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Abstract

The El Niño-Southern Oscillation (ENSO) phenomenon – the dominant source of climate variability on seasonal to multi-year

timescales – is predictable a few seasons in advance. Forecast skill at longer multi-year timescales has been found in a few models

and forecast systems, but the robustness of this predictability across models has not been firmly established owing to the cost

of running dynamical model predictions at longer lead times. In this study, we use a massive collection of multi-model hindcasts

performed using model analogs to show that multi-year ENSO predictability is robust across models and arises predominantly

due to skillful prediction of multi-year La Niña events following strong El Niño events.
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Key Points:12

• ENSO is predictable for 2+ years following strong El Niño events.13

• Forecasts initialized during Weak El Niño, Neutral, and La Niña states are not14

skillfull at leads greater than 12 months.15

• There is a potential long-lead forecast of opportunity out of the expected strong16

2023-2024 El Niño event.17
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Abstract18

The El Niño-Southern Oscillation (ENSO) phenomenon – the dominant source of climate19

variability on seasonal to multi-year timescales – is predictable a few seasons in advance.20

Forecast skill at longer multi-year timescales has been found in a few models and fore-21

cast systems, but the robustness of this predictability across models has not been firmly22

established owing to the cost of running dynamical model predictions at longer lead times.23

In this study, we use a massive collection of multi-model hindcasts performed using model24

analogs to show that multi-year ENSO predictability is robust across models and arises25

predominantly due to skillful prediction of multi-year La Nina events following strong26

El Niño events.27

Plain Language Summary28

In this study, we demonstrate that ENSO is predictable at least two years in advance29

when forecasts are made during strong El Niño events, such as the current El Niño ex-30

pected to peak in winter 2023-2024. That is, strong El Niños provide forecasts of oppor-31

tunity in which we have high confidence in multi-year predictions of ENSO. The oppo-32

site is also shown; forecasts initialized during other ENSO states (weak El Niño, Neu-33

tral, and La Niña) do not have predictive skill past 12 months. These result hold regard-34

less of the climate model used to make the predictions a shown using 1,000s of years of35

retrospective climate forecasts made with 11 different state-of-the-art climate models.36

1 Introduction37

There is immense societal benefit from skillful multi-year climate forecasts as many38

human systems make decisions on this timescale (Nissan et al., 2019). The El Niño/Southern39

Oscillation (ENSO) – the dominant mode of climate variability at multi-year time scales40

– influences global weather via atmospheric teleconnections (Lenssen et al., 2020; Ma-41

son & Goddard, 2001; Ropelewski & Halpert, 1986), and has well-known predictability42

at lead times of 9 or less months (Barnston et al., 2019; Tippett et al., 2019; L’Heureux43

et al., 2020; Becker et al., 2022). Numerous forecast systems have shown small, but sig-44

nificant predictive skill at lead times beyond 9 months with dynamical ((Gonzalez & God-45

dard, 2016; Dunstone et al., 2020) and statistical (Ding & Alexander, 2023; Ham et al.,46

2019; Wang et al., 2023) methods, but the sources of this skill are not firmly established.47

The long-lead predictability of ENSO could arise from particular sequences of ENSO48

events. For instance, persistent La Niña states lasting 2 or more years appear highly pre-49

dictable, particularly after a strong El Niño event (DiNezio, Deser, Okumura, & Kar-50

speck, 2017; DiNezio, Deser, Karspeck, et al., 2017; Wu et al., 2019; Wu, Okumura, Deser,51

& DiNezio, 2021). Conversely, El Nino states lasting multiple years might be predictable52

based on the onset season (Wu et al., 2019; Wu, Okumura, & DiNezio, 2021; Wu, Oku-53

mura, Deser, & DiNezio, 2021). These studies provided major advances connecting dy-54

namical theories of ENSO to determine potential predictable multi-year sequences. How-55

ever, these studies used hindcasts performed with a single coupled general circulation56

model (CGCM) and contain a limited number of events for retrospective validation. Ev-57

idence for multi-year predictability from other CGCMs is sparse and not systematically58

explored (Dunstone et al., 2020; Lou et al., 2023). Therefore, a robust assessment of skill59

across a multi-model ensemble is needed.60

Small hindcast sample sizes are a ubiquitous limitation in ENSO-prediction research.61

