson, 1995; Elliott et al., 2001). The amount of outflowing 313 

ion flux and the interplay between different energization mechanisms are largely governed by 314 

changes in the solar wind density, velocity, and IMF because it is these parameters that control 315 

the precipitation into the ionosphere and the convection electric field (Moore and Horwitz, 316 
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2007). Furthermore, the enhancement of ionospheric outflow becomes larger with increasing 317 

geomagnetic activity as the auroral oval (where the largest ionospheric outflow occurs) moves 318 

equatorward (Ogawa et al., 2009). At higher altitudes, the curvature of the magnetic field in the 319 

polar cap produces a centrifugal acceleration of the convecting plasma and this effect becomes 320 

important during times of strong convection. However, centrifugal acceleration affects 321 

predominantly the lowest energy ions by increasing their parallel velocity (Cladis, 1986). To 322 

measure outflow, the satellites should be above the acceleration region that pushes them above 323 

escape velocity (at least 1000 km altitude, and perhaps much higher). 324 

3.4. Map outflow throughout the magnetosphere 325 

Our understanding of outflow’s role throughout the magnetosphere is tempered by our 326 

tenuous understanding of outflow itself. A combination of global outflow observations with 327 

numerical modeling is necessary to completely reveal how ionospheric outflow maps throughout 328 

the magnetosphere. 329 

An example of this is presented in Figure 5. The main graphic shows trajectory traces of 330 

H+ and O+ ions through a multifluid global simulation that resolves velocities for each ion 331 

species. It is seen that the locations of initial contact with the plasma sheet are vastly different for 332 

the two species, which could modify magnetotail dynamics. The inset in Figure 5 shows the 333 

“fate” of ionospheric outflow as a function of initial location within the high-latitude ionosphere. 334 

This is similar to the fate maps from Huddleston et al. (2005), except that, instead of an empirical 335 

field description, this uses results from an MHD model (Gombosi et al., 2021; with setup like 336 

that of Liemohn & Welling, 2016, and Glocer et al., 2018). For this particular model 337 

configuration and driving condition (nominal southward IMF), a pattern can be obtained 338 

revealing which ionospheric locations contribute to which magnetospheric regions. 339 

The temporal and spatial complexities of ionospheric outflow propagate through the 340 

magnetosphere, affecting system-level dynamics. Observations paint a clear dependence between 341 

solar wind/magnetospheric activity and heavy ion composition in the magnetosphere. In the 342 

lobes, different populations disperse by energy and species (Chappell et al., 1987). O+ beams 343 

from the cusp distinguish themselves from isotropic nightside auroral O+ (Kistler et al., 2010b; 344 

Liao et al., 2010; Kistler et al., 2016). Very cold ion populations indicate cold, classical polar 345 

wind outflow (Engwall et al., 2009; Andre et al., 2015). Faster populations can escape the 346 
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geospace domain all the way to deep space, while slower (and typically heavier) populations 347 

arrive at the plasma sheet (Young et al., 1982; Lennartsson and Shelley, 1986; Moore et al., 348 

2005a, b; Nosé et al. 2005; Mouikis et al., 2010). Here, they are accelerated sunward, feeding the 349 

partial and symmetric ring current hot ion populations (e.g., Gloeckler et al., 1985; Daglis et al., 350 

1999; Denton et al., 2005). Figure 6 (from Nosé et al., 2003) shows the energy density ratio in 351 

the inner magnetosphere and near-Earth plasma sheet, between O+ and H+ (in red) and between 352 

He+ and H+ (in blue). In these ratios, the numerator species is supplied only by the ionosphere 353 

while protons could be sourced from either the ionosphere or the solar wind. It is clear that the 354 

 

Figure 5. Streamline traces of ionospheric outflow from 5 locations on the model inner 

boundary along the noon-midnight meridian in the northern hemisphere (view is from dawn). 

The orange curves are for O+ and the green curves are for H+. The thin white lines show 

closed magnetic field lines and the thin red lines are the last closed field lines on the dayside 

and nightside. The inset panel shows the fate of mapping outflow from a starting grid in the 

northern hemisphere (noon at the top), with their first crossings of the equatorial plane 

indicated by color: central plasma sheet (red); dayside inner magnetosphere (yellow); 

nightside inner magnetosphere (light blue); precipitation back into the model inner boundary 

(dark blue); and loss to deep space (white).  
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energy density of the ring current becomes increasingly carried by O+ as a function of storm 355 

intensity. 356 

Although ionospheric outflow is a major source of magnetospheric plasma, recent studies 357 

suggest a more complicated connection. Numerical models have repeatedly demonstrated that 358 

the characteristics of outflow at its source, including mass, pitch angle, and energy, help dictate 359 

the fate of the plasma inside the magnetosphere (Huddleston et al., 2005; Brambles et al., 2010; 360 

Garcia et al., 2010; Yu and Ridley, 2013a, b). Within the plasma sheet, characteristics like 361 

composition, distance down tail, and pitch angle distribution dictate the amount of acceleration 362 

of the plasma (Delcourt et al., 1989, 1993; Kronberg et al., 2012). The characteristics of outflow 363 

throughout the plasma sheet control how 364 

effectively it will energize the ring current (e.g., 365 

Welling et al., 2011). Further, as outflow affects 366 

magnetospheric dynamics, such as substorm 367 

development (Wiltberger et al., 2010; Welling et 368 

al., 2016) and cross polar cap potential (Winglee 369 

et al., 2002; Welling and Zaharia, 2012; Ilie et al., 370 

2013, 2015), it is also affecting the energy input 371 

into the ionosphere, creating non-linear 372 

magnetosphere-ionosphere feedback loops 373 

(Moore et al., 2014; Welling and Liemohn, 2016). 374 

These have been linked to sudden ring current 375 

intensifications (Welling et al., 2015a) and the 376 

development of global sawtooth oscillations 377 

(Brambles et al., 2011, 2013). The geopauses – 378 

those surfaces in near-Earth space where the contribution from solar and ionospheric origin 379 

plasma are equal (in density, mass, or pressure) – are boundaries that define changes in the 380 

physical processes governing plasma flow (e.g., Trung et al., 2019; 2023). The community now 381 

recognizes that magnetospheric dynamics rely critically on outflow dynamics. 382 

The source of most of the uncertainties regarding geospace dynamics are caused by the 383 

limitations of our current understanding of the spatial and temporal variation of ionospheric 384 

outflow. Observational studies of ion composition in geospace must rely on inference to connect 385 

 

Figure 6. The energy density ratio between O+ 

and H+ (in red) and between He+ and H+ (in 

blue) of the ring current and plasma sheet as a 

function of geomagnetic activity, as indexed 

by Dst or SYM-H (Nosé et al., 2003). Note the 

logarithmic scale on the y axis.  
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the source population to the magnetospheric observations (e.g., Kistler et al., 2016). Numerical 386 

simulations depend on the inherently flawed statistical outflow distributions to seed models, 387 

propagating error throughout the magnetosphere (e.g., Huddleston et al., 2005; Peroomian et al., 388 

2006). Scientists are simply unable to definitively answer critical questions connecting outflow 389 

and the magnetosphere. 390 

4. Determining the optimal number of spacecraft 391 

While it would be ideal to know ionospheric outflow everywhere at all times, this would 392 

require a Starlink-level constellation of hundreds of satellites. Instead, there is a trade space of 393 

cost versus reconstruction accuracy that needs to be assessed to determine the optimal number of 394 

spacecraft that would provide reasonable reconstructions most of the time. Therefore, an 395 

observing system simulation experiment is useful to provide some constraints on the 396 

constellation configuration. 397 

This exploration was conducted using several existing outflow patterns, represented here 398 

by results from a high-resolution single-fluid MHD simulation, specifically those from Welling 399 

& Liemohn (2014). For more on the numerical code, please see the latest summary of the Space 400 

Weather Modeling Framework (SWMF) (Gombosi et al., 2021). Using values extracted from the 401 

original outflow pattern, a reconstruction is generated from these “observations” through binning 402 

and interpolation. Each virtual spacecraft takes 401 samples per orbit per hemisphere. These 403 

values are then sorting into 51 eually-spaced latitude bins per hemisphere and each latitude ring 404 

of values are then interpolated into 45 equally-spaced longitude bins using the Piecewise Cubic 405 

Hermite Interpolating Polynomial (PCHIP; Fritsch and Carlson, 1980). The PCHIP method 406 

conducts a cubic spline fit on a one-dimensional data set (in this case, the extracted outflow 407 

fluxes for a specific latitude band), with an extra filter that blends in linear interpolation to both 408 

preserve monotonicity of the resulting reconstruction and minimize overshoots near steep 409 

gradients within the data. The result is continuous but not necessarily smooth. 410 

Latitudes above the available data are pruned, leaving an unreconstructed region at the 411 

pole. The reconstruction is a function of the number of satellites, the inclination of the orbit 412 

crossing point from the geomagnetic pole, the magnetic local time of the orbit crossing point, 413 

and the longitudinal separation of the orbit planes. Two solar wind input conditions (IMF 414 
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northward and southward) are used for the statistical study, and a time series of driving 415 

conditions are used for a real-event case study. 416 

4.1. Example reconstruction patterns 417 

Figure 7 illustrates the product of the reconstruction algorithm. For this example, the 418 

MHD result was produced using steady driving with an IMF Bz of -10 nT, taken from the 419 

simulation at 3 RE geocentric distance (the inner boundary of the MHD model was set at 2.5 RE) 420 

and mapped down to 1800 km altitude using flux conversation along assumed dipole field lines. 421 

For this reconstruction, three satellite passes were used with a crossing at 80˚ at local dawn (the 422 

sun is to the right in each of the plots), with a nodal separation of the orbit planes of 60˚. While 423 

some meso-scale outflow features are missed because an orbit plane did not pass through them, 424 

the overall pattern in the reconstruction is qualitatively similar to that of the original. Listed at 425 

the top of the original and reconstructed outflow maps is the total escaping ion fluence, which 426 

are only ~1% different. 427 

To assess the appropriateness and quality of the selected reconstruction method, Figure 8 428 

shows a PCHIP fit at the highest latitude band from the example in Figure 7. The red dots are the 429 

extracted data values. Because this is the highest latitude band, the satellite trajectories are 430 

moving on a very shallow arc (i.e., nearly horizontally) through the band, so even though there 431 

are only three satellites, each one contributes many points to the reconstruction. To enforce 432 

periodicity of the reconstruction, the data are repeated three times within to ensure continuity of 433 

the fit at ±180˚. The PCHIP result is shown in blue. Figure 8 shows that the PCHIP algorithm is 434 

excellent at reconstructing the functional form of the data in regions where data exists, while also 435 

