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Abstract

Mesoscale convective systems (MCSs) are clusters of thunderstorms that are important in Earth’s water and energy cycle.

Additionally, they are responsible for extreme events such as large hail, strong winds, and extreme precipitation. Automated

object-based analyses that track MCSs have become popular since they allow us to identify and follow MCSs over their entire

life cycle in a Lagrangian framework. This rise in popularity was accompanied by an increasing number of MCS tracking

algorithms, however, little is known about how sensitive analyses are concerning the MCS tracker formulation. Here, we assess

differences between six MCS tracking algorithms on South American MCS characteristics and evaluating MCSs in kilometer-

scale simulations with observational-based MCSs over three years. All trackers are run with a common set of MCS classification

criteria to isolate tracker formulation differences. The tracker formulation substantially impacts MCS characteristics such as

frequency, size, duration, and contribution to total precipitation. The evaluation of simulated MCS characteristics is less

sensitive to the tracker formulation and all trackers agree that the model can capture MCS characteristics well across different

South American climate zones. Dominant sources of uncertainty are the segmentation of cloud systems and the treatment of

splitting and merging of storms in MCS trackers. Our results highlight that comparing MCS analyses that use different tracking

algorithms is challenging. We provide general guidelines on how MCS characteristics compare between trackers to facilitate a

more robust assessment of MCS statistics in future studies.
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Abstract21

Mesoscale convective systems (MCSs) are clusters of thunderstorms that are important22

in Earth’s water and energy cycle. Additionally, they are responsible for extreme events23

such as large hail, strong winds, and extreme precipitation. Automated object-based anal-24

yses that track MCSs have become popular since they allow us to identify and follow MCSs25

over their entire life cycle in a Lagrangian framework. This rise in popularity was ac-26

companied by an increasing number of MCS tracking algorithms, however, little is known27

about how sensitive analyses are concerning the MCS tracker formulation. Here, we as-28

sess differences between six MCS tracking algorithms on South American MCS charac-29

teristics and evaluating MCSs in kilometer-scale simulations with observational-based30

MCSs over three years. All trackers are run with a common set of MCS classification cri-31

teria to isolate tracker formulation differences. The tracker formulation substantially im-32

pacts MCS characteristics such as frequency, size, duration, and contribution to total pre-33

cipitation. The evaluation of simulated MCS characteristics is less sensitive to the tracker34

formulation and all trackers agree that the model can capture MCS characteristics well35

across different South American climate zones. Dominant sources of uncertainty are the36

segmentation of cloud systems and the treatment of splitting and merging of storms in37

MCS trackers. Our results highlight that comparing MCS analyses that use different track-38

ing algorithms is challenging. We provide general guidelines on how MCS characteris-39

tics compare between trackers to facilitate a more robust assessment of MCS statistics40

in future studies.41

Plain Language Summary42

Large clusters of thunderstorms, called mesoscale convective systems (MCSs), are43

important in Earth’s water and energy cycle including extreme weather events like large44

hail, strong winds, and heavy rainfall. To better understand MCSs, researchers have de-45

veloped computer programs called MCS trackers that can identify and track MCSs through-46

out their lifespan. Different MCS tracking algorithms have been created and used for var-47

ious purposes, but little is known about how sensitive the results are to the specific al-48

gorithm used. This study aims to address this knowledge gap by comparing six differ-49

ent MCS tracking algorithms and assessing their impact on the characteristics of MCSs50

in South America. We also analyze how sensitive high-resolution climate simulation eval-51

uations are to the used tracking algorithm. The results show that the choice of track-52

ing algorithm has a large influence on various characteristics of MCSs, such as their fre-53

quency, size, duration, and importance to the regional water cycle. However, when it comes54

to evaluating simulated MCS characteristics, the choice of tracker has less impact. All55

trackers agree that the high-resolution climate model accurately represents MCS char-56

acteristics across different climate zones in South America.57

1 Introduction58

Deep convective systems (DCSs) have lifetimes that span less than one hour to sev-59

eral days and spatial scales that span 10-1000 km. They are an integral component of60

the global atmospheric circulation and water cycle (Cotton & Anthes, 1992). Mesoscale61

convective systems (MCSs) form from clusters of deep convective storms with horizon-62

tal scales over 100 km (Houze, 2014), and the ”organization” of deep convective clusters63

is often categorized into types such as squall lines, bow echoes, line echo wave patterns,64

and mesoscale convective complexes (MCCs) (Markowski & Richardson, 2011) based on65

cloud and precipitation spatial patterns. MCSs play a crucial role in regulating rainfall66

patterns and moisture distribution throughout the tropics and midlatitude regions down-67

stream of mountain ranges, contributing up to 90% of the annual precipitation in these68

regions (Nesbitt et al., 2006; Nesbitt & Zipser, 2003; Schumacher & Rasmussen, 2020;69

Feng et al., 2021), though the value of this contribution varies substantially based on how70

–2–
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MCSs are defined. MCSs also produce a majority of extreme precipitation events in many71

regions of the world (Roca & Fiolleau, 2020; K. L. Rasmussen et al., 2016; Stevenson &72

Schumacher, 2014; A. F. Prein et al., in review).73

In this study, we focus on MCSs in South America since it is home to various cli-74

mate zones that promote MCS development with a wide range of characteristics. Focus-75

ing on this region additionally allows us to leverage existing kilometer-scale climate sim-76

ulations performed within the South America Affinity Group (SAAG) (Francina & et77

al., in review). Mesoscale and synoptic processes both have a role in the formation of78

MCSs but differ regionally, which leads to differences in MCS properties depending on79

geographical location. Tropical MCSs across the Amazon are organized synoptically by80

the seasonally migrating intertropical convergence zone (Rehbein et al., 2018a) and equa-81

torial waves (Serra et al., 2020; Anselmo et al., 2021) with key mesoscale circulation con-82

trols from the sea breeze (Cohen et al., 1995), low-level jet (Alcântara et al., 2011; Anselmo83

et al., 2020) and complex terrain including mountains, rivers, and vegetation (Silva Dias84

et al., 2002; Rehbein et al., 2018a, 2018b). Many MCSs in subtropical South America85

are related to the presence of the South American low-level jet (SALLJ) (Salio et al., 2007),86

which forms after the deflection of the northeasterly trade winds crossing the Amazon87

as they encounter the Andes mountains (Zhou & Lau, 1998). The SALLJ advects low-88

level moisture from the Amazon basin to subtropical South America (Zhou & Lau, 1998;89

Marengo et al., 2004; Vera et al., 2006; Jones, 2019) and supports the growth of MCSs90

through overnight hours much like the Great Plains low-level jet over the U.S (Velasco91

& Fritsch, 1987). During the monsoon period in South America south of the equator (Oc-92

tober to April), upper-level large-scale circulations such as the Bolivian High, resultant93

from the latent heat release from the Amazon deep convective activity (Dias et al., 1983),94

can affect the SALLJ moisture flux and strength of the South Atlantic Convergence Zone95

(Carvalho et al., 2004), which increases convection and precipitation in subtropical re-96

gions.97

The Andes intersect the westerly upper-level flow, leading to the formation of sur-98

face low-pressure regions in the lee of the Andes such as the Northwestern Argentinean99

Low and Chaco Low (Seluchi et al., 2003). These lows redirect the SALLJ south and even100

southwestward (Salio et al., 2002). As troughs pass over the Andes, northward propa-101

gating cold fronts in the lee are also produced, where they interact with the SALLJ and102

mountainous terrain to initiate deep convection (K. Rasmussen & Houze Jr, 2016; Mar-103

quis et al., 2021) that grows into MCSs (Mulholland et al., 2018; Zhang et al., 2021; Feng104

et al., 2022). In mid-latitudes, subsidence in the lee of the Andes creates steep free tro-105

pospheric lapse rates with temperature inversions capping the low-level moisture, which106

helps build up high convective available potential energy (CAPE) and convective inhi-107

bition (CIN) (K. Rasmussen & Houze Jr, 2016; Ribeiro & Bosart, 2018). The combina-108

tion of these thermodynamic conditions and multi-scale circulations as modulated by the109

complex terrain of South America produces some of the deepest and most intense storms110

(Zipser et al., 2006; Nesbitt et al., 2021; A. C. Varble et al., 2021) with the most pro-111

lific lightning (Cecil et al., 2015) and hail (Cecil & Blankenship, 2012; Kumjian et al.,112

2020) in the world. Tornadoes, on the other side, are more common over North Amer-113

ica due to differences in low-level wind shear (Schumacher et al., 2021). These conditions114

also support mesoscale convective complexes (MCCs) (Maddox, 1980), which are the largest115

form of MCSs, that are larger and longer lived with greater rainfall volume over South116