Hindcast experiments are run over tens of years of initializations, containing only a dozen62

or so ENSO events. Furthermore, seasonal hindcast experiments have not historically63

included predictions past 12 month leads. These hindcast experiments are limited by com-64

putational costs of initialized CGCMs and/or short observational data records needed65

for initialization and verification (Barnston et al., 2019; Tippett et al., 2019). For instance,66

–2–



manuscript submitted to Geophysical Research Letters

the NMME has hindcasts initialized monthly over 1982-2010 and real-time forecasts ini-67

tialized beginning in 2011 with lead times up to 11 months (408 forecasts for each CGCM68

verified in (Barnston et al., 2019)) and the CMIP6 Decadal Climate Prediction Project69

(DCPP) has hindcasts initialized yearly over 1960-2018 with lead time up to 10 years70

(59 forecasts for each CGCM verified in (Dunstone et al., 2020)). When evaluating such71

datasets, it is necessary to evaluate the skill of a forecast system over all hindcasts to72

maximize sample size in the statistical estimates of forecast skill. However, pooling all73

forecasts, particularly by ENSO state at initialization, has the potential to obfuscate the74

underlying sources of long-lead ENSO skill if predictability is state-dependent.75

In this study, we investigate the model and initial state dependence of multi-year76

ENSO prediction skill. We explore initial ENSO states in terms of phase (El Niño, neu-77

tral, La Niña) and intensity (strong, weak) providing multi-year skill. To this aim, we78

construct and analyze a massive multi-model ensemble of model analog climate hind-79

casts to identify initial states that lead to multi-year predictive skill. The model ana-80

log method (Ding et al., 2018, 2019, 2020) is used to make forecasts by first identifying81

states in a “library” of CGCM output that best match the initial state. Then, ensem-82

ble forecasts are issued according to how each of these states evolved in the CGCM. These83

forecasts are appropriate to use to investigate ENSO predictability as they have trop-84

ical Pacific skill equal to or exceeding state-of-the-art initialized dynamical forecast sys-85

tems (Ding et al., 2018). In addition, the very low computational cost allows the gen-86

eration of very large ensemble hindcasts based on multiple CMIP-class CGCMs with leads87

of 3+ years. Together, these features of our technique enabled us to investigate the model88

and state dependence of 2 year ENSO prediction skill.89

Section 2 outlines the data and methods used int this study. In Section 3, we in-90

vestigate the state-dependence of year 2 ENSO skill in perfect model hindcasts, which91

provide an upper bound for predictability. Then in Section 4, we investigate the state-92

dependence in cross-model hindcasts; we use many CGCMs as library states to predict93

a long control run of a single model with model analog forecasts. Finally in Section 5,94

we turn to the real world and use model analog forecasts to predict ENSO over the 10995

year record from 1901-2009. In each of these analyses, we show that ENSO skill is highly96

dependent on the state at initialization as well as the target state. Nearly all of the skill97

at leads greater than 12 months is due to prediction out of El Niño, consistent with known98

multi-year patterns of ENSO such as the tendency for La Niña to follow El Niño. This99

state-dependency is shown through the skill of probabilistic forecasts of DJF ENSO state100

at leads up to 36 months.101

2 Data and Methods102

2.1 Data103

We use long pre-industrial control simulations of at least 500 years in duration from104

11 state-of-the-art CGCMs to issue model-analog forecasts and to perform the verifica-105

tions in Sections 3 and 4. The 11 CGCMs are seven CMIP-class CGCMs and the four106

available control runs from NMME CGCMs (Table S1). All gridded products are regrid-107

ded to a common 2◦×2◦ grid before use in any analyses. The monthly mean sea-surface108

temperature (SST) or “tos” fields and sea-surface height (SSH) or “zos” fields are used.109

SST and SSH anomalies are created by removing the monthly climatologies.110

The CERA-20C reanalysis is used as SST and SSH observations used to conduct111

observational hindcast experiment in Section 4, following (Lou et al., 2023). A reanal-112

ysis product is used to extend the record to span 1901-2009 as complete Indo-Pacific ob-113

servations of SSH do not exist prior to the satellite era. As with the model output, ob-114

served SST and SSH fields are first regridded to the common 2x2 grid and then converted115

to anomalies prior to analysis by removing the monthly climatologies.116

–3–



manuscript submitted to Geophysical Research Letters

ENSO events are defined according to quantiles of the Oceanic Niño Index (ONI)117

which is the seasonal (3 month) average SST anomaly over the Niño 3.4 region (5N-5S,118

170W-120W). These quantiles are calculated for each season for each CGCM as well as119

the observations. El Niño events are defined as the upper quartile, or values above the120

