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Abstract 14 

Rock varnish, a dark-coloured natural feature rich in manganese (Mn), iron (Fe), and clay 15 

minerals, is believed to provide nutritional support to microbiota. Thus, rock varnish is 16 

considered a unique substrate for potential microbial life to thrive in the extreme environments 17 

on Earth that are comparable to their planetary analogues. However, little is known about the 18 

occurrence of microbiota in rock varnish, as the microbes found on the varnish are quite 19 

diversified. We present here the new morphological and chemical results of microbial forms 20 

found in rock varnish samples from Ladakh, a potential site for hosting life in extreme 21 

environments. Our results demonstrate the presence of putative magnetofossils type biological 22 

entities in the form of nanochains present in the rock varnish layer that coincide with high 23 

magnetic susceptibility values of varnish samples. Further, the higher concentrations of 24 

oxidised fractions of Mn4+, and carboxylic acid functionality on the varnish surface revealed 25 

the signatures of organic entities. These collective results point towards the enriched 26 

concentration of magnetic minerals on the varnish layer that are possibly sourced through biotic 27 

forms. Consequently, the rock varnish can serve as a "black box" of ancient environmental 28 

records, as well as a potential geomaterial for astrobiological studies from the Martian analogue 29 

field location of Ladakh, which needs to be explored further for extensive biogeochemical 30 

studies. 31 

 32 

Keywords  33 

 Rock varnish, Mars-analogue, Extreme environment, Astrobiology, Ladakh, Magnetotactic 34 

bacteria, X-ray photoelectron spectroscopy, Magnetic minerology 35 

 36 

Introduction 37 

Rock varnishes are thin, dark-brown to black coatings of manganese and iron oxides on the 38 

surface of rocks held together by clay minerals and found in arid to semi-arid regions 39 

worldwide (Chaddha et al., 2021b; Dorn and Oberlander, 1981; Potter and Rossman, 1977). 40 

Although abiotic and microbiological activities are thought to be important for its formation, 41 

the mechanism underlying the selective deposition of iron and manganese within the clay 42 

matrix remains unknown. As a result, the origins of this veneer are still  a mystery (Kuhlman 43 

et al., 2006; Potter and Rossman, 1979). These micro coatings on rocks have recently sparked 44 

researchers' interest in investigating terrestrial geomicrobiology and its relationship to rock 45 
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weathering processes, which is a useful tool in developing models for similar processes that 46 

may have occurred on Mars (Krinsley et al., 2009). Since the 1976 Viking landers captured 47 

images of lustrous black coats (Herkenhoff et al., 2008), it has been speculated that rock varnish 48 

on Mars, similar to rock varnish coatings on Earth, could hold the key to determining whether 49 

the Mn-enrichment system was active in the distant past or is still active (Liu and Broecker, 50 

2000; Perry and Adams, 1978; Perry and Hartmann, 2006; Perry and Sephton, 2006). Iron 51 

oxides in the form of magnetite, which have been oxidised by UV and cosmic radiation and, 52 

mimic magnetite found in terrestrial rock varnish, have been detected on the dry and frigid 53 

Martian surface (Mancinelli et al., 2002). As a result, there has been a surge in interest in 54 

studying these magnetic minerals, but the number of studies investigating their magnetic 55 

properties remains limited (Clayton et al., 1990).  56 

In astrobiology, analogue regions are well-known (Hipkin et al., 2013), but new locations are 57 

being discovered and investigated to broaden the scope of astrobiology research (Preston and 58 

Dartnell, 2014). Future space research missions can use terrestrial analogues for off-Earth 59 

conditions not only as a natural laboratory for conducting testing, but also as a home for 60 

investigating future planetary coevolution studies to better understand life’s interactions with 61 

its environment (Cabrol et al., 2018). In the most adverse terrestrial conditions, astrobiological 62 

investigations combined with chemical analysis can discover life signs (Cavalazzi et al., 2018). 63 

As a result, it is critical to use terrestrial-based techniques to evaluate prospective 64 

palaeobiological reserves on Mars (Cady et al., 2003). To understand the coevolution of life 65 

and its physical and chemical surroundings, one must be able to analyse evidence of life 66 

preserved in the geologic record (Cady and Noffke, 2009). As a result, the union territory of 67 

Ladakh, located in the north-western Himalaya, India represents a cold high altitude desert 68 

environment, which is an ideal location for trans-disciplinary astrobio-geochemical 69 

investigations. Because of its higher elevation and sparse vegetation, Leh-Ladakh has lower air 70 

oxygen levels, high UV radiation, and little rainfall. This location features a variety of near-71 

pristine extreme habitats, such as glacier deposits, dry areas, dune fields, intra dune lakes, hot 72 

springs, and salt lakes, all in a natural setting, providing an intriguing parallel to the Martian 73 

climate (Pandey et al., 2020). On the other hand, rock varnish, which could have served as a 74 

possible Mars’ analogue from this site, was neglected. The majority of manganese-enhanced 75 

rock varnish research has been conducted on samples from hot, arid deserts. Therefore, to 76 

bridge that gap, the current study from the Indian subcontinent to investigate the surface 77 
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characteristics and magnetic mineral characterisation of rock varnish, from the cold, dry high-78 

altitude region of Ladakh is critical to understand Martian ecosystem.  79 

 80 

The presence of Fe-oxides and Mn-oxides in the rock varnish is comparable to the current 81 

scenario on  Mars, where manganese coated rocks and magnetic minerals have been discovered 82 