America as compared to North America (Velasco & Fritsch, 1987; Durkee & Mote, 2010).117

How much larger and longer-lived South American MCCs are remains debated due to118

sensitivities to how MCCs are defined. Thus, a combination of many different multiscale119

circulations coupled with thermodynamic conditions affects the life cycle of MCSs.120

The contribution of MCSs to total precipitation is potentially increasing globally121

as temperatures rise (Tan et al., 2015), though large uncertainties exists since global mod-122

els struggle to simulate MCSs and their changes. In the U.S., the frequency and inten-123
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sity of MCS precipitation have increased over the past three decades during the warm124

season and are projected to accelerate further under future warming (Feng et al., 2016;125

A. F. Prein et al., 2017; Hu et al., 2020). Over the Amazon basin, in contrast, MCSs have126

decreased from October to March and increased from June to August, with increased127

precipitation in both seasons (Rehbein & Ambrizzi, 2023b). Thus, regional sensitivities128

of MCSs to a changing climate vary, but such assessments remain uncertain. This is at129

least partly the case because there is no agreed-upon definition of an MCS but also be-130

cause their representation in weather and climate models is imperfect (Zhang et al., 2021;131

A. Prein et al., 2021).132

Detection and tracking of convective systems including MCSs is vital to better un-133

derstanding the mechanisms that control their properties and their role in energy and134

water transport such that predictive models can be improved for informing critical so-135

cietal decisions regarding water resources and other environmental issues. The increas-136

ing availability of sub-hourly, kilometer-scale satellite cloud and precipitation retrievals137

and the development of similar-scale models has improved the ability to monitor and track138

MCS life cycles. Automatic tracking algorithms are an indispensable tool for such large139

datasets because they enable us to understand the full lifecycle of MCSs and allow for140

a process-oriented model evaluation by focusing on dynamic features rather than atmo-141

spheric mean states.142

Over the past forty years, tracking algorithms have been developed to automat-143

ically and objectively detect and track convective systems from infrared (IR) geostation-144

ary satellites and more recently from high-resolution model data. The most common al-145

gorithms are based on a convective cluster detection step from the IR imagery, and on146

a tracking step linking cloud clusters identified from one time step to the next. An MCS147

is then defined as the succession of convective clusters in a time sequence of IR images.148

The detection step is generally based on the application of a single brightness temper-149

ature threshold on the IR images, to identify anvil clouds associated with convective clus-150

ters (Williams & Houze, 1987; Machado et al., 1998a; Vila et al., 2008). Over the years,151

a number of evolutions have been implemented to better describe features of the con-152

vective clusters. Thus, by applying different brightness temperature thresholds at sev-153

eral levels between 213K and 253K, we can access a volumetric analysis of convective sys-154

tems, with their convective cores detected with a cold temperature threshold embedded155

in cloud anvils detected with warmer brightness temperature threshold (Mathon & Lau-156

rent, 2001; Núñez Ocasio et al., 2020a). To go further and based on the principle that157

brightness temperature increases from the convective core to the edges of the anvil, de-158

tect and spread techniques have been implemented and applied to the infrared imagery159

to decompose the high cold cloud shield into cloud clusters (Boer & Ramanathan, 1997;160

Roca & Ramanathan, 2000; Heikenfeld et al., 2019; Wilcox et al., 2023; Feng et al., 2023).161

The tracking step, for its part, is often based on an area-overlapping technique to link162

one cluster detected at one time step to another one at the next time step (Williams &163

Houze, 1987; Machado et al., 1998a; Feng et al., 2023). Some studies have added cloud164

movement projection techniques to increase the area-overlapping accuracy (Núñez Oca-165

sio et al., 2020a). Other methods use a search radius method and predict the position166

of the cluster’s center of mass to match cloud clusters between two time steps (Heikenfeld167

et al., 2019; Sokolowsky et al., 2023). Another branch of algorithms considers that con-168

vective systems can be tracked only if they are contiguous in their space-time domain.169

These algorithms then work in a volume of IR images in 3 dimensions (longitude, lat-170

itude, time), and identify and track MCSs in a single step, by applying single brightness171

temperature thresholds (A. F. Prein et al., in review), or by applying more complex tech-172

niques derived from the detect and spread method (Fiolleau & Roca, 2013). The six MCS173

trackers participating in this study represent the wide variety of methodologies intro-174

duced above.175
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Merging and splitting of convective cells is common (Bluestein et al., 1990) mak-176

ing it an important process in MCS dynamics. MCSs grow upscale from multiple indi-177

vidual cells and can decay into multiple individual cloud systems as they weaken (Rotunno178

et al., 1988; Ćurić et al., 2009). At a larger scale, the high cold cloud shields can be shared179

between several MCSs, whose anvil clouds can split and merge with each other over time,180

which is a challenging process to depict in tracking schemes.181

There are several approaches to verify if tracking algorithms correctly detect the182

convective systems of interest. For example, machado1998life validated MCS tracking183

results through subjective examination of forecasters determining whether or not the de-184

tected outcome looks reasonable. This is, however, very time-consuming and requires a185

lot of expertise. Tracking results can also be evaluated based on our physical understand-186

ing of MCSs, i.e. by validating if the MCS lifecycle exhibits a realistic evolution of pre-187

cipitation formation or by setting upper bounds for the expected spatial and temporal188

extent given physical constraints such as the Rossby radius of deformation (Cotton et189

al., 1989). In addition to the physical validity, this paper assesses tracker formulation190

uncertainty by comparing the results of different trackers given a common set of MCS191

criteria.192

The goals of this paper are to understand the impact of feature identification and193

tracker formulation on the analysis of simulated MCSs in South America and to eval-194

uate and compare model and observed MCSs in terms of size, duration, and intensity.195

The paper is organized as follows: section 2 describes the satellite and observational data,196

the MCS tracker methodological developments and evaluation metrics; feature tracker197

comparison results and discussions are in section 3; section 4 provides the summary of198

the key findings and conclusions.199

2 Data and Methods200

We focus on data from three years that were selected based on different phases of201

El Ni no-Southern Oscillation (ENSO): 1) June 2010 to May 2011, which was a strong202

La Ni na event; 2) June 2015 to May 2016, which was a very strong El Ni no event, and;203

3) June 2018 to May 2019, which was a weak El Ni no event. Active ENSO phases gen-204

erate Rossby waves that affect South American deep convection intensity, phase, and sea-205

sonality (Rehbein & Ambrizzi, 2023a). We decided to focus our analyses on multi-year206

average statistics and leave assessments of ENSO impacts on MCS statistics for future207

studies to limit the amount of presented information.208

2.1 Data209

The GPM Integrated Multi-satellitE Retrievals (IMERG) precipitation data is a210

combined multi-satellite precipitation retrieval dataset from a network of low-orbit pas-211

sive microwave sensors (G. J. Huffman et al., 2015). A quasi-Lagrangian interpolation212

technique is applied to the passive microwave precipitation retrievals to fill in the gaps213

between microwave overpasses using motion vectors derived from numerical model-derived214

precipitable water (Tan et al., 2019). The IMERG data used in the study is the Final215

Precipitation L3 Half Hourly 0.1°× 0.1° V06B data, which is corrected with monthly sur-216

face rain gauge measurements (G. Huffman et al., 2019). We average the half-hourly GPM217

IMERG precipitation data to hourly to match the model simulation output frequency.218

Despite the relatively fine spatiotemporal spacing of IMERG, its actual resolution is sig-219

nificantly coarser than its grid spacing (Guilloteau & Foufoula-Georgiou, 2020). It is worth220

noting that gridded precipitation datasets may not fully capture the most intense pre-221

cipitation events measured by rain gauges (Rozante et al., 2018). However, Feng et al.222

(2021) demonstrate that when tracking MCSs across the United States, using IMERG223

precipitation yields comparable results to using radar-based precipitation estimates from224

hourly stage-IV data (Lin & Mitchell, 2005).225
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The NASA Global Merged IR V1 infrared brightness temperature (Tb) data (Janowiak226

et al., 2017) is a merged dataset combining all available operational geostationary me-227

teorological satellite data. Viewing angle and parallax corrections have been applied to228

the dataset. The Merged IR Tb product covers 60°S to 60°N and has a spatial resolu-229

tion of 0.04°and temporal resolution of 30min. The Merged IR product was regridded230

conservatively to match the IMERG 0.1°grid using conservative regridding in the Earth231

System Modeling Framework (ESMF) software (Collins et al., 2005). One of the 30-min232