 

Figure 7. From a given outflow pattern (left), several satellite-pass extractions (center) are used to 

generate a reconstructed outflow pattern (right).  
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creating a smooth curve through regions with no data points. It also does not introduce any new 436 

extrema beyond the observed maximum and minimum values. 437 

Extending this example, Figure 9 shows reconstructions of that same MHD outflow 438 

pattern using one through five spacecraft passes for the reconstruction. To provide a different 439 

example from that shown in Figure 7, the crossing location in Figure 9 is at 85˚ at local midnight 440 

and the maximum orbit plane separation is set to 90˚. The reconstruction with a single spacecraft 441 

marginally reproduces a few of the global features but none of the meso-scale hotspots of 442 

outflow. This is to be expected as there are only two extracted values for each latitude ring, so 443 

each band in the reconstruction has a rather sinusoidal form. With two spacecraft, the global 444 

pattern is better, but the local features are still missing. Although patterns created from two or 445 

 

Figure 8. Example of a PCHIP fitting calculation of outflow flux as a function of longitude at 

a specific latitude band, specifically the highest latitude ring of the reconstruction example 

shown in Figure 7. The red dots are the MHD values extracted as “observations” within a 

particular colatitude band, repeated three times to ensure continuity of the fit. Values from the 

The blue curve is the PCHIP reconstruction.  
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one spacecraft capture the large-scale features, these patterns reproduce essentially none of the 446 

localized outflow peaks and troughs. The pattern from three spacecraft is good but lacks some of 447 

the details of the hot spot structure within the outflow map. With four or five spacecraft, the 448 

localized features become resolved. Furthermore, it is seen that the interpolated pattern from four 449 

spacecraft is quite similar to that from five spacecraft.  450 

4.2. Outflow reconstruction optimization 451 

To quantify this, goodness of fit values for the 2D outflow map reconstructions were 452 

produced for constellations of one to six satellites. To further explore different mission phases, 453 

reconstructions were made using different orbit geomagnetic inclinations (from 65˚ to 90˚ in 5˚ 454 

increments), azimuths (i.e., local time) of orbit crossing points (full 360 at 14.4 increments) 455 

and spread of orbit planes (from 2 to 100 between the most distant satellites, in 10 settings, 456 

with any additional satellites above two equally spaced between these end members of the set). 457 

In all, over 10,000 spatial reconstructions were produced per MHD outflow spatial pattern plot.  458 

 

Figure 9. Reconstruction from a known spatial pattern of ionospheric outflow (upper left) using 

one through five spacecraft passes.  
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For the results in this section, two such MHD patterns are considered, for a southward 459 

and northward IMF condition. These were taken from Welling & Liemohn (2014) from single-460 

fluid MHD simulations. As seen in the first panels of Figures 7 and 9, the large-scale features of 461 

these initial ionospheric outflow patterns consist of outflow from the auroral oval (around all 462 

local times with a latitudinal extent of 5-10˚) with embedded “hot spots” of higher-intensity 463 

outflow flux (spanning 1-2 hours in local time and 3-5˚ in latitude). These are the scale of the 464 

features for which the reconstruction is being optimized. 465 

The quality of reconstruction was then quantified. The fluxes at each latitude and 466 

longitude were compared between the reconstruction and the original pattern, resulting in a 467 

scatterplot of these paired values. This scatterplot was distilled to metric scores using root-mean-468 

squared error (RMSE) and correlation coefficient (R), comparing each point within the 469 

reconstruction to the same point in the original outflow map. While two metrics are not enough 470 

for a robust analysis, these particular two metrics are from the accuracy and association 471 

categories (see, e.g., Liemohn et al., 2021) and provide a balanced overview of the goodness of 472 

fit between the patterns. This is only an initial conceptual study assessing the trade space 473 

between constellation configuration and reconstruction accuracy; a more thorough investigation 474 

of parameter space should be conducted for specific flight opportunities to justify the concept for 475 

that particular mission. 476 

These two metrics are shown as a function of the number of satellites in Figure 10. These 477 

box-and-whisker plots were compiled using all combinations of the other inputs for both IMF 478 

settings. The box shows the interquartile range and the whiskers present the full range of the 479 

metric scores. The median R exceeds 0.7 by three satellites, and rises to 0.75 by six satellites. 480 

Surpassing this 0.7 level is useful because this corresponds to coefficient of determination score 481 

(defined as R2) of 0.5. R2 is a measure of how much of the variance in one parameter is captured 482 

by similar variance in the other parameter (the two parameters, in this case, being the outflow 483 

fluxes). Therefore, a median R2 of 0.5 indicates that 50% of the variance in the original outflow 484 

flux number sets is reproduced by the reconstructed number sets. To put it another way, passing 485 

an R of 0.7 means that the reconstructions contain a majority of the features in the original 486 

pattern. 487 
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There are two other features to note in Figure 10. The metrics medians appear to level off 488 

by three or four satellites in the constellation, and essentially asymptote at six satellites (i.e., no 489 

discernible no change from five satellites). The boxplot presentation also reveals asymmetries in 490 

the underlying histogram of values, showing a skew in all of the distributions with an elongated 491 

tail towards poorer reconstructions. This is because all of the parameter settings were included in 492 

the plot creation, including those with small satellite separation or badly aligned orbit plane 493 

crossing locations (relative to outflow features in the MHD patterns). 494 

To investigate the spread in the boxplots of Figure 10, Figure 11 shows median RMSE 495 

scores and correlation coefficients as a function of two constellation parameters, the number of 496 

satellites and the magnetic latitude of the orbit plane crossing. Each white grid crossing in the 497 

plots is a constellation configuration setting for these two parameters, the color is smoothed to 498 

fill in each panel. All settings for the other two parameters are included in the number sets 499 

leading to the median values presented in Figure 11. Note that the colorscales for both of the 500 

metrics are optimized for the values in the plot and do not start at zero. 501 

 

Figure 9. Correlation (R) and root mean square error (RMSE) as a function of the number of 

satellites used in the reconstruction. All reconstructions as a function of local time of orbit 

crossing, magnetic latitude of the crossing, nodal separation of the spacecraft, and geomagnetic 

activity are included. The red bar shows the median metric score, the box shows the interquartile 

range, and the whiskers extend to the extremes of the distributions.  
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Magnetic latitude of the crossing is analogous to inclination of the orbit planes, but not 502 

the same, of course, because the magnetic poles are not aligned with the geographic poles, 503 

introducing a systematic diurnal variation to the magnetic latitude of the orbit crossing. That is, 504 

this is not a parameter of a real satellite mission, which would require weighted averaging of a 505 

span of magnetic latitude crossings to determine the accuracy for a given inclination. That said, 506 

this presentation is informative to help guide the choice of an optimal inclination for the 507 

constellation. 508 

The clear feature of Figure 11 is that there is a peak in the metric scores (maximum R, 509 

minimum RMSE) at 80˚. Both metrics are noticeably worse for lower crossing latitudes; this is 510 

expected as the satellites spend little time in the auroral zone and therefore miss most of the 511 

outflow. The interesting result is that the metrics are worse for an 85˚ and 90˚ magnetic latitude 512 

crossing than for the optimal crossing of 80˚. This is because, at these high-inclination settings, 513 

the orbits are cutting through the auroral zone – where most of the outflow occurs – with a more 514 

 

Figure 11. Metrics versus number of satellites and the magnetic latitude of the crossing point. 

The median metric is shown from the distribution of values from the remaining parameters in 

the reconstruction analysis. 
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meridional trajectory. With a meridional trajectory, the satellites spend less time in the auroral 515 

zone and contribute fewer values to the reconstruction. There appears to be an optimal 516 

reconstruction for which the crossing is just poleward of the auroral zone, providing a maximal 517 

orbital path length through the entire latitude band of the high outflow flux. 518 

Figure 12 shows median correlation coefficients as a function of the maximum orbit 519 

plane separation and number of satellites. Only correlation is shown here in order to present a 520 

different kind of second panel; the right plot is a slice through the other for the four-satellite 521 

constellation configuration. As with Figures 10 and 11, the RMSE results (not shown) reveal the 522 

same trends as the correlation plots included in the figure. 523 

In Figure 12, it is seen that the best correlations are located in the upper right corner of 524 

the left panel. The reconstruction improves with both number of satellites and orbit plane 525 

separation. The right panel reveals a limit to this improvement, though, as the peak correlation is 526 

found at ~90˚ separation. As the maximum separation expands past 90˚, the inter-orbit separation 527 

of the constellation becomes large enough to start to miss meso-scale features (at least in some of 528 

the constellation configurations), and the median reconstruction slightly decreases. The drop in 529 

median correlation from 90˚ to 100˚ is not significant, but it is the start of a trend that will 530 

continue as the maximum orbit plane separation increases to 180˚. At that point, the two end 531 

  

Figure 12. Left: Correlation coefficient as a function of number of spacecraft in the 

constellation (x axis) and the maximum orbit plan separation angle (y axis). The median score 

is shown from the distribution created by the other parameters in the analysis. Right: median 

correlation coefficient as a function of orbit plane separation for a four satellite constellation.  
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members of the constellation are flying along nearly the same trajectory but in opposite 532 

directions, therefore they are not contributing two satellites’ worth of information to the 533 

reconstruction.  534 

Also shown in the right panel of Figure 12 is that the median correlation coefficient for a 535 