75th percentile, of ONI. Similarly, La Niña events are defined as the lower quartile, or121

values below the 25th percentile of ONI. This method is useful when comparing ENSO-122

state prediction across different CGCMs as it reduces the bias from different CGCM ENSO123

mean states and variabilities (Gonzalez & Goddard, 2016).124

2.2 Model Analog Forecasts125

In general, we make model analog forecasts in a two step process. (1) We find the126

best analogs for the initial state by searching through a library of CGCM output. (2)127

We issue forecasts according to how the best analogs found in (1) evolved. We follow the128

full method as documented in Ding et al. (2018). In perfect model analog hindcasts (Sec-129

tion 2), we exclude the initial state from the library of possible analogs. In cross-model130

and observational hindcasts (Sections 3 and 4), we use each entire CGCM piControl run131

as the library for best analog states.132

Best analogs are found by finding the best matches of SST and SSH fields between133

the initial state and all states within the same month in the CGCM library. The initial134

and library fields are compared over the entire tropical Indo-Pacific basin (30S–30N, 30E–80W).135

For each time step in the library, we calculate the root mean square (RMS) distance from136

the initial SST and SSH fields to the corresponding library fields. Here, all fields are nor-137

malized to have unit variance to allow adding the distances between the initial and li-138

brary SST and SSH fields as well as accounting for biases in variability between datasets.139

These distances are ranked in ascending order and the evolution of the 15 states clos-140

est to the initial field are used to create an ensemble forecast.141

For a given initial state, the ensemble forecast plume is determined by the evolu-142

tion of the Niño3.4 index in the closest 15 analogs. We issue probabilistic forecasts of143

ENSO events at each lead as the proportion of these 15 analogs that predict El Niño,144

Neutral, and La Niña conditions where we define ENSO events using the quantile method145

described above. We choose the closest 15 analogs for our forecast as this number pro-146

vides high forecast skill for a wide range of library sizes (Ding et al., 2018).147

2.3 Forecast Verification148

The probabilistic skill of the ENSO state forecasts is determined using RPSS, a stan-149

dard skill metric for probabilistic skill (Jolliffe & Stephenson, 2012; Mason, 2018). RPSS150

is a measure of both a forecast’s resolution, or whether the outcome differs given differ-151

ent forecasts, as well as a forecast’s reliability, or how well the forecasted probabilities152

match the observed rate of events (Mason, 2018). The RPSS is a skill score comparing153

the Ranked Probability Score (RPS; (Epstein, 1969; Murphy, 1971)) of the forecast of154

interest to a climatological forecast. It is defined in such a way that an RPSS of 1.0 in-155

dicates a perfect forecast, an RPSS indicates that a forecast is equivalent to climatol-156

ogy, and a negative forecast indicates a forecast that is less skillful than the climatolog-157

ical rate of ENSO events.158

3 Perfect Model Hindcast Experiment159

We first investigate the perfect model skill, or the skill of a model predicting its own160

dynamics. That is, we use the same CGCM as both the target states as well as the li-161

brary, omitting the state we are trying to predict as a possible analog. Perfect model skill162

is generally an upper bound of skill for the ENSO system. When predicting the state163

of ENSO in December-February (DJF), the peak season of ENSO, all models have pos-164
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itive ranked probability skill scores (RPSS) at leads of up to 12 months (Figure 1a). RPSS165

is a measure of probabilistic forecast skill where a value of zero indicates a forecast is on166

par with a forecast of climatological probabilities and positive values indicate that the167

model analog forecasts outperform climatological forecasts. All but two of the eleven mod-168

els in the study have positive RPSS out to at least 24 months, indicating that a range169

of CGCMs with varied ENSO dynamics exhibit “perfect model” multi-year ENSO pre-170

dictability (Figure 1a). These findings agree with theoretical calculations of ENSO pre-171

dictability of around 3 years (Newman & Sardeshmukh, 2017), the skill of initialized dy-172

namical forecasts (DiNezio, Deser, Okumura, & Karspeck, 2017; Dunstone et al., 2020;173