Tb snapshots is used to represent convective clouds in an hour for tracking. Hourly data233

has been frequently used for MCS tracking (A. F. Prein et al., 2020; Feng et al., 2021;234

Kukulies et al., 2021; Núñez Ocasio et al., 2020a) and we follow this protocol mainly be-235

cause of the availability of hourly modeled data. Future work will investigate the impact236

of using higher-frequency data on the presented conclusions.237

We use the Weather Research and Forecasting (WRF) model version 4.1.5 (Skamarock238

& Klemp, 2008; Powers et al., 2017) to downscale hourly data from the fifth generation239

of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5)240

(Hersbach et al., 2020) over the region shown in Fig. 1. The simulation uses ∼4 km hor-241

izontal grid spacing with 1471×2028 grid cells in the horizontal and 61 stretched verti-242

cal levels. Each of the three simulations that focus on different ENSO states is initiated243

in May to allow for model spin-up. We use the Thompson microphysics scheme (Thompson244

et al., 2008), the Yonsei University Scheme (YSU) planetary boundary layer scheme (Hong245

et al., 2006), the RRTMG Shortwave and Longwave Schemes (Iacono et al., 2008), and246

the Noah?MP land surface model(Niu et al., 2011; Yang et al., 2011) including the Miguez-247

Macho and Fan groundwater scheme(Miguez-Macho & Fan, 2012). We use an empiri-248

cal equation from Wu and Yan (2011) that estimates Tb from the modeled outgoing long-249

wave radiation at the top of the atmosphere. The estimated Tb as well as the hourly pre-250

cipitation rates are conservatively regridded to the GPM IMERG grid by using the ESMF251

software (Collins et al., 2005).252

2.2 Methods253

2.2.1 Tracking Thresholds254

A number of definitions using various cloud system parameters and thresholds have255

been used in the literature to provide an objective classification of MCS, preventing ac-256

tual quantitative comparisons (e.g., recent reviews by Kukulies et al. (2023)). In order257

to properly perform our tracker intercomparison effort, we use a common MCS classi-258

fication based on the following four criteria:259

1. The continuous Tb ≤ 241K area must be at least 40,000 km2 for at least 4 con-260

tinuous hours.261

2. The maximum hourly precipitation underneath the ≤ 241K Tb area must be larger262

than 10mmh-1 for at least 4 continuous hours.263

3. The hourly precipitation volume must exceed 20,000 km2 mmh-1 (e.g., 100 km ×264

100 km × 2 mm h-1) at least once in the lifetime of the MCS265

4. The minimum Tb must be <225K during the MCS lifetime to account for over-266

shooting tops.267

2.3 MCS Feature Trackers268

Python FLEXible object TRacKeR (PyFLEXTRKR)269

PyFLEXTRKR (Feng et al., 2023) is an open-source Python package for tracking270

any 2D atmospheric features, with specific capabilities to track convective clouds from271

observations and model simulations. PyFLEXTRKR has a collection of multi-object iden-272

tification algorithms, handles merging and splitting explicitly, and has been optimized273

for large datasets such as global kilometer-scale data. The package has a modular de-274
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Figure 1. Simulation domain (outline of filled contours), model topography (colored contour),

analysis region (black polygon), and outlines of sub-regions (gray lines). The regions are the same

as in the IPCC 6th assessment report (Iturbide et al., 2020) and include Northwest South Amer-

ica (NWS), Northern South America (NSA), Equatorial Atlantic Ocean (EAO), South American

Monsoon region (SAM), Northeast South America (NES), Southeast South America (SES), and

the South Atlantic Ocean (SAO).
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sign that is easy to update and provides a suite of visualization, post-processing, and sta-275

tistical analysis tools to facilitate scientific analysis of the tracking outputs.276

The MCS tracking capability in PyFLEXTRKR jointly uses cloud top IR Tb and277

surface precipitation to identify and track convective systems and subsequently identi-278

fies MCSs. In this study, the detect-and-spread approach was used to identify individ-279

ual deep convective systems: 1) A 10-grid (˜100 km) box filter smoothing was applied280

to the Tb field, and contiguous areas with Tb < 225K larger than 4 grids (˜400 km2)281

were labeled as cold cores (individual convective cloud object). 2) Each cold core was282

then spread outward to surrounding grid points until Tb reached 241K. The grids with283

the closest distance to a nearby cold core were assigned the same label. Objects with area284

> 800 km2 were retained as candidate cloud systems. 3) Contiguous areas with smoothed285

precipitation (5-grid box filter) > 3mmh-1 larger than 6 grids were defined as a precip-286

itation feature (PF). Candidate cloud systems that share the same PF were combined287

to retain coherent PFs within a single convective system for tracking.288

PyFLEXTRKR then tracks these convective systems based on their area overlap.289

Objects from two adjacent hours that have an overlap area fraction exceeding 0.5 were290

considered the same object. If more than one object exceeds the overlap fraction, the291

largest one was considered continuous and the smaller ones were labeled as merging or292

splitting. All convective systems exceeding 2-hour duration were tracked and saved. If293

a tracked system meets the MCS criteria (Section 2.2.1), the entire track is labeled as294

MCS, including convection initiation and upscale growth period and the decay period295

when the cloud shield area is below the minimum MCS area threshold. In addition, non-296

MCS cloud objects that merge with or split from an MCS are included as part of that297

MCS. The unique track numbers for each MCS were written to the pixel grid as masks,298

including the small merge/split cloud objects. Tracking was run continuously for each299

water year (from June to May) to obtain MCS tracks.300

Tracking and Object-based Analysis of Clouds (tobac)301

tobac (Heikenfeld et al., 2019; Sokolowsky et al., 2023) is a community-developed302

Python package for detecting, tracking, and analyzing clouds and other atmospheric phe-303

nomena. Due to its modular and flexible design, it can be used with user-defined track-304

ing criteria on any atmospheric field (e.g., brightness temperatures or radar reflectivity)305

and on any gridded dataset with two or three dimensions. In this study, we use tobac306

version 1.4.2 to track MCSs based on the above-defined criteria.307

The three main modules of tobac are feature detection, segmentation, and linking.308

In the feature detection, tobac identifies objects above or below a user-defined thresh-309

old over a minimum area. In this study, we used brightness temperature fields for the310

feature detection and required that a cloud object needs to be < 241K over at least 40000 km2.311

In addition, we require that at least one feature during the MCS lifetime contains a cold312

core of <225K with no minimum area. For each of the identified feature, a center point313

is defined (in this study: the center of mass). In the segmentation procedure, these cen-314

ter points are used to identify all contiguous pixels around them below/above a spec-315

ified threshold (here: 241K). This done using watershedding, an image processing method316

that treats the input data as topographic maps and extends the area around a feature317

center point the same way water would flow until it meets a topographic barrier (the thresh-318

old). The segmented cloud features were co-located with the precipitation data to ap-319

ply the additional precipitation-based criteria for MCS identification. It should be noted320

that the segmentation technique in tobac can result in time steps with detected cloud321

features that do not have an associated segmented area with their center location (see322

tobac documentation for details), which in turn influences the MCS lifetime when the323

latter is calculate based on the segmentation output.324

The detected cloud features are linked over time using a search radius and their325

predicted propagation speed. In contrast to area-overlapping methods for the linking of326
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features, tobac is based on particle tracking principles where the center points of features327

are assigned to a common track when they fall within the predicted radius of motion.328

The search radius for potential features can be adjusted by the user (we used a maxi-329

mum propagation speed of 100m s−1) and if multiple features fall within the search ra-330

dius, the feature with the path that is closest to the preceding motion direction is selected.331

While tobac has a postprocessing tool that identifies merges and splits based on the out-332

put from the feature detection, it has no explicit treatment of merging and splitting dur-333

ing the linking procedure.334

Forecasting and Tracking the evolution of Cloud Clusters (ForTraCC)335

ForTraCC’s development started in the 1990s (Machado et al., 1998b) making it336

one of the longest-standing cloud object tracking algorithms developed and still actively337

used (Vila et al., 2008). Currently, it is being used operationally for nowcasting at the338

Brazilian Center for Forecast and Climate Studies of the National Institute of Spatial339

Research (CPTEC/INPE; http://pindara.cptec.inpe.br/fortracc/). ForTraCC is able to340

work with radar reflectivity, precipitation, or outgoing longwave radiation (OLR). How-341

ever, ForTraCC is not able to meet all of the here defined meet MCS criteria within the342

model code requiring the development of a post-processing tool (see https://github343

.com/salvatirehbein/percolator).344

In the current study, ForTraCC was set to identify and track all the objects with345

one or more contiguous pixels with brightness temperature equal to or above 241K. The346

algorithm takes into account the potential occurrence of missing data or input failures347