4-satellite constellation exceeds 0.7 for a maximum separation of 55˚ or more. This can be 536 

considered a cutoff threshold for producing reasonable reconstructions (in which most of the 537 

variation in the original pattern is captured by the reconstruction) with a reasonable number of 538 

satellites (four). 539 

The magnetic local time of the orbit plane crossing did not show a trend in either RMSE 540 

or R. The spread is large and the differences in the median values were not significant and do not 541 

need to be shown. Parsing the study results further, this parameter only mattered for small orbit 542 

plane separation. For this case, very few of the reconstructions are of high quality, but a crossing 543 

on the nightside was marginally better than one on the dayside.  544 

4.3. Outflow during a storm interval 545 

The above analysis showed that 4 satellites with a >55˚ orbit plane separation between 546 

the end-member spacecraft produces fairly accurate reconstructions. That assessment, however, 547 

was conducted with only two outflow patterns, a nominal southward IMF case and a nominal 548 

northward IMF case, with standard solar wind parameters. It is useful to test the reconstruction 549 

method and the ability of a constellation to reconstruct outflow during a storm interval. Using the 550 

same SWMF model configuration as above, the “St. Patrick’s Day Storm” of 17-18 March 2015 551 

was simulated. For reference, the Dst time series for this storm is shown in the upper panel of 552 

Figure 13.  553 

Outflow patterns were obtained from the SWMF every minute. Reconstructions were 554 

then compiled on a 2-hour cadence, which would be the cadence of a 2000 km altitude 555 

constellation presumably taking these outflow measurements. The number of spacecraft was set 556 

to four and the maximum orbit plane separation set to 90˚ (i.e., 30˚ separation between each of 557 

the orbit planes). To build up statistics, the local time and magnetic latitude of the crossing were 558 

varied, using four local times (00, 06, 12, and 18) and four latitudes (65˚, 75˚, 85˚, and 95˚). In 559 

all, 1920 reconstructions were conducted for each two-hour period throughout the storm interval.  560 
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To provide an overall assessment of the reconstructions, Figure 13 shows the time series 561 

of the integrated outflow fluence (lower panel), both from the SWMF model (on a one-minute 562 

cadence) and from the reconstructions (on a two-hour cadence as boxplots). Of the 26 boxplots 563 

in this figure, 19 have model values passing through the interquartile range of the reconstructed 564 

fluences (the “box” of the boxplot). The reconstructed fluences are usually at or below the 565 

original values, indicating that the reconstruction method usually captures the basic pattern of the 566 

outflow but not all of the meso-scale “hot spots” of elevated flux. There were a few times where 567 

the reconstructed fluences were entirely below the 120 original MHD fluences in that two-hour 568 

window, but for most of the intervals, the reconstructions are doing reasonably well. 569 

5. Discussion on implementation 570 

It is expected that a mission fulfilling the orbital requirements defined in section 4 above 571 

would consist of several identically-instrumented, longitudinally-separated, high-inclination 572 

spacecraft observing the low-energy ion velocity distribution above 1000 km altitude (in order to 573 

observe outflow, not upwelling) and below 3000 km altitude (to minimize orbital period and 574 

surface area of the orbit shell). Initial cost estimates suggest that such a mission could be 575 

 

Figure 13. The top panel shows the Dst index time series during the 17-18 March 2015 

magnetic storm interval. The bottom panel shows the northern hemisphere ionospheric 

outflow fluence from the MHD model (blue line) and the box-and-whisker distribution of 

fluences from the reconstructions. 
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achieved within the constraints of the Heliophysics Small Explorer mission line with minimal 576 

instrumentation.  577 

In its simplest configuration with only an ion spectrometer, this type of mission concept 578 

represents an important measurement paradigm that is ideally suited for the Explorer mission 579 

line. Instead of measuring “everything” at one or two locations, this constellation would 580 

“globally” measure one key plasma property. The satellites in the constellation would relate 581 

different portions of the high latitude ionospheric outflow with each other, connecting dayside 582 

with nightside outflow rates and revealing storm-sequence time lags and correlations. Significant 583 

progress in our understanding of ion outflow would be achieved with only the low-energy ion 584 

velocity space measurement at several locations, moving our understanding of system science of 585 

geospace as a whole to the next level. Note that if the full 4 field of view of the ion velocity 586 

distribution is measured by this ion instrument, then the downflowing low-energy ions would 587 

also be observed and subsequently constructed into maps every orbit period. 588 

An alternative mission concept to the single instrument payload would be to design the 589 

spacecraft with additional instrumentation to provide observations that complement and 590 

contextualize the ion data. This would most likely need to be proposed at the Heliophysics Mid-591 

sized Explorer level (or larger) to maintain the four-satellite constellation. With only one well-592 

instrumented spacecraft, the mission would repeat the findings of the FAST or Akebono 593 

missions and would not be particularly innovative without some other major design 594 

augmentation to make it worthy of the investment. 595 

A limitation of this study is that it is assumed that the outflow pattern is steady for the 596 

duration of the high-latitude passage of the constellation, i.e., 20 to 30 minutes. This is a 597 

somewhat reasonable assumption, given that the outflowing ions are moving at only a few to tens 598 

of kilometers per second, and therefore take many minutes to flow from the ionosphere (let’s say 599 

the starting altitude is in the topside ionosphere at 300 km altitude) to a nominal observation 600 

altitude of around 2000 km. If an ion is accelerated along the field line with just enough force to 601 

barely overcome gravity and maintain a 1 km/s upward velocity, then it would take 28 minutes 602 

for this ion to traverse this 1700 km distance and reach the satellite. If, however, the outflowing 603 

ions maintain a velocity of 10 km/s, then this trip would only take 3 minutes. Furthermore, the 604 

outflow pattern can only be constructed once per orbit (per hemisphere), so the cadence of the 605 
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patterns would be on the order of 2 hours. This mission concept, therefore, is not suitable for 606 

investigating prompt outflow events, but rather for the investigation of longer-term outflow and 607 

its consequences on the magnetosphere. If proposed to the Heliophysics Mid-sized Explorer 608 

program, or if a very inexpensive miniaturized ion instrument is used, then a fleet of small 609 

satellites could be deployed with several along each of the four orbit planes, allowing for a faster 610 

cadence of the reconstructed outflow patterns. 611 

6. Conclusion 612 

This study addressed the question of how many satellites would be needed to accurately 613 

reconstruct the high-latitude ionospheric outflow pattern. An observing system simulation 614 

experiment was conducted to quantify and constrain the requirements for a reasonable 615 

reconstruction of the outflow pattern. With “accurate” defined as a median correlation coefficient 616 

of 0.7 for a sensitivity study spanning several orbital configuration parameters and IMF settings, 617 

the answer is four. Three might work, but one or two satellites is inadequate for the task. Five or 618 

six satellites produce slightly better reconstructions, but the marginal improvement might not be 619 

worth the cost unless the focus is on the meso-scale features of ionospheric outflow. It is best to 620 

maximize auroral zone dwell time for the constellation, so an inclination between 75˚ and 85˚ is 621 

best. Higher than this and the orbit planes would cut too quickly through the high outflow flux 622 

region, and lower than this and they would likely miss the outflow regions on many passes. The 623 

orbit planes should spread across a wide swath of local times, with a separation between the end-624 

member spacecraft of at least 60˚, and 90˚ would be even better. More than this separation 625 

produces marginal improvement or even diminished accuracy. The local time of the orbital plane 626 

crossings was not significant in controlling the accuracy of the reconstructed outflow pattern.  627 

This study provides a starting point for future mission concept development on measuring 628 

the global pattern of ionospheric outflow. Because of the heavy mass of O+, N+ and other 629 

constituents in this outflow, understanding the full high-latitude spatial structure and temporal 630 

variability of the escaping ions is vital for scientific progress on the ionosphere-magnetosphere 631 

relationship and nonlinear feedback loop. Ionospheric outflow mass loads the magnetosphere and 632 

significantly impacts many physical processes, to the point of reshaping the magnetosphere and 633 

altering the large-scale dynamics of near-Earth space. This is a critical unresolved question in 634 

space physics and a dedicated mission would substantially advance our community’s 635 
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understanding of geospace system dynamics and space weather predictions. This proposed 636 

mission would reveal the temporal change in ionospheric outflow on the timescales of substorm 637 

and storm phases and the relationship of this change to solar wind and IMF driving conditions. It 638 

would resolve both small scale outflows (early mission) and global outflow conditions (mid- to 639 

late-phase). Spatial outflow maps will be created every orbit, providing continuous coverage 640 

across storms. These observations would unlock the dynamic relationship between ionospheric 641 

outflow, solar wind drivers, and geomagnetic activity. 642 
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Key Points: 18 

• A simulation study is conducted to determine the number of spacecraft needed for 19 

accurate reconstruction of 2D ionospheric outflow patterns 20 

• Determining the global pattern of ionospheric outflow is needed to understand the 21 

geospace system, especially during geomagnetic storms 22 

• A potential ionospheric outflow mission concept is defined that could address this 23 

unresolved key issue of space physics and space weather 24 

 25 

AGU Index Terms: 26 

• 2431  Ionosphere/magnetosphere interactions (2736) 27 

• 2736  Magnetosphere/ionosphere interactions (2431) 28 

• 2776 Polar cap phenomena 29 

• 2788 Magnetic storms and substorms (4305, 7954) 30 

• 2794  Instruments and techniques 31 
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Abstract 37 

Ionospheric outflow supplies nearly all of the heavy ions observed within the magnetosphere, as 38 

well as a significant fraction of the proton density. While much is known about upflow and outflow 39 

energization processes, the full global pattern of outflow and its evolution is only known 40 

statistically or through numerical modeling. Because of the dominant role of heavy ions in several 41 

key physical processes, this unknown nature of the full outflow pattern leads to significant 42 

uncertainty in understanding geospace dynamics, especially surrounding storm intervals. That is, 43 

global models risk not accurately reproducing the main features of intense space storms because 44 

the amount of ionospheric outflow is poorly specified and thus magnetospheric composition and 45 

mass loading could be ill-defined. This study defines a potential mission to observe ionospheric 46 

outflow from several platforms, allowing for a reasonable and sufficient reconstruction of the full 47 

outflow pattern on an orbital cadence. An observing system simulation experiment is conducted, 48 

revealing that four well-placed satellites are sufficient for reasonably accurate outflow 49 

reconstructions. The science scope of this mission could include the following: reveal the global 50 

structure of ionospheric outflow; relate outflow patterns to geomagnetic activity level; and 51 

determine the spatial and temporal nature of outflow composition. The science objectives could 52 

be focused to be achieved with minimal instrumentation (only a low-energy ion spectrometer to 53 

obtain outflow reconstructions) or with a larger scientific scope by including contextual 54 

instrumentation. Note that the upcoming Geospace Dynamics Constellation mission will observe 55 

upwelling but not ionospheric outflow. 56 

 57 

Plain Language Summary 58 

Earth’s upper atmosphere above 500 km altitude constantly loses charged particles to outer space 59 

in a process called ionospheric outflow. This outflow is important for the dynamics of the near-60 