Wittenberg et al., 2014), and multi-model long lead skill of model analog forecasts (Lou174

et al., 2023).175

A major goal of this study is to determine if specific states are causing the major-176

ity of skill in forecasts at leads greater than 12 months. As discussed, this type of infor-177

mation can not be determined by verification metrics performed over all initialization178

and target states as has been traditionally done with limited hindcast experiments. Here,179

we determine the probabilistic skill of DJF-target ENSO forecasts stratified by the state180

at initialization. The initial state bins are: strong El Niño (greater than 95th percentile181

of Niño3.4), weak El Niño (between 75% and 95% percentile of Niño3.4), and no El Niño182

which includes both neutral and La Niña states (below 75% percentile of Niño3.4). Ex-183

panding the set of initial state bins to include weak La Niña and strong La Niña does184

not alter year-2 skill in any CGCM (not shown).185

For perfect-model forecasts from CESM1.1, by far the greatest year-2 skill comes186

from forecasts initialized out of strong El Niño events as seen by the large difference be-187

tween the strong El Niño line and the no El Niño RPSS skill at leads greater than 12188

months (Figure 1b). The strong El Niño skill between leads 12-24 months is expected189

due to the strong tendency for La Niña to occur after strong El Niño events. The strong190

El Niño skill seen at leads 24-36 months is due to the high predictability of two year La191

Niña events following large El Niño events that has been previously shown in CESM1192

(DiNezio, Deser, Okumura, & Karspeck, 2017). The same dramatic increase in year 2+193

skill does not occur from forecasts initialized during weak El Niño events, as shown be-194

tween the negligible difference between the weak El Niño and no El Niño skill (Figure195

1b). This analysis was performed with all CGCMs in the study, leading to qualitatively196

similar results (not shown).197

Forecasts initialized during strong El Nino events (Niño 3.4 > 95th percentile) have198

the greatest year-2 skill across all CGCMs used to generate hindcast experiments except199

CanESM5 (Figure 1c). This additional year-2 skill from strong El Niño initial states is200

seen in the difference between the strong El Niño RPSS and the no El Niño RPSS (Fig-201

ure 1c) as this accounts for any differences in the total skill of the CGCMs. As with CESM1.1,202

CGCMs generally do not see much additional skill from weak El Niño initial states when203

compared with no El Niño (Figure 1d).204

We have robustly shown that ENSO is most predictable at leads of 12+ months205

for perfect model analog forecasts when initialized during a strong El Niño event. This206

result agrees with theory that there is a strong dynamical tendency for La Niña to fol-207

low El Niño events (DiNezio, Deser, Okumura, & Karspeck, 2017; Suarez & Schopf, 1988).208

In addition, active ENSO states are more reliably predictable than ENSO-neutral states209

leading to greater probabilistic skill (Jin et al., 2008; Mason et al., 2021).210

With this greater predictability out of strong El Niño, it is natural to ask if the year211

2+ skill is indeed due to greater predictability of subsequent La Niña events of one- or212

two-year duration. To test this, we take each of the initial states used in Figure 1b and213

decompose the forecast skill according to the true ENSO state upon verification. Results214

with two of the CGCMs with greatest multiyear skill, GISS-E2.1G and CESM1.1, are215

–5–



manuscript submitted to Geophysical Research Letters

shown as illustrative examples (Figure 2), but similar results are found for all 11 CGCMs216

in the study (not shown).217

All of the skill in forecasts initialized during strong El Niño events is due to very218

skillful forecasts of La Niña events (Figures 2a,d). This result, which holds for 11 CGCMs,219

provides robust support for the theory that strong El Niño events precede highly pre-220

dictable single and double La Niña events (DiNezio, Deser, Okumura, & Karspeck, 2017).221

In addition, there is evidence of weak El Niño events leading to predictable double El222

Niño events (Wu, Okumura, & DiNezio, 2021) as seen by the positive El Niño skill in223

leads 12-18 for El Niño targets (Figures 2b,e). Finally, there is some evidence for pre-224

dicting El Niño multiple years in advance from neutral states (Figures 2c,f).225

Decomposing skill calculations by the state at verification is very useful to under-226

stand what states a forecast system predicts well, but is artificial as it is impossible to227

know the target state a priori when making real time forecasts. Thus, the analysis pre-228

sented in Figure 2 can only be used to show retrospectively that certain verification states229

lead to greater skill, and the results in Figure 1 should be used to understand what the230

perfect model, or upper bound, of ENSO skill is using model analog forecasts.231

4 Cross-Model Hindcast Experiment232

Perfect-model prediction studies are useful to determine possible upper bounds of233

ENSO predictability, but do not necessarily reflect real-world predictability, especially234

if a CGCM does not simulate ENSO dynamics realistically. To confirm the perfect-model235

findings presented in Section 2, we perform two “cross-model” hindcast experiments in236

which we use each model to predict the full preindustrial control (piControl) runs of GISS-237