(Lanza et al., 2014a; Liu et al., 2021; Mancinelli et al., 2002). In this paper, we present the first 83 

evidence of the magnetosomes-like entities in the varnish layer, as well as an assessment of the 84 

varnish’s magnetic mineral behaviour using a previously unexplored magnetic characterisation 85 

technique. As a result, the rock varnish found in Ladakh's extreme ecology may provide critical 86 

clues for comparing Mars environmental characteristics, as it contains two crucial 87 

biogeochemical elements, Fe and Mn, which may provide explanations for several unsolved 88 

Martian mysteries.  89 

 90 

 91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 
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 105 

 106 

Study area 107 

 108 
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Fig.1. (a) Shuttle radar topography mission (SRTM) digital elevation model (DEM) showing 109 

the elevations and the location of important townships via. 1) Srinagar, 2) Leh, 3) Jammu, 4) 110 

Kargil, 5) Padum, 6) Nubra. Locations of the sample collection sites are marked by green 111 

circles. (b) Google Earth Pro image showing the sampling sites (yellow points RV-1, RV-2, 112 

RV-3, RV-4) as well as the Indus and Zanskar rivers with respect to Leh, Ladakh. 113 

 114 

 115 

  Fig.2 (a-d) Field photographs of the rocks sampled for rock varnish studies from NW 116 

Himalaya. The photographs from (a) to (d) represent the spots RV-1 to RV-4.  117 

 118 

The current research was conducted in the Union territory of Ladakh, which is located in the 119 

Trans-Himalayan area (average elevation >3000 m asl) and is known as “the cold desert of 120 

India”  due to its harsh semi-arid environment (Fig.1a, b) (Juyal, 2014; Norberg and Hodge, 121 

1995; Pandey et al., 2020). Due to its location in the rain shadow zone of the Indian summer 122 

monsoon (ISM), the region receives little precipitation and has abnormally low temperatures 123 

with a wide diurnal temperature range and a short growing season (Blöthe et al., 2014; Schmidt 124 

and Nüsser, 2017). The scant vegetation in this area is due to the  prevailing harsh weather 125 

conditions (Ali et al., 2018; Chaddha et al., 2021a; Sharma and Phartiyal, 2018). Ladakh has a 126 
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diverse range of accessible, diverse, clean, and harsh habitats at extremely high altitudes, 127 

including high passes that are distinct due to their altitude and,  rocks exposed to 10X more 128 

UV-A doses than at sea level (Dvorkin and Steinberger, 1999). These high passes reveal a 129 

variety of comparable characteristics for early Mars due to a combination of low atmospheric 130 

pressure, strong UV, and higher UV-A doses than are today seen on Mars (Cockell, 2000). As 131 

a result, samples for this study were collected from four distinct locations in the Leh district 132 

(Ladakh), which are located between 32 and 36 ͦ north latitude and 75 and 80 ͦ east longitude 133 

(Fig.1a, b).  The Ladakh Range (Ladakh Batholith) in the north and the Zanskar Range (Tethys 134 

Himalaya/ Indus Molasse and other rocks) in the south, form geological boundaries for the Leh 135 

district, with the contact between these two ranges generally following the Indus River. Leh 136 

has a harsh climate, with temperatures ranging from 34.8 °C in  the summer to -27.9°C in the 137 

winter (Chevuturi et al., 2018).  138 

 139 

Material method 140 

Physicochemical characterisation 141 

FESEM-EDS: The rock varnish samples were placed on copper stubs used for SEM 142 

examination with double-sided adhesive carbon conductive tape. To avoid cross-143 

contamination, all mounting and other activities were carried out in a clean environment. The 144 

samples were then loaded into the JEOL 3000FC fine sputter coater, which uses nitrogen 145 

medium to deposit a thin conductive coating of Pd and Pt onto the sample surface, preventing 146 

sample charging. The coated stubs were examined with a JEOL FESEM 7610F electron 147 

microscope. Photographs of the specimens were obtained with a secondary electron detector at 148 

15 KV acceleration volts and kept at various magnifications for analysis of the specimen’s 149 

morphological traits. TEAM software was used to acquire EDS spectra from an EDAX Octane 150 

plus detector, with elemental scanning and point mapping analysis performed at 15 KV volts. 151 

Increased beam current was used to achieve a high-count rate while recording spectral analysis. 152 

 153 

 154 

EDXRF: The elemental make-up of the varnish layer and the host rock sample was 155 

investigated using micro–X–ray fluorescence (Model: Bruker Artax 200), with a 300s life time. 156 

