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Abstract

Channel networks across fluvial landscapes are believed to have evolved to minimize energy expenditure[1–3], as evidenced by

the similarities between computer-generated optimal channel networks (OCNs) and real networks[4,5]. However, the specific

mechanisms driving energy minimization in fluvial landscapes remain largely elusive[6]. Here we propose that randomness has

a profound role in landscape evolution[7] and that efficient channel networks emerge when the probability of a channel pixel

changing its flow direction decreases with drainage area. The proposed probabilistic growth model then employs a power function

to simulate channel-network evolution, with positive exponent (?) values leading to asymptotic decrease of energy expenditure.

An interpretation of this result is energy minimization tendency of river networks is a result of landscape evolution following

specific adaptive rules rather than being the cause of landscape evolution itself. A greater ? ensures a greater restriction on

the role of randomness and thus results in a more stable channel network configuration, and vice versa. Interestingly, the most

efficient networks are observed to emerge always at ? =0.5, suggesting that randomness plays an important but limited role

in the emergence of efficient channel networks. The proposed framework holds promise for explaining the evolution of other

tree-like networks in nature and for developing more efficient optimization methods for practical applications.
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Abstract 9 
Channel networks across fluvial landscapes are believed to have evolved to minimize energy 10 
expenditure1–3, as evidenced by the similarities between computer-generated optimal channel 11 
networks (OCNs) and real networks4,5. However, the specific mechanisms driving energy 12 
minimization in fluvial landscapes remain largely elusive6. Here we propose that randomness has a 13 
profound role in landscape evolution7 and that efficient channel networks emerge when the probability 14 
of a channel pixel changing its flow direction decreases with drainage area. The proposed 15 
probabilistic growth model then employs a power function to simulate channel-network evolution, 16 
with positive exponent (𝜂) values leading to asymptotic decrease of energy expenditure. An 17 
interpretation of this result is energy minimization tendency of river networks is a result of landscape 18 
evolution following specific adaptive rules rather than being the cause of landscape evolution itself. A 19 
greater 𝜂 ensures a greater restriction on the role of randomness and thus results in a more stable 20 
channel network configuration, and vice versa. Interestingly, the most efficient networks are observed 21 
to emerge always at 𝜂 = 0.5, suggesting that randomness plays an important but limited role in the 22 
emergence of efficient channel networks. The proposed framework holds promise for explaining the 23 
evolution of other tree-like networks in nature and for developing more efficient optimization 24 
methods for practical applications. 25 
 26 
Main 27 
Origins of fluvial channel networks continue to create curiosity among us because the processes 28 
leading to their formation are exceedingly complex and have not been fully understood yet. 29 
Nevertheless, networks across regions show remarkable statistical similarities8,9, which is why most of 30 
the early models were statistical in nature10. Statistics-based approach can provide a diverse range of 31 
views on channel network structure. The random topology models explore possibilities of connecting 32 
nodes to form tree-like networks11. The statistical growth models allow network formation to begin at 33 
the outlet and gradually grow adding nodes to form tree-like networks resembling fluvial channel 34 
networks. The rationale behind these network growth models is that disturbance caused due to erosion 35 
propagates in the upstream direction12,13. It is also possible for a network growth model to produce 36 
networks with varying shapes and sizes and explain the scaling laws of river networks14. The main 37 
criticism of the statistics-based models is that they provide a very limited understanding of channel 38 
network evolution. Many studies have therefore attempted to use mass and momentum conservation 39 
equations for simulating channel networks15,16. However, these models too, do not explain the 40 
processes leading to the formation of fluvial channel networks properly as it is not possible to have 41 
detailed information on the initial conditions of a landscape. Moreover, the role of heterogeneity 42 
within a process-based model is typically handled statistically as it is not possible to do so in a fully 43 
mechanistic way17.    44 
 45 
A completely different viewpoint was proposed by Leopold18 that states landscapes evolve so as to 46 
form optimal channel network configuration. Although the optimality hypothesis is based on sound 47 
physics and has proven its worth in many scientific disciplines19, it is quite unclear what exactly is 48 
optimized in the context of channel network evolution. Many objective functions have been proposed 49 
in the past to generate optimal channel networks (OCNs)20, and it is not very uncommon to see 50 



contradictions6. The most widely accepted optimality hypothesis is that channel networks evolve to 51 
minimize total energy expenditure, quantitatively given as: 52 
 53 