E2.1G and CESM1.1. Cross-model hindcasts investigate the forecast skill of model-analog238

forecasts in predicting a target ENSO system that is different from the library ENSO239

system, analogous to the case of using model-analog forecasts to predict the real-world240

ENSO system. By using this cross-model hindcast setup, we are able to generate thou-241

sands of years of hindcasts in a setting that better represents operational forecasts than242

perfect model hindcasts.243

We use each of the 10 other CGCMs to issue model-analog forecasts of the 851-year244

GISS-E2.1G piControl as it has the greatest perfect model skill, but a highly oscillatory245

ENSO (Figure S1). We additionally perform hindcasts over the 1,800 year CESM1.1 pi-246

Control as it has a morerealistic ENSO, particularly in terms of the asymmetric evolu-247

tion of El Niño and La Niña events (Figure S1; (Capotondi et al., 2020; DiNezio, Deser,248

Okumura, & Karspeck, 2017)).249

The cross-model skill is generally lower than the perfect model skill, but there is250

still positive RPSS skill at leads of 24 months for most CGCMs in both cross-model ex-251

periments (Figures 3a,d). When predicting GISS-E2.1G, many of the CGCMs are nearly252

as skillful as their perfect model benchmark (Figure 3a). This is expected as GISS-E2.1G253

has a relatively oscillatory ENSO, leading to a more predictable system (Figure S1). When254

predicting the more complex and realistic ENSO in CESM1.1, the cross-model skill is255

lower because of this more complex and less active ENSO (Figure 3d). Note that both256

of these CGCMs simulate two-year La Niña events near the observed rate of around 6.8/100257

years, with 7.5/100 years in GISS-E2.1G and 6.7/100 years in CESM1.1 (Table S1).258

As with the perfect model hindcasts, we decompose the cross-model RPSS by state259

at initialization. Again, we see that most of the year-2 skill comes from predictions out260

of strong El Niño events (Figures 3b,d). When using GISS-E2.1G as the hindcast tar-261

get, all but three CGCMs show better 12-18 month skill and all CGCMs show better 18-262

24 month out of strong El Niño events than other initial states (Figure 3b). When pre-263

dicting the more realistic CESM1.1 ENSO, all CGCMs have much more skill when ini-264

tialized during strong El Niño events when compared with no El Niño events (Figure 3e).265
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Following the perfect model results, initialization during weak El Niño events does not266

dramatically increase year-2 skill (Figures 3c,f).267

5 Observational Hindcast Experiment268

To demonstrate that the above results hold for the real-world ENSO system, we269

create model-analog hindcasts using a library from each CGCM to predict a 109-year270

record of the real-world ENSO system from 1901-2009 (Laloyaux et al., 2018). These ob-271

servational hindcasts show that model-analog forecasts have skill at leads exceeding 12272

months with some CGCM analogs, in agreement with previous studies (Figure 4a; (Liu273

et al., 2022; Lou et al., 2023)). In addition, the observational hindcasts show compara-274

ble, albeit slightly lower, skill in predicting the observations to their skill in predicting275

the full piControl of CESM1.1 (Figure 3d). This lower skill for the observations is be-276

cause CGCMs generally overestimate the ENSO signal-to-noise ratio leading to overcon-277

fident forecasts of the real world system (Eade et al., 2014; Tippett et al., 2020).278

We expect substantial sampling uncertainty in quantifying skill over the 109-year279

hindcast due to the limited sample size in the verification statistics as well as the known280

multidecadal variability in ENSO predictability (Wittenberg, 2009; Wittenberg et al.,281

2014; Lou et al., 2023). To make fair comparisons between the observational hindcasts282

here and the cross-model hindcasts in Section 3, we quantify this sampling uncertainty283

in the observational hindcast. We use a bootstrapping approach in which we create and284

verify 200 hindcasts using analogs from each CGCM over random 109-year periods of285

the 1,800 year CESM1.1 piControl. The 95% likely skill from the subsampled 109 year286

cross-model CESM1.1 hindcasts and the range of the observational hindcast skill over-287

lap for all leads but 4 months (Figure 4b). Thus, we cannot reject the hypothesis that288

DJF skill is lower when predicting the observed ENSO system than when predicting the289