Earth space environment (“space weather”) yet is poorly understood on a global scale. A mission 61 

is needed to observe the global patterns of ionospheric outflow and its relation to space weather 62 

driving conditions. The science objectives of such a mission could include not only the 63 

reconstruction of global outflow patterns but also the relation of these patterns to geomagnetic 64 

activity and the spatial and temporal nature of outflow composition. A study is presented to show 65 

that four well-placed spacecraft would be sufficient for reasonable outflow reconstructions. 66 

  67 
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1. Introduction 68 

The Earth’s ionosphere constantly loses material to deep space. This “ionospheric 69 

outflow” can be on the order of 1025 to 1026 ions/s, which is about 1-10 kg/s (e.g., Moore et al., 70 

1997). This outflow is not steady but rather reacts to changes in the solar EUV photon flux 71 

striking the upper atmosphere, as well as to the electromagnetic driving from the solar wind after 72 

it has been processed through Earth’s magnetosphere. A pivotal feature of intense space storms 73 

is a change in near-Earth plasma composition from a dominance of protons (e.g., Lui & 74 

Hamilton, 1992; Pulkkinen et al., 2001) to heavy ions like O+ that flows out of Earth’s 75 

ionosphere at these times (e.g., Chappell et al., 1987; Young et al., 1982). The ionosphere 76 

essentially supplies most of the heavy ions that exist in many parts of the magnetosphere (all 77 

except for He2+, which originates in the solar wind), such as to the lobe, the plasma sheet, in the 78 

far tail, and even to the magnetosheath (Hamilton et al., 1988; Christon et al., 2000, 2002; Mall 79 

et al., 2002; Liu et al., 2005; Kistler et al., 2010a, c; Mouikis et al., 2010;). Figure 1 is an artist’s 80 

rendering of ionospheric outflow, shown here as being dominated by outflow from the cusp (as 81 

found by, e.g., Moore et al., 1999a; Lund et al., 2018) with many of the ions escaping into the 82 

magnetotail lobes. Seki et al. (2015) provides an excellent review of the processes leading to 83 

outflow and Welling et al. (2015b) is a comprehensive examination of the fate of this outflow 84 

throughout geospace.  85 

The presence of heavy ionospheric-origin ions in the magnetosphere has multiple 86 

influences including the following: 87 

enhance system inertia; lower the 88 

Alfvén speed; modify plasma 89 

turbulence; control micro-processes 90 

like reconnection; and slow the system 91 

response time to disturbances. Given 92 

the significance of these effects, a 93 

number of global magnetospheric fluid 94 

models (often magnetohydrodynamic, 95 

or MHD, codes) have incorporated 96 

them to some extent (e.g., Winglee et 97 

al., 2002, 2009; Glocer et al., 2009a, b; 98 

 

Figure 1. Artist’s concept of high latitude 

ionospheric outflow.  
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Brambles et al., 2010, 2011; Garcia et al., 2010; Wiltberger et al., 2010; Welling et al., 2011; Ilie 99 

et al., 2013, 2015; Liemohn and Welling, 2016). Results from these multifluid simulations show 100 

that the presence of heavy ions may slow the magnetospheric convection, reduce the cross-cap 101 

potential, influence the dayside reconnection, alter the behavior of the plasma sheet, stimulate 102 

substorms, and magnify the storm time Dst. MHD models with ionospheric outflow as an inner 103 

magnetospheric boundary condition do not include known kinetic physics effects, though, and 104 

such models typically adopt either uniformly distributed outflow or localized (usually near the 105 

cusp) upflowing ion fluxes computed, often, from the Strangeway et al. (2005) model. The 106 

Strangeway relationship, however, is derived from relatively limited observational data and 107 

therefore suffers from several severe drawbacks. For instance, the predicted flux does not depend 108 

on season, solar activity, or local time, or universal time. The solar activity needs to be included 109 

to reproduce the amount of ionization at lower altitudes – that is, the supply of ionospheric ions 110 

available for outflow. Moreover, this model does not include a specification of density, velocity, 111 

and temperature needed as boundary conditions for the MHD simulations; only outflow flux is 112 

provided by the Strangeway relationship.  113 

Global magnetospheric MHD models reveal that this outflow mass loads the 114 

magnetosphere, leading to reactive feedback processes and emergent phenomena not seen during 115 

quiescent times (e.g., Wiltberger et al., 2010). However, such global models do not accurately 116 

reproduce the observed Dst time series during intense space storms because the global dynamics 117 

and amount of ionospheric outflow are only poorly characterized. Figure 2 shows results from 118 

the “Dst challenge” (Rastätter et al., 2013), in which several global models were used to 119 

reproduce Dst for several very different storms (four shown here). Each model produced 120 

dramatically different results, with some codes overestimating the depth of Dst and others barely 121 

registering any Dst signature. While the grid resolutions and numerical solvers play a role in 122 

these differences, a key critical input is the ionospheric outflow setting, as illustrated by the 123 

widely different results even from the same model. 124 
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Modeling alone cannot properly quantify the global outflow patterns. An in situ mission 125 

is needed that would discover how Earth’s ionosphere dynamically and globally feeds plasma to 126 

its magnetosphere by quantifying the ionospheric outflow intensity, composition, and 127 

acceleration variability over both regional and global scales. Some of the ionospheric outflow 128 

escapes directly into deep space, but much of it initially circulates within the magnetosphere. 129 

This extra mass and dissimilar motion (e.g., the vastly different gyroradii of light and heavy ions) 130 

alters the dynamics of the magnetic field, it slows down plasma flow speeds, and it changes the 131 

global interaction of the solar wind with the magnetosphere. It can even influence future 132 

ionospheric outflow rates. As a result, a natural feedback loop exists. Solar wind conditions 133 

govern the outflow, which mass loads the magnetosphere and in return modifies the nature of 134 

how the solar wind regulates outflow. Present knowledge of these processes only reveal the 135 

spatial structure of the high-latitude ionospheric outflow through long-term statistical 136 

compilations of single-spacecraft missions. This is inadequate for describing and fully 137 

understanding the dynamics of this feedback system. A mission to measure global ionospheric 138 

outflow – in conjunction with upstream measurements of solar wind driving conditions from 139 

 

Figure 2. From Rastätter et al. (2013), Dst data-model comparison from several global models of 

4 storm events. One of the reasons that the simulation results are so different from each other, 

even from the same model, is the assumed ionospheric outflow specification.  
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other spacecraft – would examine this nonlinear connection with multi-point observations 140 

leading to large-scale reconstructions of the ionospheric outflow pattern.  141 

 142 

2. The need for additional investigation 143 

The polar wind and energetic ion outflow processes have been studied for more than forty 144 

years via a variety of both experimental and modeling techniques (cf. reviews by Banks & 145 

Holzer, 1968; Moore, 1984; Moore and Delcourt, 1995; Ganguli, 1996; Yau et al., 1997; 146 

Hultqvist et al., 1999; Yau et al., 2007; Moore & Horwitz, 2007; Schunk and Nagy, 2009; Moore 147 

and Horwitz, 2009; Kronberg et al., 2014; Wiltberger, 2015). Past missions – such as the 148 

International Satellites for Ionospheric Studies (ISIS), in particular ISIS-1 (e.g., Brinton et al., 149 

1971; Hoffman & Dodson, 1980), or the Dynamics Explorer satellites, notably DE-1 (e.g., 150 

Gurgiolo & Burch, 1982; Nagai et al., 1984, Chandler et al., 1991), as well as Akebono (e.g., 151 

Abe et al., 1993; Yau et al., 1995), Polar (e.g., Su et al., 1998b; Moore et al., 1999a, b; Liemohn 152 

et al., 2005, 2007), the Defense Meteorological Satellite Program (DMSP) spacecraft (e.g., Coley 153 

et al., 2003); the Fast Auroral SnapShoT (FAST) mission (e.g., Strangeway et al., 2000, 2005), 154 

and the Cluster mission (e.g., Kistler et al., 2010a; Liao et al., 2015; Dandouras, 2021) – have 155 

observed ionospheric outflow with one or two spacecraft. Sometimes these are well-instrumented 156 

to observe energy input and ionospheric outflow response, leading to input-outflow correlations. 157 

Based on this work, the basic physics of outflow of thermal plasma from the terrestrial 158 

ionosphere at high latitudes is well known. Figure 3 shows a schematic that summarizes the 159 

major processes of outflow. Shown here are Joule heating in the thermosphere and ionosphere 160 

(e.g., Foster et al., 1983; Gombosi & Killeen, 1987; Pollock et al., 1990; Liu et al., 1995), 161 

ponderomotive or transverse ion acceleration by plasma waves (e.g., Whalen et al., 1991; Miller 162 

et al., 1995; Lundin & Guglielmi, 2006), acceleration by parallel electric fields (e.g., Cladis, 163 

1986; Schunk, 2000; Chaston et al., 2016), and high-altitude centrifugal energization (e.g., 164 

Horwitz et al., 1994; Demars et al., 1996; Winglee, 2000). Various populations of energetic 165 

electrons are also possible channels for heating or accelerating ions to escape velocities, such as 166 

atmospheric photoelectrons (e.g., Lemaire, 1971; Khazanov et al., 1997; Tam et al., 2007; Glocer 167 

et al., 2017), polar rain (e.g., Waite et al., 1985; Wilson et al., 1997; Su et al., 1998a), and soft 168 

electrons in the dayside cusp (e.g., Nilsson et al., 1994; Valek et al., 2002; Fuselier et al., 2003; 169 



Confidential manuscript submitted to replace this text with name of AGU journal 

 

Yizengaw et al., 2006; Wiltberger et al., 2010) or nightside auroral zone (e.g., Wahlund et al., 170 