Ε ∝ ∑(Δ𝑥𝑖 ⋅ 𝑄𝑖
𝛾

) ∝ ∑(Δ𝑥𝑖 ⋅ 𝐴𝑖
𝛾  )                                                                (1)   54 

   55 

where Δ𝑥𝑖 is the length of the ith channel segment and 𝑄𝑖 is discharge through it, which is assumed to 56 

be proportional to the drainage area (𝐴𝑖). The exponent 𝛾 characterizes the fluvial processes. Its value 57 

is typically observed to be close to 0.5 21, implying that energy expenditure per unit channel-bed 58 
surface is spatially constant and that energy minimization also happens locally at every channel 59 
segment21. Numerous studies have been conducted using Equation (1) as the objective function, and 60 
the resulting OCNs have shown to capture the key statistical characteristics of real channel networks, 61 
suggesting the hypothesis is grounded well5,22,23.  62 
 63 
However, the OCN model sheds no light on the mechanisms behind the tendency of channel networks 64 
to become efficient. With simulation results from a process-based model accounting for erosion and 65 
deposition, Paik and Kumar7 concluded that landscape heterogeneity leads to the formation of tree-66 
like channel networks, thereby minimizing energy. However, they did not quantify the role of 67 
heterogeneity in channel network evolution. Moreover, they did not compare the energy expenditure 68 
of their simulated networks with that of OCNs. In fact, no comprehensive study so far, to our 69 
knowledge, has compared simulated networks with real networks in term of energy expenditure. In 70 
this study, we propose a probabilistic network growth model and compare the energy expenditure of 71 
the simulated networks with that of real channel networks and with the networks obtained using 72 
OCNet4,24, a well-known model for generating OCNs.  73 
 74 
The working of the model is given as follows. In each iteration, the proposed model assigns flow 75 
direction to all the pixels within a given planar boundary through a step-by-step procedure (refer to 76 
Methods). Each step involves selecting a pixel from those neighbouring the already evolved drainage 77 
network, based on a probabilistic function.  78 
 79 

𝑃𝑖 ∝ 𝐴𝑖
𝜂                                                                                                          (2) 80 

          81 
where 𝑃𝑖 is the probability of the pixel 𝑖 being selected in the step and 𝐴𝑖 is the drainage area of the 82 
pixel. The flow direction for the pixel is assigned towards the neighbouring pixel of the already 83 
evolved network with the highest drainage area. The detailed methodology is described in the 84 
methods section.  85 
 86 
A channel network evolves when the forces trying to change flow directions dominate the forces 87 
trying to preserve them. The parameter 𝜂 is a numerical representation of the relative roles of these 88 

forces. When 𝜂 = 0, forces of change or randomness dominates everywhere, resulting in the 89 

generation of an Eden-type network configuration25,26 in each iteration that possesses no memory of 90 
the previous network configuration (Fig.1a). A positive 𝜂 implies forces of change weakening with 91 
drainage area (Equation 2), ensuring a relatively greater stability for higher order channels (Fig.1a-f). 92 

As 𝜂 increases, forces of change weaken and a greater portion of the initial network is retained 93 
(Fig.1g). The hierarchical reorganization of the drainage network is believed to occur through 94 
mechanisms such as valley migration and stream capture27–29. Energy expenditure (𝛥𝛦, expressed as 95 
% extra energy with respect to that given by OCNet) is observed to asymptotically decrease for any 96 
positive 𝜂 (Fig.1h), suggesting the possibility of the proposed model explaining quite well the 97 

emergence of efficient channel networks in fluvial landscapes. The final, steady-state value of energy 98 
expenditure 𝛥𝛦𝑠 (𝛥E after 𝑁 = 100 here) decreases with 𝜂, with the emergence of the most efficient 99 

network configuration at 𝜂 = 0.5, after which 𝛥𝛦𝑠 follows an increasing trend (Fig.1i). While the 100 



initial Eden-type network configuration shows 𝛥𝛦𝑠 approximately equal to 10%, the final network 101 

configuration obtained with 𝜂 = 0.5 is as efficient as the OCNet (Fig.1i), supporting the notion that 102 
energy minimization is merely a consequence of landscapes following a few thumb rules to evolve.  103 
 104 