CESM1.1 ENSO system.290

This subsampling analysis is additionally used to estimate the 95% confidence in-291

tervals of skill when stratifying by initial state on the 109-year observational record (Fig-292

ure 4c). We again take random 109-year periods of the CESM1.1 piControl and deter-293

mine the 95% likely range of forecast skill given the ENSO state at initialization. As ex-294

pected, there is large uncertainty when verifying such few forecasts (violin plots in Fig-295

ure 4c), but the majority of year-2 skill comes from predictions initialized during strong296

El Niño events . The strong El Niño-initialized observational hindcasts (box plots in Fig-297

ure 4c) show comparable skill to the cross-model case at 12-18 month leads, but lower298

skill at 18-24 month leads. However, the middle 50% of CGCMs show positive RPSS at299

leads of 18-24 months when initialized during strong El Niño, again suggesting that there300

is a multi-year forecast of opportunity during strong El Niño events. On the other hand,301

there is no significant skill beyond 12 months in the observational hindcasts when the302

initial state is not a strong El Niño event (Figure 4c).303

6 Summary and Discussion304

There is skill in predicting ENSO at leads of 12-24 months, but it is nearly entirely305

due to the high long-lead predictability of the system following strong El Niño events.306

This finding is robust in long multi-model perfect model hindcasts, long multi-model cross-307

model hindcasts, and predictions over a 109-year observational reanalysis.308

These findings are important for both climate predictability research and for cli-309

mate service applications using seasonal to multi-year predictions. Research into ENSO310

and climate predictability generally focuses on metrics of skill aggregated over all fore-311

casts, a required assumption given the small hindcasts available. As such, multiple stud-312

ies have claimed that ENSO can be predicted skillfully into the second year (Dunstone313

et al., 2020; Gonzalez & Goddard, 2016; Ham et al., 2019; Wang et al., 2023). Our find-314
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ings make clear that this second-year skill is not always present in the system; second-315

year skill is highly state dependent with robust multi-year skill only possible out of large316

El Niño events.317

Our results present both good and bad news for climate services or decision mak-318

ers relying on climate information. A strong El Niño event presents a multi-year fore-319

cast of opportunity for ENSO. Since ENSO is the dominant driver of climate variabil-320

ity on multi-year timescales, we expect that multi-year predictions of climate impacts321

will have the greatest multi-year skill out of strong El Niño events. Such forecasts of op-322

portunity should be investigated further. On the other hand, there is little evidence shown323

here for multi-year ENSO skill when initializing in a state other than a strong El Niño.324

Thus, climate service and humanitarian actions will likely need to rely on information325

other than climate forecasts when making decisions at leads past 12 months if a strong326

El Niño event is not ongoing.327

This study has implications for future predictability of ENSO under climate change.328

If climate change leads to an increased chance of extreme El Niño events (Cai et al., 2020)329

and subsequent multi-year La Niña events (Geng et al., 2023), our findings suggest that330

ENSO will become more predictable at longer leads on average, in agreement with stud-331

ies using model analog forecasts on future ENSO predictability (Amaya et al., 2024).332

The ability to generate multi-model hindcasts over thousands of years on a laptop333

using model analog forecasts is an incredibly powerful tool. Large sample sizes provide334

the ability to decompose forecast skill by both initial and target state to determine what335

ENSO states led to multi-year skill. In addition, large samples make it possible to quan-336

tify the sampling uncertainty on forecasts of the observational record to determine the337

robustness of skill analyses over a shorter record. Model analog forecasts combined with338

the wealth of output from CMIP provide a tool for robustly exploring questions about339

climate variability, predictability, and change.340

Our conclusions are particularly salient given the incipient strong El Niño expected341

to peak during the 2023-2024 boreal winter. Following our findings, ENSO forecasts is-342

sued this coming winter will provide actionable information about the state of ENSO through343

2025.344

7 Open Research345

The live code-base used to process the data, run the experiments, and verify fore-346

casts can be found at https://github.com/nlenssen/LongLeadENSO/. An archived code-347

base is available on Zenodo at https://doi.org/10.5281/zenodo.10045616. All raw,348

intermediate, and final data is archived at Zenodo at https://doi.org/10.5281/zenodo349

.10045687.350
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Figure 1. The model analog DJF RPSS skill for (a) perfect model hindcasts of all 11 CGCMs

used in the study and (b) perfect model hindcasts stratified by ENSO state at initialization for

two example CGCMs, CESM1.1 and GISS-E2.1G. The extra skill added when initializing during