For molybdenum X-ray tubes, XRF scans were obtained for binary spots in the varnish layer 157 
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and the host rock, respectively, at a maximum operational voltage and current of 50 kV and 158 

700 A.  159 

 160 

 161 

 162 

XPS:  An X-ray photoelectron spectroscopy (XPS) measurement of the varnish surface was 163 

performed on an X-ray photoelectron spectroscope (SPECS Surface Nano Analysis GmbH, 164 

Germany) using Al K radiation (1486.61 eV) X-rays, with an anode voltage of 13 kV, 100W. 165 

A survey spectrum was collected with an energy of 40 eV and high-resolution spectra were 166 

collected with an energy of 30 eV to know the valence states of the constituent elements. The 167 

extent of charging was calculated by measuring the shift of C1s peak from the reference 168 

position of 284.6 eV. 169 

Petrographic analysis: Three representative petrographic thin sections of the Indus Molasses 170 

and one thin section of the Ladakh Batholith were examined using the Nikon Eclipse 171 

LV100POL petrological microscope. 172 

 173 

Magnetic characterization: 174 

The required quantity of rock varnish and the respective substrates were tightly packed in 175 

standard 8cc plastic bottles used for rock magnetic measurements. Low field magnetic 176 

susceptibility (MS), an-hysteretic remanent magnetization (ARM), saturation isothermal 177 

remanent magnetization (SIRM), and its DC demagnetization and temperature variation of 178 

magnetic susceptibility are all measured . Low frequency MS measurements were carried out 179 

with a MS2 Bartington Susceptibility meter coupled with the 2B sensor operated at a frequency 180 

of 0.47 kHz with a peak field of 200 A/m. The ARM was imparted by exposing the samples to 181 

an alternatingly decaying magnetic field of 100 mT peak field with a decay rate of 0.01 mT, in 182 

the presence of a DC bias field of 0.05 mT using a D-2000 AF demagnetizer (ASC scientific), 183 

and the ARM intensity was measured using a JR-6 dual speed Spinner magnetometer from 184 

AGICO. Saturation isothermal remanent magnetization (SIRM) was induced in a 1 Tesla 185 

steady pulsed field using an ASC Scientific Impulse Magnetizer Model IM-10-30. Backfield 186 

demagnetization was carried out at 20, 30, 100, and 300 mT pulse fields. Temperature variation 187 

of magnetic susceptibility (χ-T) was carried out using a MS2WFP Bartington sensor coupled 188 

with the MS2 meter from room temperature to 700 °C. For this, 0.20 g of samples were wrapped 189 
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with quartz paper and kept in the MS2WFP Furnace. Alternating field demagnetisation (AFD) 190 

of SIRM was performed using a D-2000 AF Demagnetiser by ASC Scientific by subjecting the 191 

samples to step-wise demagnetisation at levels of 0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 192 

and 100 mT, respectively. 193 

 194 

Results & Discussion 195 

 196 
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                                                                                  197 

Fig.3 (a-d) FE-SEM imaging of the Rock varnish samples (RV-1 to RV-4) revealed a contrast 198 

layered morphology of the varnish layer adhered on the host rock with evident border 199 
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delimitation between the varnish layer and the host rock; Fig a,e adopted from Chaddha et al. 200 

(2021b) with permission; (e-h) Multi-spot elemental analysis of rock varnish layer and host 201 

rock revealed the elemental presence of different elements in the varnish layer and host rock  202 

with clear presence of Mn, Fe enrichment in the varnish layer.  203 

 204 

 205 

Fig.4 (a) FE-SEM image of the varnish layer showing the presence of magnetotactic 206 

multicellular aggregate (MMA) type entity embedded in the varnish layer marked by yellow 207 

arrows ; inset a1 shows magnified morphology of MMA type entity, showcasing clear 208 

morphological features; inset a2 is a SEM image of putative magnetotactic multicellular 209 

aggregate (MMA) [Used with permission of Elsevier, from Keim et al. (2004) J. Structural 210 

Biology, Vol. 145, Fig.3, p 254-262.], (b) Globules like morphological features on the varnish 211 

layer corresponding to presence of iron oxides; (c) FE-SEM image displaying clusters of chain-212 

like established magnetosome morphology in the varnish layer; (d)  High resolution FE-SEM 213 

image illustrating the chain-like morphology of putative magnetosomes present in the varnish 214 

layer, with an inset depicting a graphic description of magnetosomes' shape.  215 
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 216 

Field varnish samples (Fig.2a-d) were examined under a microscope (Fig.S1) to determine the 217 

thickness, morphology, and texture of the varnish layer. The morphological properties of the 218 

varnish layer and host rock, as well as its elemental composition, were determined by using 219 

FESEM-EDS (Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray 220 

Spectroscopy) (Figs. 3 a-h). The varnish layer and the host rock to which it was connected 221 

exhibited distinct morphologies, allowing for unambiguous demarcation of the varnish and host 222 

rock regions. A multi-spot (EDS) elemental analysis performed on the varnish and host rock 223 

layers (Fig. 3e-h) reveals the presence of various elements on the varnish layer, including Si, 224 