 105 
Figure 1: Evolution of drainage networks according to the proposed model  106 
A sample Eden-type network obtained with 𝜂 = 0 (a), which is allowed to evolve considering different 𝜂 values: b) the 107 
networks with 𝜂 = 0.5 for iteration 𝑁 = 5 and c) for 𝑁 = 100. The networks after 𝑁 = 100 for 𝜂= 0.25,1 and 2 108 
respectively are shown in (d), (e) and (f). (g) Percentage of total pixels that didn’t change during the 100th iteration vs. 109 
drainage area percentile, indicating that pixels with higher drainage area are relatively more stable compared to pixels with 110 
lower drainage area and that the stability increases with η. (h) 𝛥𝐸 vs. 𝑁 curves for different 𝜂 values, which shows consistent 111 
decrease of 𝛥𝐸, visible particularly for 𝜂 > 0. The most efficient configuration is obtained for 𝜂 = 0.5 (i) Variation in 𝛥𝛦𝑠 112 
for resulting networks with different 𝜂. Each datapoint is median 𝛥𝛦𝑠 from an ensemble of 20 simulations 113 
 114 
The model's outcomes are influenced by its initial conditions. In an island resembling a square 115 
pyramid with 𝛥𝛦 = 70%, where the flow from every pixel is directed toward the nearest border pixel, 116 

the first iteration results in the formation of a network configuration with 𝛥𝛦 very close to that of an 117 

Eden-type network, irrespective of the value of 𝜂. This observation indicates a negligible role 118 

heterogeneity (represented by 𝜂, see Equation (2)) when branching has not formed yet. Fig.2 shows 119 

network configurations obtained with the model using different initial network configurations. 120 
Network configurations with high initial 𝛥𝛦 show a steep decrease of 𝛥𝛦 with 𝑁 (Fig.2a-h). On the 121 
other hand, the network configuration obtained with OCNet as initial condition showed an increase of 122 
𝛥𝛦 (Fig.2i-l). For the network configuration obtained from OCNet (initial 𝛥𝛦 = 0), 𝛥𝛦 first increased 123 

and then continued to decrease to attain a steady state for 𝜂 = 0.5 (Fig.2l). A possible explanation 124 



could be that the organizations of the most efficient network configurations of the proposed model 125 
and OCNet have certain different key properties. It also underlines the fact that the proposed model 126 
works differently.   127 
 128 

 129 
Figure 2: Model with different initial conditions. (a), (e) and (i) show networks obtained from a probabilistic model14, Paik 130 
and Kumar’s model7 and OCNet24 model, respectively, which are allowed to evolve using the proposed model. (b), (f) and (j) 131 
show resulting networks with 𝜂 = 1 from initial conditions corresponding to (a), (e), and (i), respectively, after 𝑁 = 100. 132 
Similarly (c), (g) and (k) show resulting networks with 𝜂 = 0.5 and (d), (h) and (l) show the corresponding energy profiles.   133 
 134 
The 𝛥𝛦𝑠 is independent of initial conditions for 𝜂 ≤ 0.5 and the resulting network configurations are 135 

quite indistinguishable (Fig.3). On the other hand, for values of 𝜂 greater than 0.5, the evolved 136 

network configurations share a lot of similarities with the initial configurations and the 𝛥𝛦𝑠 is 137 

influenced greatly by the initial conditions (Fig.2). That is to say 𝜂 = 0.5 acts as a threshold, below 138 

which heterogeneity determines 𝛥𝛦𝑠, and above which initial conditions influence 𝛥𝛦𝑠; the degree of 139 

this influence increases with 𝜂. The most efficient network configuration always appears when 𝜂 =140 

0.5 with 𝛥𝛦𝑠 quite close to that given by OCNet (Fig.3), implying that the proposed algorithm 141 

provides a possible explanation for the emergence of efficient channel networks. Interestingly, the 142 
assertion 𝜂 = 0.5 leading to OCN formation is true for any other 𝛾 (Equation.1) as long as its value 143 
falls between 0 and 1, which indicates the robustness of the optimality hypothesis.   144 
 145 