(Vila et al., 2008). ForTraCC relies on the overlap (in our case 5%) between consecu-348

tive images. The initiation can be 1) spontaneous; 2) merge, or 3) splits. In cases of merg-349

ing, the larger system or the first one identified if they have the same size, will be tracked.350

If an MCS splits, the larger resultant system will continue to be tracked, while the smaller351

systems will become new individual systems.352

After the identification and tracking, we applied the post-processing tool. First,353

we ensure that each cloud cluster defined by ForTraCC has a minimum area of 40,000354

km2 for at least 4 continuous hours, along with at least one pixel during the system’s355

lifecycle with a minimum brightness temperature of 225K. Next, the mask files gener-356

ated by ForTraCC are overlapped with the corresponding precipitation field. This pro-357

cess verifies if the area and volume under the mask (i.e. cloud shield) meet the desired358

criteria.359

TAMS360

The Tracking Algorithm for Mesoscale Convective Systems (TAMS) is an open-source361

MCS tracking and classifying algorithm and Python package. One novelty of TAMS is362

its grid independence. Grid-independent tracking allows for the identification and track-363

ing of both observed (satellite data) and simulated (model data) systems regardless of364

the type of grid and data resolution. The package includes a set of visualization and post-365

processing tools including functionality that allows matching a desired variable or at-366

mospheric field to each MCS and calculating corresponding statistics. TAMS was ini-367

tially developed to track and analyze tropical MCSs over Africa associated with African368

easterly waves (Núñez Ocasio et al., 2020a, 2020b) and a description of this initial ver-369

sion can be found in Núñez Ocasio et al. (2020a). The new in-development version of370

TAMS used in this study follows the same main four steps as its predecessor: 1) Iden-371

tify, 2) Track, 3) Classify, and 4) Assign variable(s).372

The identification step consists of identifying regions of cloud top IR Tb with 241K373

thresholds with 4,000 km2 of 225K̇ embedded within to identify deep convective cloud374

regions within larger cloud areas. (In the default version of TAMS 235 K and 219 K are375

used as thresholds.) These regions that are potential candidates to be MCSs are called376

Cloud Elements (CEs). Although these identification criteria may cause a late detection377

of initiation, they assure the system is an MCS and not a convective cell as well as as-378
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suring the targeting of raining clouds. The tracking is done on stored convex hull poly-379

gon shapes based on the CEs shapes using the overlapping method. For this study, the380

overlap threshold was 50% and the optional cloud projection or background flow was381

turned off. In the current simplified linking scheme, each CE at the current time step382

is matched with the maximum overlap ”parent” CE from the previous time step, if the383

overlap condition is satisfied. This creates a list of ?parents’ ’ and ?kids’ ’ that then be-384

come one single family/MCS. Based on default criteria considering shape, size, and du-385

ration, each MCS can be classified into one of four possible categories: Mesoscale Con-386

vective Complexes (MCCs), Convective Cloud Clusters (CCCs), Disorganized Long-Lived387

(DLLs), and Disorganized Short-Lived (DSLs). However, TAMS was configured in this388

study to follow the set of criteria defined here. Tracks were filtered to remove MCSs that389

did not meet the criteria for this study. Parquet files were converted to gridded mask390

NetCDF files.391

MOAAP392

The Multi-Object Analysis of Atmospheric Phenomenon (MOAAP) algorithm (A. F. Prein393

et al., in review) is a Python-based MCS tracker previously used in A. Prein et al. (2021);394

Poujol et al. (2020). The algorithm is similar to the Method for Object-Based Diagnos-395

tic Evaluation (MODE) Time Domain (MTD) (Davis et al., 2009; Clark et al., 2014; A. F. Prein396

et al., 2020). MOAAP is based on the connectedness of objects, meaning that objects397

must be adjacent in space and time (no minimum overlap criterion is used). It is designed398

to track multiple atmospheric features, such as cyclones, jet streaks, and atmospheric399

rivers but can also track single features such as MCSs. MOAAP operates through the400

following five steps to track MCSs.401

1. The three-dimensional Tb field (time, latitude, longitude) is thresholded. This pro-402

cess produces a binary field where cells below the threshold are set to one (objects403

of interest), while all other cells are set to zero.404

2. The binary field is passed to the Python label function of the multidimensional405

image processing tool (ndimage) from the SciPy package(Virtanen et al., 2020).406

This function identifies objects connected in space and time (horizontally or di-407

agonally) and assigns them a unique label/index, resulting in a feature matrix.408

3. MOAAP uses a merging and splitting function on the feature matrix. This func-409

tion merges or breaks up objects connected in time but not in space. For instance,410

if two objects merge, the smaller object ends at the previous timestep and is as-411

similated into the larger object. Conversely, when an object splits into two, the412

larger object continues while the smaller one is treated as a new feature. The merg-413

ing and splitting function incorporates a temporal threshold (we use four hours414

here) to ensure that only longer-lived merged and split objects are relabeled.415

4. From the entire population of identified objects, we select a subset that satisfies416

specific criteria tailored to the atmospheric phenomena under consideration. This417

is the step where we account for the four MCS criteria defined in subsection 2.2.1.418

5. Once all objects qualifying as a specific phenomenon are identified, their charac-419

teristics are calculated.420

TOOCAN421

The TOOCAN algorithm (Tracking Of Organized Convection Algorithm through422

a 3-D segmentation) (Fiolleau & Roca, 2013) relies on a conceptual model of a convec-423

tive system consisting of a 3D (longitude, latitude, time) cloud cluster made up of a con-424

vective core associated to its stratiform anvil evolving in the space-time domain. To iden-425

tify such spatio-temporal cloud clusters, the algorithm works within a volume of IR im-426

ages and applies a 3-D region growing technique to decompose the cold cloud shield, ini-427

tially delineated by a 235K threshold in the spatio-temporal domain into component MCSs.428

This technique consists of an iterative process of detection and dilatation of convective429

seeds in the spatiotemporal domain.430
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Convective seeds are first detected with a 190K threshold. Then, an intermediate431

cold cloud shield mask is identified in 3D at a 5K warmer threshold. Only convective432

seeds with a minimum lifetime of 3 images and exceeding 625 km2 per image are kept.433

The selected seeds are then spread in the spatio-temporal domain until they reach the434

edges of the intermediate cold cloud shield. This step consists of adding edge pixels be-435

longing to the intermediate cold cloud shield to all already detected seeds. This itera-436

tive process of detection and dilation is repeated every 5K from 190K to 235K and is437

stopped when all the pixels below 235K are associated with an MCS. To fit with the MCS438

criteria defined in this study, the cold cloud shield boundaries have been set at 241K.439

The multi-stage, multi-threshold technique allows an MCS identification independent of440

a single detection threshold. Also, the way the TOOCAN algorithm operates in 3D with-441

out the traditional detection and tracking steps allows the continuity of the tracking of442

the stratiform anvil associated with the MCS after its convective activity is ended. Iso-443

lated convective cells in the MCS initiation stages and scattered cirriform clouds in the444

MCS dissipation stages, disconnected on a single IR image, may be part of the same MCS445

allowing a coherent life cycle. With such methodology, the unphysical split and merge446

issues are resolved and all the MCS can be analyzed without filtering on merging and447

splitting. Finally, the method identifies the full spectrum of the convective organization,448

from small and short-lived systems to systems more organized lasting several days. For449

this study, we will focus on convective systems that meet the criteria defined previously.450

2.3.1 Evaluation Metrics451

We ensure consistency in the evaluation of MCS characteristics by running the same452

analysis code on MCS mask files from each tracker (i.e., matrices with dimensions time,453

latitude, longitude that labels individual MCSs with a unique integer). All of the statis-454

tics are based on sampling over hourly MCS data except for the MCS duration, which455

integrates over the MCS lifetime. We introduce the evaluation metrics in the relevant456

locations in the results section to simplify the interpretation of results.457

3 Results458

3.1 Tracking of Idealized MCS Cases459

We start with comparing the MCS trackers by applying them to four highly ide-460

alized test cases to more easily identify commonalities and differences among them (Fig. 2).461

The first case (Fig. 2a–d and e–j) features three individual eastward-moving cloud ob-462

jects with overshooting tops (Tb≤221K). These clouds are growing and merging 8 hours463

after initialization (t=8 hours). At this time, the northern and southern cells are losing464

their overshoots. The cells continue to move eastward until t=19 hours when the north-465

ern cell splits off from the two southern cells. MOAAP (Fig. 2e), ForTraCC (Fig. 2g), and466

TAMS (Fig. 2h) identify a single MCS that starts at t=8 hours (t=0 hours in ForTraCC).467

These trackers exclude the northern cell from the MCS system once it splits off at t=19 hours,468

which results in a sudden southward shift in the MCS track. ForTraCC has a disconte-469

nuity in its track also at t=8 hours since it uses the northernmost cell as the initiation470

point after the systems have merged if there are multiple cells that merge at the same471

time. PyFLEXTRKR (Fig. 2i) also identifies a single MCS but has an initiation at t=0 hours472

and keeps the northern cell attached to the system after it splits off. Two MCSs are iden-473

tified by tobac (Fig. 2f). One system initiates at t=6 hours and terminates at the time474

when the northern cell splits off. At this time, a new MCS is identified that consists of475

the central and southern cells. Finally, TOOCAN continues to track the three initial cells476

as separate systems and therefore identifies three MCSs that all start at t=0 hours and477

terminate at t=25 hours. It is important to mention that all of the found solutions sat-478

isfy our MCS criteria.479

–11–



manuscript submitted to JGR: Atmospheres

Figure 2. MCS tracker intercomparison for 4 idealized cases. The first 3 cases initiate with 3

individual cells that all contain an overshooting top (a) and move eastward, grow, and merge (b).