Al, Mg, K, Ca, O with (Mn, Fe) enrichment, and Na, Al, Si, Mg, O, and K on the host rock 225 

layer. Furthermore, the investigation revealed the existence of biotic traces in the varnish layer 226 

in the form of putative magnetotactic multicellular aggregation (MMA) type spherical 227 

organisms (Fig.4a). When the MMA found in the varnish layer (inset a1) was compared to the 228 

MMA discovered previously (inset a2) (Keim et al., 2004; Pósfai and Dunin-Borkowski, 2006; 229 

Abreu and Silva, 2008), the claims of a biotic formation route for varnish production were 230 

strengthened. These bacterial aggregates, which can function as natural machines to synthesise 231 

minerals via a biologically controlled mineralization (BCM) process, may have provided 232 

structural support and hardness to the varnish layer that we see today (Lowenstam and Weiner, 233 

1989). In order to further validate the existence of MMA-type organisms, chain-like 234 

magnetosomes were discovered on the layer (Akbari-Karadeh et al., 2020; Kabary et al., 2017) 235 

(Fig.4 c, d; Fig.S2). Magnetosomes like entity featured on the varnish layer are in the form of 236 

chain like clusters with an average size of ~50-60 nm (Fig.4 d). The multi-spot elemental 237 

analysis of magnetosomes like entity (Fig. S3, S4) demonstrates the presence of sulphur, along 238 

with manganese and silica, indicating that the elemental chemistry analysis of these biotic 239 

entities reveals the composition of Si-Mn-S inclusions along with Fe, which goes in accordance 240 

with recent findings (Li et al., 2022). As a result, it is reasonable to assume that the generated 241 

magnetosomes like particles are made up of surface modified  Fe-oxide globules, rather than 242 

the pure Fe3O4 (magnetite) family as previously described (Kabary et al., 2017; Liu et al., 243 

2010). Finally, putative magnetosomes like species discovered in the varnish layer may be a 244 

new type of biotic analogue of genetically synthesised magnetic nanoparticles composed of 245 

SiO2/Fe3O4 via magnetosomes (Borg et al., 2015), as the varnish layer contains all of the 246 

precursors in the form of Fe and Si  required to synthesise these bio-nano magnetic particles. 247 
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These preserved biosignatures of life in the varnish layer make it an important component in 248 

the study of the Mars analogue. 249 

 250 

 251 

 252 

Fig.5 Comparative histograms demonstrate the relative qualitative elemental abundances 253 

between the varnish layer and the host rock samples (RV-1 to 4) using energy dispersive X-ray 254 

fluorescence analysis. 255 

 256 

To understand the difference in relative element abundance between the varnish layer and its 257 

related host rock, micro-X-ray fluorescence spectroscopy with simultaneous multi-element 258 

analysis was applied to the varnish and host rock surface of the samples (Fig.5a, b, c, d). The 259 

presence of Si in the varnish layer is lower than in the host rock, whereas Mn and Fe are higher. 260 

Fe and Mn are more common in the varnish layer than in the rock it covers, which suggests 261 

that they are the most important parts of the varnish layer. 262 
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 263 

Fig.6 (a, c, e, g) Thin section slides of a cross-section of varnish samples (RV1, RV2, RV3, 264 

RV4) in plane-polarized light at 10x; (b, d, f, h) Thin section slides of a cross-section of varnish 265 

samples (RV1, RV2, RV3, RV4) in crossed polarized light at 10x. The thin micro varnish 266 

coating is indicated by yellow arrows. 267 
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 268 

 269 

Fig 7. Petrographic thin sections demonstrate host rock characteristics. a-f: Indus molasses 270 

(RV1, RV2, RV3); g-h: Ladakh Batholith (RV4). a, c, e, and g: in 4x plane polarised light. b, 271 

d, f, and h: in 4x cross polarised light. Abbreviations: Qtz – quartz; plg – plagioclase; Ms –272 

muscovite; mgm/ibm – magnetite/iron bearing mineral; bio – biotite; Ser – Sericite. 273 
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Petrographic examination of cross-thin sections of varnished rock samples (Fig. 6) was used to 274 

identify the micro layer of varnish adhering to the associated host rock, which was visible in 275 

plane polarised light (Fig.6 a, c, e, g). However, the black-brown texture of the layer in both 276 

plane polarised light and under cross nicol, showing the presence of opaque minerals such as 277 

iron containing minerals in the varnish layer, did not provide a complete array of identification. 278 

A detailed petrological analysis was done to understand the mineralogical composition of the 279 

various substrates on which varnish is deposited (host rock) (Fig.7). Figures a-f depict the Indus 280 