1992; Richards, 1995; Barakat et al., 1998; Wu et al., 1999; Lynch et al., 2007; Zeng & Horwitz, 171 

2007).  172 

As the outflowing ions drift through the different regions (e.g., Elliott et al., 2007), the 173 

plasma is energized by mechanisms that operate with different levels of intensity at different 174 

altitudes and in different high-latitude regions. Most of the outflow comes from the dayside cusp 175 

and nightside auroral zones. A particularly difficult confounding element, however, is the transit 176 

of upflowing ions from the topside ionosphere to higher altitudes where additional acceleration 177 

converts these populations into outflow. That is, observed outflow can be related to energization 178 

processes, but the spatial distribution of outflow is only known statistically or from numerical 179 

modeling. The inherent time delay in the outflow process obscures correlations between driving 180 

factor and outflow intensity. 181 

Figure 4 shows two ionospheric outflow patterns (of ion radial velocity), from Akebono 182 

measurements (Abe et al., 2004) and from numerical modeling (Glocer et al., 2012). The 183 

 

Figure 3. Schematic of physical processes contributing to ionospheric outflow. 
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observed pattern was assembled from many years of data, yet it still reveals significant meso-184 

scale structure in the outflow pattern. This is most likely due to statistical noise as the radial 185 

velocity changes considerably from pass to pass. The modeled pattern has several features in 186 

common with the statistical pattern, including meso-scale patches of intense outflow speeds, but 187 

other aspects are not the same. For a global modeling simulation of a particular event, it is not 188 

fully adequate to use either of these approaches for the outflow specification, leading to 189 

uncertainty in the magnetospheric fate and consequences, introducing a large caveat to any large-190 

scale geospace simulation study and the analysis and prediction of space weather. 191 

Importantly, the current statistically-known spatial structure does not reveal the dynamics 192 

of outflow. While in situ measurements have revealed important statistical properties of ion 193 

outflow, measurements are made at a given magnetic local time (MLT) and altitude. Since they 194 

are taken over some period of time (a few minutes), it does not allow the determination of the 195 

temporal and spatial variation of ion outflow in response to variable solar wind and 196 

interplanetary magnetic field (IMF) conditions during the progression of geomagnetic storms. As 197 

argued by Liemohn et al. (2022), it is important to understand event-specific spatial and temporal 198 

variability in order to quantify the impact of outflow on the geospace system. The community 199 

lacks this capability with respect to the structure of outflow for any particular disturbed time. 200 

All of this uncertainty about the spatial pattern of outflow consolidates in our estimates of 201 

fluence, or the global outflow rate from the ionosphere into the magnetosphere. Currently, 202 

 

Figure 4. Examples of the spatial complexity inherent in O+ outflow velocity in the polar 

(>60 invariant latitude) ionosphere. The left frame is constructed from nearly a decade of 

Akebono satellite observations (Abe et al., 2004), yet still shows a highly structured outflow 

pattern. The right frame is constructed from Polar Wind Outflow Model (adapted from the 

results of Glocer et al., 2012) when 392 flux tubes are simulated under moderate solar driving. 

Note that the two colorscales are different. 
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fluence is estimated only to order-of-magnitude accuracy (Yau et al., 1988; Cully et al., 2003; 203 

Lennartsson et al., 2004). All estimations are based on statistical studies from single-spacecraft 204 

missions. Estimates from models vary wildly (e.g., Welling et al., 2016), providing limited 205 

insight on the true value. After decades of investigations, we still cannot confidently state the 206 

spatial distribution and amount of ionospheric plasma that enters the magnetosphere. 207 

Note that the upcoming Geospace Dynamics Constellation (GDC) mission is not 208 

designed to achieve the objective considered here of a global map of ionospheric outflow. While 209 

the payload of its six spacecraft includes a low-energy ion instrument, its target altitude below 210 

400 km is significantly too low for the task proposed here. That is, it might see ionospheric 211 

upwelling, but does not distinguish the portion that becomes ionospheric outflow. Much of the 212 

acceleration for heavy ions to reach escape velocity occurs at higher altitude than where GDC 213 

will be located. To observe outflow, the satellite should be, at a minimum, above 1000 km, and 214 

2000 km would be even better to ensure that most of the ions have reached escape velocity and 215 

are therefore actually leaving the atmosphere. 216 

3. Potential science objectives of this mission 217 

There are three main science objectives that should be targeted for a mission devoted to 218 

observing the pattern of high-latitude ionospheric outflow: 219 

• Reveal the global structure of ionospheric outflow 220 

• Relate outflow patterns to solar wind driving and geomagnetic activity 221 

• Determine the spatial and temporal nature of outflow composition 222 

An ancillary modeling task that should be associated with this mission is mapping the 223 

outflow through the magnetosphere and connecting the outflow patterns to any available relevant 224 

measurements elsewhere in geospace. 225 

3.1. Reveal the global structure of ionopsheric outflow 226 

Ionospheric outflow is a time-varying source of plasma for the near-Earth space 227 

environment. Outflow forms complex and spatially detailed patterns. The composition, 228 

magnitude, and spatial distribution of outflowing fluxes vary strongly as a function of solar and 229 

magnetospheric activity. Outflowing plasma feeds the magnetosphere, playing a role in almost 230 
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all global processes. In order to understand magnetospheric dynamics, it is critical to understand 231 

the complicated and non-linear dynamics of outflow. Ionospheric outflow is a mosaic of many 232 

different populations, creating a complicated spatial structure that cannot be captured by single-233 

spacecraft missions.  234 

Ionospheric outflow organizes into distinct regions, including polar cap, auroral zone, and 235 

cusp outflow. Nested within these regions are distinct populations, such as bulk cold outflows 236 

with temperatures below 1 eV and suprathermal flows (10 eV up to low keV), such as ion beams 237 

and conics. The distributions are highly non-Maxwellian, forming pancake, conic, toroid, bi-238 

Maxwellian, double-peaked, counter-streaming, and elongated-tail distributions (Andre and Yau, 239 

1997; Schunk and Nagy, 2009). These flows contain both light and heavy ions: H+, He+, N+, and 240 

O+. While outflow regions can be expansive (e.g., the polar cap), they are often localized and 241 

overlapping (Giles et al., 1994; Abe et al., 2004). Of particular interest is the cusp, which is 242 

limited in area (typically a few hundred kilometers in any direction at ionospheric altitudes, as 243 

found by Newell and Meng (1994)), but yields strong outflowing fluxes to the magnetosphere 244 

(Lockwood et al., 1988; Kistler et al., 2010b). Meso-scale outflow “hotspots” also exist, with 245 

spatial scales of several hundred kilometers. Figure 4 shows different illustrations of the complex 246 

spatial pattern, both statistically observed (left panel) and simulated (right panel). Both large and 247 

meso-scale outflow features are apparent in both panels of Figure 4. The characteristics of each 248 

outflow population, including energy, pitch angle, and source location, all determine how that 249 

population will be transported into and throughout the magnetosphere (Delcourt et al., 1989; 250 

Cully et al., 2003; Huddleston et al., 2005). 251 

Beyond an understanding that this complexity exists, we know little concerning the 252 

global distribution of specific ionospheric outflow populations. Coarse maps are constructed 253 

statistically using single-spacecraft observations aggregated over long periods (Abe et al., 2004; 254 

Peterson et al., 2006). These studies yield only an initial idea of flux distributions. When 255 

segregated by energy or distribution shape, the available statistics are too low to be useful. 256 

Though strong east-west oriented IMF can drive pronounced interhemispheric asymmetries in 257 

ionospheric dynamics (e.g., Weimer, 2001a, b), such asymmetries are rarely considered in 258 

outflow because of observation limitations, particularly in the southern hemisphere.  259 
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3.2. Relate outflow patterns to geomagnetic activity level 260 

Compounding the spatial complexity of outflow is its temporal nature. Outflow regions 261 

follow the magnetospheric geometry: as the cusp (e.g., Farrell and Van Allen, 1990; Fung et al., 262 

1997; Zhou et al., 2000; Pitout et al., 2006) and auroral oval move as a function of solar driving 263 

and magnetospheric activity, and corresponding ionospheric plasma sources. Many acceleration 264 

processes are also the result of energy inputs from the solar wind and magnetosphere. This 265 

results in outflow patterns that are tied not only to the solar cycle (e.g., Yau et al., 1985, 1998; 266 

Abe et al., 2004), but also to specific solar wind conditions (Lennartsson et al., 2004; Elliott et 267 

al., 2001; Cully et al., 2003), geomagnetic storm phase (Nosé, et al., 2003; Moore et al., 1999; 268 

Kitamura et al., 2010), and magnetospheric transients, such as substorms (Øieroset et al., 1999; 269 

Wilson et al., 2004; Kistler et al., 2006). The resultant outflowing fluxes at 2000 km altitude vary 270 

from 1 × 105 cm−2s−1 to 5 × 108 cm−2s−1 as a function of season, species, and geomagnetic and 271 

solar activity (Yau et al., 2007).  272 

Single satellite missions have not been able to resolve time dynamics of outflow. 273 

Statistical studies can only quantify outflow variability via total fluence as a function of simple 274 

indices (Yau et al., 1988) or binned by average solar wind conditions (Cully et al., 2003). Such 275 

studies cannot illustrate important details across storm timescales. What outflow regions and 276 

populations are most prominent during different storm phases? How does outflow compare 277 

between different types of storms, such as coronal mass ejection (CME) or corotating interaction 278 

region (CIR) driven events? How does the occurrence, size, and intensity of outflow hotspots 279 

depend on storm phase and intensity? These questions cannot be answered with traditional, 280 

single-point measurements, limiting our understanding of how dynamic outflow affects the 281 

active magnetosphere.  282 

Researchers cannot understand the highly time dynamic nature of ionospheric outflow 283 

without frequent, distributed observations. This mission concept would provide these 284 

measurements and solve the question about how outflow evolves over the course of a 285 

geomagnetic storm.  286 
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3.3. Determine the spatial and temporal nature of outflow composition 287 

The proposed mission should have the capability to separately measure the outflowing 288 

plasma population and identify its major constituents. Measuring composition provides an 289 

avenue to distinguish between energization and transport mechanisms (e.g., Ilie and Liemohn, 290 