Afterward, the northern cell splits off (c) by moving towards the northeast (d). Case 1 differs

from case 2 because the northern and southern cells lose their overshoot after merging with the

center cell. Case 3 differs from case 2 by only having 3 hours before the cells merge and 3 hours

after the cells split instead of 8 hours. The fourth case (w–ab) explores how trackers deal with 3

splitting and merging cells that develop asynchronously. The northern cell initiates at t=0 hours,

the central cell at t=6 hours, and the southern cell at t=12 hours. Each cell moves eastward at

the same speed, growing for the first 7 hours and shrinking during the following 7 hours. The re-

sulting MCS tracks (connected circles) and MCS footprints (contours) from the different trackers

are shown in e–v for cases 1 to 3 and in ac–ah for case 4. Individual MCSs have different colors.

The vertical lines indicate the time of initiation (solid), merging of the cells (dashed), splitting off

of the northern cell (dashed), and the end of the case study (dashed-dotted line).
–12–
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The second idealized case is identical to the first one but each of the three cells main-480

tains its overshoot meaning the northern cell classifies as an MCS after it separates at481

t=19 hours (Fig. 2a–d and k–p). TAMS continues to identify one MCS with the north-482

ern cell remaining part of the system after it splits off. MOAAP, ForTraCC, and tobac483

identify the northern cell as a new MCS after it separates from the main system, but in484

contrast to most other trackers, tobac does not continue any of the previous track(s) af-485

ter the split. This is most likely explained by the relatively large distance between the486

feature center points and the search radius that is used in tobac to connect the latter.487

PyFLEXTRKR identifies three MCSs instead of one, agreeing with TOOCAN whose clas-488

sification is unchanged. Since PyFLEXTRKR uses the detect and spread method to seg-489

ment cloud systems, the three separate overshoots that each satisfy the MCS criteria on490

their own result in three separately tracked MCSs.491

The third idealized case is similar to the first two except for only having 3 hours492

before the cells merge and 3 hours after the northern cell separates (Fig. 2a–d and q–v).493

The 3-hour threshold is selected to test how the trackers deal with individual cells that494

are shorter-lived than the 4-hour minimum MCS lifetime. PyFLEXTRKR and TOOCAN495

find 3 systems similar to the second idealized case while MOAAP, tobac, ForTraCC, and496

TAMS each identify 1 MCS. However, there are differences between the start and end497

of the 1 identified MCS. MOOAP has a smooth track that initiates the MCS at t=0 hours498

and follows it until the end of the simulation (t=18 hours). tobac identifies the MCS at499

t=1 hour and stops the system when the northern cell separates at t=15 hours. This can500

be explained by a default smoothing procedure of the input data in tobac that can lead501

to some objects not being identified as an MCS cloud object if they have sizes close to502

the minimum area required. ForTraCC initiates the MCS at t=0hours but only follows503

the northern cell until the three cells merge at t=3 hours, resulting in a discontinuity in504

the track. It also stops following the northern cell after it splits off at t=15 hours, result-505

ing in a second discontinuity in the track. TAMS starts identifying an MCS after the 3506

cells merge at t=3 hours and keeps all cells connected (similar to MOAAP) until the end507

of the simulation.508

The fourth idealized case features an asynchronous development of the 3 cells with509

interactions (overlapping cloud shields) during their lifetimes (Fig. 2w–ah). MOAAP, to-510

bac, and ForTraCC identify 1 MCS with identical tracks starting at t=0 hours and end-511

ing at the end of the simulation at t=23 hours. TAMS also identifies 1 system but with512

a shorter track (initiation happens at t=5 hours and termination at t=20 hours). TOOCAN513

keeps the 3 cells separated as individual MCSs during their entire lifetime with tracks514

predominantly moving eastward. PyFLEXTRKR also identifies 3 MCSs but features in-515

teractions between the individual cells when the northern cell terminates and the south-516

ern cell initiates, which results in small discontinuities in the MCS tracks.517

Based on these idealized cases, we can expect that TOOCAN will identify more518

frequent and smaller MCSs followed by PyFLEXTRKR while TAMS and MOAAP might519

have the fewest and biggest systems with the other trackers being in between. TAMS520

likely produces larger MCSs due to its use of convex hulls when identifying anvil clouds521

(see Fig. 3 for an example). Additionally, ForTraCC, PyFLEXTRKR, and TOOCAN were522

able to follow the cells from t=0hours to the end of the simulations for all cases, while523

other trackers missed some of the early or late stages of MCS development for some cases.524

tobac tends to initiate new tracks instead of preserving one of the previous tracks when525

splitting occurs, which should result in higher initiation frequencies and shorter lifetimes.526

TAMS consistently detects MCSs hours after convection initiation. This late initiation527

detection is mainly due to its identification criteria of being a convective area with an528

embedded cold core area size threshold.529
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Figure 3. Similar to Fig. 2 but for tracking an observed deep convective outbreak that oc-

curred during December 2018 in southeastern South America. Panels (a–h) show the evolution of

the cloud shield (gray shading), precipitation rates (colored shadings), the outline of the detected

MCS (blue contour), and the MCS track (red contour) based on results from MOAAP. The red

circle shows the initiation point of the MCS. Panels (i–n) show the tracks and outline of the iden-

tified MCSs based on MOAAP (i), tobac (j), ForTraCC (k), TAMS (l), PyFLEXTRKR (m), and

TOOCAN (n). Different colors indicate individual MCSs.

3.2 Tracking of MCSs During a Deep Convective Outbreak in Argentina530

The idealized cases discussed in subsection 3.1 capture some of the variability of531

MCS evolutions but certainly do not cover all possibilities that can occur in real cases.532

While it is impossible to analyze the thousands of MCSs that were identified during the533

3-year analysis period, we want to highlight similarities and differences between the ide-534

alized cases and an observed deep convective outbreak that occurred during the Cloud,535

Aerosol, and Complex Terrain Interactions (CACTI) (A. C. Varble et al., 2021) and Re-536

mote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adap-537

tive Ground Observations (RELAMPAGO) (Nesbitt et al., 2021) field campaigns in Ar-538

gentina in December 2018 (Fig. 3).539

Deep convection was triggered around -38°S and -67°W (red circle in Fig. 3a–h)540

on Dec. 8, 2018 at 16:00UTC and rapidly grew upscale moving toward the southeast dur-541

ing the subsequent hours. While the initial deep convection decayed after about 8 hours,542

new deep convection formed to the north and continued until Dec. 10, 2018 16:00UTC543

when it eventually decayed over the South Atlantic.544

Similar to the idealized cases, MOAAP and TAMS have the fewest systems with545

1 identified MCS, while tobac, PyFLEXTRKR, and TOOCAN identify the most sys-546

tems with 4 MCSs each. MOAAP has the largest total MCS area extent (total area un-547

der the tracked cloud shield) while TAMS has the smallest total extent since it identi-548

fies only 1 fairly short-lived MCS. The 4 MCSs that were identified by tobac, PyFLEX-549

TRKR, and TOOCAN have different extents and tracks, highlighting the complexity of550

cloud field decomposition including splitting and merging of systems within the MCS551

trackers.552
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3.3 Annual Cycle of Monthly MCS Frequencies553