Molasse (sedimentary), while g-h depict the Ladakh Batholith (igneous), both of which are 281 

completely different types of rocks in terms of origin and mineral content. Magnetite/ibm, an 282 

opaque mineral, has been observed by petrographic examination in both types of host rock. In 283 

the Indus Molasses (Fig. 7 a-f), magnetite/ibm comprises up 1- 2% of the entire grain 284 

population, but more than 15% in the Ladakh Batholith (Fig.7 g-h). A detailed petrographic 285 

investigation of the host rock's mineralogical characterization can be found in the 286 

supplementary information under the heading (HS.1). 287 

 288 

 289 

 290 
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 291 

Fig.8 (a) A wide range XPS survey spectrum of the rock varnish surface reveals elements on 292 

the varnish layer; (b) XPS spectra of core level C1s from the varnish surface;(c) XPS spectra 293 

of core level O1s from the varnish surface.  294 

 295 

By utilising the XPS technique to examine the surface of rock varnish, the elemental makeup 296 

and oxidation states of the elements present at the varnish's surface are revealed. The surface 297 

electronic states and chemical composition are visible in the XPS survey spectra (Fig.8a), with 298 

the presence of Fe, Mn, O, C, Al, Si, and Mg owing to its natural origin.  The peak at 284.6 of 299 

C1s was carefully used as a referencing method for charge correction as recommended by ISO 300 

and ASTM charge referencing guides (ASTM E1523-15, 2015; Baer, 2005; Greczynski and 301 

Hultman, 2020).  Furthermore, deconvolution of C1s XPS spectra (Fig.8b) yielded three 302 

distinct Lorentzian–Gaussian curves centred at binding energies of 284.6 eV, 284.9 eV, and 303 

288.9 eV of C=C, C-C, and -COOH groups respectively (Rabchinskii et al., 2018). Because 304 

carboxylic acid molecules are prevalent in microbial metabolic pathways, the presence of 305 

carboxylic group functionality in the varnish layer suggests microbial presence on the layer 306 

(Booth et al., 2002; Magnuson and Lasure, 2004; Mira and Teixeira, 2013). Furthermore, a 307 

peak at ~293.0 eV in the C1s spectra indicates the existence of K, in addition to the other 308 
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elements discovered in the XPS survey scan (Fig.8a). The deconvolution peaks of the O1s 309 

spectrum (Fig.8c) may be separated into three components: lattice oxide (M-O, 530.8 eV), 310 

surface hydroxyl (M-OH, 531.3 eV) and organic moiety (C-O, 532.3 eV), respectively 311 

(Biesinger et al., 2010; Luo et al., 2022). The presence of organic functionality (Rouxhet and 312 

Genet, 2011), as well as Mn and Fe cemented with clay minerals (Chaddha et al., 2021b), 313 

supports varnish-rich rocks as a good terrestrial comparison for understanding the Martian 314 

environment and its hints for biotic life signs.  315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 
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 326 

Fig. 9 (a) High‐resolution Mn 2p core‐level spectra of the varnish layer with Mn 2p peak 327 

splitting into the Mn 2p3/2 peak and Mn 2p1/2 peak; (b) High‐resolution Fe 2p core‐level spectra 328 

of the varnish layer, with Fe 2p peak splitting into the Fe 2p3/2 peak and Fe 2p1/2 peak. 329 
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 330 

Previous studies have shown the presence of Mn and Fe on the Martian rocks (Lanza et al., 331 

2014b; Rochette et al., 2006), so a high resolution XPS spectrum study of Mn and Fe for the 332 

varnish layer was reported (Fig.9a, b). Mn2p spectrum reveals two spin orbit doublets of Mn 333 

2p3/2  and Mn 2p1/2  at 642.4 eV and 654.0 eV respectively with a peak separation of 11.6 eV ( 334 

Fig. 9a), which are in good agreement with those reported for Birnessite type -MnO2 (Biesinger 335 

et al., 2010; Cremonezzi et al., 2020; Ilton et al., 2016; Nesbitt and Banerjee, 1998), indicating 336 

existence of  Mn4+ oxidation state. The deconvolution of spin–orbit peaks indicate the co-337 

existence of Mn4+ and Mn3+ valence states at 642.4 and 641.4 eV, respectively. However, the 338 

peak corresponding to the Mn4+ state, on the other hand, has a higher peak intensity and a larger 339 

area under the curve than the peak corresponding to the Mn3+ state, indicating that the sample 340 

contains a main phase as MnO2 and a partially surface oxidised Mn phase (John et al., 2016; 341 

Singh et al., 2019). The Mn valence composition was determined by fixing the FWHM of 342 

multiplets (Sun et al., 2016), with peak fitting parameters of Mn4+ (FWHM=2.97 eV, χ2=0.64) 343 

and Mn3+ ( FWHM=4.45 eV, χ2=0.64) respectively, where Mn4+ was (82%) and Mn3+(18%). 344 

These results further substantiate the presence of birnessite phase in the varnish layer in 345 

accordance with the recent report of manganese oxide minerals at shallow terrestrial depths 346 

(Yun et al., 2022), Birnessite phase in the varnish layer is also consistent with (Chaddha et al., 347 

2022). Initially, biogenic birnessite is hypothesised to originate as δ-MnO2, a type of birnessite. 348 

According to laboratory experiments, this variety of birnessite is always the first phase to form 349 

under most tested chemical settings (Hansel et al., 2012; Santelli et al., 2011; Villalobos et al., 350 