2016). For instance, in spite of only 12% mass difference, nitrogen and oxygen have different 291 

ionization energies (15.6 eV and 12.1 eV respectively) as well as different scale heights 292 

(Chappell et al., 1982). The cross section for charge transfer between atomic hydrogen and 293 

nitrogen ions is significantly different than the cross section for charge transfer between atomic 294 

hydrogen and oxygen ions (Stebbings et al., 1960). Because the peak production rates for those 295 

two ionospheric heavy ions usually happen at different altitudes, their abundance in the outflow 296 

serves as a tracer for the altitude dependent energization processes. Theoretical studies predict 297 

significant densities of N+ (e.g., Schunk and Raitt, 1980; Sojka et al., 1982; Lin et al., 2020; Lin 298 

and Ilie, 2022), showing a strong dependence on diurnal, seasonal, and geomagnetic activity as 299 

well as universal time. 300 

Since the production of N+ increases with increased energy input, it is expected that it is 301 

more prevalent in the auroral regions. Observation of enhanced N+ fluxes outside the auroral 302 

region would reveal new insight into latitudinal transport of heavy ions and consequently the 303 

overall ionospheric dynamics. Because the mass distribution of accelerated ionospheric ions 304 

reflects the source region of the low altitude ion composition, any measurement of a minor ion 305 

constituent of the accelerated plasma serves as a tracer of ionospheric and energization processes 306 

(e.g., Winningham & Gurgiolo, 1982; Glocer & Daldorff, 2022). Ion velocity space 307 

measurements alone reveal the basic breakdown of these processes, separating classic polar wind 308 

(heating only, allowing the high-energy tail to escape) from potential-driven outflow (various E|| 309 

contributions) and wave heating (transversely accelerated ions and conics). 310 

Enhancement of ion outflow is also associated with an increase in the solar wind dynamic 311 

pressure (Moore et al., 1999a; Elliott et al., 2001; Cully et al., 2003; Ogawa et al., 2009) and in 312 

the solar wind electric field (Lennartsson, 1995; Elliott et al., 2001). The amount of outflowing 313 

ion flux and the interplay between different energization mechanisms are largely governed by 314 

changes in the solar wind density, velocity, and IMF because it is these parameters that control 315 

the precipitation into the ionosphere and the convection electric field (Moore and Horwitz, 316 
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2007). Furthermore, the enhancement of ionospheric outflow becomes larger with increasing 317 

geomagnetic activity as the auroral oval (where the largest ionospheric outflow occurs) moves 318 

equatorward (Ogawa et al., 2009). At higher altitudes, the curvature of the magnetic field in the 319 

polar cap produces a centrifugal acceleration of the convecting plasma and this effect becomes 320 

important during times of strong convection. However, centrifugal acceleration affects 321 

predominantly the lowest energy ions by increasing their parallel velocity (Cladis, 1986). To 322 

measure outflow, the satellites should be above the acceleration region that pushes them above 323 

escape velocity (at least 1000 km altitude, and perhaps much higher). 324 

3.4. Map outflow throughout the magnetosphere 325 

Our understanding of outflow’s role throughout the magnetosphere is tempered by our 326 

tenuous understanding of outflow itself. A combination of global outflow observations with 327 

numerical modeling is necessary to completely reveal how ionospheric outflow maps throughout 328 

the magnetosphere. 329 

An example of this is presented in Figure 5. The main graphic shows trajectory traces of 330 

H+ and O+ ions through a multifluid global simulation that resolves velocities for each ion 331 

species. It is seen that the locations of initial contact with the plasma sheet are vastly different for 332 

the two species, which could modify magnetotail dynamics. The inset in Figure 5 shows the 333 

“fate” of ionospheric outflow as a function of initial location within the high-latitude ionosphere. 334 

This is similar to the fate maps from Huddleston et al. (2005), except that, instead of an empirical 335 

field description, this uses results from an MHD model (Gombosi et al., 2021; with setup like 336 

that of Liemohn & Welling, 2016, and Glocer et al., 2018). For this particular model 337 

configuration and driving condition (nominal southward IMF), a pattern can be obtained 338 

revealing which ionospheric locations contribute to which magnetospheric regions. 339 

The temporal and spatial complexities of ionospheric outflow propagate through the 340 

magnetosphere, affecting system-level dynamics. Observations paint a clear dependence between 341 

solar wind/magnetospheric activity and heavy ion composition in the magnetosphere. In the 342 

lobes, different populations disperse by energy and species (Chappell et al., 1987). O+ beams 343 

from the cusp distinguish themselves from isotropic nightside auroral O+ (Kistler et al., 2010b; 344 

Liao et al., 2010; Kistler et al., 2016). Very cold ion populations indicate cold, classical polar 345 

wind outflow (Engwall et al., 2009; Andre et al., 2015). Faster populations can escape the 346 



Confidential manuscript submitted to replace this text with name of AGU journal 

 

geospace domain all the way to deep space, while slower (and typically heavier) populations 347 

arrive at the plasma sheet (Young et al., 1982; Lennartsson and Shelley, 1986; Moore et al., 348 

2005a, b; Nosé et al. 2005; Mouikis et al., 2010). Here, they are accelerated sunward, feeding the 349 

partial and symmetric ring current hot ion populations (e.g., Gloeckler et al., 1985; Daglis et al., 350 

1999; Denton et al., 2005). Figure 6 (from Nosé et al., 2003) shows the energy density ratio in 351 

the inner magnetosphere and near-Earth plasma sheet, between O+ and H+ (in red) and between 352 

He+ and H+ (in blue). In these ratios, the numerator species is supplied only by the ionosphere 353 

while protons could be sourced from either the ionosphere or the solar wind. It is clear that the 354 

 

Figure 5. Streamline traces of ionospheric outflow from 5 locations on the model inner 

boundary along the noon-midnight meridian in the northern hemisphere (view is from dawn). 

The orange curves are for O+ and the green curves are for H+. The thin white lines show 

closed magnetic field lines and the thin red lines are the last closed field lines on the dayside 

and nightside. The inset panel shows the fate of mapping outflow from a starting grid in the 

northern hemisphere (noon at the top), with their first crossings of the equatorial plane 

indicated by color: central plasma sheet (red); dayside inner magnetosphere (yellow); 

nightside inner magnetosphere (light blue); precipitation back into the model inner boundary 

(dark blue); and loss to deep space (white).  
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energy density of the ring current becomes increasingly carried by O+ as a function of storm 355 

intensity. 356 

Although ionospheric outflow is a major source of magnetospheric plasma, recent studies 357 

suggest a more complicated connection. Numerical models have repeatedly demonstrated that 358 

the characteristics of outflow at its source, including mass, pitch angle, and energy, help dictate 359 

the fate of the plasma inside the magnetosphere (Huddleston et al., 2005; Brambles et al., 2010; 360 

Garcia et al., 2010; Yu and Ridley, 2013a, b). Within the plasma sheet, characteristics like 361 

composition, distance down tail, and pitch angle distribution dictate the amount of acceleration 362 

of the plasma (Delcourt et al., 1989, 1993; Kronberg et al., 2012). The characteristics of outflow 363 

throughout the plasma sheet control how 364 

effectively it will energize the ring current (e.g., 365 

Welling et al., 2011). Further, as outflow affects 366 

magnetospheric dynamics, such as substorm 367 

development (Wiltberger et al., 2010; Welling et 368 

al., 2016) and cross polar cap potential (Winglee 369 

et al., 2002; Welling and Zaharia, 2012; Ilie et al., 370 

2013, 2015), it is also affecting the energy input 371 

into the ionosphere, creating non-linear 372 

magnetosphere-ionosphere feedback loops 373 

(Moore et al., 2014; Welling and Liemohn, 2016). 374 

These have been linked to sudden ring current 375 

intensifications (Welling et al., 2015a) and the 376 

development of global sawtooth oscillations 377 

(Brambles et al., 2011, 2013). The geopauses – 378 

those surfaces in near-Earth space where the contribution from solar and ionospheric origin 379 

plasma are equal (in density, mass, or pressure) – are boundaries that define changes in the 380 

physical processes governing plasma flow (e.g., Trung et al., 2019; 2023). The community now 381 

recognizes that magnetospheric dynamics rely critically on outflow dynamics. 382 

The source of most of the uncertainties regarding geospace dynamics are caused by the 383 

limitations of our current understanding of the spatial and temporal variation of ionospheric 384 

outflow. Observational studies of ion composition in geospace must rely on inference to connect 385 

 

Figure 6. The energy density ratio between O+ 

and H+ (in red) and between He+ and H+ (in 

blue) of the ring current and plasma sheet as a 

function of geomagnetic activity, as indexed 

by Dst or SYM-H (Nosé et al., 2003). Note the 

logarithmic scale on the y axis.  
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the source population to the magnetospheric observations (e.g., Kistler et al., 2016). Numerical 386 

simulations depend on the inherently flawed statistical outflow distributions to seed models, 387 

propagating error throughout the magnetosphere (e.g., Huddleston et al., 2005; Peroomian et al., 388 

2006). Scientists are simply unable to definitively answer critical questions connecting outflow 389 

and the magnetosphere. 390 

4. Determining the optimal number of spacecraft 391 

While it would be ideal to know ionospheric outflow everywhere at all times, this would 392 

require a Starlink-level constellation of hundreds of satellites. Instead, there is a trade space of 393 

cost versus reconstruction accuracy that needs to be assessed to determine the optimal number of 394 

spacecraft that would provide reasonable reconstructions most of the time. Therefore, an 395 

observing system simulation experiment is useful to provide some constraints on the 396 

constellation configuration. 397 

This exploration was conducted using several existing outflow patterns, represented here 398 

by results from a high-resolution single-fluid MHD simulation, specifically those from Welling 399 

& Liemohn (2014). For more on the numerical code, please see the latest summary of the Space 400 

Weather Modeling Framework (SWMF) (Gombosi et al., 2021). Using values extracted from the 401 

original outflow pattern, a reconstruction is generated from these “observations” through binning 402 

and interpolation. Each virtual spacecraft takes 401 samples per orbit per hemisphere. These 403 

values are then sorting into 51 eually-spaced latitude bins per hemisphere and each latitude ring 404 

of values are then interpolated into 45 equally-spaced longitude bins using the Piecewise Cubic 405 