El Niño conditions is shown by the difference in RPSS between (c) strong EN initial states and

no EN initial states and (d) weak EN initial states and no EN initial states.
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Figure 2. A second decomposition of the skill analysis in Figure 1b in which the skill is

stratified by initial state in CESM1.1 and GISS-E2.1G where (a,d) show the skill of forecasts

initialized during strong EN, (b,e) during weak EN, and (c,f) during no EN. The top row shows

forecasts predicting the piControl of GISS-E2.1G and the bottom row shows forecasts predicting

the piControl of CESM1.1. In all plots, solid lines indicate perfect model skill, and dashed lines

indicate cross-model skill. That is, a dotted line of the top row indicates CESM1.1 predicting

GISS-E2.1 piControl.
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Figure 3. The model analog DJF RPSS skill of cross-model hindcasts using libraries from all

11 CGCMs to predict the piControl of (a) GISS-E2.1G and (d) CESM1.1. The remaining panels

follow the analysis presented in Figures 1c,d by summarizing the extra skill in (b,e) forecasts ini-

tialized during strong EN relative to no EN and (c,f) forecasts initialized during weak EN relative

to no EN.
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Figure 4. The model analog DJF RPSS skill of forecasts using libraries from all 11 CGCMs

to predict (a) the observational record from 1901-2009 (109 years). The grey in (b) shows the

95% confidence interval due to sampling uncertainty estimated as the empirical median and 95%

confidence interval of 200 simulations of all CGCMs making 109 year cross-model hindcasts of the

CESM1.1 piControl. The sampling uncertainty is compared with blue curve showing the range

over all 11 CGCMs of observational skill. Note that the blue range in (b) is exactly the range

of the skill shown in (a). The final panel (c) is an expanded version of Figure 1b and shows the

RPSS skill given the state at initialization. The violin plots with transparent colors show the

sampling distribution from the resampled 109 year cross-model hindcasts of CESM1.1. The box

plots with solid colors show the spread of skill for the 11 CGCMs in predicting the observational

record.

–14–



Figure 1.



0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
DJF Probabilistic ENSO Skill (Perfect Model)

Lead (months)

R
P

S
S

CM4
ESM4
CanESM5
MIROC6
CESM1−1−CAM5−CMIP5
CESM2
GISS−E21G
CESM1−NMME
CCSM4−NMME
CM2.1−NMME
CM2.5−NMME

(a)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

DJF Target Forecast (Perfect Model)

Lead (months)

R
P

S
S

Strong EN
Weak EN
No EN

CESM1−1−CAM5−CMIP5   GISS−E21G

(b)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Extra Strong EN Skill (Perfect Model)

Lead (months)

S
tr

on
g 

E
N

 R
P

S
S

 −
 N

o 
E

N
 R

P
S

S

(c)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Extra Weak EN SKill (Perfect Model)

Lead (months)

W
ea

k 
E

N
 R

P
S

S
 −

 N
o 

E
N

 R
P

S
S

(d)



Figure 2.



0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Strong EN at Initialization (GISS−E21G Target)

Lead (months)

R
P

S
S

La Niña Target (Perfect)
El Niño Target (Perfect)
La Niña Target (Cross−Model)
El Niño Target (Cross−Model)

(a)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Weak EN at Initialization (GISS−E21G Target)

Lead (months)

R
P

S
S

La Niña Target (Perfect)
El Niño Target (Perfect)
La Niña Target (Cross−Model)
El Niño Target (Cross−Model)

(b)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

No EN at Initialization (GISS−E21G Target)

Lead (months)

R
P

S
S

La Niña Target (Perfect)
El Niño Target (Perfect)
La Niña Target (Cross−Model)
El Niño Target (Cross−Model)

(c)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Strong EN at Initialization (CESM1−1−CAM5−CMIP5 Target)

Lead (months)

R
P

S
S

La Niña Target (Perfect)
El Niño Target (Perfect)
La Niña Target (Cross−Model)
El Niño Target (Cross−Model)

(d)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Weak EN at Initialization (CESM1−1−CAM5−CMIP5 Target)

Lead (months)

R
P

S
S

La Niña Target (Perfect)
El Niño Target (Perfect)
La Niña Target (Cross−Model)
El Niño Target (Cross−Model)

(e)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

No EN at Initialization (CESM1−1−CAM5−CMIP5 Target)

Lead (months)

R
P

S
S

La Niña Target (Perfect)
El Niño Target (Perfect)
La Niña Target (Cross−Model)
El Niño Target (Cross−Model)

(f)



Figure 3.