Moving on from investigating single cases, we now analyze the observed and sim-554

ulated 3-year average monthly frequency of MCSs in different subregions. An MCS is555

assigned to a region if at least half of its track centroid (geometric center of the ≤241K556

cloud shield) is within the region during the MCS’s lifetime. The NWS region exhibits557

a double peak in MCS occurrence during September and March, which is captured by558

all trackers (Fig. 4a). The main difference between the trackers is the average number559

of MCSs per year, which varies between 493 in MOAAP and 919 in tobac. These fre-560

quency differences between trackers are similar for simulated MCSs (Fig. 4b). Compar-561

ing simulated to observed MCS frequencies shows that there are only two months where562

all trackers agree on the sign of the differences (i.e., the model has too many MCSs in563

January and too few in May (Fig. 4c)).564

The SAM region has a pronounced dry period during winter and a long period with565

high MCS activities from September to February (Fig. 4d,e). All trackers agree that the566

simulations have too few MCSs during the dry season and too many from September to567

February. However, large differences exist about the magnitude of the overestimation rang-568

ing from close to zero in PyFLEXTRKR to more than 100% in January when using TOOCAN.569

Similar results are found for the SES region, while larger differences exist for the SAO570

region where all trackers agree on a low bias in simulated MCS frequencies. Results for571

all subregions are shown in supplementary Fig. S1.572

3.4 MCS Characteristics573

Next, we investigate how MCS characteristics depend on the tracker formulation574

and how this uncertainty affects model evaluation. We show results from the NSA re-575

gion as a representative example here but show other regions in the supplement (Fig. S2–576

S9) and discuss them further below.577

Peak MCS cloud shield sizes during the MCS lifetime per definition have to be larger578

than 40,000 km2, which is met by most trackers in the NSA region except for a few MCSs579

in PyFLEXTRKR, TOOCAN, and tobac (Fig. 5a). In PyFLEXTRKR this might in part580

be related to the assumption of a constant grid cell area. The smallest MCSs are iden-581

tified when using TOOCAN while the largest systems are found when using TAMS. For-582

TraCC, TAMS, and tobac suggest that the simulated MCSs are smaller than observed583

systems while the other trackers have similar observed and simulated size distributions.584

MCSs in NSA move slowest when using TOOCAN and are fastest when using tobac (Fig. 5b).585

The smaller speed in TOOCAN is likely related to not having any mergers and splits in586

the tracking. All trackers agree that simulated systems move slightly slower than observed587

MCSs. Large model-observation differences occur for the MCS lifetime-maximum 95th-588

percentile (P95) hourly precipitation rate (Fig. 5c) and mean precipitation rate (Fig. 5d)589

with simulated rates being significantly higher than observed. This is at least partly re-590

lated to deficiencies in accurately capturing precipitation frequencies and intensities in591

GPM-IMERG (Rozante et al., 2018; Guilloteau & Foufoula-Georgiou, 2020; Francina &592

et al., in review; Zhang et al., 2021), and simulated convective updrafts being too large593

and strong at 4-km grid spacing (Fan et al., 2017; Wang et al., 2020; A. Varble et al.,594

2020). Tracker-dependent model-observations differences are smaller for the mean and595

P95 precipitation rate characteristics than for other MCS characteristics, though TOOCAN596

produces higher P95 values compared to the other trackers. MCS lifetime-average pre-597

cipitation volumes are smallest in TOOCAN and similar across the other trackers (Fig. 5e),598

in agreement with MCS maximum size statistics. Interestingly, differences between mod-599

eled and observed precipitation volumes are much smaller than the differences in MCS600

precipitation rates. This is caused by GPM-IMERG having larger precipitation areas than601

simulated, which offsets lower precipitation intensities compared to the simulations(Zhang602

et al., 2021; Francina & et al., in review). Finally, there are large tracker formulation dif-603
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Figure 4. Monthly mean MCS frequencies (averaged over the 3 years) for observed MCSs

(first column), modeled MCSs (center column), and their relative differences (right column).

Results are shown for the NWS, SAM, SES, and SAO regions (top-down).
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Figure 5. Observed (gray) and simulated (red) MCS characteristics in the NSA region.

Shown are MCS (a) peak size, (b) median speed, (c) lifetime-maximum 95th percentile precipi-

tation rate (P95), (d) mean precipitation rate, (e) mean precipitation volume, and (f) duration

distributions. Precipitation statistics only consider grid-scale precipitation rates larger than

2mmh−1. The box width shows the interquantile range with the median indicated as a horizon-

tal line within the box. The whiskers extend to the maximum or minimum data point or to 1.5

times the interquantile range dependent on which one is smaller.

ferences concerning MCS duration. MOAAP has the longest-lived systems with median604

values of 17 hours while median MCSs in tobac only live for ∼8 hours. Also, the interquar-605

tile range of the duration distribution varies from ∼10 hours in MOAAP to 3 hours in606

TOOCAN. Most trackers produce little differences between observed and simulated MCS607

lifetimes, though ForTraCC, TOOCAN, and tobac suggest MCSs may be longer lived608

in the observations. The duration of MCSs in tobac can be influenced by the applied seg-609

mentation technique that can result in time steps with detected cloud features that do610

not have an associated segmented area with their center location (see section 2.3.2 for611

details). The results for other regions are shown in the supplement (Fig. S2–S9).612

Fig. 6 shows an overview of observed (x-axis) and modeled (y-axis) median MCS613

characteristics for different trackers (colors) and all subregions (symbols). For lifetime-614

maximum MCS size (Fig. 6a), regional differences are similar between trackers with most615

trackers having the smallest MCSs in NAO and the largest MCSs in SAO, SES, and NES.616

MCS speeds are similar between observations and modeled systems with most data points617

lying close to the one-to-one line (Fig. 6b). Most trackers simulate the fastest storms in618

SAO and the slowest in the EAO. There are large regional dependencies in the simula-619

tion of P95 precipitation rate with small differences in the SAO region and the largest620

differences in NWS, NES, and SES (Fig. 6c). TOOCAN MCSs feature the heaviest P95621

precipitation rates in most regions while systems identified by ForTraCC generally have622

the lowest rates (Fig. 6c). Mean precipitation rates also agree better between simulated623
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Figure 6. Observed (x-axis) and modeled (y-axis) median MCS characteristics for (a) peak

size, (b) median speed, (c) lifetime-maximum 95th percentile precipitation rate (P95), (d) mean

precipitation rate, (e) mean precipitation volume, and (f) duration. Results from different track-

ers are shown in different colors (see legend in panel b). Results for different regions are shown

with varying symbols (see legend in panel a). The dotted lines are convex hulls that outline re-

gional variations in MCS characteristics from each tracker. The diagonal line represents a 1:1

relationship between observed and simulated MCS characteristics.

and observed storms in the SAO region (Fig. 6d). In all other regions, simulated WRF624

MCSs have much higher mean precipitation rates than observed systems with small un-625

certainties due to tracker formulation. Simulated MCS average precipitation volumes are626

systematically smaller than observed volumes when tobac, ForTraCC, or TAMS are used,627

while the sign of differences is regionally dependent when the other trackers are used (Fig. 6e).628

Finally, all trackers except MOAAP and PyFLEXTRKR feature slightly shorter-lived629

modeled MCSs in all regions relative to observed (Fig. 6f). MOAAP systematically de-630

tects the longest-lived MCSs while tobac has the shortest-lived systems as exemplified631

using the idealized case studies of section 3.1.632

3.5 MCS Life Cycles633

MCSs are known to go through different life cycle stages that are frequently dif-634

ferentiated into (i) a growth stage, where individual storms deepen with merging anvils635

to create a larger convective cloud cluster, (ii) a mature stage in which the MCS reaches636

maximum size, convective regions are the most spatially connected, and stratiform pre-637

cipitation is maximized, and (iii) a decay stage where the MCS precipitation decreases638

and becomes the system becomes downdraft dominated (Machado et al., 1998a).639

Here we investigate how different trackers depict the MCS life cycle and what im-640

pact the tracker formulation has on the model evaluation. We focus the analysis on short-641

lived (duration ≤12 hours) and long-lived (duration between >16 hours and ≤20 hours)642

MCSs. We only consider MCSs that initiate with a ≤241K Tb area of less than 40,000 km2
643
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Figure 7. Evolution of short-lived (≥4 hours and ≤12 hours; dashed lines) and long-lived

(≥16 hours and ≤20 hours) mean MCS size (first row), 95th percentile precipitation rate (sec-

ond row), precipitation volume (third row), and speed (bottom row) in the NSA region. Mean

observed and simulated characteristics are shown with red and black lines, respectively. Results

from different trackers are shown in rows. The number of MCSs in each analysis is shown in the

legend. Only initiations that start with cloud shields smaller than 40,000 km2 are incorporated to

reduce the effect of MCS splits on the statistics.