2006, 2003). Due to the existence of interstitial vacancies in the lattice, birnessite can also play 351 

a role in transition metal sorbers (Kwon et al., 2010; Toner et al., 2006). Therefore , layered 352 

Mn oxide minerals of the birnessite family are being studied in depth for their natural 353 

occurrence and chemical reactivity in a range of terrestrial environments (Ling et al., 2020). 354 

As a result, this mineral could be useful in analysing changes in Martian analogue settings.  355 

Analysis of a high resolution Fe2p XPS spectra of Fe present in the varnish layer (Fig.9b) 356 

suggests the presence of Fe (II)/Fe (III) oxides, with peak locations of ~711 eV and ~725 eV 357 

of Fe 2p3/2 and Fe 2p1/2, respectively. The existence of these spectral peaks indicates that  358 

both haematite and magnetite minerals are present in the varnish layer (Yamashita and Hayes, 359 

2008). The existence of satellite peaks in the varnish layer lends credence to the presence of 360 

haematite phase (Mills and Sullivan, 1983; Muhler et al., 1992).  Further deconvolution of Fe 361 

2p3/2 and Fe 2p1/2 produces Fe2+ and Fe3+ states with atomic ratios of Fe3+(0.68) and Fe2+ (0.31) 362 
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respectively, which is consistent with earlier magnetite results (Yamashita and Hayes, 2008). 363 

Peak fit parameters of Fe3+ (FWHM=4.85 eV, χ2=0.76) and Fe2+ (FWHM=4.58 eV, χ2=0.76) 364 

were also observed. As a result , surface analysis of the varnish layer confirms  the role of Fe-365 

oxides in the form of magnetite and hematite in giving the rock varnish a reddish brown texture, 366 

similar to that found in various locations on Mars (Jiang et al., 2022). Therefore, the presence 367 

of Mn and Fe in the rock varnishes makes them a promising model for studying the Martian 368 

climate and chemical environment, which can be clearly seen in images (Fig. 10). Furthermore, 369 

Mn and Fe are two biologically abundant elements found in the majority of key biological 370 

cycles on Earth, which may provide insight into the genesis of life on Mars (Clark et al., 2021; 371 

Krinsley et al., 2009; Tan and Sephton, 2020).  372 

 373 

 374 

Fig.10 A view from the NASA's Mars rover showing a boulder field in front of a location 375 

named as “Santa Cruz”; (b) NASA's Perseverance Mars rover obtained this image of "Santa 376 

Cruz" hill in Jezero Crater by stitching together 24 separate photographs from the rover's 377 

Mastcam-Z camera system, the rover crew called the boulders in the foreground "Ch'al" rocks; 378 
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(c) The Perseverance rover obtained this image of "Rochette" shortly after abrading 379 

"Bellegarde," a circular region of Martian rock 2 inches in diameter and 0.39 inch in depth.  380 

Image Credit (a-c): NASA/JPL-Caltech; (d) synoptic view of barren landscape with varnish 381 

coated boulders; (e) Thick glazed shining brown varnish coating on Ladakh rocks; (f) Rich 382 

dark reddish-brown coating on Ladakh batholith boulders.  383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 



This Paper is a working manuscript, under preparation for submission to a peer reviewed journal 

 400 

 401 

Fig.11 Magnetic concentration dependent parameters show a clear contrast in magnetic 402 

concentration between the varnish and the associated host rock.  403 

 404 

The presence of Fe-oxides in the varnish layer was investigated further by magnetic 405 

characterization of the varnish sample to determine the varnish’s magnetic behaviour in 406 

relation to its host rock. The rock varnishes are more magnetic than their substrates (host rock), 407 

according to low frequency magnetic susceptibility (χlf) data, which is a measure of the 408 

concentration of magnetic minerals in a sample. The varnish samples 1V, 2V, and 3V have 409 

substantially more χlf than their substrates 1H, 2H, and 3H; however, 4V has similar magnetic 410 

susceptibility to its substrate 4H. Furthermore, the two magnetic concentration-dependent 411 

metrics, ARM and SIRM, show that the varnish layers have identical magnetic concentrations 412 

(Fig.11b-d). This difference in sample 4 can be attributed to its igneous origin, as it was 413 

collected from the northern flank of the Indus River/valley, which is composed of igneous 414 

boulders (Ladakh batholith). This would imply that the substrate contains magnetite grains, as 415 

evidenced by petrographic studies (Fig.7g, h). The susceptibility levels of varnish samples’ are 416 

much higher than any literature documented in the Leh-Ladakh region (Phartiyal et al., 2021, 417 
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2020; Sangode et al., 2013). It could be linked to the concentration enrichment of the magnetic 418 

minerals on the varnish layer, as well as a possible biological origin for the varnish formation 419 

process (Chen et al., 2021). In a previous study, varnished and unvarnished wafers from three 420 

geologically distinct rock samples showed that rocks with high intrinsic magnetization have no 421 