Although the model does not explicitly take time into account, 𝛥𝛦 of a landscape is expected to 146 
decrease with time before it reaches a steady state (Fig.1h). Thus, if a landscape is relatively young, it 147 
is expected to show high 𝛥𝛦. The island Hawaii, which is only about 0.5 million years old30, has 148 

𝛥𝛦 = 31.7%. In comparison, the 5-million year old island Kauai30 shows just 8.5% 𝛥𝛦 (Fig.4a-b). 149 
Since both islands are located in the same geographical region and are expected to exhibit similar 150 
evolutionary trajectories, it is quite certain that Hawaii is at an early evolutionary stage. However, the 151 
nearly one billion year old Tasmania31, expected to exhibit an optimal channel configuration, shows 152 



𝛥𝛦 = 9.8% (Fig.4c). In fact, for none of the ten islands studied here 𝛥𝛦 ≈ 0 (Table S1), which 153 

suggests real landscapes may not be evolving with the intention of attaining a state of optimality, and 154 
thus the value of 𝜂 cannot be simply assumed to be 0.5. This also means energy minimization is an 155 
outcome of landscape evolution rather than the cause of landscape evolution6. The above observations 156 
pose the challenge of predicting the future evolutionary trajectory of a landscape. What is the value of 157 
𝜂 we need to select for a landscape? For a given non-zero 𝛥𝛦𝑠, there are two possible values of 𝜂 158 
(Fig.3). Geological and tectonic constraints are believed to be responsible for suboptimal network 159 

configurations in real landscapes25, meaning 𝜂 > 0.5 condition is more likely. Future studies need to 160 
focus on exploring all possibilities.  161 
 162 

 163 
Figure 3: Steady-state (𝑁=100) 𝛥𝛦𝑠 vs. 𝜂 from different initial conditions. When 𝜂 ≤ 0.5 (heterogeneity dominated 164 
systems), 𝛥𝛦𝑠 is independent of initial conditions, whereas initial condition has a profound influence on 𝛥𝛦𝑠 when 𝜂 > 0.5. 165 
Note that each data point in the plot is median 𝛥𝛦𝑠 from an ensemble of 20 simulations.  166 
 167 

 168 
Figure 4: Energy Expenditure of real-world channel networks. (a), (c)&(e) shows real networks of Hawaii, Kauai and 169 
Tasmania Islands, respectively.  170 
                        171 
The main discussion point of this study is the role of randomness, reflected in terms of landscape 172 
heterogeneity, in the emergence of efficient channel networks. Although Paik and Kumar7 also 173 
recognized the role of randomness and observed increasing efficiency with evolution, the evolved 174 
channel networks obtained by their model are not efficient (Fig.2e and Fig.2h). The difference is our 175 
study sees a rather limited role of randomness as highlighted by the observation that channel networks 176 
obtained with 𝜂 < 0.5 are not that efficient. This resonates quite well with the observation made by 177 



Watts and Strogatz32 that limited randomness is a ‘necessary condition’ for the emergence of small-178 
world networks. Nevertheless, our study provides a much broader picture by revealing the hierarchical 179 

influence of randomness on the flow direction of a channel segment.  The condition 𝜂 = 0.5 always 180 
leads to the most efficient network configuration, even though the model does not employ an 181 
optimization scheme. The model thus holds the potential to be used as an optimization algorithm for 182 
practical problems concerning network optimization. While our analyses are restricted to river 183 
networks, the idea that specific adaptive rules representing basic physical processes give rise to 184 
networks exhibiting tendency to minimize transportation efficiency may be applicable to other 185 
physical and biological networks, such as vascular, root and respiratory networks2,33,34 186 
 187 
Methods 188 