to minimize the effect of MCSs that split off from an existing MCS. We chose the NSA644

region as a representative example (Fig. 7) while results for other regions are shown in645

the supplement (Fig. S10–S16). All trackers show a rapid expansion of the anvil area af-646

ter MCS initiation, followed by a stabilization of the area, and a decay of the anvil size647

(Fig. 7a–f). However, the shapes of these curves vary depending on the tracker, being648

close to bell-shaped in TOOCAN but skewed in tobac and TAMS (especially visible in649

short-lived MCSs). Note that the bend in the tail of some of the long-lived MCS distri-650

butions at hour 16 is artificial since we include MCSs that live between 16–20 hours in651

the statistics. The differences between the peak size in the short-lived and long-lived storms652

are also noteworthy. In MOAAP and ForTraCC, these two categories of storms reach653

similar peak sizes while TAMS has much smaller short-lived storms than long-lived ones.654

All trackers show similar MCS size evolution in the observations and the simulations.655

Larger differences between observed and simulated MCS life cycles exist for P95656

precipitation with modeled systems producing much heavier rainfall (Fig. 7g–l; similar657

to what is shown in Fig. 5c and Fig. 6c)). TOOCAN features P95 precipitation that rapidly658

intensifies within hours after initiation and that has a long decay period afterward. MOAAP,659

PyFLEXTRKR, and ForTraCC feature similar behavior but with a much less pronounced660
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increase and decay, while tobac and TAMS do not show the initial intensification of P95661

precipitation. There are likely two reasons for these differences. First, the results include662

MCSs that initiate by splitting from other systems. Second, TAMS, tobac, and MOAAP663

might miss the earliest few hours of the MCS life cycle as is shown in section 3.1.664

MCS life cycles of precipitation volume (Fig. 7m–r) are similar to those of MCS anvil665

size since these two properties are closely connected. The differences between tracking666

schemes are also similar. Most trackers show good agreement between simulated and ob-667

served precipitation volumes although peak volumes of short-lived systems can differ de-668

pending on the tracker.669

For the long-lasting systems, three trackers (TOOCAN, PyFLEXTRKR and MOAAP)670

show similar bell-shaped life cycles of rain volume and further reveal a peak in the sim-671

ulated precipitation volume that is ∼2 hours earlier than that in the observations, pos-672

sibly indicative of a systematic bias simulated life cycles. However, the other trackers673

do not exhibit a noticeable time lag between the modeled and observed precipitation vol-674

ume peaks.675

Lastly, MCS speed slightly increases over time in most trackers (particularly in TAMS),676

though PyFLEXTRKR and TOOCAN exhibit a decrease followed by an increase (Fig. 7s–677

x). This is likely due to how the splitting and merging are handled in these two track-678

ers and due to the usage of MCS cloud shield geometric center displacements to calcu-679

late movement speed. All trackers show that observed and simulated MCS movement680

speeds are in good agreement.681

We emphasize that the model-observation differences of the composite MCS life cy-682

cle characteristics are more consistent among the trackers than the evolution of the com-683

posite values themselves. Except for simulating approximately twice as high P95 pre-684

cipitation, the model is able to simulate the evolution of the observed MCS cloud size,685

rainfall volume, and movement speed well, regardless of which tracker is used. This sup-686

ports these metrics as being robust for evaluating the performance of the simulations.687

3.6 MCS Initiation by Location688

Regional hotspots of MCS initiation are identified by most trackers over the north-689

east Brazilian coast, a few hundred kilometers inland from this coastline, over the Guiana690

Highlands, the western slopes of the Colombian Andes, and the eastern slopes of the Pe-691

ruvian, Bolivian, and Argentinian Andes (Fig.8). However, the frequency of MCS ini-692

tiation at these hotspots can vary by an order of magnitude. TAMS has the lowest MCS693

initiation frequency while TOOCAN has the highest, which is true for observed and sim-694

ulated MCSs. The general spatial pattern of MCS initiation is similar between the ob-695

servations and simulations but there are differences in initiation frequency (Fig.8 bot-696

tom row). These model-observation differences strongly depend on the tracker formu-697

lation with generally lesser absolute differences when MOAAP and PyFLEXTRKR are698

used (relative differences are largest in TAMS; now shown) and mostly positive differ-699

ences (more modeled initiations) when using tobac, TAMS, and ForTraCC. There are700

only a few regions where all trackers agree on the sign of the difference. Systematically701

higher model frequencies are found along the eastern slopes of the Bolivian Andes, in702

northwestern Colombia, and over the southern Amazon Basin. Consistent model under-703

estimation of MCS initiation frequency among trackers is rarer and only occurs off the704

coast of northeastern Brazil.705

3.7 MCS Frequency by Location706

The frequency of MCSs is less sensitive to the tracker formulation than the frequency707

of MCS initiation (compare Fig. 9 with Fig. 8). Initiation frequencies only consider the708

grid cell with the geometric center of the MCS cloud shield during its first detection, which709

–20–



manuscript submitted to JGR: Atmospheres

a) IMERG MOAAP

b) WRF4km MOAAP

c) MOAAP diff.

d) IMERG tobac

e) WRF4km tobac

f) tobac diff.

g) IMERG ForTraCC

h) WRF4km ForTraCC

i) ForTraCC diff.

j) IMERG TAMS

k) WRF4km TAMS

l) TAMS diff.

m) IMERG PyFLEXTRKR

n) WRF4km PyFLEXTRKR

o) PyFLEXTRKR diff.

p) IMERG TOOCAN

q) WRF4km TOOCAN

r) TOOCAN diff.
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Figure 8. Initiation frequency of MCSs in 2◦×2◦ regions based on observations (top row), the

simulation (middle row), and their difference (model minus observed; bottom row). Only initia-

tions that start with cloud shields smaller than 40,000 km2 are incorporated to reduce the effect

of MCS splits on the statistics. We consider an initiation to be the geometric center of the MCS

cloud shield at the time of its first detection.
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Figure 9. Frequency of MCSs in 0.1◦×0.1◦ regions based on observations (top row), the simu-

lation (middle row), and their difference (model minus observed; bottom row). We use the extent

of the MCS cloud shield in this calculation and each MCS is only counted once in each cell (i.e.,

if a slow-moving MCS occupies a grid cell for 10 hours, it is only counted once).

is highly dependent on the tracker formulation as shown in 4 and 8. In contrast, MCS710

frequencies consider the ≤241K Tb footprint over the entire MCS life cycle where each711

MCS is only counted once in each grid cell eliminating the double counting of long-lived712

slow-moving systems. For instance, a tracker that produces many small and short-lived713

MCSs can result in the same MCS frequency as a tracker that produces few, large-scale,714

and long-lived MCSs). TOOCAN has the lowest MCS frequencies, likely because of the715

smaller systems that are identified, while TAMS has the highest frequencies, which is prob-716

ably related to its use of convex hulls. The differences between modeled and observed717

frequencies are more similar between trackers than those for MCS initiation with all track-718

ers agreeing on less simulated MCS frequencies over ocean regions, southern South Amer-719

ica, and northeastern South America. Larger uncertainties exist in the Amazon basin.720

3.8 MCS Contribution to Total Precipitation by Location721

Lastly, we analyze the contribution of MCSs to total annual rainfall (Fig. 10). This722

analysis is affected by a large range of MCS characteristics including frequency, size, longevity,723

and precipitation rates. Applying different trackers results in a wide range of MCS con-724

tributions to total precipitation with PyFLEXTRKR producing the highest contribu-725

tions while TOOCAN and ForTraCC produce the lowest. There is agreement on the con-726

tinental maximum of MCS contribution over the La Plata basin which varies between727

∼60% in ForTraCC and TOOCAN to more than 80% in PyFLEXTRKR. There is also728

agreement among trackers that the simulation produces a lesser fraction of precipitation729

from MCSs over large parts of the study region, particularly over Southern Argentina730

and Chile and over the equatorial and southern Atlantic. The differences over Patago-731

nia are influenced by extratropical cyclones and atmospheric rivers that may produce732
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Figure 10. Average observed (a) and simulated (b) precipitation. Fraction of MCS to total

precipitation based on observations (second row from top), simulations (third row from top) and

their differences (model minus observed; bottom row).