discernible behaviour between the varnish and host, whereas rocks with lower intrinsic 422 

magnetization have distinct and reproducible differences between the varnish and unvarnished 423 

wafers (Clayton et al., 1990), which is consistent with the current findings. The S-ratio 424 

parameter S300 (Calculated as |IRM-300 mT|/SIRM), which analyses the relative proportion 425 

of hematite to magnetite in a sample is close to 1, suggesting that varnish layers are primarily 426 

composed of magnetite minerals. The S-ratio of 0.81 indicates that a small proportion of 427 

antiferromagnetic minerals are present in sample 2V of rock varnish (Table S1). A ratio of 1 428 

indicates that the ferrimagnetic mineral magnetite is the primary remanence carrier, and as the 429 

proportion of hematite in a mixture increases , the S-ratio decreases (Basavaiah and Khadkikar, 430 

2004; Bloemendal et al., 1992; Liu et al., 2012). Temperature variation magnetic susceptibility 431 

scans (χ-T) in samples RV1, RV2, and RV3, on varnish and host rock are less resolvable. 432 

However, in sample RV4, both varnish and host rock have the same mineralogy of a strong 433 

magnetite phase (a sharp decrease in susceptibility values between 550 and 600 °C) and a minor 434 

hematite phase (680 °C) (Fig.S5). The remnant coercivity spectrum and magnetic mineralogy 435 

were also determined using IRM acquisition and demagnetisation studies.  Because the IRM 436 

acquisition curves were saturated around 200 mT field values, these curves (Fig.12a-d) imply 437 

a substantially ferrimagnetic phase of the varnish and the host rock. Remanence coercivity 438 

(Hcr) values of 18-22 mT for varnishes and 40-60 mT for host rocks, on the other hand 439 

suggested a change in magnetic grain size. This leads to the premise that the varnish layer may 440 

be composed of coarser multidomain (MD) magnetite(~110μ ) and the host rock of  a pseudo 441 

single domain (PSD) magnetite(~0.2-110 μ) in nature(Walden, 1999; Yang et al., 2010). This 442 

is substantiated by the AF Demagnetisation examinations that have been conducted. 443 

Normalized data from SIRM Stepwise AF Demagnetization curves (Fig. 13 a-d) demonstrate 444 

that the varnish sample is relatively easy to demagnetize (Dunlop et al., 2004). These results 445 

further validate and refine the categorization of magnetite grains found in the varnish layer 446 

with birnessite and haematite, as described in a previous study comparing magnetite in the rock 447 

varnish and its applicability to Mars (Mancinelli et al., 2002). Varnish and its substrate (host 448 

rock) have different magnetic domain sizes, which may provide insight into the varnish 449 

formation process, as multidomain coarser grain sizes are indicative of secondary depositional 450 

processes with a slow rate of accumulation and growth, as opposed to single domain grain 451 
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sizes, which have signatures of a rapid rate of nucleation and crystallisation as seen in host 452 

rocks (Stacey, 1961). As a result, the magnetic mineral concentration and grain size of varnish 453 

and host rock differ significantly, with a dominating ferrimagnetic mineral assemblage.  454 

Overall, the presence of highly oxidised Mn and Fe in the varnish layer from extreme terrestrial 455 

environments, as well as microbial entities, makes rock varnish an important subject of study 456 

for linking past climatic conditions on Mars. The presence of iron and manganese oxide rich 457 

patinas on Martian rocks supports the claims of an oxygen-rich environment on Mars in the 458 

past, which lends credence to the story about Mars previous habitability. Ladakh could be a 459 

feasible location for both early and modern Mars scenarios, as it possesses water features such 460 

as lakes and rivers similar to those found on early Mars (4 billion years ago), as well as cold, 461 

dry surface characteristics with a high UV flux today. As a result, rock varnish can aid in the 462 

understanding of life’s co-evolution and the prediction of Mars and Earth’s past, present, and 463 

future climates. The preceding discussion introduced the key question whether, if Mars and the 464 

Earth are closely related, Earth would experience a similar fate to that of present-day Mars, 465 

characterised by low O2 and high CO2 concentrations.  466 

 467 

 468 

 469 

Fig.12 Stepwise IRM acquisition and demagnetisation curves revealing the samples’ 470 

principal ferrimagnetic phase .  471 
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 472 

 473 

Fig.13 AF Demagnetisation of SIRM revealing a relatively harder remanent component of the 474 

host rocks compare to respective varnishes.  475 

 476 

Conclusion 477 

With intense solar UV radiation, vast temperature changes, and a cold arid environment, 478 

Ladakh hosts an ideal planet analogous setting (PAS) for understanding the biogeochemical 479 

fingerprints of modern-day Mars. The dark reddish-brown coatings found on many rocks in 480 

Ladakh were identical to those found on Mars during the recent mission of the Perseverance 481 

rover. The existence of Fe and Mn in the varnish layer, which accommodates a chain of 482 

biologically driven new types of magnetosomes like species formed of Si-Mn-S inclusions 483 

together with Fe, is suggested by the surface and magnetic characteristics of rock varnish. The 484 

presence of magnetic minerals in the varnish layer with a larger fraction of oxidised Fe3+ and 485 