Hermite Interpolating Polynomial (PCHIP; Fritsch and Carlson, 1980). The PCHIP method 406 

conducts a cubic spline fit on a one-dimensional data set (in this case, the extracted outflow 407 

fluxes for a specific latitude band), with an extra filter that blends in linear interpolation to both 408 

preserve monotonicity of the resulting reconstruction and minimize overshoots near steep 409 

gradients within the data. The result is continuous but not necessarily smooth. 410 

Latitudes above the available data are pruned, leaving an unreconstructed region at the 411 

pole. The reconstruction is a function of the number of satellites, the inclination of the orbit 412 

crossing point from the geomagnetic pole, the magnetic local time of the orbit crossing point, 413 

and the longitudinal separation of the orbit planes. Two solar wind input conditions (IMF 414 
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northward and southward) are used for the statistical study, and a time series of driving 415 

conditions are used for a real-event case study. 416 

4.1. Example reconstruction patterns 417 

Figure 7 illustrates the product of the reconstruction algorithm. For this example, the 418 

MHD result was produced using steady driving with an IMF Bz of -10 nT, taken from the 419 

simulation at 3 RE geocentric distance (the inner boundary of the MHD model was set at 2.5 RE) 420 

and mapped down to 1800 km altitude using flux conversation along assumed dipole field lines. 421 

For this reconstruction, three satellite passes were used with a crossing at 80˚ at local dawn (the 422 

sun is to the right in each of the plots), with a nodal separation of the orbit planes of 60˚. While 423 

some meso-scale outflow features are missed because an orbit plane did not pass through them, 424 

the overall pattern in the reconstruction is qualitatively similar to that of the original. Listed at 425 

the top of the original and reconstructed outflow maps is the total escaping ion fluence, which 426 

are only ~1% different. 427 

To assess the appropriateness and quality of the selected reconstruction method, Figure 8 428 

shows a PCHIP fit at the highest latitude band from the example in Figure 7. The red dots are the 429 

extracted data values. Because this is the highest latitude band, the satellite trajectories are 430 

moving on a very shallow arc (i.e., nearly horizontally) through the band, so even though there 431 

are only three satellites, each one contributes many points to the reconstruction. To enforce 432 

periodicity of the reconstruction, the data are repeated three times within to ensure continuity of 433 

the fit at ±180˚. The PCHIP result is shown in blue. Figure 8 shows that the PCHIP algorithm is 434 

excellent at reconstructing the functional form of the data in regions where data exists, while also 435 

 

Figure 7. From a given outflow pattern (left), several satellite-pass extractions (center) are used to 

generate a reconstructed outflow pattern (right).  
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creating a smooth curve through regions with no data points. It also does not introduce any new 436 

extrema beyond the observed maximum and minimum values. 437 

Extending this example, Figure 9 shows reconstructions of that same MHD outflow 438 

pattern using one through five spacecraft passes for the reconstruction. To provide a different 439 

example from that shown in Figure 7, the crossing location in Figure 9 is at 85˚ at local midnight 440 

and the maximum orbit plane separation is set to 90˚. The reconstruction with a single spacecraft 441 

marginally reproduces a few of the global features but none of the meso-scale hotspots of 442 

outflow. This is to be expected as there are only two extracted values for each latitude ring, so 443 

each band in the reconstruction has a rather sinusoidal form. With two spacecraft, the global 444 

pattern is better, but the local features are still missing. Although patterns created from two or 445 

 

Figure 8. Example of a PCHIP fitting calculation of outflow flux as a function of longitude at 

a specific latitude band, specifically the highest latitude ring of the reconstruction example 

shown in Figure 7. The red dots are the MHD values extracted as “observations” within a 

particular colatitude band, repeated three times to ensure continuity of the fit. Values from the 

The blue curve is the PCHIP reconstruction.  
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one spacecraft capture the large-scale features, these patterns reproduce essentially none of the 446 

localized outflow peaks and troughs. The pattern from three spacecraft is good but lacks some of 447 

the details of the hot spot structure within the outflow map. With four or five spacecraft, the 448 

localized features become resolved. Furthermore, it is seen that the interpolated pattern from four 449 

spacecraft is quite similar to that from five spacecraft.  450 

4.2. Outflow reconstruction optimization 451 

To quantify this, goodness of fit values for the 2D outflow map reconstructions were 452 

produced for constellations of one to six satellites. To further explore different mission phases, 453 

reconstructions were made using different orbit geomagnetic inclinations (from 65˚ to 90˚ in 5˚ 454 

increments), azimuths (i.e., local time) of orbit crossing points (full 360 at 14.4 increments) 455 

and spread of orbit planes (from 2 to 100 between the most distant satellites, in 10 settings, 456 

with any additional satellites above two equally spaced between these end members of the set). 457 

In all, over 10,000 spatial reconstructions were produced per MHD outflow spatial pattern plot.  458 

 

Figure 9. Reconstruction from a known spatial pattern of ionospheric outflow (upper left) using 

one through five spacecraft passes.  
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For the results in this section, two such MHD patterns are considered, for a southward 459 

and northward IMF condition. These were taken from Welling & Liemohn (2014) from single-460 

fluid MHD simulations. As seen in the first panels of Figures 7 and 9, the large-scale features of 461 

these initial ionospheric outflow patterns consist of outflow from the auroral oval (around all 462 

local times with a latitudinal extent of 5-10˚) with embedded “hot spots” of higher-intensity 463 

outflow flux (spanning 1-2 hours in local time and 3-5˚ in latitude). These are the scale of the 464 

features for which the reconstruction is being optimized. 465 

The quality of reconstruction was then quantified. The fluxes at each latitude and 466 

longitude were compared between the reconstruction and the original pattern, resulting in a 467 

scatterplot of these paired values. This scatterplot was distilled to metric scores using root-mean-468 

squared error (RMSE) and correlation coefficient (R), comparing each point within the 469 

reconstruction to the same point in the original outflow map. While two metrics are not enough 470 

for a robust analysis, these particular two metrics are from the accuracy and association 471 

categories (see, e.g., Liemohn et al., 2021) and provide a balanced overview of the goodness of 472 

fit between the patterns. This is only an initial conceptual study assessing the trade space 473 

between constellation configuration and reconstruction accuracy; a more thorough investigation 474 

of parameter space should be conducted for specific flight opportunities to justify the concept for 475 

that particular mission. 476 

These two metrics are shown as a function of the number of satellites in Figure 10. These 477 

box-and-whisker plots were compiled using all combinations of the other inputs for both IMF 478 

settings. The box shows the interquartile range and the whiskers present the full range of the 479 

metric scores. The median R exceeds 0.7 by three satellites, and rises to 0.75 by six satellites. 480 

Surpassing this 0.7 level is useful because this corresponds to coefficient of determination score 481 

(defined as R2) of 0.5. R2 is a measure of how much of the variance in one parameter is captured 482 

by similar variance in the other parameter (the two parameters, in this case, being the outflow 483 

fluxes). Therefore, a median R2 of 0.5 indicates that 50% of the variance in the original outflow 484 

flux number sets is reproduced by the reconstructed number sets. To put it another way, passing 485 

an R of 0.7 means that the reconstructions contain a majority of the features in the original 486 

pattern. 487 
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There are two other features to note in Figure 10. The metrics medians appear to level off 488 

by three or four satellites in the constellation, and essentially asymptote at six satellites (i.e., no 489 

discernible no change from five satellites). The boxplot presentation also reveals asymmetries in 490 

the underlying histogram of values, showing a skew in all of the distributions with an elongated 491 

tail towards poorer reconstructions. This is because all of the parameter settings were included in 492 

the plot creation, including those with small satellite separation or badly aligned orbit plane 493 

crossing locations (relative to outflow features in the MHD patterns). 494 

To investigate the spread in the boxplots of Figure 10, Figure 11 shows median RMSE 495 

scores and correlation coefficients as a function of two constellation parameters, the number of 496 

satellites and the magnetic latitude of the orbit plane crossing. Each white grid crossing in the 497 

plots is a constellation configuration setting for these two parameters, the color is smoothed to 498 

fill in each panel. All settings for the other two parameters are included in the number sets 499 

leading to the median values presented in Figure 11. Note that the colorscales for both of the 500 

metrics are optimized for the values in the plot and do not start at zero. 501 

 

Figure 9. Correlation (R) and root mean square error (RMSE) as a function of the number of 

satellites used in the reconstruction. All reconstructions as a function of local time of orbit 

crossing, magnetic latitude of the crossing, nodal separation of the spacecraft, and geomagnetic 

activity are included. The red bar shows the median metric score, the box shows the interquartile 

range, and the whiskers extend to the extremes of the distributions.  
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Magnetic latitude of the crossing is analogous to inclination of the orbit planes, but not 502 

the same, of course, because the magnetic poles are not aligned with the geographic poles, 503 

introducing a systematic diurnal variation to the magnetic latitude of the orbit crossing. That is, 504 

this is not a parameter of a real satellite mission, which would require weighted averaging of a 505 

span of magnetic latitude crossings to determine the accuracy for a given inclination. That said, 506 

this presentation is informative to help guide the choice of an optimal inclination for the 507 

constellation. 508 

The clear feature of Figure 11 is that there is a peak in the metric scores (maximum R, 509 

minimum RMSE) at 80˚. Both metrics are noticeably worse for lower crossing latitudes; this is 510 

expected as the satellites spend little time in the auroral zone and therefore miss most of the 511 

outflow. The interesting result is that the metrics are worse for an 85˚ and 90˚ magnetic latitude 512 

crossing than for the optimal crossing of 80˚. This is because, at these high-inclination settings, 513 

the orbits are cutting through the auroral zone – where most of the outflow occurs – with a more 514 

 

Figure 11. Metrics versus number of satellites and the magnetic latitude of the crossing point. 