erroneous MCS identifications in observations with the tracker definitions used since MCSs733

are not expected frequently in this region.734

4 Conclusions735

We compared the results of 6 MCS trackers to understand how sensitive MCS statis-736

tics are to the formulation of the tracking algorithm and what impact this has on the737

evaluation of km-scale regional climate model simulations over South America. We per-738

formed this analysis for 3 water years (June to May) over South America, each differ-739

ing with regard to their El Niño phase, but only focused on multi-year average statis-740

tics to limit the presented information.741

Uncertainties in observed precipitation present difficulties in interpreting model-742

observation comparisons. There are documented high biases in the occurrence frequen-743

cies of light precipitation rates in GPM-IMERG over the Amazon basin (Rozante et al.,744

2018; Francina & et al., in review) and La Plata basin (Zhang et al., 2021), though heavy745

precipitation rates have also been shown to be biased high in a kilometer-scale season-746

long WRF simulation over the La Plata basin (Zhang et al., 2021). Particularly strik-747
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ing are the large land-ocean contrasts in simulated vs. observed MCS statistics. The pre-748

cipitation retrievals used in GPM-IMERG differ depending on the surface types due to749

changes in emissivity and differences in land/ocean precipitation characteristics (G. J. Huff-750

man et al., 2015). Derin et al. (2021) found that GPM-IMERG has better skill in de-751

tecting precipitation and representing its intensity over oceans, while it has higher false752

alarm rates over land. We find the best agreement between models and observed mean753

and P95 precipitation over the South Atlantic Ocean (SAO) region, while differences in754

other regions are substantial.755

The following points summarize our findings with regard to the 2 leading questions756

about how MCS tracker formulation affects MCS statistics and how this uncertainty im-757

pacts the evaluation of km-scale climate models.758

• MCS frequencies, as well as certain MCS characteristics, strongly depend on the759

tracker formulation, even when using the same MCS criteria. This means that statis-760

tics on the frequency, size, duration, or contribution to total precipitation of MCSs761

are susceptible to the tracker algorithm in use and should be interpreted accord-762

ingly. A main source of uncertainty is the treatment of cloud system segmenta-763

tion including splitting and merging in different tracking algorithms, in agreement764

with previous findings (Müller et al., 2022).765

• The dependence of MCS characteristics on the tracker formulation is fairly sys-766

tematic across geographical locations although some regional differences exist. Ta-767

ble 1 provides an overview of tracker MCS characteristics relative to average char-768

acteristics across the tracker ensemble. This should not be interpreted as a rank-769

ing of tracking schemes since there is no reference dataset that could be used to770

infer a quantitative assessment of derived MCS characteristics.771

• The tracker formulation can affect the evaluation of model performance in pro-772

found ways. Agreements amongst the tracking schemes on the sign of model-observational773

differences are typically the exception, which is in part caused by the good per-774

formance (i.e., small differences) of the 4 km simulation in capturing many observed775

MCS characteristics. Statistics that are highly sensitive to the tracker formula-776

tion are the MCS frequency including the initiation frequency, the ratio of MCS777

to total precipitation, and MCS size and duration.778

• Comparisons of observed and modeled MCS lifecycle characteristics (e.g., the de-779

velopment of cloud shield size, movement speed, and rain volume) are more ro-780

bust and less dependent on the tracker used. Comparisons of MCS frequency dif-781

ferences by location and differences in MCS contributions to total precipitation782

are generally more robust, though disagreement exists for some locations such as783

the southern Amazon basin.784

This study only focused on MCS tracker formulation uncertainty, neglecting un-785

certainties that stem from differences in how MCSs are defined. We use an arbitrary def-786

inition of MCSs that results in similar statistics as in published literature (Feng et al.,787

2021), but a modified definition could be warranted depending on the research question788

being asked and should be the focus of future assessments. Future work could also ex-789

pand the present study to global scales to improve our understanding of tracker formu-790

lation uncertainties in regions that have different atmospheric conditions than found in791

South America. Additionally, a better understanding of tracker formulation impacts on792

inter-annual variability and long-term trends in MCS statistics would be valuable.793

While we do not recommend that all MCS tracking analyses need to use multiple794

tracking schemes because of the complexity this would introduce, we stress that stud-795

ies using a single scheme in isolation, or in comparison with another study with a dif-796

ferent tracker, have to be interpreted with caution. Context from many complementary797

methods can improve understanding of any single method’s strengths and weaknesses798

for a specific application, providing robust support of generalized scientific conclusions.799
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Table 1. Characteristics of MCS properties for each tracker relative to other trackers. MCS

occurrence frequency, peak size, duration, 95th percentile precipitation rate (PR P95), initiation

detection timing, termination detection, initiation frequency, and contribution to total rainfall

are shown from left to right. Note that relative MCS characteristics can vary by region and input

dataset (i.e., modeled vs. observed).

Frequency Peak

Size

Duration PR P95 Initiation

Detec-

tion

Termi-

nation

Detec-

tion

Initiation

Fre-

quency

Rainfall

Contri-

bution

ForTraCC average average average low at start at end average low

MOAAP low average long above

average

sometimes

late

at end below

average

average

PyFLEXTRKR average average average average at start at end average high

TAMS average large short average late sometimes

early

low average

tobac high average short average sometimes

late

sometimes

early

high average

TOOCAN high small short high at start at end average low
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5 Open Research800

ERA-5 reanalysis data can be accessed from the Copernicus Climate Data Store801

(Copernicus, 2023). The GPM MERGIR brightness temperature observations can be down-802

loaded from the NASA server (GPM-MERGIR, 2023) and GPM-IMERG precipitation803

data can also be accessed from NASA (GPM-IMERG, 2023). The 4 km grid spacing WRF804

simulation data can be downloaded via Globus file transfer (SAAG, 2023). The MCS mask805

files from each tracker can also be accessed via Globus (A. F. Prein et al., 2023). The806

MOAAP code can be downloaded from GitHub (Prein, Andreas F, 2023b). PyFLEX-807

TRKR can also be accessed on GitHub (Zhe Fent, 2023). The TAMS code can be down-808

loaded via GitHub (Núñez Ocasio, K. M. and Moon, Z. L., 2023). The tobac code can809

be downloaded from GitHub (Heikenfeld et al., 2023). The TOOCAN and ForTTraCC810

codes are not open source. Questions about TOOCAN should be directed to Rémy Roca811

(remy.roca@cnrs.fr) or Thomas Fiolleau (thomas.fiolleau@legos.obs-mip.fr) and812

questions about ForTTraCC to Amanda Rehbein (amanda.rehbein@usp.br). The code813

that was used for the analyses and visualizations in this paper can also be accessed from814

GitHub (Prein, Andreas F, 2023a).815
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Figure S1. Monthly mean MCS frequencies (averaged over the three years) for observed MCSs

(first column), modeled MCSs (center column), and their relative differences (right column).

Results are shown for the NWS, NSA, NES, SAM, SES, NAO, EAO, and SAO regions (top-

down; see red polygon on the map in the first column).
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Figure S2. Observed (gray) and simulated (red) MCS characteristics in the NWS region.

Shown are MCS (a) peak size, (b) median speed, (c) maximum 95th percentile rainfall (P95),

(d) mean precipitation, (e) mean precipitation volume, (f) duration distributions. Precipitation

statistics only consider precipitation larger than 2mmh−1. The box width shows the interquantile
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maximum or minimum data point or to 1.5 times the interquantile range dependent on which
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Figure S3. Similar as Fig. S2 but for the NES region.
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Figure S4. Similar as Fig. S2 but for the SAM region.
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Figure S5. Similar as Fig. S2 but for the SES region.
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Figure S6. Similar as Fig. S2 but for the NAO region.
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Figure S7. Similar as Fig. S2 but for the EAO region.
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Figure S8. Similar as Fig. S2 but for the SAO region.
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Figure S9. Similar as Fig. S2 but for the NWS region.
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Figure S10. Evolution of short-lived (≥4 hours and ≤12 hours; dashed lines) and long-lived

(≥16 hours and ≤20 hours) mean MCS size (first row), 95th percentile precipitation (second

row), precipitation volume (third row), and speed (bottom row) in the NWS region. Mean

observed/simulated characteristics are shown with red/black lines. Results from different trackers

are shown in rows. The number of MCSs in each analysis is shown in the legend. Only initiations

that start with cloud shields smaller than 40,000 km2 are incorporated to reduce the effect of MCS

splits on the statistics.
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Figure S11. Similar as Fig. S10 but showing results for the NES region.
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Figure S12. Similar as Fig. S10 but showing results for the SAM region.
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Figure S13. Similar as Fig. S10 but showing results for the SES region.
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Figure S14. Similar as Fig. S10 but showing results for the NAO region.
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Figure S15. Similar as Fig. S10 but showing results for the EAO region.
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Figure S16. Similar as Fig. S10 but showing results for the SAO region.
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