Mn4+ cations could provide an answer to the long-standing debate of whether Mars had oxic 486 

conditions in the past or not. This evidence is enhanced when combined with the findings of 487 

the Curiosity rover’s ChemCam instrument, which discovered manganese oxide veins and 488 

manganese-rich coatings on Martian rocks while operating. As a result, the role of Mn and Fe 489 
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oxides in the varnish layer as well as the microbiota that flourishes over the varnish layer must 490 

therefore be extensively examined. As such, we suggest that the typical rock varnishes from 491 

extreme environmental places like Ladakh, India may provide a significant piece of the puzzle 492 

of life beyond the Earth. 493 
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 754 

Fig.S1 (a-d) Optical microscopic image of surface of varnish Layer; (e-h) Side view of the 755 

cross- section of sample showing host rock (substrate) on which varnish layer was deposited. 756 
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 757 

Fig.S2(a-d) chain like morphology of magnetosomes on various varnish samples. 758 
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 766 

Fig.S3 Multi-spot EDS elemental analysis of the chain like clusters with chemical 767 

composition of each spot 1,2,3,4 is given below. 768 

 769 

 770 

EDS-SPOT-1 771 
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EDS-SPOT-3 776 
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EDS-SPOT-4 779 
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 783 

Fig.S4 Multi-spot high resolution EDS elemental analysis of the chain like clusters with 784 

chemical composition of each spot 1,2 given below. 785 
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 HS.1 Detailed petrological investigation of the host rock. 791 

Texturally, first two sections of the clastic deposit of the Indus Molasses are coarser (a-d) than 792 

the third one (e-f). The thin sections representing the Indus Molasses comprises mainly 793 

anhedral to subhedral quartz grains (70%). Quartz grains are angular and poorly sorted 794 

associated with feldspar and lithic fragment with clay fine matrix probably close to the 795 

greywacke (a variety of sandstone). Few quartz grains are prismatic, but most grains are 796 

anhedral, whereas some are tabular and irregular in shape (Fig.7e-f). No preferred orientation 797 

and long contact seen in prismatic and tabular quartz grains whereas, concave and convex 798 

contact seen (Fig.7 a-f). Diagenetic silica overgrowth has not been noticed on the sub-rounded 799 

quartz grains. Monocrystalline quartz grains dominate the assemblage (75%) with subordinate 800 

sizable population of polycrystalline grains (25%). Very few small squares to almost rectangle 801 

shape shaped opaque magnetite/ibm (iron bearing mineral) inclusions are noticed in samples 802 

represented by the India Molasses (Fig.7 c-d). Feldspar constitutes about 10% of the entire 803 

grain population (Fig.7 e-f). Na feldspars consist of tabular grains of plagioclase with 804 

characteristic twinning, triclinic shape, with first order grey colour. Lath/flaky shaped mica are 805 

constituted of biotite, sericite and muscovite showing no preferred orientation similar to quartz 806 

grains. Under polarized light, biotite shows prominent pleochroism from light brown to dark 807 

brown. Muscovite shows second order interference colour under crossed polars. Rarely, iron 808 

bearing matrix is present in between quartz grains which are derived from alteration of biotite 809 

or iron bearing mineral such as magnetite (Fig.7 a-b). Thin section represented by the very 810 

coarse grained Ladakh Batholith i.e., Fig g-h shows heavy amount of magnetite/ibm associated 811 

with other essential (quartz and feldspar) and subordinate minerals (mica bearing mineral such 812 

as muscovite). Quartz grains are subhedral to euhedral in shape with concave and convex 813 

contact. No long contact between the quartz grain seen (Fig. g-h). Quartz inclusions can be 814 

seen within the magnetite/ibm.  815 

 816 

 817 

 818 
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Table.1 Details of various magnetic parameters with S-ratio values. 820 

 821 

 822 
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 824 

 825 

 826 

 827 

 828 

 829 

 830 

Fig.S5 (a-d) Temperature variation of magnetic susceptibility(-T) scans of the investigated 831 

samples displaying magnetite and haematite shown in blue arrows. 832 

 833 

 834 

Sample Mass (gm) 
χlf  

 (10-8m3kg-1) 
ARM  
(10-5Am2kg-1) 

SIRM 
 (10-5Am2kg-1) 

Soft IRM 
 (10-5Am2kg-1) 

S-Ratio 

1v 0.4 238.1 6.71 1045.0 754.5 0.98 
2v 0.38 496.0 13.01 2018.4 1313.2 0.99 
3v 0.38 819.0 17.56 2871.1 1842.1 0.98 
4v 0.5 1068.2 22.46 5760.0 5054.0 0.99 
1H 7.59 28.0 2.47 967.1 715.9 1.00 
2H 7.85 11.3 0.70 51.2 26.8 0.81 
3H 6.48 4.6 0.17 27.9 13.3 0.97 
4H 7.1 616.2 29.10 12436.6 8985.9 1.00 