The median metric is shown from the distribution of values from the remaining parameters in 

the reconstruction analysis. 
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meridional trajectory. With a meridional trajectory, the satellites spend less time in the auroral 515 

zone and contribute fewer values to the reconstruction. There appears to be an optimal 516 

reconstruction for which the crossing is just poleward of the auroral zone, providing a maximal 517 

orbital path length through the entire latitude band of the high outflow flux. 518 

Figure 12 shows median correlation coefficients as a function of the maximum orbit 519 

plane separation and number of satellites. Only correlation is shown here in order to present a 520 

different kind of second panel; the right plot is a slice through the other for the four-satellite 521 

constellation configuration. As with Figures 10 and 11, the RMSE results (not shown) reveal the 522 

same trends as the correlation plots included in the figure. 523 

In Figure 12, it is seen that the best correlations are located in the upper right corner of 524 

the left panel. The reconstruction improves with both number of satellites and orbit plane 525 

separation. The right panel reveals a limit to this improvement, though, as the peak correlation is 526 

found at ~90˚ separation. As the maximum separation expands past 90˚, the inter-orbit separation 527 

of the constellation becomes large enough to start to miss meso-scale features (at least in some of 528 

the constellation configurations), and the median reconstruction slightly decreases. The drop in 529 

median correlation from 90˚ to 100˚ is not significant, but it is the start of a trend that will 530 

continue as the maximum orbit plane separation increases to 180˚. At that point, the two end 531 

  

Figure 12. Left: Correlation coefficient as a function of number of spacecraft in the 

constellation (x axis) and the maximum orbit plan separation angle (y axis). The median score 

is shown from the distribution created by the other parameters in the analysis. Right: median 

correlation coefficient as a function of orbit plane separation for a four satellite constellation.  
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members of the constellation are flying along nearly the same trajectory but in opposite 532 

directions, therefore they are not contributing two satellites’ worth of information to the 533 

reconstruction.  534 

Also shown in the right panel of Figure 12 is that the median correlation coefficient for a 535 

4-satellite constellation exceeds 0.7 for a maximum separation of 55˚ or more. This can be 536 

considered a cutoff threshold for producing reasonable reconstructions (in which most of the 537 

variation in the original pattern is captured by the reconstruction) with a reasonable number of 538 

satellites (four). 539 

The magnetic local time of the orbit plane crossing did not show a trend in either RMSE 540 

or R. The spread is large and the differences in the median values were not significant and do not 541 

need to be shown. Parsing the study results further, this parameter only mattered for small orbit 542 

plane separation. For this case, very few of the reconstructions are of high quality, but a crossing 543 

on the nightside was marginally better than one on the dayside.  544 

4.3. Outflow during a storm interval 545 

The above analysis showed that 4 satellites with a >55˚ orbit plane separation between 546 

the end-member spacecraft produces fairly accurate reconstructions. That assessment, however, 547 

was conducted with only two outflow patterns, a nominal southward IMF case and a nominal 548 

northward IMF case, with standard solar wind parameters. It is useful to test the reconstruction 549 

method and the ability of a constellation to reconstruct outflow during a storm interval. Using the 550 

same SWMF model configuration as above, the “St. Patrick’s Day Storm” of 17-18 March 2015 551 

was simulated. For reference, the Dst time series for this storm is shown in the upper panel of 552 

Figure 13.  553 

Outflow patterns were obtained from the SWMF every minute. Reconstructions were 554 

then compiled on a 2-hour cadence, which would be the cadence of a 2000 km altitude 555 

constellation presumably taking these outflow measurements. The number of spacecraft was set 556 

to four and the maximum orbit plane separation set to 90˚ (i.e., 30˚ separation between each of 557 

the orbit planes). To build up statistics, the local time and magnetic latitude of the crossing were 558 

varied, using four local times (00, 06, 12, and 18) and four latitudes (65˚, 75˚, 85˚, and 95˚). In 559 

all, 1920 reconstructions were conducted for each two-hour period throughout the storm interval.  560 
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To provide an overall assessment of the reconstructions, Figure 13 shows the time series 561 

of the integrated outflow fluence (lower panel), both from the SWMF model (on a one-minute 562 

cadence) and from the reconstructions (on a two-hour cadence as boxplots). Of the 26 boxplots 563 

in this figure, 19 have model values passing through the interquartile range of the reconstructed 564 

fluences (the “box” of the boxplot). The reconstructed fluences are usually at or below the 565 

original values, indicating that the reconstruction method usually captures the basic pattern of the 566 

outflow but not all of the meso-scale “hot spots” of elevated flux. There were a few times where 567 

the reconstructed fluences were entirely below the 120 original MHD fluences in that two-hour 568 

window, but for most of the intervals, the reconstructions are doing reasonably well. 569 

5. Discussion on implementation 570 

It is expected that a mission fulfilling the orbital requirements defined in section 4 above 571 

would consist of several identically-instrumented, longitudinally-separated, high-inclination 572 

spacecraft observing the low-energy ion velocity distribution above 1000 km altitude (in order to 573 

observe outflow, not upwelling) and below 3000 km altitude (to minimize orbital period and 574 

surface area of the orbit shell). Initial cost estimates suggest that such a mission could be 575 

 

Figure 13. The top panel shows the Dst index time series during the 17-18 March 2015 

magnetic storm interval. The bottom panel shows the northern hemisphere ionospheric 

outflow fluence from the MHD model (blue line) and the box-and-whisker distribution of 

fluences from the reconstructions. 
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achieved within the constraints of the Heliophysics Small Explorer mission line with minimal 576 

instrumentation.  577 

In its simplest configuration with only an ion spectrometer, this type of mission concept 578 

represents an important measurement paradigm that is ideally suited for the Explorer mission 579 

line. Instead of measuring “everything” at one or two locations, this constellation would 580 

“globally” measure one key plasma property. The satellites in the constellation would relate 581 

different portions of the high latitude ionospheric outflow with each other, connecting dayside 582 

with nightside outflow rates and revealing storm-sequence time lags and correlations. Significant 583 

progress in our understanding of ion outflow would be achieved with only the low-energy ion 584 

velocity space measurement at several locations, moving our understanding of system science of 585 

geospace as a whole to the next level. Note that if the full 4 field of view of the ion velocity 586 

distribution is measured by this ion instrument, then the downflowing low-energy ions would 587 

also be observed and subsequently constructed into maps every orbit period. 588 

An alternative mission concept to the single instrument payload would be to design the 589 

spacecraft with additional instrumentation to provide observations that complement and 590 

contextualize the ion data. This would most likely need to be proposed at the Heliophysics Mid-591 

sized Explorer level (or larger) to maintain the four-satellite constellation. With only one well-592 

instrumented spacecraft, the mission would repeat the findings of the FAST or Akebono 593 

missions and would not be particularly innovative without some other major design 594 

augmentation to make it worthy of the investment. 595 

A limitation of this study is that it is assumed that the outflow pattern is steady for the 596 

duration of the high-latitude passage of the constellation, i.e., 20 to 30 minutes. This is a 597 

somewhat reasonable assumption, given that the outflowing ions are moving at only a few to tens 598 

of kilometers per second, and therefore take many minutes to flow from the ionosphere (let’s say 599 

the starting altitude is in the topside ionosphere at 300 km altitude) to a nominal observation 600 

altitude of around 2000 km. If an ion is accelerated along the field line with just enough force to 601 

barely overcome gravity and maintain a 1 km/s upward velocity, then it would take 28 minutes 602 

for this ion to traverse this 1700 km distance and reach the satellite. If, however, the outflowing 603 

ions maintain a velocity of 10 km/s, then this trip would only take 3 minutes. Furthermore, the 604 

outflow pattern can only be constructed once per orbit (per hemisphere), so the cadence of the 605 
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patterns would be on the order of 2 hours. This mission concept, therefore, is not suitable for 606 

investigating prompt outflow events, but rather for the investigation of longer-term outflow and 607 

its consequences on the magnetosphere. If proposed to the Heliophysics Mid-sized Explorer 608 

program, or if a very inexpensive miniaturized ion instrument is used, then a fleet of small 609 

satellites could be deployed with several along each of the four orbit planes, allowing for a faster 610 

cadence of the reconstructed outflow patterns. 611 

6. Conclusion 612 

This study addressed the question of how many satellites would be needed to accurately 613 

reconstruct the high-latitude ionospheric outflow pattern. An observing system simulation 614 

experiment was conducted to quantify and constrain the requirements for a reasonable 615 

reconstruction of the outflow pattern. With “accurate” defined as a median correlation coefficient 616 

of 0.7 for a sensitivity study spanning several orbital configuration parameters and IMF settings, 617 

the answer is four. Three might work, but one or two satellites is inadequate for the task. Five or 618 

six satellites produce slightly better reconstructions, but the marginal improvement might not be 619 

worth the cost unless the focus is on the meso-scale features of ionospheric outflow. It is best to 620 

maximize auroral zone dwell time for the constellation, so an inclination between 75˚ and 85˚ is 621 

best. Higher than this and the orbit planes would cut too quickly through the high outflow flux 622 

region, and lower than this and they would likely miss the outflow regions on many passes. The 623 

orbit planes should spread across a wide swath of local times, with a separation between the end-624 

member spacecraft of at least 60˚, and 90˚ would be even better. More than this separation 625 

produces marginal improvement or even diminished accuracy. The local time of the orbital plane 626 

crossings was not significant in controlling the accuracy of the reconstructed outflow pattern.  627 

This study provides a starting point for future mission concept development on measuring 628 

the global pattern of ionospheric outflow. Because of the heavy mass of O+, N+ and other 629 

constituents in this outflow, understanding the full high-latitude spatial structure and temporal 630 

variability of the escaping ions is vital for scientific progress on the ionosphere-magnetosphere 631 

relationship and nonlinear feedback loop. Ionospheric outflow mass loads the magnetosphere and 632 

significantly impacts many physical processes, to the point of reshaping the magnetosphere and 633 

altering the large-scale dynamics of near-Earth space. This is a critical unresolved question in 634 

space physics and a dedicated mission would substantially advance our community’s 635 
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understanding of geospace system dynamics and space weather predictions. This proposed 636 

mission would reveal the temporal change in ionospheric outflow on the timescales of substorm 637 

and storm phases and the relationship of this change to solar wind and IMF driving conditions. It 638 

would resolve both small scale outflows (early mission) and global outflow conditions (mid- to 639 

late-phase). Spatial outflow maps will be created every orbit, providing continuous coverage 640 

across storms. These observations would unlock the dynamic relationship between ionospheric 641 

outflow, solar wind drivers, and geomagnetic activity. 642 
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