0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

DJF Probabilistic ENSO Skill (Cross−Model, GISS−E21G)

Lead (months)

R
P

S
S

CM4
ESM4
CanESM5
MIROC6
CESM1−1−CAM5−CMIP5
CESM2
GISS−E21G
CESM1−NMME
CCSM4−NMME
CM2.1−NMME
CM2.5−NMME

(a)

0 6 12 18 24 30 36

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Extra Strong EN Skill (GISS−E21G Init.)

Lead (months)

S
tr

on
g 

E
N

 R
P

S
S

 −
 N

o 
E

N
 R

P
S

S

(b)

0 6 12 18 24 30 36

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Extra Weak EN SKill (GISS−E21G Init.)

Lead (months)

W
ea

k 
E

N
 R

P
S

S
 −

 N
o 

E
N

 R
P

S
S

(c)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

DJF Probabilistic ENSO Skill (Cross−Model, CESM1.1−CAM5−CMIP5)

Lead (months)

R
P

S
S

CM4
ESM4
CanESM5
MIROC6
CESM1−1−CAM5−CMIP5
CESM2
GISS−E21G
CESM1−NMME
CCSM4−NMME
CM2.1−NMME
CM2.5−NMME

(d)

0 6 12 18 24 30 36

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Extra Strong EN Skill (CESM1−1−CAM5−CMIP5 Init.)

Lead (months)

S
tr

on
g 

E
N

 R
P

S
S

 −
 N

o 
E

N
 R

P
S

S

(e)

0 6 12 18 24 30 36

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Extra Weak EN SKill (CESM1−1−CAM5−CMIP5 Init.)

Lead (months)

W
ea

k 
E

N
 R

P
S

S
 −

 N
o 

E
N

 R
P

S
S

(f)



Figure 4.



0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

DJF Probabilistic ENSO Skill (Obs. Hindcast 1901−2009)

Lead (months)

R
P

S
S

CM4
ESM4
CanESM5
MIROC6
CESM1−1−CAM5−CMIP5
CESM2
GISS−E21G
CESM1−NMME
CCSM4−NMME
CM2.1−NMME
CM2.5−NMME

(a)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Observational Hindcast Sampling Uncertainty

Lead (months)

R
P

S
S

Cross−Model Sampling Unc. Skill (CESM1.1)
Observational Hindcasts (1901−2009)

(b)

0 6 12 18 24 30 36

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Observational Hindcast State Dependent Skill

Lead (months)

R
P

S
S

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Strong EN
Weak EN
No EN

(c)



Supporting Information for “Strong El Niño events lead to
robust multi-year ENSO predictability”
N. Lenssen, P. DiNezio, L. Goddard, C. Deser, Y. Kushnir, S. Mason, M. Newman, Y. Okumura

Contents
Page 1: Figure S1
Page 2: Table S1
Page 3: References

Figure S1: Composites of El Niño and La Niña event evolution in CESM1.1, GISS-E2.1G, and
observations. Month 0 corresponds to DJF seasons when active El Niño and La Niña events are
detected following the quantile definition used in the study.
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Climate Model # Years 2x La Niña 2x El Niño Citation

CM4 500 0.056 0.068 Held et al. (2019)

ESM4 500 0.068 0.060 Dunne et al. (2020)

CanESM5 1000 0.064 0.068 Swart et al. (2019)

MIROC6 800 0.092 0.096 Tatebe et al. (2019)

CESM1-1-CAM5-CMIP5 1801 0.067 0.069 Kay et al. (2015)

CESM2 1200 0.054 0.043 Danabasoglu et al. (2020)

GISS-E21G 851 0.075 0.040 Kelley et al. (2020)

CESM1-NMME 700 0.080 0.053 Kirtman et al. (2014)

CCSM4-NMME 1100 0.051 0.048 Kirtman et al. (2014)

CM2.1-NMME 4000 0.068 0.062 Kirtman et al. (2014)

CM2.5-NMME 700 0.016 0.011 Kirtman et al. (2014)

Observations 109 0.092 0.046 Laloyaux et al. (2018)
Table S1: The rate/year of double La Niña and El Niño events in the piControl runs and
Observations (1901-2009) where La Niña and El Niño events are defined as the lower and
upper quartile of DJF Nino3.4 respectively. A double event is defined by consecutive DJF
seasons with active events of the same sign.
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