The model is demonstrated using a 250×250 planar matrix that represents a hypothetical landscape. 189 
The model can be applied to any loopless flow conditions. During each iteration, the model assigns 190 
flow directions to all pixels by selecting one pixel at a time. The flow direction of a pixel can be 191 
oriented toward any one of its eight adjacent pixels, and its drainage area is quantified by flow 192 
accumulation, representing the total number of pixels flowing into it. All boundary pixels are 193 
considered as outlets. Initially, these outlet pixels are designated as "evolved pixels," while their 194 
neighbouring pixels are termed "potential pixels." In each computational step, a pixel is selected from 195 
the list of potential pixels using the power function (Equation.2). The chosen pixel is then assigned a 196 
flow direction towards the adjacent evolved pixel with the highest flow accumulation. This is because 197 
a pixel with higher flow accumulation would experience greater erosion, and thus would be at a lower 198 
elevation compared to adjacent pixels. This selected potential pixel is now reclassified as “evolved 199 
pixel” to evolved pixel and its neighbouring unevolved pixels are added to the list of potential pixels 200 
(Fig.S1). This process continues to assign flow directions to all the pixels. This constitutes as a single 201 
iteration and the model performs this all over again for the next iteration. The resulting flow directions 202 
of one iteration serve as input for the next iteration. 203 
 204 
The model demonstrates network evolution from different initial conditions. The network shown in 205 
Fig.2a was generated using a probabilistic model proposed by Borse and Biswal14. This model, 206 
implemented on a 250×250 grid, simulates the probabilistic headward growth of channel networks 207 
which is assumed to be proportional to the pixel's length to the outlet. The network shown in Fig 2e 208 
was generated using Paik and Kumar's model7, applied on a pyramidal-shaped 250×250 grid with 209 
parameter values similar to those mentioned in the study. This model simulates landscape evolution 210 
through mass balance processes and incorporates a randomly distributed surface resistance parameter. 211 
 To visualize these river networks, we have set the flow accumulation threshold at 50 for all cases. To 212 
compare the energy expenditure of real islands with any model, we need same sized grids. We 213 
obtained the island’s digital elevation data from the SRTM 1 arc second global dataset and resampled 214 
it to a smaller size comparable to the already used square matrix. This resampled DEM was used to 215 
delineate networks and calculate the energy expenditure (Fig.4). We executed the OCNet provided by 216 
Carraro et.al.,24 with default parameter settings to obtain OCN for the corresponding resampled grids. 217 

The excess energy 𝛥𝛦 for a particular network is calculated in reference to energy expenditure 218 

(Equation.1 for 𝛾 = 0.5) of OCN within the same boundary as 𝛥𝛦 =
𝐸−𝐸𝑂𝐶𝑁𝑒𝑡

𝐸𝑂𝐶𝑁𝑒𝑡
× 100.  219 
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Supplementary Information 311 

 312 

Figure S1: Model algorithm explained with a sample example with pyramid-like initial flow 313 
conditions (a). At the start of the iteration, outlets are “Evolved pixels” and neighboring to them are 314 
“Potential pixels.” In each step, a potential pixel would be chosen with probability obtained using 315 
equation 2. Let’s assume the pixel highlighted in red is selected in the first step (a), then it would be 316 
assigned flow direction towards the neighboring evolved pixel with the highest flow accumulation 317 
value. Thus, its updated flow direction would be toward northwest. After this, the flow accumulation 318 
values for corresponding pixels would be updated, and the three neighboring unevolved pixels would 319 
be reclassified as potential pixels. An intermediate step in the computation would look like (b), with a 320 
sample chosen potential pixel highlighted. The assignment of drainage direction for this highlighted 321 
potential pixel is shown in (c). Once all pixels are assigned, the iteration is over. The same process can 322 
be followed all over again for the next iteration as shown in (d). Note that the model can be simulated 323 
with any other initial loopless flow conditions.   324 

 325 

 326 



Sl. no. Island Location ΔE (%) 

1 Barbados Atlantic Ocean 11.4 

2 Cyprus Mediterranean Sea 13.1 

3 Grenada Caribbean Sea 5.6 

4 Hawaii (the big island) Pacific Ocean 29.14 

5 Jeju Yellow Sea 13.6 

6 Kauai Pacific Ocean 6.41 

7 Mauritius Indian Ocean 18.03 

8 Cape Verde Atlantic Ocean 12.92 

9 Reunion Indian Ocean 26.31 

10 Tasmania South Pacific Ocean 9.92 

 327 

Table S1: ΔE (%) calculated for the different islands. 328 


